
MatriXSSed: A New Taxonomy for XSS in the Modern Web
Anonymous Author(s)

Abstract
Cross-site scripting (XSS) constantly remains one of the most preva-
lent attacks on the Web. In this work, we question its current tax-
onomy, i.e., the client- or server-side reflected (non-persistent) or
stored (persistent) matrix. The Web has extensively changed. Con-
sequently, considering XSS with the lenses of this famous matrix
has become at least imprecise, at most impossible for many code
injection scenarios where (i) a service worker or an edge worker
generates HTTP responses and can reflect or persist XSS payloads
infecting not only JavaScript in web pages but also Web assembly,
web workers and affecting one or many users automatically; (ii)
an attacker sends a web push message directly to a browser push
service to trigger code execution in a dormant service worker; or
(iii) a cross-origin adversary tampers with code stored by a vulner-
able website on the user’s physical/permanent file system, etc. Our
proposal –to get out of the matrix and not enter another rigid one–
expresses the essence of XSS as code infection and affection attack,
and allows for clearly specifying the different actors and compo-
nents involved, their environments, contexts and storages, as well
as their recurrence and persistence seen as a continuum rather than
a binary marker. From a defensive perspective, we showcase the
challenges and limitations of current mechanisms at mitigating XSS
targetting the entire attack surface of modern websites. Finally, we
demonstrate an abuse of the Service-Worker-Allowed (SWA) header
to control entire domains with malicious service workers.

ACM Reference Format:
Anonymous Author(s). 2025. MatriXSSed: A New Taxonomy for XSS in the
Modern Web. In Proceedings of The Web Conference 2025 . ACM, New York,
NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
The Web operates on a foundational client-server architecture and
a set of principles that enable seamless access and interaction with
resources across the globe while shaping the way the security com-
munity understands and approaches it. At its core, HTML (Hyper-
Text Markup Language) [13] defines how to structure and render
web pages (documents). With their linking, embedding or host-
ing features, HTML documents can reference other resources, in
particular, CSS (Cascading StyleSheets) for the presentation, and
JavaScript for interactivity. The HTTP (HyperText Transfer Proto-
col) defines the rules and formats for data exchange and commu-
nications between clients, and servers connected to the Internet.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
The Web Conference 2025 , April 28 - May 02, 2025, Sydney, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

Server Stored XSS Client Stored XSS
Server Reflected XSS Client Reflected XSS

Figure 1: Types of XSS attacks according to the OWASP [21]

URLs (Uniform Resource Locators) serve as the addresses that iden-
tify the location of resources. The derived concept of origin (e.g.,
https://www.example.com) is defined as a combination of the pro-
tocol (e.g., https), domain (e.g., www.example.com), and port (e.g.,
443). The same-origin policy (SOP) principle, built on this concept,
prevents unauthorized access to Web data across different (cross-)
origins while allowing same-origin interactions in most cases. Web
browsers have imposed themselves as the most popular clients or
user agents, implementing and offering the necessary technolog-
ical stack, for users to smoothly interact with the Web. Since its
conceptualization in 1999, XSS (cross-site scripting) has remained
one of the most prevalent attacks. Figure 1 presents the current
XSS taxonomy as a matrix adopted by the OWASP (Open World-
wide Application Security Project) and the research community as
a reference to frame all types of XSS, which can be server-side, or
client-side stored (persistent) or reflected (non-persistent). From a
defense perspective, input sanitization, context-aware output en-
coding, web application firewalls, and the content security policy
(CSP) can be deployed to mitigate XSS [36].

In more than two decades, the Web has extensively changed, and
in particular, its attack surface which has largely expanded with the
numerous new technologies and features. Notably, Web assembly
(Wasm) provides an additional code execution environment to com-
plement the pervasive JavaScript. Dedicated, shared, and service
workers, and more recently, worklets (lightweight workers) can
be spawned to execute code in dedicated threads, independently
of the main UI thread where HTML content is rendered and inter-
acted with by users and manipulated by JavaScript via the DOM
(Document Object Model) API. Service workers in particular bring
various privileged features like the fetch event which empower
them with proxy-like capabilities and the ability to intercept HTTP
requests and respond to them, or receive web push messages in the
background, independently of whether the user is actively inter-
acting with the website or not. Conceptually at the middle of the
network sit content delivery networks (CDNs) and other serverless
edge computing services which promise geographical proximity to
users, and cache and route content quickly where and when it is
needed. Vendors like Cloudflare or Akamai are extensively popular
amongwebsites [4]. A notable recent client-side storage mechanism
is the file system API which brings file management capabilities
to websites [10]. Specifically, its file system access extension gives
websites direct read and write accesses into the user’s physical file
system, without SOP or cross-browser restrictions [1]. Figure 2
shows these components positioned in an example architecture.

Does the current taxonomy of attacks and defenses properly frame
XSS in the progressive web, considering the advent of features like
(service) workers, serverless web cache proxies, Wasm, or permanent

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

The Web Conference 2025 , April 28 - May 02, 2025, Sydney, Australia Anon.

cross-origin storage mechanisms like the file system? This is the
research question we propose to tackle with this study. We note
that even though theWeb has drastically changed, its attack surface
extensively expanded, and numerous important features introduced,
XSS is still largely framed from the lenses of browsing contexts,
i.e., web pages. To fill this gap, we focus in this work on the other
contexts and environments and discuss their specificities. From
an overview of XSS, its threat model, and defenses, we discuss
the limitations of the current taxonomy and defenses (Sections 3
and refsec:defenses), in light of the new features and the complex
Web architecture (Section 2). Then, we propose a step forward
in revising this taxonomy to account for the state of the modern
Web going forward (Sections 4 and 5). Specifically, by sticking
to the essence of XSS as a code (i.e., special content) injection
attack, we propose a descriptive frame for clearly specifying the
different components and actors (user or attacker) involved in the
malicious payloads delivery process (infection), the code execution
phase (affection), as well as the recurrence of exploits gained by
the attacker with a campaign. Furthermore, considering that code
execution environments, contexts, and storage mechanisms can
all have different levels of persistence, we propose to frame the
latter as a continuum instead of a binary marker (persistent vs.
non-persistent). We then demonstrate how to express prior XSS
attacks and the ones we discussed in this work (See the Appendix).
Finally, we demonstrate how a peculiarity of service workers via
the Service-Worker-Allowed header can be abused to take control of
entire domains in shared hosting setups (Section 6).

API Description
WebAssembly.instantiateStreaming

Web Assembly compilation and executionWebAssembly.instantiate
WebAssembly.complieStreaming
WebAssembly.compile
navigator.serviceWorker.register Service worker registration
PushManager.prototype.subscribe Subscribe to web push notifications
new Worker Create dedicated workers
new SharedWorker Create shared workers
Worklet.prototype.addModule Spawn worklets
showDirectoryPicker

User’s physical file system access APIshowOpenFilePicker
showSaveFilePicker
navigator.storage.getDirectory The Origin Private System API
FileSystemHandle

The File System API interfaceFileSystemFileHandle
FileSystemDirectoryHandle

Table 1: Excerpt of Modern Web Features

2 Background
In the Web, HTML hosts JavaScript, which in turn can host Web
Assembly (Wasm), worklets, and workers. Workers can further load
Wasm and workers, etc. Table 1 presents the related JS APIs.

