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Abstract

Vision-Language Models (VLMs) have demonstrated remarkable capabilities in
cross-modal understanding and generation by integrating visual and textual in-
formation. While instruction tuning and parameter-efficient fine-tuning methods
have substantially improved the generalization of VLMs, most existing approaches
rely on centralized training, posing challenges for deployment in domains with
strict privacy requirements like healthcare. Recent efforts have introduced Feder-
ated Learning (FL) into VLM fine-tuning to address these privacy concerns, yet
comprehensive benchmarks for evaluating federated fine-tuning strategies, model
architectures, and task generalization remain lacking. In this work, we present
FedVLMBench, the first systematic benchmark for federated fine-tuning of VLMs.
FedVLMBench integrates two mainstream VLM architectures (encoder-based
and encoder-free), four fine-tuning strategies, five FL algorithms, six multimodal
datasets spanning four cross-domain single-task scenarios and two cross-domain
multitask settings, covering four distinct downstream task categories. Through
extensive experiments, we uncover key insights into the interplay between VLM
architectures, fine-tuning strategies, data heterogeneity, and multi-task federated op-
timization. Notably, we find that a 2-layer multilayer perceptron (MLP) connector
with concurrent connector and LLM tuning emerges as the optimal configura-
tion for encoder-based VLMs in FL. Furthermore, current FL. methods exhibit
significantly higher sensitivity to data heterogeneity in vision-centric tasks than
text-centric ones, across both encoder-free and encoder-based VLM architectures.
Our benchmark provides essential tools, datasets, and empirical guidance for the re-
search community, offering a standardized platform to advance privacy-preserving,
federated training of multimodal foundation models. Our dataset and code| are
publicly available.

1 Introduction

Recently, Vision-Language Models (VLMs) [1} 20, 131] have demonstrated groundbreaking advance-
ments in cross-modal understanding and generation tasks by integrating multimodal information
such as vision and language. Instruction tuning methods, such as LLaMA-Adapter V2 [3], and
parameter-efficient tuning techniques, such as LoRA [[10]], can significantly enhance the zero-shot
generalization capabilities of VLMs. This characteristic positions VLMs as a potential foundational
architecture for addressing complex open-domain tasks. However, existing VLM-based instruction
tuning methods [5, [10, 20]] typically adopt a centralized learning paradigm, which fails to meet the
privacy protection requirements necessary for distributed training, particularly in sensitive fields such
as healthcare. While recent research 34} 40] has introduced FL into the instruction fine-tuning of
VLMs to effectively address data privacy concerns, significant limitations remain.

First, existing VLMs can be categorized into two popular technical routes, encoder-based VLMs
and encoder-free VLMs, depending on the inclusion of visual encoders [30} 32]]. Current methods
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Figure 1: Overview of our proposed FedVLMBench, which integrates two types of mainstream VLM
architectures, four fine-tuning strategies, five FL algorithms, and six cross-domain task datasets. This
framework facilitates comprehensive evaluation and comparison of multitask learning approaches in
FL contexts.

primarily focus on adapting encoder-based VLMs through techniques such as LoRA or global fine-
tuning, lacking a systematic comparison framework and benchmark for different model architectures
and fine-tuning strategies. Second, existing FL. multimodal benchmark research focuses narrowly on
two basic task types—Visual Question Answering (VQA) and classification—while ignoring more
complex but critically important multimodal tasks such as report generation and visual localization
(Tab[T). Third, no existing FL datasets support federated multi-modal multi-task learning scenarios,
despite their practical significance in real-world applications where different clients may need to
handle distinct multimodal tasks (e.g., one hospital specializes in classification while another focuses
on report generation). To address these research gaps, this paper shifts from technical improvements
in existing federated instruction tuning methods to exploring three core foundational questions:

Q1: How do choices in connector design and fine-tuning strategies impact the FL performance of
encoder-based VLMs across diverse single-learning FL tasks?

Q2: How do different FL algorithms, using both encoder-based and encoder-free VLMs as baseline
architectures, perform under varying data heterogeneity conditions in single-task federated fine-
tuning processes?

Q3: To what extent can existing FL algorithms support multi-modal multi-task coordination when
deploying heterogeneous VLMs across clients with divergent task requirements?

