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Abstract

Vision-Language Models (VLMs) have demonstrated remarkable capabilities in1

cross-modal understanding and generation by integrating visual and textual in-2

formation. While instruction tuning and parameter-efficient fine-tuning methods3

have substantially improved the generalization of VLMs, most existing approaches4

rely on centralized training, posing challenges for deployment in domains with5

strict privacy requirements like healthcare. Recent efforts have introduced Feder-6

ated Learning (FL) into VLM fine-tuning to address these privacy concerns, yet7

comprehensive benchmarks for evaluating federated fine-tuning strategies, model8

architectures, and task generalization remain lacking. In this work, we present9

FedVLMBench, the first systematic benchmark for federated fine-tuning of VLMs.10

FedVLMBench integrates two mainstream VLM architectures (encoder-based11

and encoder-free), four fine-tuning strategies, five FL algorithms, six multimodal12

datasets spanning four cross-domain single-task scenarios and two cross-domain13

multitask settings, covering four distinct downstream task categories. Through14

extensive experiments, we uncover key insights into the interplay between VLM15

architectures, fine-tuning strategies, data heterogeneity, and multi-task federated op-16

timization. Notably, we find that a 2-layer multilayer perceptron (MLP) connector17

with concurrent connector and LLM tuning emerges as the optimal configura-18

tion for encoder-based VLMs in FL. Furthermore, current FL methods exhibit19

significantly higher sensitivity to data heterogeneity in vision-centric tasks than20

text-centric ones, across both encoder-free and encoder-based VLM architectures.21

Our benchmark provides essential tools, datasets, and empirical guidance for the re-22

search community, offering a standardized platform to advance privacy-preserving,23

federated training of multimodal foundation models. Our dataset and code are24

publicly available.25

1 Introduction26

Recently, Vision-Language Models (VLMs) [1, 20, 31] have demonstrated groundbreaking advance-27

ments in cross-modal understanding and generation tasks by integrating multimodal information28

such as vision and language. Instruction tuning methods, such as LLaMA-Adapter V2 [5], and29

parameter-efficient tuning techniques, such as LoRA [10], can significantly enhance the zero-shot30

generalization capabilities of VLMs. This characteristic positions VLMs as a potential foundational31

architecture for addressing complex open-domain tasks. However, existing VLM-based instruction32

tuning methods [5, 10, 20] typically adopt a centralized learning paradigm, which fails to meet the33

privacy protection requirements necessary for distributed training, particularly in sensitive fields such34

as healthcare. While recent research [34, 40] has introduced FL into the instruction fine-tuning of35

VLMs to effectively address data privacy concerns, significant limitations remain.36

First, existing VLMs can be categorized into two popular technical routes, encoder-based VLMs37

and encoder-free VLMs, depending on the inclusion of visual encoders [30, 32]. Current methods38
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Figure 1: Overview of our proposed FedVLMBench, which integrates two types of mainstream VLM
architectures, four fine-tuning strategies, five FL algorithms, and six cross-domain task datasets. This
framework facilitates comprehensive evaluation and comparison of multitask learning approaches in
FL contexts.

primarily focus on adapting encoder-based VLMs through techniques such as LoRA or global fine-39

tuning, lacking a systematic comparison framework and benchmark for different model architectures40

and fine-tuning strategies. Second, existing FL multimodal benchmark research focuses narrowly on41

two basic task types—Visual Question Answering (VQA) and classification—while ignoring more42

complex but critically important multimodal tasks such as report generation and visual localization43

(Tab.1). Third, no existing FL datasets support federated multi-modal multi-task learning scenarios,44

despite their practical significance in real-world applications where different clients may need to45

handle distinct multimodal tasks (e.g., one hospital specializes in classification while another focuses46

on report generation). To address these research gaps, this paper shifts from technical improvements47

in existing federated instruction tuning methods to exploring three core foundational questions:48

