
Hadamax Encoding: Elevating Performance in
Model-Free Atari

Jacob E. Kooi ∗

Department of Computer Science
Vrije Universiteit Amsterdam

Zhao Yang
Department of Computer Science

Vrije Universiteit Amsterdam

Vincent François-Lavet
Department of Computer Science

Vrije Universiteit Amsterdam

Abstract

Neural network architectures have a large impact in machine learning. However, in
the specific case of reinforcement learning, network architectures have remained
notably simple, as changes often lead to small gains in performance. This work
introduces a novel encoder architecture for pixel-based model-free reinforcement
learning. The Hadamax (Hadamard max-pooling) encoder achieves state-of-the-art
performance by max-pooling Hadamard products between GELU-activated parallel
hidden layers. Based on the recent PQN algorithm, the Hadamax encoder achieves
state-of-the-art model-free performance in the Atari-57 benchmark. Specifically,
without applying any algorithmic hyperparameter modifications, Hadamax-PQN
achieves an 80% performance gain over vanilla PQN and significantly surpasses
Rainbow-DQN. For reproducibility, the full code is available on GitHub.

1 Introduction

1 2 3
Median Human-Normalized Score

1

8

64

Ru
nt

im
e

(G
PU

 h
ou

rs
) Rainbow

C51
DDQNDQN

PQN

Hadamax-PQNPQN (Resnet-15)

Figure 1: Performance versus GPU hours in the full Atari-
57 domain at 200M environment frames. The application
of our Hadamard max-pooling encoder on PQN yields
significant performance improvements over a current state-
of-the-art model-free method, Rainbow, while remaining
more than an order of magnitude faster.

Ever since reinforcement learning (RL)
algorithms [53] surpassed human play-
ers on the Atari-57 benchmark [6, 37,
38], progress has been driven mainly
by various algorithmic innovations [15,
50].

Compared with the field of supervised
learning (SL), the deep learning compo-
nents of RL have remained relatively
simple, usually consisting of a few
convolutional layers (for image-based
tasks) followed by fully connected lay-
ers [38, 27]. So far, the most common
encoder modification in image-based
RL tasks has been the integration of
a ResNet encoder [13], inspired by its
wide use in supervised learning architec-
tures [25]. Several further approaches
have been explored to scale the deep learning architecture, but findings indicate that scaling pixel-

∗Correspondence to jacobkooi92@gmail.com, {z.yang3, vincent.francoislavet}@vu.nl

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Jacobkooi/Hadamax

based RL remains a significant challenge [41, 42], and finds greater success in either low-dimensional
state-based continuous control [35, 24] or complex model-based architectures [47, 23].

In this work, we revisit the assumption that modifications to deep learning architectures can not lead
to significant improvements in RL. We build on top of the recent Parallelized Q-Network (PQN),
which reinvented DQN to function without the replay buffer and target network, while profoundly
increasing performance [17]. This is done by combining recent advances in Hadamard representations
[31] with max-pooling found in the ResNet encoder structures [25, 13]. Specifically, we augment the
state-of-the-art PQN algorithm with a Hadamard-maxpooling (Hadamax) encoder. The contributions
can be summarized as follows:

• A novel deep learning architecture is proposed to improve usual pixel-based convolutional
encoder architectures for model-free RL. This design shows an alternative direction of
encoder synthesis in RL, as compared to the widely used deeper ResNet architectures.

• Without applying any algorithmic or hyperparameter modifications, Hadamax-PQN achieves
an 80% performance gain in the full Atari-57 suite over the recent PQN baseline [17]. These
changes allow Hadamax-PQN to significantly surpass Rainbow-DQN [27] while remaining
more than an order of magnitude faster, setting a new state-of-the-art for model-free RL on
Atari.

2 Related Work

Different neural network architectures are applied in RL to enhance the performance in online
settings [37, 5, 13, 27, 17, 35] as well as offline limited data settings [7, 49, 10, 50, 39]. In this
work, we focus on agents in the high-dimensional Atari-57 domain [6], a diverse and commonly-used
challenging benchmark with discrete actions and pixel-based input.

Network development in RL for Atari: Deep Q-learning (DQN) [37, 38] achieves human-level
performance on Atari games for the first time in the RL history by using three convolution layers
(with ReLU) followed by fully-connected layers. Due to its simplicity and efficiency, this classic
architecture is used for many later works, such as Double DQN (DDQN) [55], Dueling DQN [58],
Noisy DQN [14], Categorical DQN (C51) [5] and Rainbow-DQN [27]. The recent Parallelized
Q-Network (PQN) [17] algorithmically simplifies DQN and uses LayerNorm [4] to provably stabilize
optimization. C51 [5] and R2D2 [29] enhance the output layer using categorical distributions
and a recurrent network, respectively. In the context of model-based RL, Recurrent State-Space
Models (RSSM) [20, 21, 23], image augmentation [34], forward prediction [49, 40], residual
architectures [13, 46] and transformers [1] have also been explored to solve Atari. Impala [13]
introduces a deeper ResNet-15 encoder structure with 6 residual blocks, allowing for high data
efficiency under distributional training. BBF [50] further widens the Impala encoder, achieving
state-of-the-art performance on the Atari-100k benchmark. SPR [49], using DQN’s architecture
with a self-prediction objective, also improves data efficiency. For model-based methods, residual
architectures [60, 57], transformers [61] and diffusion models [3] are being increasingly leveraged to
boost sample efficiency. Our work focuses on model-free agents in the Atari-57 benchmark, where
relatively modest algorithmic architectures are used, and a large amount of environment interactions
is allowed.

Speedups in RL: Since the development of JAX [9], parallel and vectorized training of reinforcement
learning (RL) agents has become a promising area of research, offering significant performance and
scalability improvements. Physics simulation engines and tools that are compatible with JAX have
emerged to support this paradigm, including Brax [16], a physics simulation engine optimized for
high-speed differentiable environments; Gymnax [33], a lightweight, JAX-based version of classic
Gym environments; Jumanji [8], a suite of combinatorial and decision-making environments tailored
for JAX; and EnvPool [59], a high-throughput environment execution engine with up to 20x speedup
compared to Python. To complement these environments, a growing ecosystem of reinforcement
learning libraries built entirely in JAX has been developed. PureJaxRL [36] implements standard RL
algorithms entirely end-to-end in JAX, enabling parallel execution across thousands of environments.
JaxMARL [45] focuses on multi-agent reinforcement learning, demonstrating strong acceleration of
existing algorithms. Additionally, cleanrl [28], a library providing high-quality and reproducible RL
implementations, also includes several JAX-based implementations. Our work builds upon PQN [17],
which leverages EnvPool and PureJaxRL, achieving greater efficiency compared to conventional

2

PyTorch-based implementations. With the Hadamax encoder, we further architecturally improve
PQN to the point that it significantly surpasses Rainbow-DQN, while remaining more than an order
of magnitude faster.

3 Preliminaries

As a background, we briefly explain general value-based RL and the recent PQN algorithm, which is
extended with our proposed encoder.

3.1 Reinforcement Learning and Value-based Methods

We consider a Markov Decision Process (MDP), defined by the tuple < S,A,P,R, γ >, with state
space S, action space A, transition function P , reward function R and discount factor γ ∈ [0, 1).
An agent in state st ∈ S at timestep t, taking action at ∈ A observes a reward rt ∼ R(st, at) and
next state st+1 ∼ P(st, at). The goal is to learn an optimal policy π∗ : S → A that can maximize
the expected return G(st) = E

[∑∞
k=0 γ

krt+k | st = s
]

over all possible trajectories. Unlike policy-
based or actor-critic methods [48, 19] that optimize the policy, value-based methods [37] learn a
state-action value function Q(s, a). Once the optimal Q-function is learned, the optimal policy is
implicitly defined by selecting greedy actions π∗(s) = argmaxaQ

∗(s, a). Q-learning is the most
widely used value-based algorithm. It learns Q(s, a) through temporal difference (TD) learning. The
update rule is:

Q(st, at)← Q(st, at) + α[r + γmaxa′∈AQ(st+1, a
′)−Q(st, at)], (1)

where α is the learning rate. Over time, this iterative process allows the Q-function to converge to the
optimal value function Q∗(s, a), from which the optimal policy can be derived.