To systematically address these questions, we developed an innovative FL fine-tuning of VLMs
benchmark FedVLMBench that integrates 2 types of mainstream VLM architectures (encoder-based
and encoder-free VLMs), 4 fine-tuning strategies, 5 FL algorithms, 4 types of downstream tasks,
and 6 cross-domain task datasets. As shown in Tab[I] our benchmark differs from existing works
by encompassing a broader range of downstream tasks, diverse VLM architectures, and unique
multi-task collaborative fine-tuning datasets. Through extensive experimental analysis, we present
the following key findings:
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Table 1: Comparisons of FedVLMBench with other FL benchmarks.#Collab. Datasets refer to the
number of multi-task collaborative fine-tuning datasets.

Benchmark Language Vision # Arch. Types # Task Types # Datasets # Collab. Datasets
FS-LLM [14] v X 1 2 3 X
FedLLM-Bench [36] v X 1 2 4 X
OpenFedLLM [37] v X 1 2 8 X
FedMLLM [34] v v 1 2 5 X
FedVLMBench (Ours) v v 2 4 6 2

1) For encoder-based VLM in FL, a 2-layer MLP connector stands out as the most effective connector
when compared to other linear or more complex MLP configurations; concurrent fine-tuning both
the connector and the LLM yields superior task-agnostic performance compared to the sequential
approach of fine-tuning the connector first and then the LLLM, while maintaining computational
efficiency.

2) For encoder-based VLMs in FL, text-centric tasks (such as VQA and caption generation) benefit
dominantly from LLM fine-tuning, while connector fine-tuning should be prioritized for vision-
centric tasks like classification and detection.

3) Current FL optimization methods are ineffective for both encoder-free and encoder-based VLMs
when dealing with non-IID data partitions in single-task FL learning, calling for novel solutions
addressing vision-centric heterogeneity challenges.

4) While single-task FL struggles with vision-centric performance degradation under non-IID data,
federated multitask training achieves near-ceiling performance comparable to centralized training
across both text- and vision-centric tasks, regardless of VLM architectures.

The main contributions of this paper can be summarized as follows:

1. We propose FedVLMBench, the first systematic benchmark for federated fine-tuning of VLMs. It
integrates two mainstream VLM architectures (encoder-based and encoder-free), four fine-tuning
strategies, five diverse FL algorithms, and six cross-domain datasets spanning task categories from
text-centric (VQA/captioning) to vision-intensive (classification/detection), while comprehensively
supporting both single-task and multi-task FL scenarios.

2. We bridge critical gaps in FL benchmarks by introducing (i) four cross-domain single-task datasets
with configurable IID, simulated non-1ID, and real-world non-IID data distributions, and (ii) two
novel multi-task vision-language datasets reflecting real-world non-IID scenarios where clients
handle distinct yet interconnected tasks.

3. Through comprehensive evaluation on FedVLMBench, we establish actionable guidelines for
federated fine-tuning of VLMs and reveal open challenges for future research in privacy-preserving
FL multimodal systems.

2 Related Work

Vision-Language Models (VLMs) [, 31] have rapidly advanced by significantly enhancing per-
ceptual and reasoning capabilities through the integration of multimodal information, including text,
images, and video. Currently, VLMs can be categorized into two primary types: encoder-based
models and encoder-free models. The former encompasses models such as LLAVA [20]], which utilize
pretrained encoders (e.g., CLIP [25]]) to extract multimodal features and integrate them with LLMs for
executing complex tasks. In contrast, encoder-free models [[17, 32] directly tokenize multimodal data,
such as images, enabling adaptive processing of diverse inputs and enhancing the generalizability of
VLMs.

Federated Learning (FL) [6} (7, 8123} 38} 41] is a privacy-preserving distributed training paradigm
that facilitates collaborative modeling through client-localized data processing. The traditional
FedAvg [23]] method relies on client data volume for parameter-weighted fusion but often suffers from
performance degradation in non-IID scenarios. To address this, various optimization schemes have
been proposed, such as FedProx [16], FedAdagrad [27], FedAdam, and FedYogi 28], PerAvg [4]],
and FedTGP [39]. More recently, researchers have begun exploring FL in the context of multimodal
learning, such as FedLPS [11], FedMBridge [2], and Pilot [33]]. For example, Pilot [|33]] tackles the
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Table 2: Statistics of 6 federated multimodal fine-tuning datasets in FedVLMBench.