Q1: How do choices in connector design and fine-tuning strategies impact the FL performance of49

encoder-based VLMs across diverse single-learning FL tasks?50

Q2: How do different FL algorithms, using both encoder-based and encoder-free VLMs as baseline51

architectures, perform under varying data heterogeneity conditions in single-task federated fine-52

tuning processes?53

Q3: To what extent can existing FL algorithms support multi-modal multi-task coordination when54

deploying heterogeneous VLMs across clients with divergent task requirements?55

To systematically address these questions, we developed an innovative FL fine-tuning of VLMs56

benchmark FedVLMBench that integrates 2 types of mainstream VLM architectures (encoder-based57

and encoder-free VLMs), 4 fine-tuning strategies, 5 FL algorithms, 4 types of downstream tasks,58

and 6 cross-domain task datasets. As shown in Tab.1, our benchmark differs from existing works59

by encompassing a broader range of downstream tasks, diverse VLM architectures, and unique60

multi-task collaborative fine-tuning datasets. Through extensive experimental analysis, we present61

the following key findings:62
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Table 1: Comparisons of FedVLMBench with other FL benchmarks.#Collab. Datasets refer to the
number of multi-task collaborative fine-tuning datasets.

Benchmark Language Vision # Arch. Types # Task Types # Datasets # Collab. Datasets
FS-LLM [14] ✓ ✗ 1 2 3 ✗
FedLLM-Bench [36] ✓ ✗ 1 2 4 ✗
OpenFedLLM [37] ✓ ✗ 1 2 8 ✗
FedMLLM [34] ✓ ✓ 1 2 5 ✗
FedVLMBench (Ours) ✓ ✓ 2 4 6 2

1) For encoder-based VLM in FL, a 2-layer MLP connector stands out as the most effective connector63

when compared to other linear or more complex MLP configurations; concurrent fine-tuning both64

the connector and the LLM yields superior task-agnostic performance compared to the sequential65

approach of fine-tuning the connector first and then the LLM, while maintaining computational66

efficiency.67

2) For encoder-based VLMs in FL, text-centric tasks (such as VQA and caption generation) benefit68

dominantly from LLM fine-tuning, while connector fine-tuning should be prioritized for vision-69

centric tasks like classification and detection.70

3) Current FL optimization methods are ineffective for both encoder-free and encoder-based VLMs71

when dealing with non-IID data partitions in single-task FL learning, calling for novel solutions72

addressing vision-centric heterogeneity challenges.73

4) While single-task FL struggles with vision-centric performance degradation under non-IID data,74

federated multitask training achieves near-ceiling performance comparable to centralized training75

across both text- and vision-centric tasks, regardless of VLM architectures.76

The main contributions of this paper can be summarized as follows:77

1. We propose FedVLMBench, the first systematic benchmark for federated fine-tuning of VLMs. It78

integrates two mainstream VLM architectures (encoder-based and encoder-free), four fine-tuning79

strategies, five diverse FL algorithms, and six cross-domain datasets spanning task categories from80

text-centric (VQA/captioning) to vision-intensive (classification/detection), while comprehensively81

supporting both single-task and multi-task FL scenarios.82

2. We bridge critical gaps in FL benchmarks by introducing (i) four cross-domain single-task datasets83

with configurable IID, simulated non-IID, and real-world non-IID data distributions, and (ii) two84

novel multi-task vision-language datasets reflecting real-world non-IID scenarios where clients85

handle distinct yet interconnected tasks.86

3. Through comprehensive evaluation on FedVLMBench, we establish actionable guidelines for87

federated fine-tuning of VLMs and reveal open challenges for future research in privacy-preserving88

FL multimodal systems.89

2 Related Work90

Vision-Language Models (VLMs) [1, 31] have rapidly advanced by significantly enhancing per-91

ceptual and reasoning capabilities through the integration of multimodal information, including text,92

images, and video. Currently, VLMs can be categorized into two primary types: encoder-based93

models and encoder-free models. The former encompasses models such as LLAVA [20], which utilize94

pretrained encoders (e.g., CLIP [25]) to extract multimodal features and integrate them with LLMs for95

executing complex tasks. In contrast, encoder-free models [17, 32] directly tokenize multimodal data,96

such as images, enabling adaptive processing of diverse inputs and enhancing the generalizability of97

VLMs.98

Federated Learning (FL) [6, 7, 8, 23, 38, 41] is a privacy-preserving distributed training paradigm99

that facilitates collaborative modeling through client-localized data processing. The traditional100

FedAvg [23] method relies on client data volume for parameter-weighted fusion but often suffers from101

performance degradation in non-IID scenarios. To address this, various optimization schemes have102

been proposed, such as FedProx [16], FedAdagrad [27], FedAdam, and FedYogi [28], PerAvg [4],103

and FedTGP [39]. More recently, researchers have begun exploring FL in the context of multimodal104

learning, such as FedLPS [11], FedMBridge [2], and Pilot [33]. For example, Pilot [33] tackles the105
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Table 2: Statistics of 6 federated multimodal fine-tuning datasets in FedVLMBench.