Deep Q-Network (DQN) [37] extends Q-learning by using a deep neural network to approximate the
Q-function. The network is trained to minimize the difference between the predicted Q-values and
the target values, typically using a loss function such as mean squared error:

L(θ) = Est,at,rt,st+1∼D[(rt + γmaxa′∈AQ(st+1, a
′; θ−)−Q(st, at; θ))

2] (2)

where θ and θ− are the parameters of the Q-network and are the parameters of a target network that
is periodically updated. D is the experience replay buffer from which mini-batches are sampled.

3.2 Parallelized Q-Network (PQN)

PQN is a simplified deep online Q-learning algorithm. By parallelizing vectorized environments
and normalizing neural networks (LayerNorm), PQN can stabilize the training even without a target
network and replay buffer. Moreover, it is compatible with pure-GPU training, leading to efficient
training on Atari tasks. More specifically, PQN makes the following modifications compared to the
original DQN:

λ-return: Unlike the original DQN uses 1-step return, PQN leverages a more stable λ-return. The
loss in Equation (2) thus becomes:

L(θ) = Etrajs[(rt + γ(λGλ
t+1 + (1− λ)maxa′∈AQ(st+1, a

′; θ))−Q(st, at; θ))
2], (3)

where Gλ is the λ-return. When λ = 0 it will be similar to Q-learning, and if λ = 1 it is equivalent
to the Monte Carlo update, which uses the full return until the episode ends.

LayerNorm: PQN adds LayerNorm for the output of convolution / MLP layers before the ReLU
activation functions, which helps stabilize the training process.

Removal of replay buffer and target network: Since the whole training process happens on GPU,
removing the replay buffer can largely reduce memory and thereby accelerate training. As a result of
the training stability, the target network is also eliminated.

4 Hadamax Encoder

The first human-level performance in the Atari-57 domain was achieved with the ’Nature’ DQN
encoder design [38]. The general effectiveness of this architecture, as well as the problems with

3

Figure 2: Encoder architectures of DQN, PQN , the proposed Hadamard max-pooling (Hadamax)
encoder and the Impala ResNet-15 encoder (from left to right). In the Hadamax encoder, down-
sampling is facilitated by max-pooling operators. Furthermore, we apply a Hadamard product
between parallel representation layers. The implementation is straightforward and can be found in
Appendix B. These changes allow for a substantial increase in algorithm performance, while keeping
general encoder structure, convolutional depth and algorithmic hyperparameters unchanged.

scaling in deep RL, has led to this architecture’s use even in the modern state-of-the-art algorithms
such as PQN [17]. In this section, we provide the reasoning and implementation of the proposed
Hadamard max-pooling augmentation of the original DQN encoder. For reproducibility purposes,
we refer the reader to a detailed implementation of the proposed architecture in Appendix B.

4.1 Design Choice 1: Down-sampling by Max-pooling

As pixel-based observations are high-dimensional, the encoder must effectively compress the state
representation to enable the downstream RL algorithm to converge within a reasonable number
of updates. In the conventional DQN encoder, this compression is achieved by the convolutional
operations (See Fig. 2), where the compression is determined by the convolutional kernel size and
stride. In contrast, when examining the well-known and widely used Impala ResNet-15 encoder
in RL [13], max-pooling is responsible for the bulk of feature compression. The resulting effect is
that minimizing convolutional strides and adding max-pooling allows for the selection of a more
dense representation of convolutional features, and subsequently emphasizes the strongest signals.
Additionally, the use of max-pooling adds a slight translation invariance to the important features.
We therefore hypothesize that the use of max-pooling in RL is, although widely implemented in
supervised learning, relatively overlooked. In the Hadamax encoder, convolutional down-sampling is
therefore replaced by max-pooling operators. Furthermore, in contrast to the average-pooling used
by the original supervised learning ResNet architecture [25], the Hadamax encoder max-pools the
final features before flattening to the linear layer. Since value functions in RL should be able to show
strong correlations with the most important features, average-pooling before the linear layer will
achieve the opposite, as it smoothens out feature importance.

The max-pooling design choices; max-pooling and downsampling instead of convolutional down-
sampling, followed by max-pooling without down-sampling before flattening, are thus respectively
influenced by the ResNet-15 (Impala) RL encoder and the original ResNet. However, in stark contrast
to both residual encoders mentioned, the Hadamax encoder remains shallow (3 convolutional layers),
and therefore no residual connections need to be applied.

4.2 Design Choice 2: Application of Hadamard Representations

Although multiplicative interactions have been commonly used in Deep Learning architectures
[52, 56, 11], their application in RL remains limited. Recent work however has shown that the

4

effective rank (ER [32, 18]) and downstream performance improved when training deep RL in the
Atari domain, by defining hidden layers as Hadamard products [31]. Hadamard products between
hidden layers enable richer high-dimensional interactions within the representation space, without
increasing hidden layer dimensionality. This leads to more network capacity without explicitly scaling
the network, which is often unstable in RL. Specifically, any hidden layer zj ∈ Z , with layer depth j,
will be the Hadamard product of two parallel layers connected to the preceding hidden layer zj−1:

zj = f(zj−1Aj−1
1)⊙ f(zj−1Aj−1

2), (4)

where A is a weight matrix, f(∗) is a nonlinear activation and the bias layers are left out for simplicity.
As PQN employs layer normalization for training stability, and every representation is max-pooled,
the final Hadamax representation layers can be defined as:

zj = MP

(
f
(
LN(zj−1Aj−1

1)
)
⊙ f

(
LN(zj−1Aj−1

2)
))

. (5)

Where LN and MP represent layer normalization and max-pooling, respectively. It is worth noting
that contrary to recent work on Hadamard representations [31], we show the possibility of successfully
applying Hadamard products to zero-saturating activation functions such as ReLU or GELU [26]. We
believe this is possible due to the relative training stability increase of PQN over DQN, as a result of
applying LayerNorm and the removal of the target network and replay buffer. This training stability
correlates with a minimal amount of dead neurons in the representation [51], which even leads to the
ability to do element-wise multiplication of zero-saturating (sparse) neurons without increasing dead
neurons.

4.3 Design Choice 3: Gaussian Error Linear Unit

The Gaussian Error Linear Unit (GELU) is used in various neural network architectures, the most
notable applications being in transformer-based architectures such as BERT [12] and GPT [44].

It is defined as:
GELU(x) = xΦ(x)

2 1 0 1 2
x

0.5

0.0

0.5

1.0

1.5

2.0

y

ReLU
GELU

Figure 3: ReLU and GELU.

where Φ(x) is the cumulative distribution function of the
standard normal distribution. Equivalently, it can be expressed
using the error function as:

GELU(x) = 0.5x

(
1 + erf

(
x√
2

))
In contrast to the ReLU, which converts negative inputs to
zero, GELU permits small negative values to pass through in
a softened form (See Fig. 3), allowing more stable gradient
flow for negative inputs. Overall, GELU has been shown to
improve performance in various deep learning tasks, including
computer vision and natural language processing [26]. In the
Hadamax encoder, we therefore replace all the original ReLU activation functions with the GELU.

5 Experiments

We compare our agent against widely used model-free RL baselines across 57 Atari games. Through
experiments, we aim to answer: (i) do agents equipped with Hadamax encoders outperform those
using conventional encoders? (ii) what are the reasons behind Hadamax’s superior performance?
(iii) what is the impact of each proposed design choice?

Baselines: We compare our method with the following baselines: (1) DQN [37], a pioneer RL
method that uses a deep neural network to play Atari, achieving human performance. (2) C51 [5],
Rainbow [27], a state-of-the-art model-free method, combining various algorithmic and architectural
techniques together. (3) PQN [17], a recent novel parallel Q-learning network without a replay
buffer and target network. In terms of performance, PQN is on par with C51, while remaining

5

algorithmically less complex than DQN. Our final baseline is (4) PQN (ResNet-15), which combines
PQN with the more complex Impala CNN architecture, used throughout modern state-of-the-art RL
algorithms as a drop-in replacement for the conventional Nature encoder [13, 50].

Figure 4: The Atari-57 domain.