Dataset Task Type Data Source Data Type #Max Clients #Instances Evaluate metric
Fed-FGVC CLS FGVC [22] Image 30 9,967 Acc
Fed-ScienceCap  Caption Generation ~ ScienceQA [21] Image+Text 27 5,157 CIDER/ROUGE_L
Fed-SLAKE VQA SLAKE [19 Image+Text 3 8,061 Acc
Fed-RadGenome  Detection RadGenome-Chest CT [42] Image+Text 3 8,744 ToU

VQA COCO-QA [29] Image+Text 6,000 Acc
Fed-Nature Visual Grounding RefCOCO [13] Image+Text 4 6,000 ToU

Caption Generation ~ RefCOCO Image+Text 6,000 CIDER/ROUGE_L

CLS COCO [18] Image 6,000 Acc

VQA SLAKE & VQA-RAD [15] Image+Text 3,846 Acc
Fed-Med Detection RadGenome-Chest CT Image+Text 3 8,744 IoU

Report Generation MIMIC-CXR [12] Image+Text 8,000 CIDER/ROUGE_L

reduction in VLM generalization by using dynamic adapter designs and a globally shared semantic
space. FedMLLM [35] introduces a benchmark for evaluating federated fine-tuning performance of
MLLMs across heterogeneous scenarios. However, these approaches do not systematically explore
critical issues such as vision language model architecture, the interplay of different modules, and the
intricacies of multi-task collaborative training within the FL context.

3 Federated Vision-Language Benchmark Datasets

Current federated benchmarks [35] exhibit two fundamental limitations in task coverage. First,
while claiming multimodal capabilities, existing works predominantly focus on only two basic task
types—VQA and classification—while ignoring more complex but critically important multimodal
tasks such as report generation and visual localization. Second, and more importantly, there exists
a complete absence of datasets supporting federated multi-modal multi-task learning scenarios,
despite their practical significance in real-world applications where different clients may need to
handle distinct multimodal tasks. To bridge the gaps, we develop six novel federated datasets
through two synergistic efforts On the single-task front, we construct four specialized benchmarks
(Fed-FGVC, Fed-SLAKE, Fed-ScienceCap, and Fed-RadGenome) that significantly expand beyond
conventional VQA and classification to include caption generation and visual localization tasks, with
careful consideration of both IID and non-IID data distributions. More innovatively, we pioneer two
multi-task federated datasets (Fed-Nature and Fed-Med) that for the first time enable collaborative
instruction tuning across interconnected multi-task and multimodal objectives, filling a crucial void
in current FL research infrastructure.

Fed-FGVC: A Classification Vision-Language FL Dataset. FGVC-Aircraft [22] is a dataset
designed for fine-grained visual classification of aircraft. Based on the key attribute "manufacturer" (30
categories), we distribute the data among up to 30 clients, ensuring that every three categories are
evenly distributed or merged, resulting in IID and non-IID partitions. Additionally, four heterogeneous
partitions are generated using varying Dirichlet coefficients, resulting in a Fed-FGVC dataset with
six partitions to benchmark multimodal language models on fine-grained image understanding.

Fed-ScienceCap: A Caption Generation Vision-Language FL Dataset. ScienceQA [21] is a
comprehensive dataset encompassing various question types from real science exams across different
disciplines. We screened image-description pairs and excluded categories with fewer than 100
samples by "category". The remaining 27 categories were evenly distributed or merged to a maximum
of 27 clients to create IID and non-IID partitions. The resulting Fed-ScienceCap dataset provides two
partitioning schemes to evaluate models on image semantic understanding in natural sciences.

Fed-SLAKE: A Visual Question Answering Vision-Language FL Dataset. SLAKE [19] is a
dataset for medical vision problems, covering various modalities, organs, and both closed and open
questions. We first excluded question types with fewer than 20 samples and then used uniform and
complete partitioning by “modality” to create IID and non-IID partitions among 3 clients.

Fed-RadGenome: A Visual Detection Vision-Language FL Dataset. RadGenome-Chest CT [42]]
is a multimodal dataset containing segmentation masks and region-specific reports for 3D chest CT
scans. We extracted two 2D cross-sectional images from each 3D volume, along with masks for three
organs (heart, lung, and abdomen) and their corresponding reports. Using uniform and complete
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category division methods, we distributed the data among 3 clients, resulting in the Fed-RadGenome
dataset, which includes over 8,000 samples and both IID and non-IID partitioning methods.

Fed-Nature: A Natural Multitask Vision-Language FL Dataset. Fed-Nature integrates three
public vision-language datasets — COCO [18]] (classification), RefCOCO [13] (visual grounding
and captioning generation), and COCO-QA [29] (VQA) — by linking their cross-modal annotations
through shared image IDs. We map each specific task to a dedicated client, creating four clients that
jointly support VQA, classification, visual grounding, and caption generation tasks.