2.1 Web Assembly (Wasm)
With Wasm, the Web enjoys an additional environment that exe-
cutes compiled code originally developed in low-level programming
languages like C/C++ or Rust. Wasm can be represented in textual
forms suitable for human inspection, and displayed in text editors
and web browsers to assist in debugging. It can be compiled and

executed in environments as diverse as the Cloud, and serverless
edge applications, either as standalone programs or integrated into
other environments. Notably, in browsers JS and Wasm are exe-
cuted in different runtime environments. Specifically, Wasm runs in
a standalone contained environment, without access to same-origin
features like client-side storage, or communication APIs like fetch.
To interact, there is a mechanism of import (from JS to Wasm) and
export (from Wasm to JS) the different environments can leverage
to expose an interface, e.g., objects and in particular functions that
can be called cross-environments. Listing 1 shows a code snippet
that imports Wasm and exposes a set of functions for it to call.
WebAssembly . i n s t a n t i a t e S t r e am i n g (f e t c h ("/wasm.wasm") , {

j s a p i s : function (func , a r g s) {
i f (s e l f [func]) s e l f [func] (. . . a r g s)

} ,
domapis : function (nodeName , a t t r i b u t e s , p a r en t) {

l e t elem = document . c r e a t eE l emen t (nodeName) ;
for (l e t a t t r in a t t r i b u t e s)

elem . s e t A t t r i b u t e (a t t r , a t t r i b u t e s [a t t r]) ;
document . q u e r y S e l e c t o r (p a r en t) . appendChi ld (elem) ;

}
}) ;

Listing 1: Load Wasm and expose JS and DOM APIs to it

[wasm_bindgen]
pub fn c o n c a t _ s t r i n g s (f i r s t : &mut String , second : &Vec<Str ing > ,

prepend : bool) {
for p a r t in second . i t e r () {

i f prepend {
f i r s t . i n s e r t _ s t r (0 , p a r t) ;

} e l se {
f i r s t . p u sh_ s t r (p a r t) ;

}
}

}

Listing 2: Rust-based Wasm exporting a callable function

The Wasm binary can call the jsapis and domapis functions in the
JS environment to execute code or append elements to the DOM.
Listing 2 shows a Rust program which once compiled to Wasm, will
expose the function concat_strings to the hosting JS environment.

2.2 Workers and Worklets Contexts
They are independent threads meant to offload the computation
burden on the UI thread to carry out specialized tasks, typically dur-
ing the rendering process (e.g., audio, shared storage, or CSS paint
worklets) [26], perform heavy computations for a single context
(e.g., dedicated workers) or multiple contexts (e.g., shared work-
ers) or persist in the background beyond the termination of other
contexts (e.g., service workers). As shown in Listing 3, a context
starts a dedicated worker, and listens for messages it sends, before
sending a message to it.
l e t worker = new Worker ("worker.js")
worker . onmessage = (even t) => { /* ... */ }
worker . pos tMessage ("...")

Listing 3: Spawn and interact with a dedicated worker

Indeed, worklets, workers, and browsing contexts execute in iso-
lation, i.e., they do not have direct access to one another contexts
via JS or Wasm. Table 2 lists an excerpt of APIs exposed to work-
ers and worklets contexts. As one can read, worklets are heavily

MatriXSSed: A New Taxonomy for XSS in the Modern Web The Web Conference 2025 , April 28 - May 02, 2025, Sydney, Australia

NetworkNetwork

HTTP Cache/
Data Store

[HTTP] Cache
Store / Sites Data

Workers/
Worklets

Service Worker

Edge Workers

Web Page

Client-Side Sites Data

Browser/OS

User
Security

Origin Servers

Web Push
Notifications
Services

Data
Stores

Third-party
Servers

Figure 2: Modern Web Architecture

API, Events, Features Service
Worker

Shared
Worker

Dedicated
Worker

Worklets

DOM and BOM
global object (this) ✔ ✔ ✔ ✗
DOM (document) ✗ ✗ ✗ ✗
Location object ✔ ✔ ✔ ✗

Additional JS code and Wasm
Wasm APIs ✔ ✔ ✔ ✗
importScripts ✔ ✔ ✔ ✗
setInterval, setTimeout,
Function, eval

✔ ✔ ✔ ✗

Additional Dedicated Workers
new Worker ✗ ✔* ✔ ✗
new SharedWorker ✗ ✗ ✗ ✗

JS Events
message ✔ ✔ ✔ ✗
connect ✗ ✔ ✗ ✗
notificationclick, fetch,
push, sync, install

✔ ✗ ✗ ✗

Connection APIs
fetch ✔ ✔ ✔ ✗
XMLHttpRequest ✗ ✔ ✔ ✗
navigator.sendBeacon ✗ ✗ ✗ ✗

Storage Mechanisms
CookieStore, IndexedDB,
cache, file system

✔ ✔ ✔ ✗

webStorage,
document.cookie

✗ ✗ ✗ ✗

SOP restrictions workers locations
SOP-restricted ✔ ✔ ✗ ✗
CORS-restricted N/A N/A ✔ ✔
Local URIs ✗ ✗* ✔ ✔

CSP directives that govern workers creations
worker-src ✔ ✔ ✔ ✗
script-src-elem ✗ ✗ ✗ ✔

Table 2: Excerpt of Workers and Worklets Features

restricted to the JS core [44]. The DOM is solely a browsing con-
text privilege, which worklets and workers neither have nor can
access others’. Hence, cross-context (post)messaging APIs can be
relied on to exchange data. Cross-context shared memories can be
accessed with the SharedArrayBuffer API [19]. Service workers are
privileged workers supercharged with various events, including the
lifecycle install or activate events fired when they first register or
update, and many other functional events like fetch (for intercept-
ing and responding to HTTP requests), the push, notificationclick,
notificationclose, along with the PushManager and Notification APIs
for managing web push notifications and messages sent via ven-
dors services; the sync or periodicsync for background syncing, etc.

In addition to the eval-like functions, workers have access to the
importScripts function dedicated to pulling down and executing ad-
ditional (third-party) scripts. Notably, dedicated workers can spawn
additional dedicated workers. In Firefox, shared workers can also
spawn additional dedicated workers. Creating shared or service
workers is only allowed from browsing contexts.

2.3 Client-Side Storages
With the notable exception of web storage (i.e., localStorage and
sessionStorage), web workers have access to other storage mecha-
nisms. In particular JS-accessible cookies can be manipulated via
the asynchronous CookieStore API, counterpart to document.cookie
in web pages. The Cache API is a programmatic storage, chiefly
leveraged in service workers contexts, to store and retrieve HTTP
requests and responses. Its benefits range from performance im-
provements to the ability to provide offline experience to users.
The file system (FS) is a recent JS API that brings file management
capabilities to websites, accessible to pages and workers. It has
two instantiations. On the one hand, the origin private file system
(OPFS) exposes a virtual file system whose data is persisted as other
client-side storage in a location chosen by the browser, i.e., typically
the browser profile folder. The file system access (FSA) API on the
other hand, is an extension currently only supported by Chromium
browsers, which gives direct read and write access to the user’s
physical file system, provided that the user has explicitly granted
the permission, and the selected location is not blocklisted.

2.4 Edge Workers
In the traditional (or so simplistically abstracted) client-server Web
architecture, responses are generated at the origin server side and
consumed at the client side where the requests are issued. It is
known that the Web architecture is more complex and comprises
many relays and links that transport requests and response data.
Among those, proxies as varied as the specialized services they
provide. They can be transparent or passive, in the case their role
is limited to simply relaying requests and responses without modi-
fication. Non-transparent or active proxies on the other hand may
alter the passing exchanges when they are intercepted. Proxies con-
trolled by the web author are referred to as reverse proxies, while
those controlled by the client are forward proxies [18]. We further
make the distinction static and dynamic (or programmatic) to tell

The Web Conference 2025 , April 28 - May 02, 2025, Sydney, Australia Anon.

apart different types of edge proxies. In the former, we include most
CDNs that retain the programmatic logic but offer the caching of
static files to web authors via a configurable set of rules [40, 41]. In
the latter, we include serverless applications and workers which
gives developers the ability to define fine-grain caching and routing
logic for the content on the edge. Notable examples are Cloudflare
and Akamai workers, etc. [2, 5].