Environments: The full 57-game Atari domain
[6] is used as a standardized benchmark for eval-
uating our algorithm’s performance. In line with
best practices in the field, we focus on the me-
dian human-normalized score over all 57 games
[38, 27, 21, 17]. To manage computational load,
ablations are done on 40M frames, while compar-
ison with baselines is done at the official 200M
frame scores. Note that there can be relative dif-
ferences between performances in 40M and 200M
frames, as the epsilon-greedy coefficient ϵ is scaled
down over the total training time. An algorithm seed initialized to run for 40M frames will therefore
have a different convergence curve towards 40M than the same algorithm initialized for a 200M
frames seed. We refer the reader to more detailed descriptions of environments and implementations
of baseline agents in Appendix C.3.

5.1 Hadamax-PQN: Results

The full 200M frame training curves for PQN, PQN (ResNet-15) and Hadamax-PQN are shown in
Fig. 5 (left). The Hadamax encoder clearly yields benefits over the widely used Impala ResNet-15
encoder [13], and causes PQN to significantly surpass Rainbow-DQN [27]. Although the original
paper shows that PQN is able to beat Rainbow-DQN when training for around 260M environment
frames [17], Hadamax-PQN reaches this score at around 90M frames. Another commonly used
scoring method, the Atari-57 score profile, can be seen in Fig. 5 (right). Note that the scores used
in this research for DDQN, C51 and Rainbow have been taken from the original papers, and are
generally higher than their practical implementations on various GitHub repositories. For details on
how to compute the median human-normalized score and the Atari score profile, we refer the reader
to Appendix D.

0.0 0.5 1.0 1.5 2.0
Env Frames 1e8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
ed

ia
n

Hu
m

an
-N

or
m

al
ize

d
Sc

or
e

Rainbow

DDQN

C51

Atari (57 Games, 200M)

PQN
Hadamax PQN
PQN (ResNet-15)

1 2 3 4
Normalized Score ()

20

30

40

50

60

70

80

90

100

%
 >

Atari (57 Games, 200M)

Hadamax PQN
PQN
PQN (ResNet-15)
Rainbow

Figure 5: Median Human-Normalized performance training PQN, PQN (Resnet-15) and Hadamax-
PQN in the Atari domain over 57 games, 200M frames and 5 seeds (left), and the Atari-57 score profile
(right). The Atari-57 score profile illustrates the percentage of games that exceed the normalized
score threshold on the x-axis.

The effect of the Hadamax encoder on the baseline PQN on a per-game basis can be seen in Fig. 6.
The results show a significant performance increase over the baseline, with over 17 games having
more than 100% improvement, compared to only one single game having more than a 50% decrease
in performance. The per-game improvements over the Rainbow-DQN baseline can be seen in

6

Appendix E.4. For each individual game’s training curve and the final 200M frame score table, we
refer the reader to Appendix F. To the best of our knowledge, the implementation of the Hadamax
encoder is one of the biggest recorded non-algorithmic improvement over a recent competitive RL
baseline, and it does not involve any complex hyper-parameter tuning.

Bo
wl

in
g

So
la

ris
Up

ND
ow

n
At

la
nt

is
Ka

ng
ar

oo
Ba

nk
He

ist
As

te
rix

W
iza

rd
Of

W
or

Ku
ng

Fu
M

as
te

r
Do

ub
le

Du
nk

Fr
ee

wa
y

Po
ng

Sk
iin

g
M

on
te

zu
m

aR
ev

en
ge

Fis
hi

ng
De

rb
y

En
du

ro
Bo

xi
ng

De
m

on
At

ta
ck

Pi
tfa

ll
Ro

bo
ta

nk
Tu

ta
nk

ha
m

Kr
ul

l
Vi

de
oP

in
ba

ll
Qb

er
t

Su
rro

un
d

Cr
az

yC
lim

be
r

Pr
iv

at
eE

ye
Ri

ve
rra

id
Br

ea
ko

ut
Na

m
eT

hi
sG

am
e

Fr
os

tb
ite

Sp
ac

eI
nv

ad
er

s
M

sP
ac

m
an

Gr
av

ita
r

Ti
m

eP
ilo

t
Go

ph
er

He
ro

Za
xx

on
As

sa
ul

t
As

te
ro

id
s

St
ar

Gu
nn

er
Te

nn
is

Ba
ttl

eZ
on

e
Ja

m
es

bo
nd

Ph
oe

ni
x

Am
id

ar
Ro

ad
Ru

nn
er

Ce
nt

ip
ed

e
Be

am
Ri

de
r

Ice
Ho

ck
ey

Ya
rs

Re
ve

ng
e

De
fe

nd
er

Al
ie

n
Be

rz
er

k
Se

aq
ue

st
Ch

op
pe

rC
om

m
an

d
Ve

nt
ur

e

Game

103

102

101

101

102

103

104

%
 Im

pr
ov

em
en

t

Improvement over PQN (200M Frames) - Log Scale

Figure 6: Per-game improvement of Hadamax-PQN over PQN (Log Scale).

5.2 Does Hadamax Generalize Beyond PQN?

0 1 2 3 4
Env Frames 1e7

0

20

40

60

80

100
At

ar
i-1

0
Sc

or
e

C51 (Atari-10, 40M)
w/ Hadamax
Original

Figure 7: C51 with and without a
Hadamax encoder on Atari-10.

The Hadamax encoder not only enhances the performance of
PQN, but also works effectively with other reinforcement learn-
ing agents. To showcase this, the C51 algorithm is evaluated
on the Atari-10 benchmark for 40M environment frames. As
shown in Figure 7, a direct implementation of the Hadamax en-
coder to the C51 algorithm boosts the performance by approx-
imately 70% on Atari-10 [2]. Similar to PQN, the algorithmic
hyperparameters for Hadamax-C51 remain exactly the same as
for the C51 baseline from cleanrl [28]. These improvements
suggest that the Hadamax encoder is able to be implemented
as a strong default encoder for multiple algorithms in the Atari
domain. For more information on the Atari-10 benchmark and
the corresponding score normalization metrics, we refer the
reader to Appendix D.3.

5.3 Effective Rank and Dead Neurons

In order to obtain clues about the stabilizing effects of the proposed Hadamax encoder, the effective
rank of the hidden layers is investigated during training [32, 18], as well as the amount of dead neurons
[51]. The effective rank of a feature matrix for a threshold δ (δ = 0.01), denoted as srankδ(Φ),

is given by srankδ(Φ) = min
{
k :

∑k
i=1 σi(Φ)∑d
i=1 σi(Φ)

≥ 1− δ
}

, where {σi(Φ)} are the singular values of
Φ in decreasing order, i.e., σ1 ≥ · · · ≥ σd ≥ 0. The effective rank portrays a measure of network
capacity i.e. the amount of information that can be approximated in a certain hidden layer.

We investigate the differences in effective rank between the baseline PQN and Hadamax-PQN. To
find clues for Hadamax’s strong improvements on certain environments, the differences are visualized
on a random subset of 5 high-improvement environments from Fig. 6. The effective rank of the
encoder’s representation layers while training for 200M frames can be seen in Fig. 8. The plots show
that there are minimal differences in effective rank in the first and last hidden layer of the encoder.
However, in the baseline PQN encoder, the deeper convolutional layers show a more prominent decay
in rank during training, as well as a reduced initial effective rank. As mentioned in Section 4, the

7

0 1 2
Env Frames 1e8

20

24

28

32

Ef
fe

ct
iv

e
Ra

nk

Conv1

0 1 2
Env Frames 1e8

36

42

48

54

60

Ef
fe

ct
iv

e
Ra

nk

Conv2

0 1 2
Env Frames 1e8

30

35

40

45

50

55

Ef
fe

ct
iv

e
Ra

nk

Conv3

0 1 2
Env Frames 1e8

60

80

100

120

Ef
fe

ct
iv

e
Ra

nk

MLP

PQN Hadamax-PQN

Figure 8: Effective rank [32] of the 4 hidden layers for both the baseline PQN and the Hadamax-
PQN setting. Although there is no visible difference between the first and final layer, the deeper
convolutional layers show a lower effective rank in the baseline setting, as well as a stronger rank
decay during training.

increase in effective rank in the deeper convolutional layers can largely be credited to the use of
Hadamard representations. A further look is taken at the convolutional channel cosine similarity [54],
where a low cosine similarity indicates that the channels are extracting dissimilar or uncorrelated
features from the input data, which is desirable and suggests diversity among the channels. An
ablation of the max-pool and Hadamard components’ effect on both effective rank and channel cosine
similarity can be seen in Table 1. The Hadamax encoder improves both the effective rank and channel
cosine similarity, when compared to the baseline encoder. This indicates that Hadamax extracts more
expressive, uncorrelated features from the pixel inputs.