Fed-Med: A Medical Multitask Vision-Language FL Dataset. Fed-Med unifies chest-related
medical question answering, detection, report generation, and various other data sourced from
the SLAKE [19] (VQA), MIMIC-CXR [12] (report generation), VQA-RAD (VQA) [15], and
RadGenome-Chest CT [42] (detection) datasets. Similar to Fed-Nature, we map each specific task to
a client, creating three clients that jointly support VQA, report generation, and detection.

More details about the datasets and their partitions are provided in the supplementary file.

4 FedVLMBench Framework

To make our FedVLMBench framework compatible with standard FL protocols, it follows the same
training process as conventional FL (e.g., FedAvg [23]]), which involves a central server and K clients.
Each client holds a private multimodal dataset Dy, = {(I®), T(®) Res™) | i = 1,2,..., N;} that
includes images I, text ', and corresponding responses Res. The underlying optimization goal of
our FedVLMBench can be formalized as follows:

K
o1 k
arg min E;E%QM(wk), (1)

ws ERY

where E{,@M(wk) denotes the local loss function of client k, Nj, represents the number of samples in
client k’s private dataset, wy, represents the entire model parameters of client &, and w® denotes the
trainable parameters.

Our FedVLMBench framework, as illustrated in Fig. [I] involves two mainstream VLM architectures:
encoder-based and encoder-free. The former utilizes a connector C(-; 6.) to map features extracted
from the image encoder £ into tokens, while the encoder-free approach directly employs the image
tokenizer Tin to generate tokens. Both models use the text tokenizer Tiexto encode textual informa-
tion. For the encoder-based VLM, we employ four fine-tuning strategies that explore different orders
and combinations of fine-tuning the connectors and LLMs. Specifically, the first strategy focuses on
fine-tuning only the connector. The second strategy involves fine-tuning only the LLM using LoRA
[[LO]. The third strategy entails simultaneously fine-tuning both the connector and the LLM with
LoRA. Finally, the fourth strategy consists of fine-tuning the connector first, followed by the LLM
using LoRA. For the encoder-free VLM, we only utilize LoRA to fine-tune the LLM.

In each FL communication round, the server first broadcasts the trainable parameters to each client.
Then, clients conduct local fine-tuning and share the updated weights with the server for aggregation.
The server aggregates these updates to update the global model and then re-broadcasts the trainable
parameters to each client for the next round of fine-tuning. We will elaborate on this workflow in the
following.

Local Fine-Tuning Procedure. For each round of local fine-tuning, we first update the trainable
parameters with the received parameters, which may be partial due to varying training strategies.
Then we perform stochastic gradient descent steps to update the trainable parameters. The update
process is shown below:

W}, 4w}, — 1y Vo Lyih (W), 2)

where wj, represents the trainable parameters of client k. For the encoder-based VLM, its composition
varies according to the different fine-tuning strategies:
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OLim,

{0c, Oim},
{0c, Oim},

fine-tune only the connector,

fine-tune only the LLM using LoRA,

fine-tune both the connector and LLM with LoRA simultaneously,
fine-tune the connector and LLM with LoRA in order,

3

where 6. and 01,15 represent the trainable parameters of the connector and LoRA in LLM, respec-
tively. For the encoder-free VLM, we utilize LoRA to only fine-tune the parameters of the LLM, thus
wy =0

Global Aggregation. Similar to common FL algorithms, the server performs weighted averaging of
the trainable parameters as:

“

K
w® = g QW
k=1

where oy is the aggregation weight for client k. In FedAvg [23]], this weight is typically determined

by the number of samples at the client, i.e., a, = ZKNi’cN
k=11Vk

5 Experiments

We systematically investigate federated fine-tuning VLM learning through three progressive dimen-
sions. First, we explore how to efficiently fine-tune encoder-based VLMs within FL environments. We
assess the impact of different connector layers (linear, 2-layer MLP, and 6-layer MLP), alongside var-
ious fine-tuning strategies under varying data distributions (IID/non-IID) to determine their influence
on model performance. Next, we extend this analysis to compare encoder-based and encoder-free
VLMs, revealing architectural disparities in handling data heterogeneity and task-specific sensitivities
in single-task FL. Finally, leveraging these single-task FL findings, we evaluate federated multitask
learning under both encoder-free and encoder-based VLM.

5.1 Experimental Setup

Implement Details.