Dataset Task Type Data Source Data Type #Max Clients #Instances Evaluate metric

Fed-FGVC CLS FGVC [22] Image 30 9,967 Acc
Fed-ScienceCap Caption Generation ScienceQA [21] Image+Text 27 5,157 CIDER/ROUGE_L
Fed-SLAKE VQA SLAKE [19] Image+Text 3 8,061 Acc
Fed-RadGenome Detection RadGenome-Chest CT [42] Image+Text 3 8,744 IoU

Fed-Nature

VQA COCO-QA [29] Image+Text

4

6,000 Acc
Visual Grounding RefCOCO [13] Image+Text 6,000 IoU
Caption Generation RefCOCO Image+Text 6,000 CIDER/ROUGE_L
CLS COCO [18] Image 6,000 Acc

Fed-Med
VQA SLAKE & VQA-RAD [15] Image+Text 3,846 Acc
Detection RadGenome-Chest CT Image+Text 3 8,744 IoU
Report Generation MIMIC-CXR [12] Image+Text 8,000 CIDER/ROUGE_L

reduction in VLM generalization by using dynamic adapter designs and a globally shared semantic106

space. FedMLLM [35] introduces a benchmark for evaluating federated fine-tuning performance of107

MLLMs across heterogeneous scenarios. However, these approaches do not systematically explore108

critical issues such as vision language model architecture, the interplay of different modules, and the109

intricacies of multi-task collaborative training within the FL context.110

3 Federated Vision-Language Benchmark Datasets111

Current federated benchmarks [35] exhibit two fundamental limitations in task coverage. First,112

while claiming multimodal capabilities, existing works predominantly focus on only two basic task113

types—VQA and classification—while ignoring more complex but critically important multimodal114

tasks such as report generation and visual localization. Second, and more importantly, there exists115

a complete absence of datasets supporting federated multi-modal multi-task learning scenarios,116

despite their practical significance in real-world applications where different clients may need to117

handle distinct multimodal tasks. To bridge the gaps, we develop six novel federated datasets118

through two synergistic efforts On the single-task front, we construct four specialized benchmarks119

(Fed-FGVC, Fed-SLAKE, Fed-ScienceCap, and Fed-RadGenome) that significantly expand beyond120

conventional VQA and classification to include caption generation and visual localization tasks, with121

careful consideration of both IID and non-IID data distributions. More innovatively, we pioneer two122

multi-task federated datasets (Fed-Nature and Fed-Med) that for the first time enable collaborative123

instruction tuning across interconnected multi-task and multimodal objectives, filling a crucial void124

in current FL research infrastructure.125

Fed-FGVC: A Classification Vision-Language FL Dataset. FGVC-Aircraft [22] is a dataset126

designed for fine-grained visual classification of aircraft. Based on the key attribute "manufacturer"(30127

categories), we distribute the data among up to 30 clients, ensuring that every three categories are128

evenly distributed or merged, resulting in IID and non-IID partitions. Additionally, four heterogeneous129

partitions are generated using varying Dirichlet coefficients, resulting in a Fed-FGVC dataset with130

six partitions to benchmark multimodal language models on fine-grained image understanding.131

Fed-ScienceCap: A Caption Generation Vision-Language FL Dataset. ScienceQA [21] is a132

comprehensive dataset encompassing various question types from real science exams across different133

disciplines. We screened image-description pairs and excluded categories with fewer than 100134

samples by "category". The remaining 27 categories were evenly distributed or merged to a maximum135

of 27 clients to create IID and non-IID partitions. The resulting Fed-ScienceCap dataset provides two136

partitioning schemes to evaluate models on image semantic understanding in natural sciences.137