Table 1: Channel Cosine Similarity & Effective Rank
Metric Baseline + Maxpool + Hadamard Both (Hadamax)
Effective Rank Base +10% +10% +10-20%
Channel Cosine Similarity Base +20% -90% -50%

0 1 2
Env Frames 1e8

0.00

0.05

0.10

0.15

0.20

Fr
ac

tio
n

of
 D

ea
d

Ne
ur

on
s

Dead Neuron Fraction (MLP)
PQN
Hadamax-PQN

Figure 9: Fraction of dead neurons
over 200M frames.

Further investigation into the penultimate layer’s fraction of
dead neurons shows a small decrease from the baseline (see
Fig. 9). The percentage of dead neurons in the final hidden
layer is calculated by finding neurons that have a variance
of less than 10−4 over the batch dimension. In practice, this
metric generalizes well to any activation function (ReLU,
GELU, Tanh). After training for 200M frames, both the
baseline PQN and Hadamax-PQN have less than 8% dead
neurons, which remains extremely low compared to DQN
[51]. We therefore do not expect a substantial correlation
between the small reduction in dead neurons and the perfor-
mance. However, in contrast to recent work on Hadamard
representations [31], who showed that the DQN algorithm
exhibits instability when multiplying ReLU-activated neu-
rons, we show that it is possible to use Hadamard products
on zero-saturating activations. We believe the inherent stabil-
ity of the PQN algorithm and its corresponding low fraction
of dead neurons allows for successful Hadamard multiplica-
tion of linear-unit activations like ReLU or GELU.

5.4 Which Design Choice is most Important?

As described in Section 4, the Hadamax encoder differs from PQN’s conventional Nature CNN
encoder in three areas: (1) applying max-pooling (2) using Hadamard representations and (3) GELU-
activated hidden layers. The precise influence of each component of the Hadamax encoder remains to
be determined. An ablation analysis over these areas is therefore done on 40M environment frames

8

in the full Atari-57 suite. The ablations are defined as implementation subtractions from the original
Hadamax architecture in Fig. 2. The result of the ablation study is shown in Fig. 10a. Next to the
ablations, the effects of direct additions of our design choices on the baseline PQN are investigated.
The results of the addition analysis can be seen in Fig. 10b.

0.6 0.8 1.0 1.2 1.4 1.6
Median Human-Normalized Score

Hadamax PQN

No GELU

No Hadamard

No Max-pool

PQN

Ab
la

ti
on

(a) Hadamax ablations.

0.80 0.85 0.90 0.95 1.00 1.05 1.10
Median Human-Normalized Score

PQN + Hadamard

PQN + Max-pool

PQN + GELU

PQN

Ad
di

ti
on

(b) Naive PQN additions.

Figure 10: Ablations of Hadamax-PQN, each represented as a subtraction from the full Hadamax
architecture (a), and naive architectural additions to the baseline PQN (b).

Over a training period of 40M frames, the subtraction of max-pooling leads to the largest decay
in performance. Note that when max-pooling is subtracted from our architecture, we return the
convolutional strides to their original values, in order to still retain feature compression. The
importance of down-sampling with max-pooling strengthens our hypothesis that a selection of the
most prominent features is key when working with high-dimensional observation spaces in the Atari
domain. The use of convolutional Hadamard representations is also an important component, showing
that the increase in effective rank paired with other benefits such as high-order interactions [11],
have a strong correlation with downstream performance. Finally, the GELU activation has the lowest
importance, although its contribution as compared to the ReLU still remains substantial for such
a small architectural component. Notably, if the ablations are compared to the effects of directly
implementing a single design choice on the baseline (see Fig. 10b), it becomes clear that the overall
combination of all three components is a key factor. For an experimental analysis with two deeper
Hadamax encoders, we refer the reader to Appendix E.2.

5.5 VizDoom

Additional experiments have been conducted on the pixel-based VizDoom environment [30]. Training
RL on VizDoom is different from Atari as it works with 3D environments, semi-realistic physics, and
stochastic elements demanding more advanced reasoning. On VizDoom Deathmatch, the baseline
convolutional encoder was converted to a Hadamax encoder, following the same shallow convolutional
architecture with filter sizes of 32-64-128. The RL baseline used is the actor-critic PPO algorithm
[43, 48]. Without changing any other hyperparameters, the results after training for 40M frames can
be seen in Table 2.

Table 2: VizDoom Deathmatch performance
Method 10M 20M 30M 40M
Hadamax -1.62 ± 0.20 8.08 ± 1.61 19.36 ± 1.82 29.38 ± 10.31
Baseline -2.81 ± 0.40 1.27 ± 0.80 3.10 ± 0.89 5.21 ± 1.27

The strong performance increase over the baseline encoder suggests that Hadamax is applicable on
actor-critic architectures, as well as a wider variety of pixel-based environments.

9

6 Conclusions and Future Work

This paper introduced the Hadamax encoder architecture, augmenting the conventional pixel-based
Nature CNN architecture with Hadamard representations, while down-sampling using max-pooling
instead of convolutional strides. Furthermore, the Gaussian Error Linear Unit activation was im-
plemented to improve training stability. The application of these fundamental changes to the PQN
baseline encoder, while preserving its original shallow structure, allowed for a profound increase in
performance over several model-free baselines. Specifically, we reach an almost two-fold perfor-
mance gain over the baseline PQN setting, and surpass Rainbow-DQN’s official 200M frame score
after just 90M frames, while remaining an order of magnitude faster. Additional results on C51 and
PPO/VizDoom show that the Hadamax encoder remains effective across a variety of algorithms and
across other pixel-based environments.

Due to computational constraints, this paper includes only limited testing of the Hadamax encoder
on complex algorithms such as Bigger-Better-Faster (BBF) [50] on the Atari-100k benchmark or
on a state-of-the-art model-based algorithm such as Dreamerv1-v3 [22, 23]. However, as seen
by the performance improvement on C51 in Fig. 7 and PPO/Vizdoom in Table 2, we do expect a
certain degree of generalization across algorithms and/or environments. Another limitation is that the
Hadamax encoder, due to its increased architectural complexity, accounts for some extra computa-
tional overhead compared to PQN’s conventional Nature CNN architecture. For completeness, the
training durations are therefore reported in Fig. 1 and the inference durations are reported in Table 3.
Inference time is however usually not a key issue in the RL context.

Table 3: Inference times
Architecture Inference time (milliseconds)
Rainbow 0.59
PQN 0.39
PQN (Impala) 1.40
Hadamax-PQN 1.75

All in all, we believe this paper takes an important step forward in functional encoder synthesis for
RL, discovering an alternative for the usual deep and complex ResNet architectures to optimize
performance. An interesting avenue for future work would be to investigate scaling of the Hadamax
encoder, as it already achieves significant performance improvements using only 3 convolutional
layers and the classic 32-64-64 filter dimensions. Finding successful ways to scale the Hadamax
encoder in either width or depth could yield even stronger improvements and more insights into
architecture synthesis. Another promising avenue would be to explore the integration of MoE-style
prediction heads in the Hadamax encoder, since common implementations of MoE do not necessarily
affect the base encoder [42]. Furthermore, as Hadamax-PQN does not come with any algorithmic or
hyperparameter changes, it can be used as a new baseline to build other algorithmic improvements
upon. Specifically, since hard-exploration games are generally not suited for PQN’s epsilon-greedy
exploration regime, augmenting PQN-Hadamax with novel exploration techniques might further
bridge the gap in performance between compute-light model-free and compute-heavy model-based
algorithms such as DreamerV3 or Muzero [23, 47].

Acknowledgements

We would like to thank Prof. Mark Hoogendoorn for his helpful guidance during this project. We
also thank SURF (www.surf.nl) for the support in using the National Supercomputer Snellius. This
work used the Dutch national e-infrastructure with the support of the SURF Cooperative using grant
no. EINF-13858.