3 Cross-Site Scripting (XSS)
This section is dedicated to XSS, its threat model (Figure 2), and
taxonomy (Figure 1). It ends with a summary of related work.

3.1 Threat Model
The typicalweb attacker [27] is a third-party entity that exploits weak-
nesses in the design, implementation, or deployment of a benign
but buggy website to undertake unwanted actions that undermine
the security and privacy of the user. In this category, we can include
cross-site scripting (XSS), a commonWeb attack where an injection
flaw is exploited to send an unsuspecting user a malicious code
that will execute in their browser. The attacker is tech-savvy and
can operate programs as diverse as network software, and HTTP
servers, to host various types of content and code, e.g., JavaScript
files. It is assumed that the attacker can leverage social engineering
tactics [23] to deliver maliciously crafted links to users via means
as diverse as emails, social networks, messaging apps, and attacker-
controlled websites. Users are then incentivized, teased, or tricked
into navigating the malicious links in browsers where they are or
are potentially interacting with websites entrusted with sensitive
information and data.

3.2 Current Taxonomy
Figure 1 presents the current XSS taxonomy adopted by the com-
munity to frame the different types of XSS attacks, i.e., reflected
(non-persistent) or stored (persistent) server or client XSS [34, 55].
DOM-based XSS [7] is categorized as a subset of client XSS, and
persistence is understood as the likelihood of success of an exploit.
The server or client defines the vulnerable component responsi-
ble for the injection of the malicious payload in the website. In
server-reflected XSS –typically targetting a single user at a time and
considered the simplest to find and defend against– a request URL
argument is for instance included in the generated response. An
instance of server-stored XSS –considered the most dangerous as it
can persist and affect multiple users indefinitely– would involve the
storage of attacker input (e.g., HTML form data) in a SQL database,
and its later inclusion unsanitized in HTML responses sent to mul-
tiple users. Client XSS are all the other categories where the vulner-
ability resides exclusively in the client-side code. A non-persistence
example would be the unsafe usage of attacker-controllable sources
like the URL (e.g., the location object) into sensitive sinks like eval,
document.write, etc. A persistent variant would be one leveraging the
cookie or localStorage for instance [48].

3.3 Related Work
By far, web pages are the contexts which have gathered most atten-
tion from the research community as well as Web authors, browsers

and other defenses vendors [22]. Regarding the client-side, non-
persistent DOM-based have been extensively studied [37, 39]. Com-
parivetely stored XSS has gained limited consideration from the
research community. Steffens et al. [47] demonstrated instances of it
with the usage of local storage and cookies. The community has also
demonstrated other XSS variants exploiting JavaScript gadgets [36],
the mutation of the DOM [33] or vulnerable events handlers, in
particular the message event [48]. These injections do not trigger
code execution immediately. Instead, code executions occur due to
quirks and specific behaviors imputable to transformation brought
to the HTML or DOM by browsers or web frameworks. These
variants have somehow demonstrated the limitations of the XSS
taxonomy at properly framing complex types of attacks, referred
to as code-reuse or mutation XSS. In the current XSS taxonomy,
these attacks can be categorized as either client-side or server-side
based on how the JS gadgets or the mutable DOM elements are
injected in web pages. Server XSS can be discoverd for instancee by
searching for the presence of URL parameters in HTTP responses.
Stored instances are more tricky to unveil without access to the
logic and code of the server [21].

Research on workers XSS is more seldom. It was with the advent
of service workers that the first studies have been done. Chinprut-
thiwong et al. found non-persistent [30] and persistent XSS [31]
uses of the importScripts sink due to the import of code from two
sources which can be controlled by a malicious script in web pages:
the servcie worker URL and the IndexedDB storage. In the case
of the service worker URL, the authors found a handful websites
who could be infected by a traditional web attacker via the URL of
the web pages registering the service worker. For other cases, they
assume a strong attacker who exploited an initial vulnerability to
execute a code in a same-origin context in order to further affect the
service worker’s logic. Squarcina et al. [45] also assumed a strong
attacker and demonstrated that the Cache API is a vector that can
be leveraged to store malicious codes in HTTP responses, and have
them served by service workers and executed in other contexts
like web pages, shared and dedicated workers and worklets. From
a server-side perspective, Watanabe et al. [50] demonstrated that
in shared hosting settings like web archives, proxies or translators
where initially cross-origin websites are gathered under a single
(same-) origin, attackers could host malicious content (web pages)
and service workers, and once they have users visit pages under
their control, they register the malicious service workers. We note
the work of Subramani et al. [49], discussing the ability of Firefox
extensions to tamper with HTTP responses, or third party libraries
deliberately included by web authors, to hijack service workers and
execute malicious code.

4 Motivations
Considering the variety of stakeholders and technologies, the Web
attack surface runs from the clients where requests are issued, to the
servers where responses are generated, as well as the related com-
ponents including user agents (i.e., browsers) and new features they
constantly propose, users themselves and their security-awareness,
their devices and underlying operating systems security, and any

MatriXSSed: A New Taxonomy for XSS in the Modern Web The Web Conference 2025 , April 28 - May 02, 2025, Sydney, Australia

Worklets

Dedicated Workers

Web Pages

Origin Servers

 C

on
te

xt
s

Pe
rs

is
te

nc
e

sessionStorage

Cookies
HTTP Cache

Cache API
IndexedDB API

Origin Private FS API
localStorage

Web app manifests

W
eb

 D
at

a
St

or
ag

es
 P

er
si

st
en

ce

File System Access API

Edge Workers Cache

Origin Server Storage

Web Assembly
[User agent]

JavaScript
[User agent]

C
od

e
En

vi
ro

nm
en

ts

Shared Workers

Service Workers

Edge Workers
+

-

Origin Servers

Edge Workers Navigations

Iframes

Figure 3: Precedence and persistence of executions environ-
ments, contexts and storage mechanisms

intermediate middleware that can act on the HTTP communica-
tions and data exchanged over the network. Figure 2 shows the
position of the main components in the Web architecture.

4.1 Code Execution Environments and Contexts
As one knows, there is more than browsing contexts in user agents,
and malicious code execution is a concern not only to JavaScript.
As an additional environment, Wasm can execute malicious code.
Likewise, web workers and worklets are contexts solely dedicated
to code executions and can therefore be targets of malicious code
injection and execution. In the code snippet of Listing 1, assuming
that the URL /wasm.wasm of the Wasm binary comes from an
attacker-controllable source like the location object, one would
achieve code execution, not in the JS environment per se, but in
Wasm. Similar examples can be devised for workers and worklets
APIs (See Table 1). Indeed, it is the current design of the Web that
JavaScript in web pages serves as a host (it precedes) for loading
Wasm, and the initial workers and worklets. Figure 3 presents the
precedence and persistence of these components we have discussed
so far and Section 5.1 discusses their importance in describing code
injection attacks.

4.2 Cross-Browser Permanent [FS] Storage
Most client-side storage mechanisms are subject to security re-
strictions. Cookies scope can be at most all websites sharing a
common top domain (eTLD+1) [16], but can also be restricted to
a single domain (or origin), or down to a single path (or resource).
Other mechanisms like web storage (localStorage, sessionStorage),
IndexedDB, the cache API, or the origin private file system instan-
tiation of the file system API, are restricted by the SOP. That is
with the exception of the FSA API. Within the same browser, the
SOP does not apply, and websites are not prevented from concur-
rently reading and writing the same locations. Additionally, across
browsers, no restrictions are applied: different websites from differ-
ent browsers can access the same locations on the user’s file system.
This is the first native and permanent cross-browser JS-accessible
client-side storage introduced by browsers. This FSA API has no
precedence on the Web and changes the perspective we have on
the persistence of client-side storage: content on the file system
can outlive all other mechanisms, including browsers themselves,
their updates, reinstallations, and removals from users’ devices.

Figure 3 presents the suggested precedence of different storages.
In Section 5.2 we redefine persistence as a continuum, relating to
not only storages but code execution environments and contexts
as well.