Table 3: Performance comparison of connector layer types
(linear layer, 2-layer MLP (Mlp2x), and 6-layer MLP

For encoder-based VLM, we adopt
LLaVA 1.5’s architecture, utilizing a

pre-trained CLIP visual encoder (ViT-
B/32 [3} 26]) for visual feature ex-
traction and LLAMAZ3.2-3B [24] as
the language model. We investigate
three connector layer configurations
between visual and language modules:
linear layer, 2-layer MLP, and 6-layer
MLP. For encoder-free VLMs, we
initialize Show-O [32] with its origi-
nal pre-trained parameters for instruc-
tion fine-tuning. Across both architec-
tures, we employ LoRA with rank 8
and scaling factor a=32 for parameter-
efficient tuning of LLM components.
Additional implementation details are
provided in the supplementary mate-
rial.

(Mlp6x)) on FL fine-tuning on encoder-based VLM under-
ing IID data portions of Fed-SLAKE and Fed-ScienceCap
datasets. F-C denotes the connector fine-tuning model, F-L
denotes the LLM tuning model. LC denotes joint one-stage
connector-LLM tuning and 2stage denotes the sequential
fine-tuning of the connector and LLM. The best result is
indicated in bold, while the second-best result is shown with
underline. This performance notation scheme is consistent
throughout the paper unless explicitly stated otherwise.

Fed-SLAKE Fed-ScienceCap

Mode | Method | yi 00 “Mip2x Mip6x | Linear MIp2x MiIp6x
pC | Central | 0799 0788 0734 | 72390879 736100889 7.274/0.881
FedAvg | 0726 0783 0750 | 7.069/0.867 7.283/0.882 6.991/0.866
P | Ceniral | 0837 0834 0531 | 7.53400.898 7459/0.896 5.784/0.833
FedAvg | 0787 0806 0.794 | 7.498/0.893 7.338/0.889 5.727/0.832
rcL | Centml [ 0824 0843 0739 [ 752100899 7.550/0.901 7.366/0.892
FedAvg | 0.819 0.823 0.802 | 7468/0.896 7.521/0.899 7.274/0.886
Fastane | Central | 0815 0830 0817 | 74240892 741400894 7.491/0.894
2¢ | FedAvg | 0.808 0811 0797 | 7216/0.878 7.200/0.883 7.226/0.883

Baseline FL Algorithms. We evaluate five representative FL approaches spanning classical and
adaptive heterogeneity optimization paradigms: FedAvg [23]], FedProx [[L6], FedAvgM [9], Fed Yogi
[28] and FedAdam [28]. To establish performance ceilings, we include a Central baseline trained on
aggregated client data. More implementation details are provided in the supplementary material.
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5.2 How to Efficiently Fine-tune Encoder-based VLM in FL?

Our initial exploration focuses on assessing the impact of various popularly utilized connection layers
(linear, 2-layer MLP, and 6-layer MLP) along with different fine-tuning strategies on the performance
of encoder-based VLM in FL.

Which connector type—linear, 2-layer MLP, or 6-layer MLP—is most effective for FL fine-
tuning of encoder-based VLMs? As shown in Tab. [3] both the simple linear layer and the 2-layer
MLP demonstrate superior performance across a range of fine-tuning strategies and tasks. In contrast,
the more complex 6-layer MLP connector results in a significant reduction in performance in
both the FL and Central settings, despite an increase in model parameters. This suggests that the
added complexity in the connector does not necessarily translate to better performance in FL. The
performance of linear layer in FL, while appearing effective and simple, is derived from optimal
hyperparameter tuning, including the selection of the most favorable random seeds. In practice,
linear layer is highly susceptible to parameter initialization (i.e., random seeds) in FL, resulting
in significant fluctuations in training outcomes (see figure in the supplement). This sensitivity is
particularly pronounced when each client has limited data—a common scenario in FL applications
(see supplementary file for results). Based on these findings, we conclude that:

Takeaway 1: Compared to a simple linear layer and a complex 6-layer MLP, a 2-layer MLP
emerges as the most effective connector regarding performance, computational efficiency, and
training stability for fine-tuning VLMs in FL.

Based on previous experimental findings, we employ a 2-layer MLP as the connection layer for all
subsequent experiments in this study.