10

References

[1] P. Agarwal, S. Andrews, and S. E. Kahou. Learning to play atari in a world of tokens. arXiv
preprint arXiv:2406.01361, 2024.

[2] M. Aitchison, P. Sweetser, and M. Hutter. Atari-5: Distilling the arcade learning environment
down to five games. In International Conference on Machine Learning, pages 421–438. PMLR,
2023.

[3] E. Alonso, A. Jelley, V. Micheli, A. Kanervisto, A. J. Storkey, T. Pearce, and F. Fleuret. Diffusion
for world modeling: Visual details matter in atari. Advances in Neural Information Processing
Systems, 37:58757–58791, 2024.

[4] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[5] M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pages 449–458. PMLR, 2017.

[6] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of artificial intelligence research, 47:253–279,
2013.

[7] A. Bhatt, D. Palenicek, B. Belousov, M. Argus, A. Amiranashvili, T. Brox, and J. Peters. Crossq:
Batch normalization in deep reinforcement learning for greater sample efficiency and simplicity.
arXiv preprint arXiv:1902.05605, 2019.

[8] C. Bonnet, D. Luo, D. Byrne, S. Surana, S. Abramowitz, P. Duckworth, V. Coyette, L. I.
Midgley, E. Tegegn, T. Kalloniatis, O. Mahjoub, M. Macfarlane, A. P. Smit, N. Grinsztajn,
R. Boige, C. N. Waters, M. A. Mimouni, U. A. M. Sob, R. de Kock, S. Singh, D. Furelos-Blanco,
V. Le, A. Pretorius, and A. Laterre. Jumanji: a diverse suite of scalable reinforcement learning
environments in jax, 2024.

[9] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018.

[10] X. Chen, C. Wang, Z. Zhou, and K. Ross. Randomized ensembled double q-learning: Learning
fast without a model. arXiv preprint arXiv:2101.05982, 2021.

[11] G. G. Chrysos, Y. Wu, R. Pascanu, P. Torr, and V. Cevher. Hadamard product in deep learn-
ing: Introduction, advances and challenges. arXiv preprint arXiv:2504.13112, April 2025.
arXiv:2504.13112v1 [cs.LG].

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 conference of the North
American chapter of the association for computational linguistics: human language technolo-
gies, volume 1 (long and short papers), pages 4171–4186, 2019.

[13] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner
architectures. In International conference on machine learning, pages 1407–1416. PMLR,
2018.

[14] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih, R. Munos, D. Has-
sabis, O. Pietquin, et al. Noisy networks for exploration. arXiv preprint arXiv:1706.10295,
2017.

[15] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, J. Pineau, et al. An introduction to
deep reinforcement learning. Foundations and Trends® in Machine Learning, 11(3-4):219–354,
2018.

[16] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax - a
differentiable physics engine for large scale rigid body simulation, 2021.

[17] M. Gallici, M. Fellows, B. Ellis, B. Pou, I. Masmitja, J. N. Foerster, and M. Martin. Simplifying
deep temporal difference learning. arXiv preprint arXiv:2407.04811, 2024.

[18] C. Gulcehre, S. Srinivasan, J. Sygnowski, G. Ostrovski, M. Farajtabar, M. Hoffman, R. Pascanu,
and A. Doucet. An empirical study of implicit regularization in deep offline RL. Transactions
on Machine Learning Research, 2022.

11

[19] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta,
P. Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018.

[20] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In International conference on machine learning, pages
2555–2565. PMLR, 2019.

[21] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with discrete world models.
arXiv preprint arXiv:2010.02193, 2020.

[22] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering Atari with Discrete World Models.
10 2020.

[23] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse domains through world
models. arXiv preprint arXiv:2301.04104, 2023.

[24] N. A. Hansen, H. Su, and X. Wang. Temporal difference learning for model predictive control.
In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, editors, Proceedings
of the 39th International Conference on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pages 8387–8406. PMLR, 17–23 Jul 2022.

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In
Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
’16, pages 770–778. IEEE, June 2016.

[26] D. Hendrycks and K. Gimpel. Gaussian Error Linear Units (GELUs). 2016.
[27] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,

M. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning. In
Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

[28] S. Huang, R. F. J. Dossa, C. Ye, J. Braga, D. Chakraborty, K. Mehta, and J. G. Araújo. Cleanrl:
High-quality single-file implementations of deep reinforcement learning algorithms. Journal of
Machine Learning Research, 23(274):1–18, 2022.

[29] S. Kapturowski, G. Ostrovski, J. Quan, R. Munos, and W. Dabney. Recurrent experience replay
in distributed reinforcement learning. In International conference on learning representations,
2018.

[30] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski. ViZDoom: A Doom-based
AI research platform for visual reinforcement learning. In IEEE Conference on Computational
Intelligence and Games, pages 341–348, Santorini, Greece, Sep 2016. IEEE. The best paper
award.

[31] J. E. Kooi, M. Hoogendoorn, and V. François-Lavet. Hadamard representations: Augmenting
hyperbolic tangents in rl, 2024.

[32] A. Kumar, R. Agarwal, D. Ghosh, and S. Levine. Implicit under-parameterization inhibits data-
efficient deep reinforcement learning. In International Conference on Learning Representations,
2021.

[33] R. T. Lange. gymnax: A JAX-based reinforcement learning environment library, 2022.
[34] M. Laskin, A. Srinivas, and P. Abbeel. Curl: Contrastive unsupervised representations for

reinforcement learning. In International conference on machine learning, pages 5639–5650.
PMLR, 2020.

[35] H. Lee, D. Hwang, D. Kim, H. Kim, J. J. Tai, K. Subramanian, P. R. Wurman, J. Choo, P. Stone,
and T. Seno. Simba: Simplicity bias for scaling up parameters in deep reinforcement learning.
arXiv preprint arXiv:2410.09754, 2024.

[36] C. Lu, J. Kuba, A. Letcher, L. Metz, C. Schroeder de Witt, and J. Foerster. Discovered policy
optimisation. Advances in Neural Information Processing Systems, 35:16455–16468, 2022.

[37] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 02 2015.

12

[39] M. Nauman, M. Ostaszewski, K. Jankowski, P. Miłoś, and M. Cygan. Bigger, regularized,
optimistic: scaling for compute and sample-efficient continuous control. arXiv preprint
arXiv:2405.16158, 2024.

[40] T. Ni, B. Eysenbach, E. Seyedsalehi, M. Ma, C. Gehring, A. Mahajan, and P.-L. Bacon.
Bridging state and history representations: Understanding self-predictive rl. arXiv preprint
arXiv:2401.08898, 2024.

[41] J. Obando-Ceron, A. Courville, and P. S. Castro. In deep reinforcement learning, a pruned
network is a good network. arXiv preprint arXiv:2402.12479, 2024.

[42] J. Obando-Ceron, G. Sokar, T. Willi, C. Lyle, J. Farebrother, J. Foerster, G. K. Dziugaite,
D. Precup, and P. S. Castro. Mixtures of experts unlock parameter scaling for deep rl. arXiv
preprint arXiv:2402.08609, 2024.

[43] A. Petrenko, Z. Huang, T. Kumar, G. S. Sukhatme, and V. Koltun. Sample factory: Egocentric 3d
control from pixels at 100000 FPS with asynchronous reinforcement learning. In Proceedings of
the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning Research, pages 7652–7662. PMLR,
2020.

[44] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding
by generative pre-training. OpenAI, 2018.

[45] A. Rutherford, B. Ellis, M. Gallici, J. Cook, A. Lupu, G. Ingvarsson, T. Willi, A. Khan, C. S.
de Witt, A. Souly, S. Bandyopadhyay, M. Samvelyan, M. Jiang, R. T. Lange, S. Whiteson,
B. Lacerda, N. Hawes, T. Rocktaschel, C. Lu, and J. N. Foerster. Jaxmarl: Multi-agent rl
environments in jax. arXiv preprint arXiv:2311.10090, 2023.

[46] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lock-
hart, D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by planning with a
learned model. Nature, 588(7839):604–609, 2020.

[47] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lock-
hart, D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver. Mastering atari, go, chess and shogi by
planning with a learned model, 2019. cite arxiv:1911.08265.