4.3 Dynamic HTML, JS, and Wasm Responses
Infecting a web appwith server XSS, i.e., having it generate dynamic
responses based on attacker inputs, has been so far only considered
from the perspective of web pages, i.e., HTML/DOM injections. We
argue that DOM scripts, workers, and Wasm sources can equally
be dynamically generated based on attacker-controllable inputs.
This can be done at the origin server but also other HTTP end-
points like edge or service workers. We are only aware of prior
attempts at studying dynamic DOM scripts. Unfortunately, they
are either limited to JSONP endpoints [51] or are unrelated to code
execution [38].

4.4 HTTP Endpoints Compromises
HTTP endpoints are so far seen as vulnerable closed-boxes, which
the attacker probes with maliciously crafted inputs (sources) to
have dynamically generated outputs which include code to be ex-
ecuted in the victim user’s browser. First, if the role of the HTTP
endpoint is naturally fulfilled by origin servers, edge proxies on the
network and service workers in browsers now also share this capa-
bility. Moreover, we argue that the closed-box vision is incomplete.
In fact, with the rise of supply chain attacks, and the reliance on
third-party frameworks to implement the logic of critical compo-
nents including service, edge workers, and the origin server itself,
or the deployment of components on potentially adversarial set-
tings like shared hosting on the cloud, the delegation of services
to third parties in content management systems (CMS) like Word-
Press plugins [11, 14, 24, 25, 35], the likelihood of successful HTTP
endpoints (and hence resources) compromises are high. Should
a compromise arise, attackers gain scripting capabilities and can
respond to HTTP requests with malicious resources. We note that
the community has considered the eventuality of these attacks, and
pushed for mechanisms like SRI based on checks on the integrity of
resources hashes [20]. Unfortunately, this is only limited to DOM
scripts and stylesheets, overlooking Wasm, workers, or worklets.
Finally, even without scripting capabilities, the attacker could stati-
cally host (upload) (malicious) content (e.g., HTML, Wasm, JS) on
HTTP endpoints by abusing a legitimate service or by exploiting a
vulnerability e.g., a FTP (file transfer protocol) server hosted on the
same machine or a path traversal flaw of the endpoint [12, 15, 50].
Specifically, if the uploaded content is a program (e.g., PHP or JS)
interpreted as such by the vulnerable endpoint, the attacker further
gains scripting capabilities and can choose the code to be injected
in client-side execution contexts. In Section 6, we demonstrate an
instance of this scenario with the Service-Worker-Allowed header.

4.5 Web Cache Collision
We recall that performance and potentially greddy caching are part
of the features service or edge workers provide. First of all, we stress
that it is an intended behavior that they do not have to adhere to
HTTP caching headers served by origin servers. Hence, they can
cache a resource indefinitely even though its HTTP cache headers

The Web Conference 2025 , April 28 - May 02, 2025, Sydney, Australia Anon.

specify otherwise, e.g., cache-control: no-store. Furthermore, service
workers can be configured to collide different requests by ignoring
URL search parameters, the request method, or the Vary header [3].
We refer to this behavior as cache collision. Listing 4 shows a code
snippet of a service worker effectively performing cache collision.
s e l f . a d dEv en t L i s t e n e r ("fetch" , e ven t => {

even t . respondWith (c a che s . match (even t . r eque s t , {
i g no r e S e a r ch : true , ignoreMethod : true , i gnoreVary : true

})) ;
})

Listing 4: Cache collision during cache search

Assuming that this code is deployed on example.com, Listing 5
shows different URLs which collide into a single one.
h t t p s : // example.com/?name=attacker <scr ipt >alert (1) < / s c r ip t >
h t t p s : // example.com/?name=johndoe
h t t p s : // example.com/

Listing 5: Cache collision treats different URLs as a single
one, by ignoring the search parameters, request method, etc.

The search parameters are ignored, and no matter whether the
resources are accessed with a post or get method for instance, if a
response to one of the URLs is cached, it will be served. Overall,
in the presence of a cache collision flaw, either imputable to the
Web author, or most certainly introduced by a third-party library, a
reflected XSS attack performed by the attacker against an origin
server, could be persisted on the edge, and automatically served to
multiple users.

4.6 Web Push Messages Hijacking
Workers and web pages execute in isolation and are extensively
event-driven. In particular, web apps can subscribe users to web
push notifications and register service workers to receive and pro-
cess pushmessages in the background evenwhen the user navigates
away from the app, and show notifications to engage them back
with the web app. With permission granted to a website, an attacker
can resubscribe the user with credentials that they control, obtain a
subscription endpoint, and leverage it to regularly send messages
to the service worker. If the latter has a vulnerable push message
handler, the attacker can send malicious messages to the underlying
browser web push notification service (See Figure 2), which will
be delivered to the user’s service worker and executed. This can be
done whenever the attacker chooses to.

5 Revisiting the XSS Taxonomy
We note that there is always strong resistance to questioning a well-
established area of research, like XSS. Nonetheless, we think that
in light of all the discussion that precedes, we can make this first
step forward. We hope to have shown that the Web and XSS have
gotten complex enough to demand at least a revisit of the current
taxonomy. Due to page limits, we refer reader to the Appendix on
how we express different attack scenarios with our taxonomy in
Figure 5.
Yet another taxonomy? Foremost, our goal is not to get the com-
munity out of the current XSS matrix, and propose another rigid
one, because it will certainly show its limitations as theWeb evolves.
Rather, our proposal is to allow for a better description of code injec-
tion attacks: the components (i.e., environments, contexts, storages)

and actors (i.e., victim user or adversary) involved as well as the
recurrences in the delivery of the malicious payload (infection), and
the resulting code execution (affection) triggering processes. While
accommodating the prior taxonomy, our proposal allows better
coverage when assessing the extent and susceptibility of a website
to (code injection) attacks. Figure 3 shows these main components,
as well as their precedence in terms of persistence and hosting.
Attacker and Capabilities Figure 2 presents the position and ca-
pabilities of the attacker in this ecosystem.We consider modern and
up-to-date user agents (e.g., Web browsers), correctly implementing
Web standards, and enforcing state-of-the-art security principles
like the SOP. Then, we consider a traditional web attacker [27] with
the following clarifications. From a web author’s perspective, we
only consider those HTTP endpoints, nodes, or components under
their control, and which are potential vectors to code injection at-
tacks. Notably, we include benign-but-buggy, rogue, compromised,
or malicious third-party programs that the Web author has deliber-
ately linked to in their app, e.g., pages, service, or edge workers. In
line with many prior work, we also include a strong attacker, i.e.,
an attacker who has already gained code execution in the website,
as this can serve as springboard to mounting more sophisticated
attacks, in particular persistent ones or those which target worker
contexts [30, 31, 45, 47]. Furthermore, it is common to assume that
websites are susceptible to code injection attacks as setups for vari-
ous code injection studies [33, 36]. However, we exclude network
attackers, as they can be trivially thwarted by deploying secure com-
munications protocols, e.g., HTTPS. In the same vein, we exclude
from our threat model, browser extensions, plugins, and potentially
ill-intentionned forward proxies and any intermediate component
deployed by users or under their control (e.g., an HTTPS Mitm-
proxy [32]).
A problem of branding? JavaScript is a scripting language, which
is reflected in XSS naming. But Wasm is compiled, not scripting.
Moreover, the community agrees that the cross-site terminology is
misleading [6]. Because they always carry malicious purposes, we
think that the term malicious code injection and execution expresses
more the essence of the attacks we are concerned with. Hence, we
put forth the OWASP definition of XSS as a code execution flaw [34]
where attacker-controlled data is sourced into a sensitive sink API/-
function where it is executed as code in a vulnerable website rendered
in a victim user browser. We use the terms infection and affection as
synonyms for injection and execution. As for code, it is a special type
of the general term content that covers other non-code scenarios.
We note that injection can occur without execution (if defenses are
in place), and are independently or altogether worth assessing.