How should we select FL fine- Table 4: Quantitative comparison of four fine-tuning strate-
tuning strategies for different tasks gies on multi-type task datasets with IID and non-IID distri-
in encoder-based VLMs? In the butions.

context of federated fine-tuning in

Fed-SLAKE Fed-ScienceCap Fed-FGVC
encoder-based VLMs, a key ques- Mode ‘ Method ‘ D  Non-IID 1D Non-IID | IID  Non-IID
tion arises: Which fine-tuning strat- FedAvg | 0783 0775 | 7.85/0.882 7.249/0.881 | 0.724  0.585

: e FedProx | 0734 0750 | 7.93/0.885 7.250/0.881 | 0726  0.586
egy is most effective: (1) connector- pc | FedAdam | 0741 0735 | 7270876 71370876 | 0.694 0522
Only (C’ denoted as F_C)’ (2) LLM- FedAvgM | 0.754 0.747 7.252/0.880  7.238/0.881 | 0.696 0.510

FedYogi | 0.745 0.736 7.125/0.877  7.104/0.874 | 0.695 0511
FedAvg | 0.806 0.802 7.355/0.890  7.342/0.889 | 0.647 0.529

only (L, denoted as F-L), (3) joint

connector-LLM tuning (CL, denoted FedProx | 0.800 0780 | 7.331/0.889 7311/0.887 | 0.637  0.488

P | FedAdam | 0783 0771 | 7.194/0.885 7.1250.881 | 0627 0460
as denoted as F-CL), or (4) two-stage - FedAvgM | 0789  0.786 | 7.287/0.890 7.305/0.890 | 0.602  0.469
sequential tuning (C—L, denoted as FedYogi | 0.782 0769 | 7.153/0.884 7.123/0.881 | 0.623  0.467

FedAvg | 0.823 0.827 7.501/0.898 7.476/0.897 | 0.721 0.603

F-2stage). We systematically evalu- FedProx | 0.816 0796 | 7.500/0.898 7.440/0.897 | 0718  0.548

ate these approaches across diverse p.cL | FedAdam | 0777 0774 | 7.282/0.891 7.319/0.891 | 0.671 0528

.. b FedAvgM | 0784 0768 | 7.359/0.893 7.351/0.892 | 0.677  0.514
vision-language tasks under FL con- FedYogi | 0.783  0.774 | 7.277/0.890 7.287/0.890 | 0.675  0.511
straints. FedAvg | 0.811  0.814 | 7.334/0.884 7.281/0.883 | 0.730  0.614

FedProx | 0.773 0.785 7.262/0.883  7.221/0.880 | 0.715 0.591
We begin by examining the impact of e | FA | 072077 | 7210 im0 05
fine-tuning either the connector or the FedYogi | 0.785 0782 | 7.310/0.886 7.310/0.886 | 0.717  0.561
LLM across different tasks in FL set-

tings. As detailed in Tab. [4] for the text-dominant tasks (e.g. the VQA on Fed-SLAKE and caption
generation on Fed-ScienceCap datasets), LLM tuning (F-L) significantly outperforms connector-only
tuning (F-C), and yields results comparable to full-model tuning (F-CL and F-2stage). Conversely, for
vision-focused tasks (e.g., fine-grained image classification tasks on Fed-FGVC), connector tuning
(F-C) achieves results comparable to full-model tuning (F-CL and F-2stage) while substantially
outperforming LLM-only adaptation (F-L). This suggests that text-driven tasks benefit from updating
linguistic knowledge, whereas vision-centric tasks require refined visual-textual alignment.

Takeaway 2: In federated fine-tuning of VLMs, prioritizing LLM fine-tuning enhances perfor-
mance in text-centric tasks, such as VQA and caption generation, while fine-tuning the connector
is more effective for visually-driven tasks like image classification.

Subsequently, we compare full-model fine-tune strategies (F-CL vs. F-2stage). In traditional VLM
fine-tuning, it is commonly believed that tuning the connector before the LLM is preferred. However,
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Table 5: Performance comparison of different VLM architectures on various single-task datasets with
IID and non-IID distributions.

Mode Method Fed-SLAKE Fed-ScienceCap Fed-FGVC Fed-RadGnome
IID  Non-IID 11D Non-1ID IID Non-IID | IID  Non-IID
Central 0.843 7.550/0.901 0.764 0.584
FedAvg | 0.823 0.827 7.501/0.898  7.476/0.897 | 0.721 0.603 0.565 0.484
FedProx 0.816 0.796 7.500/0.898  7.440/0.897 | 0.718 0.548 0.535 0.462

Encoder-based | poindam | 0777 0774 | 728210891 7.319/0.891 | 0.671 0528 | 0550  0.529

FedAvgM | 0.784 0.768 7.359/0.893  7.351/0.892 | 0.677 0.514 0.542 0.511

FedYogi | 0.783 0.775 7.277/0.890  7.287/0.890 | 0.675 0.511 0.556 0.536
Central 0.784 7.462/0.899 0.739 0.580
FedAvg | 0.777 0.761 7.470/0.902  7.421/0.899 | 0.721 0.493 0.604 0.485

