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Abstract—We study the oblique dual frame completion prob-
lem, where the oblique dual frame contains certain prescribed
vectors. We establish conditions for the existence and uniqueness
of such oblique dual frames and provide explicit constructions
using several approaches, including a product matrix approach
and a singular value decomposition approach.

Index Terms—Frames, Oblique dual frames, Completion

I. INTRODUCTION

Frames are a generalization of orthonormal bases that
provide redundancy in signal representation, making them
well suited for signal processing and data transmission [2],
[3]. Unlike bases, frames allow for multiple reconstruction
formulas, ensuring stability even in the presence of missing
or corrupted coefficients. Exact reconstruction of signals is
possible via dual frames. In some applications, the dual frame
elements lie in a subspace different from the original frame
elements, leading to the concept of oblique dual frames [4],
[5], [7].

Motivated by the problem of signal recovery when frame
coefficient erasures are present (e.g. [6], [8]), the authors of
[1] studied the dual frame completion problem: When given
a frame F for a finite-dimensional Hilbert space, and a set H
of vectors which is assumed to be a subset of a dual frame of
F , they presented conditions under which a dual frame G for
F contains the vectors from H .

In this paper, we study the oblique dual frame completion
problem: Given a frame F = {f1, . . . , fk} of a subspace
W of a finite-dimensional Hilbert space and a set H =
{h1, . . . , hs}, s ≤ k of vectors in another subspace V of the
Hilbert space, we explore the possibility of finding an oblique
dual frame G = {g1, . . . , gk} in V of the fixed frame F
such that g1 = h1, g2 = h2, . . . , gs = hs. When such an
oblique dual frame G exists, we say that the oblique dual
frame completion is possible. We note that the results from
[1] can be interpreted as special cases of the results in this
paper, with W and V both equal to the given Hilbert space.

In Section II, we review some known results on frames and
oblique dual frames. In Section III, we explore methods for
addressing the oblique dual frame completion problem, includ-
ing techniques based on product matrices and singular value
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decomposition. Finally, Section IV presents the conclusion and
a future direction.

II. PRELIMINARIES AND KNOWN RESULTS

By Fn we denote a finite-dimensional Hilbert space (Rn or
Cn). If F ⊆ Fn, then |F | denotes the cardinality of F . A set
of vectors F = {fi}ki=1 in Fn, k ≥ n, is called a frame for
Fn if it spans the space. Equivalently, there exist constants
0 < α ≤ β < +∞ such that for every f ∈ Fn, the following
inequalities hold:

α∥f∥2 ≤
k∑

i=1

|⟨f, fi⟩|2 ≤ β∥f∥2. (1)

Here, α is called a lower frame bound for F , and β is called
an upper frame bound for F . For simplicity, we label the
matrix F = [f1 . . . fk], the set F = {fi}ki=1, and the synthesis
operator of the frame with the same label, F . We will say that
a matrix is a frame for a subspace if its columns span the said
subspace.

Given a frame F = {fi}ki=1 for Fn, a dual frame for F is
a frame G = {gi}ki=1 such that for every f ∈ Fn,

f =

k∑
i=1

⟨f, gi⟩fi =
k∑

i=1

⟨f, fi⟩gi = FG∗f = GF ∗f. (2)

Note that the dual frames F and G are frames for the
same space. In applications [5], it is sometimes beneficial to
consider a type of duality where the paired frames are frames
for different subspaces. For this, we discuss oblique duality,
which makes use of the oblique projection.

Let V and W be subspaces of Fn satisfying

Fn = V ⊕W⊥. (3)

Note that it follows from (3) that dim V = dim W. Given a
vector f ∈ Fn = V ⊕ W⊥, we can write f uniquely as the
sum of a vector in V and a vector in W⊥: f = fV + fW⊥ .
Then the oblique projection onto V along W⊥ is the unique
linear operator πV,W⊥ defined as πV,W⊥f = fV . Equivalently,
πV,W⊥ maps all elements in V to itself, while it maps all
elements in W⊥ to 0. If W = V , then πW,W⊥ =: πW , the
orthogonal projection onto W .