5.1 Components, Recurrence, and Actors
In the current taxonomy, the idea of server-/ or client-side indicates
whether a server (i.e., origin server) or client component (i.e., web
page) is involved in the injection process. As for reflected or stored,
they have to do with the likelihood of a successful exploit (execu-
tion).
Specifying the component We do not argue against the employ-
ment of the server or client terminology, but rather to not reduce
them respectively to the origin server or the DOM (web pages).
Instead, we argue for always specifying the component (e.g., origin

MatriXSSed: A New Taxonomy for XSS in the Modern Web The Web Conference 2025 , April 28 - May 02, 2025, Sydney, Australia

server, edge worker, web page, or service worker) to help clarify
the description of a code injection attack. In the current taxonomy,
a server reflected XSS is presented as such without further details,
while one knows that from the perspective of a user, the HTTP
endpoint responsible for such injection could as well the origin
server, an edge worker, or even a service worker laying in their
browser. Additionally, multiple components could be involved in a
code injection flaw, e.g., a payload reflected at an origin server, but
stored on the edge.
Injection and execution properties. We introduce two additional
important properties. The recurrence expresses the number of users
infected and affected by a malicious payload delivery and its ex-
ecution. The actor is the entity (user or attacker) that ultimately
triggers the injection or execution. We note that the attacker is
always the adversary, and the user the victim. To infect users for
instance, it is the users themselves who ultimately trigger reflected
XSS (e.g., by following a malicious page link), while the attacker
triggers server-stored XSS (e.g., by sending a malicious form di-
rectly to the origin server). As for the affection (exploit), in most
cases, it is triggered by the user (e.g., by visiting an infected page).
As we have shown in Section 4.6, a vulnerable push message han-
dler execution can be directly triggered by the attacker by sending
the payload to the user’s browser via a vendor’s push service.

5.2 Persistence as a Continuum
So far, persistence has been understood as to whether a (persistent)
storage is leveraged to store themalicious code. This vision is incom-
plete. We note indeed that environments, contexts, and storages can
all be more or less persistent, e.g., service workers. Each component
can then extend its persistence to the overall vulnerability. More-
over, not all components can be placed on the same level in terms of
persistence, e.g., a sessionStorage which expires after a page closes,
compared to an indexedDB that persists between different browsing
sessions, or the file system which we dubbed permanent because it
is more important than the persistence of other client storages. Fig-
ure 3 hints at the suggested non-strict ordering of persistence and
precedence of environments, contexts, and storage. Therefore, the
idea of persistence should be considered a continuum, rather than
a binary marker persistent vs. non-persistent. Moreover, it should
be expressed relatively to a particular component. With think that
specifying the components involved in an attack (as discussed in
Section 5.1) will help capture its persistent nature, as the attack can
be dubbed persistent when its components are. We refer the reader
to the Appendix on how we express different attack scenarios with
our taxonomy in Figure 5

6 Service-Worker-Allowed Header Issues
We demonstrate a security issue introduced by service workers,
with the Service-Worker-Allowed header. We take the example of a
web server that hosts multiple user profiles with the ability for the
members to use server-side programming languages (e.g., PHP) to
generate their content. Figure 4 summarizes the attack setup and
exploit. As shown, the attacker first tricks the user into visiting
their profile, i.e., hosted under ∼/attacker/ on the web server. In
response, a malicious service worker included in the attacker’s pro-
file page is automatically registered in the background. However,

User ~/attacker/ ~/benign/

GET ~/attacker/

Service Worker

navigator.
serviceWorker.

register("sw.php",
{ scope: "/" });

GET ~/victim/ Fetch
event

</>

Service-Worker-Allowed: /

GET ~/attacker/sw.php

Figure 4: Service Worker Allowed Header

because the attacker service worker is located in an inner scope
(i.e., ∼/attacker/), they leverage the server-side scripting capability
to add the Service-Worker-Allowed header to the service worker
response. By doing so, the malicious service worker gains control
of the entire origin (i.e., the / scope) in spite of its being located
under an inner scope. By setting up the fetch event, the attacker is
able to record and/or tamper with all the data exchanged by the
user with the web server. This could potentially include credentials
used to log into other profiles on the website, and potentially even
the site’s author if they operate an admin profile.
Attack relevance This kind of shared hosting website is generally
deployed at universities and research institutes, where an admin
setups an Apache web server on a Linux machine, with PHP as the
programming language for instance. Then, by enabling the userdir
module, the admin grants each member (e.g., a faculty) credentials
on the web server, to create and manage a subfolder of the website.
We have mounted this attack in controlled environments, on dif-
ferent Linux systems, including Debian, Ubuntu, Fedora, etc. It is
really as simple as we have just shown, as it is also simple to setup
an Apache web server with PHP, and enable the userdir module.
We note that the potential security problems in this kind of shared
hosting environment have been known for years because the users
share the same origin. For instance, an attacker (who controls a
part of the website), can trick users into visiting a same-origin
page under their control, where they can read/write authentication
cookies or issue requests on behalf of the user. To prevent this kind
of issue, cookies can be scoped to specific paths, e.g., ∼/username,
or disabled altogether. Nonetheless, we observed that this kind of
website is still used today, in particular in (reknown) universities
and research institutes. That notwithstanding, with this attack, we
demonstrate that there is a completed new exploit opportunity that
service workers have brought: the ability for an attacker to take
control of the whole origin, i.e., the whole / scope, even though the
attacker can only host content under an inner scope /∼attacker.

7 Defenses against XSS
To successfully mitigate content injection attacks, stakeholders
usually advise the deployment of various lines of defenses [6, 36].

7.1 Input Sanitization and Output Encoding
With input sanitization, an application ensures that the data it
is processing is of an expected, valid, and safe type. Then, when
such input is to be included in a response, the application should
apply context-aware encoding to ensure that the output would not

The Web Conference 2025 , April 28 - May 02, 2025, Sydney, Australia Anon.

trigger undesirable side-effects when rendered by the destination
context (e.g., execution in browsers). For instance, HTML tags like
<script> must be filtered out and one has to ensure that strings are
treated as such and not interpreted as code if they happen to be
part of HTML elements event handlers (e.g., onload="..."). A web
application firewall for instance can fulfill many filtering tasks based
on rules to be matched against requests. From the client side, one
has to ensure that APIs that manipulate or augment the DOM (e.g.,
document.write, HTMLElement.innerHTML) are not passed arbitrary
attacker-sourced parameters or are purified before hand [8].
The community is well aware of JS contexts in HTML responses. [6].
Expectedly, workers, worklets, and Wasm are overlooked. For these
contexts, there are no HTML tags (e.g., <wasm>) or code execution
attributes (oncompiled="...") to indicate a code execution context.
Furthermore, in addition to eval-like functions, the importScripts
function is a specific code execution sink in worker contexts. Hence,
defenses solely deployed at the origin server side to filter out or
block HTML elements, or a set of dangerous functions (e.g., at a
JSONP endpoint handler), will miss the discussed instances, and
malicious activities in service or edge workers.

Directive Names Supported Source Values
script-src, default-src hosts, schemes, ’none’, ’self’, ’unsafe-eval’,

’wasm-unsafe-eval’, ’report-sample’
sandbox allow-scripts, allow-same-origin
worker-src, child-src

hosts, schemes, ’none’, ’self’connect-src
base-uri
report-uri, report-to groupname, 〈uri〉
require-trusted-types-for script
trusted-types foo, bar, ...