Fed-SLAKE: A Visual Question Answering Vision-Language FL Dataset. SLAKE [19] is a138

dataset for medical vision problems, covering various modalities, organs, and both closed and open139

questions. We first excluded question types with fewer than 20 samples and then used uniform and140

complete partitioning by “modality” to create IID and non-IID partitions among 3 clients.141

Fed-RadGenome: A Visual Detection Vision-Language FL Dataset. RadGenome-Chest CT [42]142

is a multimodal dataset containing segmentation masks and region-specific reports for 3D chest CT143

scans. We extracted two 2D cross-sectional images from each 3D volume, along with masks for three144

organs (heart, lung, and abdomen) and their corresponding reports. Using uniform and complete145
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category division methods, we distributed the data among 3 clients, resulting in the Fed-RadGenome146

dataset, which includes over 8,000 samples and both IID and non-IID partitioning methods.147

Fed-Nature: A Natural Multitask Vision-Language FL Dataset. Fed-Nature integrates three148

public vision-language datasets — COCO [18] (classification), RefCOCO [13] (visual grounding149

and captioning generation), and COCO-QA [29] (VQA) — by linking their cross-modal annotations150

through shared image IDs. We map each specific task to a dedicated client, creating four clients that151

jointly support VQA, classification, visual grounding, and caption generation tasks.152

Fed-Med: A Medical Multitask Vision-Language FL Dataset. Fed-Med unifies chest-related153

medical question answering, detection, report generation, and various other data sourced from154

the SLAKE [19] (VQA), MIMIC-CXR [12] (report generation), VQA-RAD (VQA) [15], and155

RadGenome-Chest CT [42] (detection) datasets. Similar to Fed-Nature, we map each specific task to156

a client, creating three clients that jointly support VQA, report generation, and detection.157

More details about the datasets and their partitions are provided in the supplementary file.158

4 FedVLMBench Framework159

To make our FedVLMBench framework compatible with standard FL protocols, it follows the same160

training process as conventional FL (e.g., FedAvg [23]), which involves a central server and K clients.161

Each client holds a private multimodal dataset Dk = {(I(i), T (i), Res(i)) | i = 1, 2, . . . , Nk} that162

includes images I , text T , and corresponding responses Res. The underlying optimization goal of163

our FedVLMBench can be formalized as follows:164

arg min
ws∈Rd

1

K

K∑
k=1

L(k)
VLM(wk), (1)

where L(k)
VLM(wk) denotes the local loss function of client k, Nk represents the number of samples in165

client k’s private dataset, wk represents the entire model parameters of client k, and ws denotes the166

trainable parameters.167

Our FedVLMBench framework, as illustrated in Fig. 1, involves two mainstream VLM architectures:168

encoder-based and encoder-free. The former utilizes a connector C(·; θc) to map features extracted169

from the image encoder E into tokens, while the encoder-free approach directly employs the image170

tokenizer Timg to generate tokens. Both models use the text tokenizer Ttextto encode textual informa-171

tion. For the encoder-based VLM, we employ four fine-tuning strategies that explore different orders172

and combinations of fine-tuning the connectors and LLMs. Specifically, the first strategy focuses on173

fine-tuning only the connector. The second strategy involves fine-tuning only the LLM using LoRA174

[10]. The third strategy entails simultaneously fine-tuning both the connector and the LLM with175

LoRA. Finally, the fourth strategy consists of fine-tuning the connector first, followed by the LLM176

using LoRA. For the encoder-free VLM, we only utilize LoRA to fine-tune the LLM.177

In each FL communication round, the server first broadcasts the trainable parameters to each client.178

Then, clients conduct local fine-tuning and share the updated weights with the server for aggregation.179

The server aggregates these updates to update the global model and then re-broadcasts the trainable180

parameters to each client for the next round of fine-tuning. We will elaborate on this workflow in the181

following.182

Local Fine-Tuning Procedure. For each round of local fine-tuning, we first update the trainable183

parameters with the received parameters, which may be partial due to varying training strategies.184

Then we perform stochastic gradient descent steps to update the trainable parameters. The update185

process is shown below:186

ws
k ← ws

k − ηg∇wk
L(k)