Lemma 1: Let V and W be subspaces of Fn satisfying (3).
Then the following properties hold:



1) π∗
V,W⊥ = πW,V ⊥ .

2) πV,W⊥ + πW⊥,V = In.
3) πV,W⊥πW = πV,W⊥ .
4) πWπV,W⊥ = πW .

Let V and W be as above. Let F be a frame for W , and
let G be a frame for V , with |F | = |G|. We say that G is an
oblique dual frame of F on V if

GF ∗ = πV,W⊥ . (4)

Since (3) is equivalent to W ⊕ V ⊥ = Fn [4, Lemma 2.1], we
can also say that F is an oblique dual frame of G on W .

A frame for a subspace W of Fn can have infinitely many
oblique dual frames (on appropriately selected subspaces V ):

Example 1: Let [h1 h2 f1 f2 f3] =

x a 0 0 1
y b 1 0 0
z c 0 1 0

.

Let F = [f1, f2], G = [h1, h2]. We want: R3 = V ⊕ W⊥,
where V = spanG, and W = spanF ; also, W⊥ = span{f3}.
We want F and G to form an oblique dual frame pair for the
subspaces W , V , thus we require GFT = πV,W⊥ . For the
choice of w = bz − cy, we have

GFT =

0 x a
0 y b
0 z c

 , πV,W⊥ =
1

w

0 az − cx bx− ay
0 w 0
0 0 w

 .

It must be that b = z = 0, and y = c = 1. So, for any
a, x ∈ R, we have that for

G =

x a
1 0
0 1

 , it holds GFT = πV,W⊥ =

0 x a
0 1 0
0 0 1

 .

Further on, dimG = 2, and f3 /∈ spanG, therefore
R3 = V ⊕ W⊥ for any a, x ∈ R. Observe that for a fixed
value of x, we have infinitely many dual frame completions
for F (with a varying choice of the subspaces V ).

In Section III-B we will utilize the Singular Value Decom-
position (SVD) of a frame. Recall that given a k × n matrix
A, its SVD is A = UΣB∗ where U,B are unitary and Σ
is a diagonal k × n matrix whose diagonal entries are the
singular values of A, listed in decreasing order. Furthermore, if
rankA = r, then the first r columns of U form an orthonormal
basis for the column space of A.

III. FINDING AN OBLIQUE DUAL FRAME

In this section, we explore several approaches towards
solving the oblique dual frame completion problem. We begin
with an example.

Example 2: Consider the 3× 2 matrices

F0 =

0 0
1 0
0 1

, G0 =

1 0
1 0
0 1

, and let g =

10
0

.

Let V = spanG0, W = spanF0; observe that V and W
are two-dimensional subspaces of R3, and W⊥ = span g. In
addition, V ⊕W⊥ = R3, with oblique projection operator

πV,W⊥ =

0 1 0
0 1 0
0 0 1

, while πV =

1/2 1/2 0
1/2 1/2 0
0 0 1

.

We have G0F
T
0 = πV,W⊥ , thus G0 is an oblique dual frame

of F0 on V .

Let F1 =

 0 0 0
−1 2 3
1 0 −2

, and set F = [F0 F1].

Note that kerF1 = span[4 − 1 2]T . Now, set

G1 = [x y z]T [4 − 1 2].

With the choice G = [G0 πV G1], we have GFT = πV,W⊥

and F1(πV G1)
T = O, where O is the zero matrix. Thus, G

is also an oblique dual frame for F on V .
Motivated by Example 2, we reach the following conclu-

sion:
Theorem 2: Let V and W be subspaces of Fn satisfying

equation (3). Let F0 and G0 be frames for W and V ,
respectively, and let G0 be an oblique dual frame for F0 on
V , where |F0| = |G0| ≥ s = dimW . Let F = [F0 F1]n×k

be a frame for W . Given any G1 ∈ Fn×(k−s), we have that
G = [G0 πV G1] is an oblique dual frame for F on V if and
only if

(ker πV G1)
⊥ ⊆ ker F1. (5)

Furthermore,
i. if the columns of F1 are linearly independent, then the

only possible choice for the oblique dual frame comple-
tion is G = [G0 O].

ii. if the columns of F1 are linearly dependent, then there
exist infinitely many oblique dual frame completions of
F on V of type G = [G0 G1] .