Table 3: CSP expressiveness in workers contexts

7.2 Content Security Policy (CSP)
CSP has imposed itself as one of the defense-in-depth and widely
scrutinized mechanism for mitigating XSS in browsers [28, 29, 42,
43, 46, 51–54]. It has approximately 30 directives for expressing re-
strictions against the fine-grained types of content that web pages
embed (e.g., img-src for images, frame-src for iframes, etc.) [52, 53].
Workers on the other hand operate a handful of types of resources,
and a tiny part of CSP is relevant in these contexts, let alone the
expressiveness that is honored by browsers. Table 3 presents the
CSP features [52], and how they apply to different workers.
Code Execution The worker-src directive which defaults to
child-src and then to default-src, is relevant in dedicated and
shared workers only, as those can spawn additional workers (See
Section 2.2). As for the script-src directive, which defaults to
default-src when missing, accommodates JS code execution re-
strictions, for instance, trusted hosts and schemes, including local
schemes (e.g., data:, blob). Notably, features like hashes or nonces
are not supported. The wasm-unsafe-eval keyword, which defaults
to unsafe-eval when missing, allows specifically the execution of
Wasm. For worklets, as they can not load additional code, only
the report-sample keyword is relevant. As for the sandbox direc-
tive, only the two tokens that control the SOP or code execution
are enforced. At this point, it is important to make the following
observations. Let’s consider the two policies in Listing 6.

c o n t e n t − s e c u r i t y − p o l i c y : defaul t−src 'none' ;
c o n t e n t − s e c u r i t y − p o l i c y : sandbox 'allow-same-origin ' ;

Listing 6: Controlling code execution with CSP and

In browsing contexts, these policies have the same effect of dis-
allowing code execution altogether. In worker contexts, however,
only the sandboxing disallows code execution altogether. The first
policy only disallows additional code that the worker may attempt
to load, via APIs like importScripts and eval-like functions. But the
initial worker code (e.g., from an origin server) will execute.
Connections and service workers specifics: Workers can con-
nect to remote servers, and hence the connect-src directive is
relevant for constraining the connection endpoints. This includes
HTTP, web sockets, and server-sent events. As shown in Table 2,
XHR is not supported in service workers contexts, because of its
blocking capability, and no worker contexts can send beacons. Im-
portantly, we note that requests initiated by other client contexts
(i.e., web pages, dedicated and shared workers under their scope or
control) go through the fetch event handler of service workers (See
Listing 4). No matter their initial types (e.g., images, stylesheets,
videos, same-origin iframes, forms, web sockets) – which are indi-
cated by the destination of the request [17] object –, all requests can
be passed to the fetch API to download the related responses from
backend servers. That is how it happens that only the connect-src
directive is relevant in (service) workers contexts. Finally, we ob-
serve that requests passed as-is to the the fetch API within a fetch
event handler, will have their fetch metadata headers [9] preserved
when received at the backend HTTP endpoint. However, when
service workers modify the requests before passing them to the
fetch function, their fetch metadata headers are altered, and they
are sent as fetch requests, no matter their original types.

8 Conclusion
To the best of our knowledge, this is the first study to question the
traditional understanding of XSS and its taxonomy, which fails to
properly account for additional code injection vectors and compo-
nents in an ever-complex Web architecture. We propose a frame-
work where one can precisely define the components –i.e., envi-
ronments like JS or Wasm, contexts like (service or edge) workers,
and the storage mechanisms (e.g., cookies or the file system)– as
well as the actors (user or attacker) and their recurrence in the
infection and affection process of code injection attacks. Overall,
as XSS in web pages has been endorsed widely and quickly by the
community. This has led to extensive studies and incrementally
improved defenses. We hope that the awareness we raise about
the larger attack surface will lead to more defensive and effective
solutions for other contexts and environments. As the Web evolves,
caution and a thorough analysis of the extent of code injection
attacks should be undertaken first, when vendors add support for
features that deeply modify the Web attack surface.

References
[1] The File System Access (FSA) API : simplifying access to local files. https:

//developer.chrome.com/docs/capabilities/web-apis/file-system-access.
[2] Akamai Edge Workers. https://techdocs.akamai.com/edgeworkers/docs/welco

me-to-edgeworkers.
[3] CacheStorage: match() method - Web APIs | MDN. https://developer.mozilla.org/

en-US/docs/Web/API/CacheStorage/match#options.

https://developer.chrome.com/docs/capabilities/web-apis/file-system-access
https://developer.chrome.com/docs/capabilities/web-apis/file-system-access
https://techdocs.akamai.com/edgeworkers/docs/welcome-to-edgeworkers
https://techdocs.akamai.com/edgeworkers/docs/welcome-to-edgeworkers
https://developer.mozilla.org/en-US/docs/Web/API/CacheStorage/match#options
https://developer.mozilla.org/en-US/docs/Web/API/CacheStorage/match#options

MatriXSSed: A New Taxonomy for XSS in the Modern Web The Web Conference 2025 , April 28 - May 02, 2025, Sydney, Australia

[4] CDN technologies Web Usage Distribution - BuiltWith. https://trends.builtwith
.com/cdn.

[5] Cloudflare Workers. https://workers.cloudflare.com.
[6] Cross Site Scripting Prevention Cheat Sheet. https://cheatsheetseries.owasp.org

/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html.
[7] DOMBased Cross Site Scripting or XSS of the Third Kind. A look at an overlooked

flavor of XSS. http://www.webappsec.org/projects/articles/071105.shtml.
[8] DOMPurify. https://github.com/cure53/DOMPurify.
[9] Fetch Metadata Request Headers - W3C Working Draft. https://developer.mozill

a.org/en-US/docs/Web/HTTP/Headers/Sec-Fetch-Dest.
[10] File System (FS) API. https://developer.mozilla.org/en-US/docs/Web/API/File_S

ystem_API.
[11] Firebase Cloud Messaging. https://firebase.google.com/docs/cloud-messaging.
[12] FTP - MDN Web Docs Glossary: Definitions of Web-related terms | MDN. https:

//developer.mozilla.org/en-US/docs/Glossary/FTP.
[13] HTML Standard. https://html.spec.whatwg.org/.
[14] OneSignal | Customer Messaging Delivered. https://documentation.onesignal.co

m/docs/onesignal-service-worker-faq.
[15] Path Traversal | OWASP Foundation. https://owasp.org/www-community/atta

cks/Path_Traversal.
[16] Public Suffix List. https://publicsuffix.org/, https://en.m.wikipedia.org/wiki/Publ

ic_Suffix_List.
[17] RequestDestination Enumerated Types. https://fetch.spec.whatwg.org/#request

destination.
[18] Reverse Proxy | Wikipedia. https://en.wikipedia.org/wiki/Reverse_proxy.
[19] SharedArrayBuffer API. https://developer.mozilla.org/en-US/docs/Web/JavaScri

pt/Reference/Global_Objects/SharedArrayBuffer.
[20] Subresource Integrity | W3C Recommendation. https://www.w3.org/TR/SRI/.
[21] Types of XSS | OWASP Foundation. https://owasp.org/www-community/Types_

of_Cross-Site_Scripting.
[22] What is cross-site scripting (XSS) and how to prevent it? | Web Security Academy.

https://portswigger.net/web-security/cross-site-scripting.
[23] What is "Social Engineering"? — ENISA. https://www.enisa.europa.eu/topics/inc

ident-response/glossary/what-is-social-engineering.
[24] WordPress Plugins | WordPress.org. https://wordpress.org/plugins/.
[25] Workbox | Google Developers. https://developers.google.com/web/tools/workbo

x.
[26] Worklet | MDN. https://developer.mozilla.org/en-US/docs/Web/API/Worklet.
[27] Devdatta Akhawe, Adam Barth, Peifung E. Lam, John C. Mitchell, and Dawn

Song. Towards a formal foundation of web security. In Proceedings of the 23rd
IEEE Computer Security Foundations Symposium, CSF 2010, Edinburgh, United
Kingdom, July 17-19, 2010, pages 290–304. IEEE Computer Society, 2010.