VLM(wk), (2)

where ws
k represents the trainable parameters of client k. For the encoder-based VLM, its composition187

varies according to the different fine-tuning strategies:188
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ws
k =


θc, fine-tune only the connector,
θLLM, fine-tune only the LLM using LoRA,
{θc, θLLM}, fine-tune both the connector and LLM with LoRA simultaneously,
{θc, θLLM}, fine-tune the connector and LLM with LoRA in order,

(3)

where θc and θLLM represent the trainable parameters of the connector and LoRA in LLM, respec-189

tively. For the encoder-free VLM, we utilize LoRA to only fine-tune the parameters of the LLM, thus190

ws
k = θLLM .191

Global Aggregation. Similar to common FL algorithms, the server performs weighted averaging of192

the trainable parameters as:193

w̄s =

K∑
k=1

αkw
s
k, (4)

where αk is the aggregation weight for client k. In FedAvg [23], this weight is typically determined194

by the number of samples at the client, i.e., αk = Nk∑K
k=1 Nk

.195

5 Experiments196

We systematically investigate federated fine-tuning VLM learning through three progressive dimen-197

sions. First, we explore how to efficiently fine-tune encoder-based VLMs within FL environments. We198

assess the impact of different connector layers (linear, 2-layer MLP, and 6-layer MLP), alongside var-199

ious fine-tuning strategies under varying data distributions (IID/non-IID) to determine their influence200

on model performance. Next, we extend this analysis to compare encoder-based and encoder-free201

VLMs, revealing architectural disparities in handling data heterogeneity and task-specific sensitivities202

in single-task FL. Finally, leveraging these single-task FL findings, we evaluate federated multitask203

learning under both encoder-free and encoder-based VLM.204

5.1 Experimental Setup205

Implement Details.206

Table 3: Performance comparison of connector layer types
(linear layer, 2-layer MLP (Mlp2x), and 6-layer MLP
(Mlp6x)) on FL fine-tuning on encoder-based VLM under-
ing IID data portions of Fed-SLAKE and Fed-ScienceCap
datasets. F-C denotes the connector fine-tuning model, F-L
denotes the LLM tuning model. LC denotes joint one-stage
connector-LLM tuning and 2stage denotes the sequential
fine-tuning of the connector and LLM. The best result is
indicated in bold, while the second-best result is shown with
underline. This performance notation scheme is consistent
throughout the paper unless explicitly stated otherwise.

Mode Method Fed-SLAKE Fed-ScienceCap
Linear Mlp2x Mlp6x Linear Mlp2x Mlp6x

F-C Central 0.799 0.788 0.734 7.239/0.879 7.361/0.889 7.274/0.881
FedAvg 0.726 0.783 0.759 7.069/0.867 7.283/0.882 6.991/0.866

F-L Central 0.837 0.834 0.531 7.534/0.898 7.459/0.896 5.784/0.833
FedAvg 0.787 0.806 0.794 7.498/0.893 7.338/0.889 5.727/0.832

F-CL Central 0.824 0.843 0.739 7.521/0.899 7.550/0.901 7.366/0.892
FedAvg 0.819 0.823 0.802 7.468/0.896 7.521/0.899 7.274/0.886

F-2stage Central 0.815 0.830 0.817 7.424/0.892 7.414/0.894 7.491/0.894
FedAvg 0.808 0.811 0.797 7.216/0.878 7.290/0.883 7.226/0.883

For encoder-based VLM, we adopt207

LLaVA 1.5’s architecture, utilizing a208

pre-trained CLIP visual encoder (ViT-209

B/32 [3, 26]) for visual feature ex-210

traction and LLAMA3.2-3B [24] as211

the language model. We investigate212

three connector layer configurations213

between visual and language modules:214

linear layer, 2-layer MLP, and 6-layer215

MLP. For encoder-free VLMs, we216

initialize Show-O [32] with its origi-217

nal pre-trained parameters for instruc-218

tion fine-tuning. Across both architec-219

tures, we employ LoRA with rank 8220

and scaling factor α=32 for parameter-221

efficient tuning of LLM components.222

Additional implementation details are223

provided in the supplementary mate-224

rial.225

Baseline FL Algorithms. We evaluate five representative FL approaches spanning classical and226

adaptive heterogeneity optimization paradigms: FedAvg [23], FedProx [16], FedAvgM [9], FedYogi227