FedProx | 0.769 0.734 7.456/0.901  7.363/0.897 | 0.679 0.440 0.565 0.460
FedAdam | 0.747 0.732 7.241/0.894  6.850/0.881 | 0.689 0.471 0.597 0.472
FedAvgM | 0.776 0.743 7.398/0.899  7.402/0.899 | 0.723 0.453 0.596 0.435

FedYogi | 0.749 0.737 7.221/0.893  7.267/0.894 | 0.686 0.467 0.599 0.461

Encoder-free

our findings present an intriguing contrast. As illustrated in Table[d] fine-tuning both the connector and
the LLM simultaneously (strategy F-CL) often results in superior or comparable outcomes compared
to the sequential two-stage approach (strategy F-2stage), while also reducing computational overhead.

Takeaway 3: For encoder-based VLMs in FL environments, concurrent fine-tuning of both the
connector and the LLM outperforms sequential training connector first and then LLM in FL,
balancing performance gains with computational efficiency.

Based on these experimental findings, we adopt the F-CL as the federated tuning strategy for all
subsequent experiments in this study.

What’s the impact of data heterogeneity on federated fine-tuning of encoder-based VLMs?
Building upon our analysis of FedAvg under IID settings, we now investigate how data heterogeneity
affects different VLM tasks by establishing both IID and non-IID distributions across different tasks.
As shown in Tab. [4] for text-centric tasks (such as visual question answering and caption generation),
there is no significant difference in performance among the various fine-tuning methods under IID and
non-IID conditions. However, vision-dependent tasks (Fed-FGVC) exhibit a significant performance
drop of approximately 20% under non-IID settings compared to IID baselines. Notably, traditional FL
optimizers like FedProx and FedYogi fail to address this performance degradation. This conclusion
is further reinforced by experiments on non-IID datasets generated via Dirichlet distributions with
varying heterogeneity levels, as demonstrated in figure in the supplement. These findings highlight
the need for new approaches specifically designed to handle the unique challenges of federated
fine-tuning for encoder-based VLMs, particularly for vision-centric tasks under non-IID conditions.

Takeaway 4: Encoder-based VLMs maintain robustness on text-centric federated tasks under
data heterogeneity, but exhibit significant performance drops for vision-centric tasks under non-
IID conditions. Current FL optimization methods show limited effectiveness, calling for novel
solutions tailored for vision-dominant multimodal FL learning.

5.3 How Do Different VLM Architectures Respond to Data Heterogeneity in FL?

Building on our analysis of encoder-based VLMs (Sec.[5.2), we systematically compare encoder-free
architectures under identical FL conditions (IID/non-IID data, multitask scenarios). Unlike encoder-
based models that separate visual and linguistic components with trainable connectors, encoder-free
VLMs operate as unified frameworks without explicit alignment modules (connectors). As shown
in Tab5] encoder-free VLMs exhibit no significant performance variation on text-centric tasks
(Fed-SLAKE and Fed-ScienceCAP) between IID and non-IID conditions, mirroring the behavior of
encoder-based VLMs. This suggests that text-driven tasks inherently benefit from the linguistic priors
of LLMs, regardless of architectural differences. For vision-dependent tasks (Fed-FGVC classification
and Fed-RadGenome detection), both architectures suffer performance degradation under non-I1ID
data. However, the performance drop for the encoder-free model on non-IID data is more pronounced
than that of the encoder-based model on the vision-centric Fed-FGVC and Fed-RadGenome datasets.
This disparity is likely due to the absence of trainable connectors, suggesting that learnable connectors
can mitigate some challenges associated with data heterogeneity. Furthermore, consistent with our
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Table 6: Quantitative comparison on Fed-Nature and Fed-Med datasets. MT-Central refers to
centralized training on the centralized multi-task dataset.