[28] Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi. CCSP: Controlled Re-
laxation of Content Security Policies by Runtime Policy Composition. In Engin
Kirda and Thomas Ristenpart, editors, 26th USENIX Security Symposium, USENIX
Security 2017, Vancouver, BC, Canada, August 16-18, 2017, pages 695–712. USENIX
Association, 2017.

[29] Stefano Calzavara, Alvise Rabitti, andMichele Bugliesi. Semantics-Based Analysis
of Content Security Policy Deployment. ACM Trans. Web, 12(2):10:1–10:36, 2018.

[30] Phakpoom Chinprutthiwong, Raj Vardhan, GuangLiang Yang, and Guofei Gu.
Security Study of Service Worker Cross-Site Scripting. In Kevin Butler, editor,
To Appear in the Proceedings of the 36th Annual Computer Security Applications
Conference ACSAC 2020, Online, December 7-11, 2020. ACM, 2020.

[31] Phakpoom Chinprutthiwong, Raj Vardhan, Guangliang Yang, Yangyong Zhang,
and Guofei Gu. The ServiceWorker Hiding in Your Browser: The NextWebAttack
Target? In Leyla Bilge and Tudor Dumitras, editors, RAID ’21: 24th International
Symposium on Research in Attacks, Intrusions and Defenses, San Sebastian, Spain,
October 6-8, 2021, pages 312–323. ACM, 2021.

[32] Aldo Cortesi, Maximilian Hils, and @raumfresser. Mitmproxy | Interactive
HTTPS Proxy. https://mitmproxy.org/.

[33] Mario Heiderich, Jörg Schwenk, Tilman Frosch, Jonas Magazinius, and Edward Z.
Yang. mxss attacks: attacking well-secured web-applications by using innerhtml
mutations. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
2013 ACM SIGSAC Conference on Computer and Communications Security, CCS’13,
Berlin, Germany, November 4-8, 2013, pages 777–788. ACM, 2013.

[34] KirstenS. Cross Site Scripting (XSS). https://owasp.org/www-community/attack
s/xss/.

[35] Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and Olivier Barais. Sok: Taxon-
omy of attacks on open-source software supply chains. In 44th IEEE Symposium
on Security and Privacy, SP 2023, San Francisco, CA, USA, May 21-25, 2023, pages
1509–1526. IEEE, 2023.

[36] Sebastian Lekies, Krzysztof Kotowicz, Samuel Groß, Eduardo A. Vela Nava, and
Martin Johns. Code-reuse attacks for the web: Breaking cross-site scripting
mitigations via script gadgets. In Bhavani Thuraisingham, David Evans, Tal
Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30
- November 03, 2017, pages 1709–1723. ACM, 2017.

[37] Sebastian Lekies, Ben Stock, and Martin Johns. 25 million flows later: large-scale
detection of dom-based XSS. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti
Yung, editors, 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages 1193–1204. ACM,
2013.

[38] Sebastian Lekies, Ben Stock, Martin Wentzel, and Martin Johns. The unexpected
dangers of dynamic javascript. In Jaeyeon Jung and Thorsten Holz, editors, 24th
USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA, August
12-14, 2015, pages 723–735. USENIX Association, 2015.

[39] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia. Rid-
ing out DOMsday: Towards Detecting and Preventing DOM Cross-Site Scripting.
In 25th Annual Network and Distributed System Security Symposium, NDSS 2018,
San Diego, California, USA, February 18-21, 2018. The Internet Society, 2018.

[40] Seyed Ali Mirheidari, Sajjad Arshad, Kaan Onarlioglu, Bruno Crispo, Engin Kirda,
and William Robertson. Cached and confused: Web cache deception in the
wild. In Srdjan Capkun and Franziska Roesner, editors, 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14, 2020, pages 665–682. USENIX
Association, 2020.

[41] Seyed Ali Mirheidari, Matteo Golinelli, Kaan Onarlioglu, Engin Kirda, and Bruno
Crispo. Web cache deception escalates! In Kevin R. B. Butler and Kurt Thomas,
editors, 31st USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA,
August 10-12, 2022, pages 179–196. USENIX Association, 2022.

[42] Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick Nikiforakis, and Ben
Stock. Complex Security Policy? A Longitudinal Analysis of Deployed Content
Security Policies. In 27th Annual Network and Distributed System Security Sympo-
sium, NDSS 2020, San Diego, California, USA, February 23-26, 2020. The Internet
Society, 2020.

[43] Dolière Francis Somé, Nataliia Bielova, and Tamara Rezk. On the Content Security
Policy Violations due to the Same-Origin Policy. In Rick Barrett, Rick Cummings,
Eugene Agichtein, and Evgeniy Gabrilovich, editors, Proceedings of the 26th
International Conference on World Wide Web, WWW 2017, Perth, Australia, April
3-7, 2017, pages 877–886. ACM, 2017.

[44] Steven Sprecher, Christoph Kerschbaumer, and Engin Kirda. SoK: All or Nothing -
A Postmortem of Solutions to the Third-Party Script Inclusion Permission Model
and a Path Forward. In 7th IEEE European Symposium on Security and Privacy,
EuroS&P 2022, Genoa, Italy, June 6-10, 2022, pages 206–222. IEEE, 2022.

[45] Marco Squarcina, Stefano Calzavara, and Matteo Maffei. The Remote on the
Local: Exacerbating Web Attacks Via Service Workers Caches. In 15th IEEE
Workshop on Offensive Technologies (WOOT 21). IEEE, 2021.

[46] Sid Stamm, Brandon Sterne, and Gervase Markham. Reining in the web with
Content Security Policy. In Michael Rappa, Paul Jones, Juliana Freire, and Soumen
Chakrabarti, editors, Proceedings of the 19th International Conference on World
Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010, pages
921–930. ACM, 2010.

[47] Marius Steffens, Christian Rossow, Martin Johns, and Ben Stock. Don’t trust the
locals: Investigating the prevalence of persistent client-side cross-site scripting
in the wild. Proceedings 2019 Network and Distributed System Security Symposium,
2019.

[48] Marius Steffens and Ben Stock. Pmforce: Systematically analyzing postmessage
handlers at scale. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna,
editors, CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020, pages 493–505. ACM, 2020.

[49] Karthika Subramani, Jordan Jueckstock, Alexandros Kapravelos, and Roberto
Perdisci. SoK: Workerounds - Categorizing Service Worker Attacks and Mitiga-
tions. In 7th IEEE European Symposium on Security and Privacy, EuroS&P 2022,
Genoa, Italy, June 6-10, 2022, pages 555–571. IEEE, 2022.

[50] Takuya Watanabe, Eitaro Shioji, Mitsuaki Akiyama, and Tatsuya Mori. Melting
Pot of Origins: Compromising the Intermediary Web Services that Rehost Web-
sites. In 27th Annual Network and Distributed System Security Symposium, NDSS
2020, San Diego, California, USA, February 23-26, 2020. The Internet Society, 2020.

[51] Lukas Weichselbaum, Michele Spagnuolo, Sebastian Lekies, and Artur Janc. CSP
Is Dead, Long Live CSP! On the Insecurity of Whitelists and the Future of Content
Security Policy. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October
24-28, 2016, pages 1376–1387. ACM, 2016.

[52] Mike West. Content Security Policy Level 3. https://www.w3.org/TR/CSP3/.
[53] Mike West, Adam Barth, and Dan Veditz. Content Security Policy Level 2. https:

//www.w3.org/TR/CSP2/.
[54] Seongil Wi, Trung Tin Nguyen, Jihwan Kim, Ben Stock, and Sooel Son. Diffcsp:

Finding browser bugs in content security policy enforcement through differential
testing. In 30th Annual Network and Distributed System Security Symposium,
NDSS 2023, San Diego, California, USA, February 27 - March 3, 2023. The Internet
Society, 2023.