[28] and FedAdam [28]. To establish performance ceilings, we include a Central baseline trained on228

aggregated client data. More implementation details are provided in the supplementary material.229
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5.2 How to Efficiently Fine-tune Encoder-based VLM in FL?230

Our initial exploration focuses on assessing the impact of various popularly utilized connection layers231

(linear, 2-layer MLP, and 6-layer MLP) along with different fine-tuning strategies on the performance232

of encoder-based VLM in FL.233

Which connector type—linear, 2-layer MLP, or 6-layer MLP—is most effective for FL fine-234

tuning of encoder-based VLMs? As shown in Tab. 3, both the simple linear layer and the 2-layer235

MLP demonstrate superior performance across a range of fine-tuning strategies and tasks. In contrast,236

the more complex 6-layer MLP connector results in a significant reduction in performance in237

both the FL and Central settings, despite an increase in model parameters. This suggests that the238

added complexity in the connector does not necessarily translate to better performance in FL. The239

performance of linear layer in FL, while appearing effective and simple, is derived from optimal240

hyperparameter tuning, including the selection of the most favorable random seeds. In practice,241

linear layer is highly susceptible to parameter initialization (i.e., random seeds) in FL, resulting242

in significant fluctuations in training outcomes (see figure in the supplement). This sensitivity is243

particularly pronounced when each client has limited data—a common scenario in FL applications244

(see supplementary file for results). Based on these findings, we conclude that:245

Takeaway 1: Compared to a simple linear layer and a complex 6-layer MLP, a 2-layer MLP
emerges as the most effective connector regarding performance, computational efficiency, and
training stability for fine-tuning VLMs in FL.

246

Based on previous experimental findings, we employ a 2-layer MLP as the connection layer for all247

subsequent experiments in this study.248

Table 4: Quantitative comparison of four fine-tuning strate-
gies on multi-type task datasets with IID and non-IID distri-
butions.

Mode Method Fed-SLAKE Fed-ScienceCap Fed-FGVC
IID Non-IID IID Non-IID IID Non-IID

F-C

FedAvg 0.783 0.775 7.285/0.882 7.249/0.881 0.724 0.585
FedProx 0.734 0.750 7.293/0.885 7.250/0.881 0.726 0.586

FedAdam 0.741 0.735 7.127/0.876 7.137/0.876 0.694 0.522
FedAvgM 0.754 0.747 7.252/0.880 7.238/0.881 0.696 0.510
FedYogi 0.745 0.736 7.125/0.877 7.104/0.874 0.695 0.511

F-L

FedAvg 0.806 0.802 7.355/0.890 7.342/0.889 0.647 0.529
FedProx 0.800 0.780 7.331/0.889 7.311/0.887 0.637 0.488

FedAdam 0.783 0.771 7.194/0.885 7.125/0.881 0.627 0.460
FedAvgM 0.789 0.786 7.287/0.890 7.305/0.890 0.602 0.469
FedYogi 0.782 0.769 7.153/0.884 7.123/0.881 0.623 0.467

F-CL

FedAvg 0.823 0.827 7.501/0.898 7.476/0.897 0.721 0.603
FedProx 0.816 0.796 7.500/0.898 7.440/0.897 0.718 0.548

FedAdam 0.777 0.774 7.282/0.891 7.319/0.891 0.671 0.528
FedAvgM 0.784 0.768 7.359/0.893 7.351/0.892 0.677 0.514
FedYogi 0.783 0.774 7.277/0.890 7.287/0.890 0.675 0.511

F-2stage

FedAvg 0.811 0.814 7.334/0.884 7.281/0.883 0.730 0.614
FedProx 0.773 0.785 7.262/0.883 7.221/0.880 0.715 0.591

FedAdam 0.782 0.777 7.315/0.887 7.315/0.887 0.713 0.539
FedAvgM 0.793 0.794 7.369/0.889 7.380/0.889 0.708 0.565
FedYogi 0.785 0.782 7.310/0.886 7.310/0.886 0.717 0.561