Proof 1:
We want to show that G is an oblique dual frame for F

on V , which is equivalent to GF ∗ = πV,W⊥ . So, G0F
∗
0 +

πV G1F
∗
1 = πV,W⊥ . By assumption, G0F

∗
0 = πV,W⊥ , thus

πV G1F
∗
1 = O, that is F1(πV G1)

∗ = O. We have that G is an
oblique dual frame for F on V if and only if im (πV G1)

∗ ⊆
kerF1. The conclusion follows. □

Remark 1: In Example 1, dual frame completion is possible
when b = z = 0, y = c = 1. Fixing x = 1, we can say
that h1 = [1 1 0]T can always be completed to an oblique
dual frame {h1, h2} of F = {f1, f2} on V = span{h1, h2},
with h2 = [a 0 1]T , where a is any real number. In this case,
the singular values of G indicate that the frame bounds are
1 and a2 + 2, so the lower frame bound is always 1, while
the upper bound is minimized for a = 0. Note that if instead
we are given h1 = [x 0 0]T we see that {h1} can never be
completed to an oblique dual frame of F on any subspace V ,
as (5) would not be satisfied.

Theorem 3: Let V and W be m-dimensional subspaces of
Fn, satisfying (3). Let F = {f1, . . . , fk} be a frame for W ,
with k > m and F = F0 ∪ F1, where F0 = {f1, . . . , fs}
and F1 = {fs+1, . . . , fk} such that 1 ≤ s ≤ k − m. Let
H = {h1, . . . , hs} ⊆ V .



There exists an oblique dual frame G = H ∪ G1, with
G1 = {gs+1, . . . , gk}, of F on V if and only if the columns
of πW,V ⊥ − F0H

∗ are in the span of the columns of F1.
In addition, if
i. s = k −m, then the completion is unique if and only if

fk−m+1, . . . , fk form a basis for Fn.
ii. s < k − m, if F1 is a frame for W then there exist

infinitely many dual frame completions of F on V .

A. Oblique dual frame completion via product matrices

For the next result, we use the fact that for a frame F of a
subspace W of Fn, we can always find an invertible P such
that

PF ∗ =

[
πW

O

]
. (6)

Indeed, if F is a frame for W , then F ∗ and πW generate the
same row space, that is, they are row equivalent and P is the
product of matrices corresponding to the row operations.

Example 3: Let V and W be as in Example 2. Let

F1 =

0 0 0 0
2 1 0 0
0 0 3 1

 and P =


1 −2 0 0
0 1 0 0
0 0 1/3 0
0 0 −1/3 1

.

Note that πW =

0 0 0
0 1 0
0 0 1

 and observe that F1 spans W ,

detP = 1/3, and PFT
1 =

[
πW

O

]
, where O = [0 0 0].

Then for any 3× 1 matrix A, we have(
[πV,W⊥ πV A]P

)
FT
1 = [πV,W⊥ πV A](PFT

1 )

= [πV,W⊥ πV A]

[
πW

O

]
= πV,W⊥πW +O = πV,W⊥ .

Thus G1 = [πV,W⊥ πV A]P is an oblique dual frame for F1.

Theorem 4: Let V,W be m-dimensional subspaces of Fn

satisfying (3). Let F = {f1, . . . , fk} be a frame for W , with
k > n. Then there exists an invertible k × k matrix P such
that (6) holds. Write

P =

[
Pn×s Pn×(k−s)

P(k−n)×s P(k−n)×(k−s)

]
, (7)

and let H = [h1 . . . hs] be any given matrix whose columns
are in V , 1 ≤ s ≤ k − n. Then the following hold:

i. There exists an oblique dual frame G =
{h1, . . . , hs, gs+1, . . . , gk} for F if and only if
there exists a matrix A whose columns are in V
satisfying

AP(k−n)×s = H − πV,W⊥Pn×s. (8)

Here,
G =

[
πV,W⊥ A

]
P. (9)

ii. If in addition s = k − n and P(k−n)×(k−n) is an
invertible matrix, then the oblique dual frame completion
is unique.