[55] Dave Wichers. Unraveling some of the Mysteries around DOM-based XSS, 2012.
https://owasp.org/www-pdf-archive/Unraveling_some_Mysteries_around_D
OM-based_XSS.pdf.

https://trends.builtwith.com/cdn
https://trends.builtwith.com/cdn
https://workers.cloudflare.com
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
http://www.webappsec.org/projects/articles/071105.shtml
https://github.com/cure53/DOMPurify
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Sec-Fetch-Dest
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Sec-Fetch-Dest
https://developer.mozilla.org/en-US/docs/Web/API/File_System_API
https://developer.mozilla.org/en-US/docs/Web/API/File_System_API
https://firebase.google.com/docs/cloud-messaging
https://developer.mozilla.org/en-US/docs/Glossary/FTP
https://developer.mozilla.org/en-US/docs/Glossary/FTP
https://html.spec.whatwg.org/
https://documentation.onesignal.com/docs/onesignal-service-worker-faq
https://documentation.onesignal.com/docs/onesignal-service-worker-faq
https://owasp.org/www-community/attacks/Path_Traversal
https://owasp.org/www-community/attacks/Path_Traversal
https://publicsuffix.org/
https://en.m.wikipedia.org/wiki/Public_Suffix_List
https://en.m.wikipedia.org/wiki/Public_Suffix_List
https://fetch.spec.whatwg.org/#requestdestination
https://fetch.spec.whatwg.org/#requestdestination
https://en.wikipedia.org/wiki/Reverse_proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://www.w3.org/TR/SRI/
https://owasp.org/www-community/Types_of_Cross-Site_Scripting
https://owasp.org/www-community/Types_of_Cross-Site_Scripting
https://portswigger.net/web-security/cross-site-scripting
https://www.enisa.europa.eu/topics/incident-response/glossary/what-is-social-engineering
https://www.enisa.europa.eu/topics/incident-response/glossary/what-is-social-engineering
https://wordpress.org/plugins/
https://developers.google.com/web/tools/workbox
https://developers.google.com/web/tools/workbox
https://developer.mozilla.org/en-US/docs/Web/API/Worklet
https://mitmproxy.org/
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://www.w3.org/TR/CSP3/
https://www.w3.org/TR/CSP2/
https://www.w3.org/TR/CSP2/
https://owasp.org/www-pdf-archive/Unraveling_some_Mysteries_around_DOM-based_XSS.pdf
https://owasp.org/www-pdf-archive/Unraveling_some_Mysteries_around_DOM-based_XSS.pdf

The Web Conference 2025 , April 28 - May 02, 2025, Sydney, Australia Anon.

Stored
Origin

Reflected
Origin

Location
DOM

Steffens
et
al.[47]

Steffens
and
Sock [48]

Chinprutthiwong
et al. [30, 31]

Squarcina
et
al. [45]

Watanabe
et al.[50]

FSAAPI SWA
Header

Cache
Collision

Web Push
Messages

Infection: Actor ↦→ Recurrence A ↦→1+ U↦→1 U↦→1 U/A ↦→1 U↦→1 U/A↦→1 A↦→1 A ↦→1+ A↦→1 A ↦→1+ A/U↦→1+ A/U ↦→1
Affection: Actor ↦→ Recurrence U ↦→1+ U↦→1 U↦→1 U ↦→1+ U↦→1 U↦→1+ U↦→1+ U↦→1+ U↦→1+ U↦→1+ U↦→1+ A ↦→1+

Vulnerable Code (Infection)
Origin Server Code ✔ ✔ ✔ ✔ ✔

Edge Worker Code ✔

JS [User agent/Client] ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Wasm [User agent/Client]
(Malicious) Code Execution Contexts and Environments (JS/Wasm)

Worklets JS
Dedicated Worker JS JS
Iframes JS JS JS
Navigations JS JS JS
Web Pages JS JS JS JS JS JS JS JS
Shared Worker JS JS
Service Worker JS JS JS JS JS JS JS

Storage Mechanisms
Origin server Storage ✔ ✔ ✔

Edge worker Cache ✔

File system access API ✔

Web app manifests
Cache API ✔ ✔

IndexedDB API ✔

Origin private file system
localStorage ✔

HTTP Cache
HTTP Cookies ✔

sessionStorage
Sources (URL/Storage, etc.) / Sinks (HTML/JS/Wasm)

Source URL
(Body)

URL URL URL/
Storage

Message
Event

URL/ Storage Storage Server File Storage Server
Program

URL Push
Event

Sink HTML HTML HTML/JS HTML/JS HTML/JS importScripts
[JS]

HTML/JS JS JS JS HTML/JS JS (eval)

Figure 5: Demonstration of the usage of the taxonomy to frame prior and current attacks discussed in this work. Actors (A) is
the attacker and (U) is the user. The recurrences 1/1+ means exactly 1 or more than 1. We also included some common sources
and sinks to help the reading, though those are out of the scope of the taxonomy. For infection, if the attacker can directly
infect a web server (e.g., the origin server), they cannot directly infect the user’s browser without the user involved, unless they
already gain code execution in one of the website’s contexts. This is the attacker model of most work on web workers, and one
of the attacker models of Steffens et al. for persistent client XSS [30, 31, 45, 47]. Likewise, the user is the one who ultimately
triggers code execution in their browser in most cases, with the notable exception of a malicious web push message which is an
attacker’s privilege. In terms of recurrence, when an origin server or an edge worker is involved, infection typically reaches
many users, otherwise only a single user is infected. Obtaining multiple occurrences of code execution is achieved when there
is persistence, provided either by a storage mechanism, or a persistent context like a service worker. We note that there is no
attack scenario or prior work that involved Wasm in either the infection or affection processes, as all the cases are related
to vulnerable or malicious JavaScript. Expectedly, web pages have been extensively considered for code execution, as well as
service workers. The analysis of other contexts are interesting directions for future work. Unless otherwise specified, we also
include in the web pages, iframes, and other top-level navigations initiated programmatically from a browsing context. As one
can observe, many storage mechanisms are overlooked in the literature and are therefore interesting directions for future
work. Events may also deserve deeper scrutiny. Finally, Wasm is overlooked as a potential code execution sink by itself, as well
as dynamic JavaScript.

Browsing Contexts
These are threads where takes place the rendering of root web pages (e.g., in top-level browser tabs), as well as nested documents (e.g.,
iframes). Navigating different pages can be statically initiated by users entering URLs in user agent (e.g., web browsers) interfaces, clicking
links, or submitting forms from other pages. Such navigations can also be dynamically triggered by JavaScript APIs like window.open,
clients.openWindow, or location object, etc. The document is presented for interaction with the user in an interface (UI) –referred to as the
main UI thread–, and for manipulation to JS in the DOM API. Among the numerous ways JS can be included in web pages is the use of the
<script> tag to provide inline code directly or reference a remote resource (with the src attribute).

	Abstract
	1 Introduction
	2 Background
	2.1 Web Assembly (Wasm)
	2.2 Workers and Worklets Contexts
	2.3 Client-Side Storages
	2.4 Edge Workers

	3 Cross-Site Scripting (XSS)
	3.1 Threat Model
	3.2 Current Taxonomy
	3.3 Related Work

	4 Motivations
	4.1 Code Execution Environments and Contexts
	4.2 Cross-Browser Permanent [FS] Storage
	4.3 Dynamic HTML, JS, and Wasm Responses
	4.4 HTTP Endpoints Compromises
	4.5 Web Cache Collision
	4.6 Web Push Messages Hijacking

	5 Revisiting the XSS Taxonomy
	5.1 Components, Recurrence, and Actors
	5.2 Persistence as a Continuum

	6 Service-Worker-Allowed Header Issues
	7 Defenses against XSS
	7.1 Input Sanitization and Output Encoding
	7.2 Content Security Policy (CSP)

	8 Conclusion
	References