How should we select FL fine-249

tuning strategies for different tasks250

in encoder-based VLMs? In the251

context of federated fine-tuning in252

encoder-based VLMs, a key ques-253

tion arises: Which fine-tuning strat-254

egy is most effective: (1) connector-255

only (C, denoted as F-C), (2) LLM-256

only (L, denoted as F-L), (3) joint257

connector-LLM tuning (CL, denoted258

as denoted as F-CL), or (4) two-stage259

sequential tuning (C→L, denoted as260

F-2stage). We systematically evalu-261

ate these approaches across diverse262

vision-language tasks under FL con-263

straints.264

We begin by examining the impact of265

fine-tuning either the connector or the266

LLM across different tasks in FL set-267

tings. As detailed in Tab. 4, for the text-dominant tasks (e.g. the VQA on Fed-SLAKE and caption268

generation on Fed-ScienceCap datasets), LLM tuning (F-L) significantly outperforms connector-only269

tuning (F-C), and yields results comparable to full-model tuning (F-CL and F-2stage). Conversely, for270

vision-focused tasks (e.g., fine-grained image classification tasks on Fed-FGVC), connector tuning271

(F-C) achieves results comparable to full-model tuning (F-CL and F-2stage) while substantially272

outperforming LLM-only adaptation (F-L). This suggests that text-driven tasks benefit from updating273

linguistic knowledge, whereas vision-centric tasks require refined visual-textual alignment.274

Takeaway 2: In federated fine-tuning of VLMs, prioritizing LLM fine-tuning enhances perfor-
mance in text-centric tasks, such as VQA and caption generation, while fine-tuning the connector
is more effective for visually-driven tasks like image classification.

275

Subsequently, we compare full-model fine-tune strategies (F-CL vs. F-2stage). In traditional VLM276

fine-tuning, it is commonly believed that tuning the connector before the LLM is preferred. However,277
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Table 5: Performance comparison of different VLM architectures on various single-task datasets with
IID and non-IID distributions.

Mode Method Fed-SLAKE Fed-ScienceCap Fed-FGVC Fed-RadGnome
IID Non-IID IID Non-IID IID Non-IID IID Non-IID

Encoder-based

Central 0.843 7.550/0.901 0.764 0.584
FedAvg 0.823 0.827 7.501/0.898 7.476/0.897 0.721 0.603 0.565 0.484
FedProx 0.816 0.796 7.500/0.898 7.440/0.897 0.718 0.548 0.535 0.462

FedAdam 0.777 0.774 7.282/0.891 7.319/0.891 0.671 0.528 0.550 0.529
FedAvgM 0.784 0.768 7.359/0.893 7.351/0.892 0.677 0.514 0.542 0.511
FedYogi 0.783 0.775 7.277/0.890 7.287/0.890 0.675 0.511 0.556 0.536

Encoder-free

Central 0.784 7.462/0.899 0.739 0.580
FedAvg 0.777 0.761 7.470/0.902 7.421/0.899 0.721 0.493 0.604 0.485
FedProx 0.769 0.734 7.456/0.901 7.363/0.897 0.679 0.440 0.565 0.460

FedAdam 0.747 0.732 7.241/0.894 6.850/0.881 0.689 0.471 0.597 0.472
FedAvgM 0.776 0.743 7.398/0.899 7.402/0.899 0.723 0.453 0.596 0.435
FedYogi 0.749 0.737 7.221/0.893 7.267/0.894 0.686 0.467 0.599 0.461

our findings present an intriguing contrast. As illustrated in Table 4, fine-tuning both the connector and278

the LLM simultaneously (strategy F-CL) often results in superior or comparable outcomes compared279

to the sequential two-stage approach (strategy F-2stage), while also reducing computational overhead.280

Takeaway 3: For encoder-based VLMs in FL environments, concurrent fine-tuning of both the
connector and the LLM outperforms sequential training connector first and then LLM in FL,
balancing performance gains with computational efficiency.