[48] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[49] M. Schwarzer, A. Anand, R. Goel, R. D. Hjelm, A. Courville, and P. Bachman. Data-efficient
reinforcement learning with self-predictive representations. arXiv preprint arXiv:2007.05929,
2020.

[50] M. Schwarzer, J. S. O. Ceron, A. Courville, M. G. Bellemare, R. Agarwal, and P. S. Castro. Big-
ger, better, faster: Human-level atari with human-level efficiency. In International Conference
on Machine Learning, pages 30365–30380. PMLR, 2023.

[51] G. Sokar, R. Agarwal, P. S. Castro, and U. Evci. The dormant neuron phenomenon in deep
reinforcement learning. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and
J. Scarlett, editors, Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pages 32145–32168. PMLR, 23–29
Jul 2023.

[52] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training very deep networks. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 28. Curran Associates, Inc., 2015.

[53] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second
edition, 2018.

[54] Y. Tang, Y. Wang, Y. Xu, Y. Deng, C. Xu, D. Tao, and C. Xu. Manifold regularized dynamic
network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5018–5028, June 2021.

[55] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning.
In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[56] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

13

R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[57] S. Wang, S. Liu, W. Ye, J. You, and Y. Gao. Efficientzero v2: Mastering discrete and continuous
control with limited data. arXiv preprint arXiv:2403.00564, 2024.

[58] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas. Dueling network
architectures for deep reinforcement learning. In International conference on machine learning,
pages 1995–2003. PMLR, 2016.

[59] J. Weng, M. Lin, S. Huang, B. Liu, D. Makoviichuk, V. Makoviychuk, Z. Liu, Y. Song, T. Luo,
Y. Jiang, Z. Xu, and S. Yan. EnvPool: A highly parallel reinforcement learning environment
execution engine. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Systems, volume 35, pages 22409–22421.
Curran Associates, Inc., 2022.

[60] W. Ye, S. Liu, T. Kurutach, P. Abbeel, and Y. Gao. Mastering atari games with limited data.
Advances in neural information processing systems, 34:25476–25488, 2021.

[61] W. Zhang, G. Wang, J. Sun, Y. Yuan, and G. Huang. Storm: Efficient stochastic transformer
based world models for reinforcement learning. Advances in Neural Information Processing
Systems, 36:27147–27166, 2023.

14

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction accurately reflect our paper’s
contributions and scope, which is the creation of a new state-of-the-art baseline via encoder
synthesis for model-free RL.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the Conclusions and Future Work section, we dedicated a full paragraph to
our view on the limitations of this work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15

Answer: [NA]
Justification: As this paper focuses on neural network architectures in reinforcement learning,
it does not contain any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The full, easily implementable JAX-code for the Hadamax encoder is provided
in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: As stated in 4, we provide open access to the code of the exact convolutional
architecture used for the main results in the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our experimental setup is equal to that of the baselines that are used. We
specify the hyperparameters in Appendix C.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our experiments are based on the full Atari-57 suite, which consists of 57
different pixel-based environments. Following conventional score metric visualization, we
use the median-human-normalized scores over 57 environments, which are conventionally
not accompanied by error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Figure 1, we show the compute times of all the algorithms used for a single
200M environment frame seed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is not tied to particular applications, and serves to optimize RL
algorithms in the simulation domain. We therefore do not expect any societal impacts of
this research.

Guidelines:

18

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our data and models used do not have a high risk for misuse. We use openly
available data from the Atari-57 domain.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators of the baseline models have been properly credited in our research
by way of GitHub repository links and several citations.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

19

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code of the proposed Hadamax encoder in this paper is clearly provided
in Appendix B.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Tis paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

20

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs have not been used for core components of our paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

Appendix

Table of Contents
A Impact Statement 23

B Hadamax Encoder Code 23

C Experiment Details 24
C.1 Hyperparameters . 24
C.2 Environments . 24
C.3 Baseline Implementations . 24
C.4 Compute Usage . 24

D Metrics 25
D.1 Median Human-Normalized Score . 25
D.2 Atari-57 Score Profile . 25
D.3 Atari-3 and Atari-10 . 25

E Additional Experiments 26
E.1 Memory Usage . 26
E.2 Deeper Hadamax Networks . 26
E.3 Hadamax with Other Agents . 27
E.4 Per-game improvement over Rainbow-DQN 27

F Individual Game Scores 28

22

A Impact Statement

This work shows that architectural innovations like the Hadamax encoder can drive significant
progress in reinforcement learning. By enabling more efficient and accessible AI, it encourages
broader adoption and exploration of learning systems across diverse real-world domains.

B Hadamax Encoder Code

We provide the full JAX-based code of the Hadamax encoder for reproducibility purposes.

1 # Input = input_obs , a frame -stacked Atari observation
2 x = jnp.transpose(input_obs , (0, 2, 3, 1))
3 x = x / 255.0
4 # First block
5 x1 = nn.Conv(32, kernel_size =(8, 8), strides =(1, 1), padding="SAME",
6 kernel_init=nn.initializers.xavier_normal ())(x)
7 x2 = nn.Conv(32, kernel_size =(8, 8), strides =(1, 1), padding="SAME",
8 kernel_init=nn.initializers.xavier_normal ())(x)
9 x1 = normalize(x1) # Normalize before activation

10 x2 = normalize(x2) # Normalize before activation
11 x1 = nn.gelu(x1) # Apply activation
12 x2 = nn.gelu(x2) # Apply activation
13 x = x1 * x2 # Hadamard product
14 x = max_pool(x, window_shape =(4, 4), strides =(4, 4), padding="SAME")
15 # Second block
16 x1 = nn.Conv(64, kernel_size =(4, 4), strides =(1, 1), padding="SAME",
17 kernel_init=nn.initializers.xavier_normal ())(x)
18 x2 = nn.Conv(64, kernel_size =(4, 4), strides =(1, 1), padding="SAME",
19 kernel_init=nn.initializers.xavier_normal ())(x)
20 x1 = normalize(x1) # Normalize before activation
21 x2 = normalize(x2) # Normalize before activation
22 x1 = nn.gelu(x1) # Apply activation
23 x2 = nn.gelu(x2) # Apply activation
24 x = x1 * x2 # Hadamard product
25 x = max_pool(x, window_shape =(2, 2), strides =(2, 2), padding="SAME")
26 # Third block
27 x1 = nn.Conv(64, kernel_size =(3, 3), strides =(1, 1), padding="SAME",
28 kernel_init=nn.initializers.xavier_normal ())(x)
29 x2 = nn.Conv(64, kernel_size =(3, 3), strides =(1, 1), padding="SAME",
30 kernel_init=nn.initializers.xavier_normal ())(x)
31 x1 = normalize(x1) # Normalize before activation
32 x2 = normalize(x2) # Normalize before activation
33 x1 = nn.gelu(x1) # Apply activation
34 x2 = nn.gelu(x2) # Apply activation
35 x = x1 * x2 # Hadamard product
36 x = max_pool(x, window_shape =(3, 3), strides =(1, 1), padding="SAME")
37 # Flatten for MLP layer
38 x = x.reshape ((x.shape[0], -1))
39 x = nn.Dense (512, kernel_init=nn.initializers.he_normal ())(x)
40 x = normalize(x)
41 x = nn.gelu(x)
42 x = nn.Dense(self.action_dim , name="action_dense")(x) # Final Q-Values

23

C Experiment Details

C.1 Hyperparameters

Table 4: Atari Hyperparameters for PQN, PQN (ResNet-15) and Hadamax-PQN. These hyperparam-
eters are equal to the original hyperparameters from the PQN baseline [17].

Parameter Value
NUM_ENVs 128
NUM_STEPS 32
EPS_START 1.0
EPS_FINISH 0.001
EPS_DECAY 0.1
NUM_EPOCHS 2
NUM_MINIBATCHES 32
NORM_INPUT False
NORM_TYPE layer_norm
LR 0.00025
MAX_GRAD_NORM 10
LR_LINEAR_DECAY False
GAMMA 0.99
LAMBDA 0.65
OPTIMIZER RAdam

C.2 Environments

We run experiments on the Atari-57 suite, where there are 57 different games in total. No per-game
tuning is allowed and the same agent architecture, hyper-parameters and pre-processing needs to run
on every game. The suite contains varying games that can be used to examine different properties of
RL agents, e.g. long-horizon credit assignment, partial observability, hard exploration, etc.