Fed-Nature Fed-Med
Mode Method VQA Caption Generation Visual Grounding Classification | VQA Report Generation Detection
Acct CIDER{ ROUGE_L 1 IoU 1 Acct Acct CIDER{ROUGE_L1  IoUt
| MT-Central | 0.755 0.872/0.358 0.405 0.913 | 0.674 2.101/0.595 0.616
FedAvg 0.756 0.794/0.336 0.357 0911 0.698 2.132/0.599 0.588
Encoder-based FedProx 0.711 0.807/0.350 0.352 0.893 0.667 1.929/0.574 0.615
FedAdam | 0.742 0.810/0.344 0.386 0.901 0.683 2.054/0.589 0.567
FedAvgM 0.735 0.788/0.336 0.393 0.912 0.664 1.921/0.576 0.592
FedYogi 0.744 0.784/0.341 0.395 0.900 0.682 1.986/0.583 0.588
| MT-Central | 0.752 0.912/0.361 0.465 0.874 | 0.610 1.922/0.575 0.581
FedAvg 0.781 0.930/0.363 0.449 0.888 0.607 1.887/0.566 0.578
Encoder-free FedProx 0.610 0.938/0.376 0.404 0.786 0.584 1.515/0.538 0.532
FedAdam | 0.739 1.090/0.402 0.460 0.885 0.651 1.806/0.564 0.579
FedAvgM 0.761 1.010/0.390 0.426 0.886 0.634 1.790/0.555 0.604
FedYogi 0.742 1.072/0.398 0.456 0.893 0.654 1.819/0.564 0.577

earlier findings in Sec.[5.2] traditional FL optimizers (e.g., FedProx, Fed Yogi) demonstrate limited
efficacy in mitigating performance degradation for both architectures under non-IID conditions. This
emphasizes the need for architecture-aware FL optimization strategies specifically tailored to address
heterogeneity challenges in vision-centric VLM tasks.

Takeaway 5: Both encoder-based and encoder-free VLMs exhibit robust performance on text-
centric tasks under non-IID conditions, while vision-centric tasks show pronounced sensitivity to
non-IID, with encoder-free VLMs exhibiting larger performance drops. Current FL optimization
methods show limited effectiveness in both encoder-free and encoder-based VLMs, calling for
novel solutions addressing vision-centric heterogeneity challenges.

5.4 How Do Various FL VLM Architectures Perform in Real-world FL Multi-task Scenarios?

Here, we investigate various VLM architectures and FL algorithms on the two multi-task FL datasets
(Fed-Nature and Fed-Med). Our evaluation on real-world non-IID multitask FL. benchmarks reveals
a striking divergence from single-task FL observations: while single-task FL struggles with vision-
centric performance degradation under non-1ID data, federated multitask training achieves near-ceiling
performance comparable to centralized training across both text- and vision-centric tasks, regardless
of VLM architectures, see TabJe] Additionally, while there is no clear winner among the existing
FL algorithms on multi-task learning, the naive FedAvg provides more stable performance across
various tasks compared to other FL-optimized methods. These findings underscore the viability of FL
multitask learning as a privacy-preserving alternative to centralized training in real-world multi-task
vision-language systems, particularly given the growing prevalence of multitask VLM deployments.

Takeaway 6: Both encoder-based and encoder-free VLMs achieve near-ceiling centralized
performance in real-world federated multitask learning, demonstrating their viability as privacy-
preserving alternatives in multitask VLM deployments.

6 Conclusion

We present FedVLMBench, the first comprehensive benchmark for federated VLM fine-tuning,
addressing critical gaps in architectural diversity (encoder-based vs. encoder-free VLMs), task
coverage, and multi-task FL scenarios. Through systematic evaluation across 6 datasets, 5 FL
algorithms, and 4 fine-tuning strategies, we demonstrate that 2-layer MLP connectors with concurrent
connector-LLLM tuning optimize encoder-based VLM performance, identify task-specific tuning
strategies (LLM tuning for text-centric vs. connector-tuning for vision-centric tasks), and reveal
that multi-task FL achieves near-centralized accuracy despite non-IID data. Notably, our findings
reveal that conventional FL optimization methods for vision-centric tasks (e.g., detection) exhibit
higher sensitivity to data heterogeneity than text-centric tasks in federated VLM tuning, demanding
novel solutions addressing vision-centric heterogeneity challenges. We hope this work provides
foundational support for advancing federated VL systems in real-world applications where data
decentralization and task diversity coexist.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Abstract and Introduction (Section[T)
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We place the relevant discussion in the supplementary material.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This work does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details of the experimental setup are provided in Section [5.1] Code and
datasets are in the link provided in the abstract.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code and datasets are in the link provided in the abstract.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Details of the experimental setup are provided in Section[5.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Error bars are not reported due to the high number of experiments and high
computational cost.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Details of the experimental setup are provided in Section[5.1]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: There are no human subjects or participants involved in this work.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The datasets we use are all publicly available and do not involve adverse social
impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: The datasets used in this article are all publicly available and do not involve
this risk.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We provide citations for the data used in our work.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Code and datasets are in the link provided in the abstract.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this work does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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