Proof 2: Suppose that there exists an n× (k−n) matrix A
satisfying (8) or equivalently,

H = πV,W⊥Pn×s +AP(k−n)×s. (10)

Let [gs+1 . . . gk] = πV,W⊥Pn×(k−s) + AP(k−n)×(k−s); then
we obtain an oblique dual frame G =

[
πV,W⊥ A

]
P of frame

F on subspace V. Note that since the columns of A are in V ,
it is guaranteed that G is a frame for V .

Conversely, we note that G is an oblique dual frame of F on
V if and only if G can be written as

[
πV,W⊥ A

]
P for some

matrix A whose columns are in V . So if there exists an oblique
dual G = {h1, . . . , hs, gs+1, . . . , gk}, then (8) immediately
follows.

If s = k−n and P(k−n)×(k−n) is invertible, then A = (H−
πV,W⊥Pn×s)P

−1
(k−n)×(k−n) and so the dual frame completion

is unique. □

Remark 2: Theorem 4 requires the number of frame ele-
ments for W to be larger than the dimension of the whole
space. It is natural to ask if we can still apply Theorem 4
even when F = {f1, . . . , fk} where k ≤ n. Let 1 ≤ s ≤ k
and let H = [h1 . . . hs] be a matrix whose columns are in V .
Consider F̃ = F ∪ {0, . . . , 0} such that |F̃ | = n+ s > n. By
Theorem 4, there exists an oblique dual frame G̃ of F̃ , where
G̃ = H∪G1, G1 = {gs+1, . . . , gn+s}, if and only if there is a
matrix A such that πV A = A and APs×s = H−πV,W⊥Pn×s.
Moreover, if Ps×s is invertible, then the oblique dual frame is
unique. Now, if there exists an oblique dual G̃ = H ∪G1 of
F̃ , we must have

πW,V ⊥ = F̃ G̃∗ = [F O][H G1]
∗ = [F O][G G2]

∗ = FG∗,

where G = [H gs+1 . . . gk], and G2 = [gk+1 . . . gn+s].
Thus, G is an oblique dual frame for F .

B. Oblique dual frame completion via SVD

Let V,W be subspaces of Fn such that (3) holds. Suppose
F =

[
f1 · · · fk

]
is a frame for the m-dimensional sub-

space W and suppose k ≥ m. Then rank F = m. Let F =
UΣB∗ be the SVD of F , where U =

[
Un×m Un×(n−m)

]
and B are unitary matrices with

Un×mU∗
n×m = πW , and πWUn×m = Un×m. (11)

In addition, Σm = diag{σ1, . . . , σm}, and

Σ =

[
Σm 0m×(k−m)

0(n−m)×m 0(n−m)×(k−m)

]
. (12)

Theorem 5: Let V,W be subspaces of Fn = V ⊕ W⊥.
Suppose F is a frame for the m-dimensional subspace W and
let G be a frame for V . Let F = UΣB∗ be the full SVD of
F satisfying (11) and (12). Then G is an oblique dual frame
of F on V if and only if there exist a matrix MG satisfying

MG =

[
Σ−1

m Xm×(k−m)

X(n−m)×m X(n−m)×(k−m)

]
, (13)

and G = πV,W⊥UMGB
∗ for some matrices Xm×(k−m),

X(n−m)×m, X(n−m)×(k−m).



Proof 3: Let G be a frame for V . Then the columns of GB
are in V . Now since U is unitary and its columns form an
ONB for Fn, the columns of πV,W⊥U span V . Hence, there
exists a matrix MG such that

πV,W⊥UMG = GB, (14)

and G = πV,W⊥UMGB
∗.

Now we show that (13) holds, with G = πV,W⊥UMGB
∗.