Each observation consists of 4 grayscale images of the game state stacked together, i.e. (4, 64, 64).
The action space is discrete, and each action represents a different operation in the game. The
reward function depends on the environment chosen. More details on each game can be found at
https://ale.farama.org.

Atari-3 and Atari-10: We examine C51, DQN and Rainbow on Atari-3 or Atari-10 [2], which are a
small but representative subset of the full Atari-57 suite. Atari-3 includes Battle Zone, Name This
Game and Phoenix. Atari-10 includes Amidar, Bowling, Frostbite, Kung Fu Master, River Raid,
Battle Zone, Double Dunk, Name This Game, Phoenix and Q*Bert.

C.3 Baseline Implementations

PQN: We use the official codebase 2 of PQN and default hyper-parameter settings.

Rainbow, C51, DQN:For the Fig. 12 training results we use implementations from cleanrl 3 and
default hyper-parameter settings. The scores for DDQN, C51 and Rainbow in figures 1 and 5 have
been taken from their respective official papers.

Hadamax encoder: Since the whole PQN codebase is in Jax, we implement the Hadamax encoder
for PQN in Jax as well. As Implementations of Rainbow, C51 and DQN from cleanrl are in PyTorch,
we also implement the Hadamax encoder for these agents in PyTorch.

C.4 Compute Usage

We run all our experiments on a HPC cluster equipped with A100 GPUs. Each run of Hadamax-PQN
needs around 45 minutes for 40 millions frames and PQN needs around 20 minutes.

2https://github.com/mttga/purejaxql
3https://github.com/vwxyzjn/cleanrl

24

https://ale.farama.org
https://github.com/mttga/purejaxql
https://github.com/vwxyzjn/cleanrl

D Metrics

D.1 Median Human-Normalized Score

For each game, compute the average score xi across multiple independent seeds. Then compute the
normalized score Zi as:

Zi =
xi − ri
hi − ri

where xi is the raw score, and ri and hi are the random and human scores for game i, respectively
(see Table 6 for values). After computing the normalized scores for all 57 games * seeds, they are
sorted and the median value is computed.

D.2 Atari-57 Score Profile

x-axis:(τ - Normalized Score). Represents the threshold score (e.g., Human-Normalized Score).
Higher values mean better performance.

y-axis: τ% = fraction of games above τ . Shows the fraction of games for which the agent’s normalized
score is greater than τ . For example, at τ = 1, the y-value represents what fraction of games the
agent beats τ = 1 human performance on. In other words, it represents the percentage of games that
has scores higher than τ .

D.3 Atari-3 and Atari-10

The Atari-3 and Atari-10 scores approximate the median normalized score across the full 57-game
Atari benchmark using subsets of 3 and 10 games, respectively [2]. The computation involves the
following steps:

1. For each game in the subset, compute the normalized score Zi as:

Zi = 100× xi − ri
hi − ri

where xi is the raw score, and ri and hi are the random and human scores for game i,
respectively (see Table 6 for values).

2. Apply the log transform:

ϕ(Zi) = log10(1 + max(0, Zi))

3. Compute the weighted sum f =
∑

i∈I ciϕ(Zi), where I is the subset of games and ci are
the subset-specific coefficients.

4. Obtain the predicted median score as:

t̂ = 10f − 1

For Atari-3, the subset comprises Battle Zone, Name This Game, and Phoenix, with coefficients
ci = [0.3706, 0.5133, 0.1015].

For Atari-10, the subset includes Amidar, Bowling, Frostbite, Kung Fu Master, River Raid,
Battle Zone, Double Dunk, Name This Game, Phoenix, and Q*Bert, with coefficients ci =
[0.0825, 0.0559, 0.0691, 0.0986, 0.0486, 0.1888, 0.0852, 0.1287, 0.1643, 0.0592].

25

E Additional Experiments

E.1 Memory Usage

Table 5: Memory usage and batch sizes for different architectures
Architecture Training Update Memory (MB) Batch Inference Memory (MB) Inference Batch
Rainbow 198.77 32 185.33 1
PQN 254.54 256 155.87 8
PQN (Impala) 725.18 256 143.46 8
Hadamax-PQN 2247.26 256 233.14 8

E.2 Deeper Hadamax Networks

As network scaling has become a topic of interest in the field of RL [35, 50, 42], we provide
experiments using deeper versions of our encoder: 5-layer and 7-layer Hadamax-PQN. Specifically,
the second and third convolutional layers in the original 3-layer encoder are duplicated, and we
refrain from max-pooling the duplicates to avoid excessive compression. Similar to the ablations, the
deep networks are tested on the full 57-game Atari suite for 40M environment frames. The results
can be seen in Fig. 11.

0.6 0.8 1.0 1.2 1.4 1.6
Median Human-Normalized Score

Hadamax-PQN

Depth 5

Depth 7

Atari (57 Games, 40M Frames)

Figure 11: Hadamax encoder depth Ablations.

Simply using deeper convolutional Hadamax encoders does not seem to improve performance.
Although there are more promising ways to scale the Hadamax encoder both in depth and width, the
computational cost was the limiting factor in pursuing this in more detail. As discussed in the main
paper, we leave this as a promising research area for future work.

26

E.3 Hadamax with Other Agents

We modify the encoders of the widely-used cleanrl [28] implementations of C51, DQN, and Rain-
bow to demonstrate that the Hadamax encoder can generalize across various model-free agents.
See Figure 12, on Atari-10, Hadamax improves the performance of the original C51 by 70%, and
on Atari-3, it boosts DQN and Rainbow by 20% and 30%, respectively. These substantial gains,
achieved by simply replacing the encoder, suggest that Hadamax could serve as a new default encoder
for model-free reinforcement learning methods on Atari.

0 1 2 3 4
Env Frames 1e7

0

40

80

120

160

At
ar

i-3
 S

co
re

DQN (Atari-3, 40M)
w/ Hadamax
Original

0 1 2 3 4
Env Frames 1e7

0

20

40

60

80

100

At
ar

i-1
0

Sc
or

e

C51 (Atari-10, 40M)
w/ Hadamax
Original

0.0 0.5 1.0 1.5 2.0
Env Frames 1e7

0

40

80

120

160

At
ar

i-3
 S

co
re

Rainbow (Atari-3, 20M)
w/ Hadamax
Original

Figure 12: Performance gains of DQN, C51 and Rainbow with Hadamax encoders on a subset of
Atari-57.

E.4 Per-game improvement over Rainbow-DQN

Pr
iv

at
eE

ye
Sk

iin
g

So
la

ris
Am

id
ar

He
ro

As
te

rix
Ku

ng
Fu

M
as

te
r

Qb
er

t
Fr

os
tb

ite
Pi

tfa
ll

At
la

nt
is

Ka
ng

ar
oo

Do
ub

le
Du

nk
Ba

nk
He

ist
Bo

wl
in

g
Go

ph
er

Vi
de

oP
in

ba
ll

Su
rro

un
d

Fr
ee

wa
y

M
on

te
zu

m
aR

ev
en

ge
Bo

xi
ng

Po
ng

Tu
ta

nk
ha

m
En

du
ro

Gr
av

ita
r

Fis
hi

ng
De

rb
y

Ro
bo

ta
nk

Sp
ac

eI
nv

ad
er

s
Cr

az
yC

lim
be

r
W

iza
rd

Of
W

or
De

m
on

At
ta

ck
Kr

ul
l

M
sP

ac
m

an
Za

xx
on

Br
ea

ko
ut

Ba
ttl

eZ
on

e
Ti

m
eP

ilo
t

Na
m

eT
hi

sG
am

e
As

sa
ul

t
Te

nn
is

Al
ie

n
Ice

Ho
ck

ey
Ph

oe
ni

x
Ce

nt
ip

ed
e

Be
am

Ri
de

r
Ro

ad
Ru

nn
er

St
ar

Gu
nn

er
Ya

rs
Re

ve
ng

e
De

fe
nd

er
Se

aq
ue

st
Ch

op
pe

rC
om

m
an

d
As

te
ro

id
s

Be
rz

er
k

Ve
nt

ur
e

Game

103

102

101

101

102

103

104

%
 Im

pr
ov

em
en

t (
No

rm
al

ize
d)

Improvement over Rainbow - Log Scale

27

F Individual Game Scores

0

1

2

3

4

5
Alien-v5

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Amidar-v5

0

20

40

60

Assault-v5

0

20

40

60

80

100
Asterix-v5

0.0

0.5

1.0

1.5
Asteroids-v5

0

10

20

30

40

50

Atlantis-v5

0.0

0.5

1.0

1.5

2.0

BankHeist-v5

0

1

2

3

BattleZone-v5

0

1

2

3

4
BeamRider-v5

0

5

10

15

20

25
Berzerk-v5

0.2

0.1

0.0

0.1

0.2

0.3

0.4
Bowling-v5

4

2

0

2

4

6

8

Boxing-v5

0

5

10

15

20

25

Breakout-v5

0.0

0.5

1.0

1.5

2.0

2.5

Centipede-v5

0

20

40

60

ChopperCommand-v5

0

2

4

6

8

CrazyClimber-v5

0

5

10

15

20

Defender-v5

0

20

40

60

DemonAttack-v5

2

0

2

4

6

8

DoubleDunk-v5

0

1

2

Enduro-v5

0.0

0.5

1.0

1.5

2.0

2.5

FishingDerby-v5

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Freeway-v5

0.0

0.5

1.0

1.5

2.0

Frostbite-v5

0

10

20

30

40
Gopher-v5

0.0

0.2

0.4

0.6

Gravitar-v5

0.0

0.2

0.4

0.6

0.8

1.0

Hero-v5

0.5

0.0

0.5

1.0

1.5

2.0

2.5
IceHockey-v5

0

5

10

15

20

25
Jamesbond-v5

0

1

2

3

4

5
Kangaroo-v5

2

0

2

4

6

8

10
Krull-v5

0.0

0.5

1.0

1.5

2.0

KungFuMaster-v5

0.005

0.000

0.005

0.010

0.015

0.020

0.025
MontezumaRevenge-v5

0.0

0.5

1.0

1.5

2.0

2.5
MsPacman-v5

0

1

2

3

NameThisGame-v5

0

10

20

30

40

50

60
Phoenix-v5

0.02

0.01

0.00

0.01

0.02

0.03

0.04
Pitfall-v5

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Pong-v5

0.05

0.00

0.05

0.10

PrivateEye-v5

0.0

0.5

1.0

1.5

2.0

Qbert-v5

0.0

0.5

1.0

1.5

2.0
Riverraid-v5

0

10

20

30

40

RoadRunner-v5

0

2

4

6

8
Robotank-v5

0

1

2

3

4

5

Seaquest-v5

1

0

1

Skiing-v5

0.1

0.0

0.1

0.2

Solaris-v5

0

5

10

15

20

25

30
SpaceInvaders-v5

0

10

20

30

40

50

60
StarGunner-v5

0.00

0.25

0.50

0.75

1.00

1.25
Surround-v5

0

1

2

3

Tennis-v5

2.5

0.0

2.5

5.0

7.5

10.0

TimePilot-v5

0.0

0.5

1.0

1.5

Tutankham-v5

0

5

10

15

20

25

UpNDown-v5

0.25

0.00

0.25

0.50

0.75

1.00

1.25
Venture-v5

0

100

200

300

400

VideoPinball-v5

0.0 0.5 1.0 1.5 2.0

1e8

0

2

4

6

8

WizardOfWor-v5

0.0 0.5 1.0 1.5 2.0

1e8

0

2

4

6

8

10

YarsRevenge-v5

0.0 0.5 1.0 1.5 2.0

1e8

0

1

2

3

4
Zaxxon-v5

Hadamax PQN
PQN
PQN (ResNet-15)

Environment Frames

No
rm

al
ize

d
Sc

or
e

28

Table 6: Final 200M frame scores.
Game Hadamax-PQN PQN (Resnet-15) PQN
Alien-v5 20045.4 16935.0 2916.3
Amidar-v5 1774.5 944.1 740.3
Assault-v5 26426.7 11160.5 15089.7
Asterix-v5 274915.0 95400.0 287697.6
Asteroids-v5 39328.0 4232.7 21047.6
Atlantis-v5 715750.0 516357.8 831884.7
BankHeist-v5 1260.2 1446.1 1336.2
BattleZone-v5 92951.2 55106.5 44130.8
BeamRider-v5 49480.9 16315.8 18131.7
Berzerk-v5 57497.4 19597.8 6061.3
Bowling-v5 29.7 30.2 42.5
Boxing-v5 99.8 96.3 98.3
Breakout-v5 607.4 470.3 489.6
Centipede-v5 17901.7 9266.5 8178.2
ChopperCommand-v5 203593.5 26974.7 11688.8
CrazyClimber-v5 202048.2 162776.7 168732.4
Defender-v5 360287.5 48761.1 66381.0
DemonAttack-v5 135450.5 125870.4 131320.0
DoubleDunk-v5 -1.8 -1.2 -1.2
Enduro-v5 2323.4 462.7 2284.6
FishingDerby-v5 46.6 31.2 45.4
Freeway-v5 33.7 21.4 33.8
Frostbite-v5 7689.5 6537.2 5623.8
Gopher-v5 67829.0 26859.5 40834.5
Gravitar-v5 1547.2 514.4 1107.3
Hero-v5 30617.4 24912.9 18099.9
IceHockey-v5 16.3 -2.4 -1.4
Jamesbond-v5 4244.8 1285.8 1942.8
Kangaroo-v5 13177.3 8728.6 13992.5
Krull-v5 10554.4 9497.9 9802.2
KungFuMaster-v5 36751.9 24102.8 38233.3
MontezumaRevenge-v5 0.0 0.0 0.0
MsPacman-v5 6968.3 4584.7 4909.7
NameThisGame-v5 21334.2 18754.3 16437.0
Phoenix-v5 267080.2 41001.4 120959.5
Pitfall-v5 -43.5 -34.4 -50.5
Pong-v5 21.0 20.8 21.0
PrivateEye-v5 3.6 3.9 7.5
Qbert-v5 25970.2 21818.4 22449.6
Riverraid-v5 29423.9 18669.8 24133.3
RoadRunner-v5 190019.6 52925.0 76600.9
Robotank-v5 71.5 66.1 68.3
Seaquest-v5 129408.8 43559.8 11554.4
Skiing-v5 -29971.3 -29479.8 -29972.3
Solaris-v5 1884.2 863.5 2189.4
SpaceInvaders-v5 22258.0 13800.3 15125.0
StarGunner-v5 549350.4 215397.7 264413.1
Surround-v5 9.4 7.5 6.3
Tennis-v5 23.8 22.9 -1.0
TimePilot-v5 17946.0 11924.0 12320.1
Tutankham-v5 258.7 216.8 248.0
UpNDown-v5 191857.2 82743.3 270833.7
Venture-v5 940.7 0.0 18.1
VideoPinball-v5 522510.3 416690.8 463022.1
WizardOfWor-v5 21526.1 13130.5 22214.2
YarsRevenge-v5 444710.8 119951.1 111611.7
Zaxxon-v5 31400.8 14229.4 17644.0

29

	
	Introduction
	Related Work
	Preliminaries
	Reinforcement Learning and Value-based Methods
	Parallelized Q-Network (PQN)

	Hadamax Encoder
	Design Choice 1: Down-sampling by Max-pooling
	Design Choice 2: Application of Hadamard Representations
	Design Choice 3: Gaussian Error Linear Unit

	Experiments
	Hadamax-PQN: Results
	Does Hadamax Generalize Beyond PQN?
	Effective Rank and Dead Neurons
	Which Design Choice is most Important?
	VizDoom

	Conclusions and Future Work
	Appendix

	 Appendix
	Impact Statement
	Hadamax Encoder Code
	Experiment Details
	Hyperparameters
	Environments
	Baseline Implementations
	Compute Usage

	Metrics
	Median Human-Normalized Score
	Atari-57 Score Profile
	Atari-3 and Atari-10

	Additional Experiments
	Memory Usage
	Deeper Hadamax Networks
	Hadamax with Other Agents
	Per-game improvement over Rainbow-DQN

	Individual Game Scores