We observe

πV,W⊥ = GF ∗ = πV,W⊥UMGB
∗(UΣB∗)∗

= πV,W⊥UMGΣ
∗U∗

which is equivalent to πV,W⊥U(In −MGΣ
∗) = 0.

Now, the first m columns of πV,W⊥U are linearly indepen-
dent, which forces the first m rows of In − MGΣ

∗ to be 0.
Thus, the upper left block in MG is Σ−1

m . We have shown that
if G is an oblique dual frame of F on V , then there exists a
matrix MG such that (13) holds, with G = πV,W⊥UMGB

∗.
Conversely, if MG is as in (13), and G = πV,W⊥UMGB

∗,
then it follows that GF ∗ = πV,W⊥ (use the fact that
ker(πV,W⊥) = W⊥ and the columns of Un×(n−m) span W⊥).

□

In the next corollary we will treat the unitary matrix B from
the SVD of a frame as a block matrix,

B =

[
B11 B12

B21 B22

]
, (15)

where B11 is an s×m matrix, B12 is an s× (k−m) matrix,
B21 is a (k− s)×m matrix, and B22 is a (k− s)× (k−m)
matrix.

Corollary 6: Let V,W be subspaces of Fn = V ⊕ W⊥,
with dimW = m < k, and W = spanF , for some F =
{f1, . . . , fk}. Let F = UΣB∗ be the full SVD of F with
(11), (12) and (15) satisfied. Let H = {h1, . . . , hs} ⊂ V ,
1 ≤ s ≤ k. Then the following hold:

i. There exists a set G1 ⊂ V such that G = [H G1] is an
oblique dual frame for F if and only if there exists an
n× (k −m) matrix Y such that

Y B∗
12 = H − πV,W⊥Un×mΣ−1

m B∗
11. (16)

ii. If s = k − m and B12 is invertible, then the oblique
dual frame completion is unique.

iii. The vectors in H are the first s vectors in the canonical
oblique dual frame if and only if for all j ∈ {1, . . . , s},
we have

hj = πV,W⊥Un×m

 bj,1/σ1

...
bj,m/σm

 .

Remark 3: When i. in Corollary 6 holds true, we have
G = πV,W⊥UMGB

∗, where MG is as in (13) and

Y = πV,W⊥Un×mXm×(k−m)

Example 4: Let F0, G0, V, W be as in Example 2. Let

F1 =

0 0
1 −1
1 1

 , U =

0 0 1
0 1 0
1 0 0

 , S =

√3 0 0 0

0
√
3 0 0

0 0 0 0

 ,

H =

1 −1
1 −1
1 0

 and B =

√
3

3


0 1

√
2 0

1 0 0 −
√
2

1 1 −
√
2/2

√
2/2

1 −1
√
2/2

√
2/2

 .

Set F = [F0 F1], a frame for a subspace W of R3; then the
SVD of F is given by F = USB∗. Here n = 3, m = 2,
k = 4, s = 2, thus s = k −m, and

B12 =

√
6

3

[
1 0
0 −1

]
,

which is invertible. Hence, by Corollary 6 ii., equation (16)
has a unique solution Y , and the oblique dual frame of F on
V is G, where

Y =
√
6

1/3 1/2
1/3 1/2
1/2 1/6

 , G =

1 −1 1/2 1/2
1 −1 1/2 1/2
1 0 0 1

 .

IV. CONCLUSION

In this paper, we investigated the existence of an oblique
dual frame G of a frame F of a finite-dimensional Hilbert
space under the assumption that certain vectors are elements
of frame G. In Theorems 2 and 3, we established equivalency
conditions for the solvability of the oblique dual frame com-
pletion problem. In Theorem 4, we constructed an oblique
dual frame using a product matrix satisfying (6). Finally, in
Corollary 6, we demonstrated that solving the oblique dual
frame completion problem is possible via the SVD of the given
frame matrix F . A direction for future work is to determine
the oblique dual frame G with optimal bounds under the
assumption that G contains certain prescribed vectors.
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