281

Based on these experimental findings, we adopt the F-CL as the federated tuning strategy for all282

subsequent experiments in this study.283

What’s the impact of data heterogeneity on federated fine-tuning of encoder-based VLMs?284

Building upon our analysis of FedAvg under IID settings, we now investigate how data heterogeneity285

affects different VLM tasks by establishing both IID and non-IID distributions across different tasks.286

As shown in Tab. 4, for text-centric tasks (such as visual question answering and caption generation),287

there is no significant difference in performance among the various fine-tuning methods under IID and288

non-IID conditions. However, vision-dependent tasks (Fed-FGVC) exhibit a significant performance289

drop of approximately 20% under non-IID settings compared to IID baselines. Notably, traditional FL290

optimizers like FedProx and FedYogi fail to address this performance degradation. This conclusion291

is further reinforced by experiments on non-IID datasets generated via Dirichlet distributions with292

varying heterogeneity levels, as demonstrated in figure in the supplement. These findings highlight293

the need for new approaches specifically designed to handle the unique challenges of federated294

fine-tuning for encoder-based VLMs, particularly for vision-centric tasks under non-IID conditions.295

Takeaway 4: Encoder-based VLMs maintain robustness on text-centric federated tasks under
data heterogeneity, but exhibit significant performance drops for vision-centric tasks under non-
IID conditions. Current FL optimization methods show limited effectiveness, calling for novel
solutions tailored for vision-dominant multimodal FL learning.

296

5.3 How Do Different VLM Architectures Respond to Data Heterogeneity in FL?297

Building on our analysis of encoder-based VLMs (Sec. 5.2), we systematically compare encoder-free298

architectures under identical FL conditions (IID/non-IID data, multitask scenarios). Unlike encoder-299

based models that separate visual and linguistic components with trainable connectors, encoder-free300

VLMs operate as unified frameworks without explicit alignment modules (connectors). As shown301

in Tab.5, encoder-free VLMs exhibit no significant performance variation on text-centric tasks302

(Fed-SLAKE and Fed-ScienceCAP) between IID and non-IID conditions, mirroring the behavior of303

encoder-based VLMs. This suggests that text-driven tasks inherently benefit from the linguistic priors304

of LLMs, regardless of architectural differences. For vision-dependent tasks (Fed-FGVC classification305

and Fed-RadGenome detection), both architectures suffer performance degradation under non-IID306

data. However, the performance drop for the encoder-free model on non-IID data is more pronounced307

than that of the encoder-based model on the vision-centric Fed-FGVC and Fed-RadGenome datasets.308

This disparity is likely due to the absence of trainable connectors, suggesting that learnable connectors309

can mitigate some challenges associated with data heterogeneity. Furthermore, consistent with our310
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Table 6: Quantitative comparison on Fed-Nature and Fed-Med datasets. MT-Central refers to
centralized training on the centralized multi-task dataset.

Mode Method
Fed-Nature Fed-Med

VQA Caption Generation Visual Grounding Classification VQA Report Generation Detection
Acc↑ CIDER↑ ROUGE_L ↑ IoU ↑ Acc↑ Acc↑ CIDER↑ ROUGE_L ↑ IoU↑

Encoder-based

MT-Central 0.755 0.872/0.358 0.405 0.913 0.674 2.101/0.595 0.616

FedAvg 0.756 0.794/0.336 0.357 0.911 0.698 2.132/0.599 0.588
FedProx 0.711 0.807/0.350 0.352 0.893 0.667 1.929/0.574 0.615

FedAdam 0.742 0.810/0.344 0.386 0.901 0.683 2.054/0.589 0.567
FedAvgM 0.735 0.788/0.336 0.393 0.912 0.664 1.921/0.576 0.592
FedYogi 0.744 0.784/0.341 0.395 0.900 0.682 1.986/0.583 0.588

Encoder-free

MT-Central 0.752 0.912/0.361 0.465 0.874 0.610 1.922/0.575 0.581

FedAvg 0.781 0.930/0.363 0.449 0.888 0.607 1.887/0.566 0.578
FedProx 0.610 0.938/0.376 0.404 0.786 0.584 1.515/0.538 0.532

FedAdam 0.739 1.090/0.402 0.460 0.885 0.651 1.806/0.564 0.579
FedAvgM 0.761 1.010/0.390 0.426 0.886 0.634 1.790/0.555 0.604
FedYogi 0.742 1.072/0.398 0.456 0.893 0.654 1.819/0.564 0.577

earlier findings in Sec. 5.2, traditional FL optimizers (e.g., FedProx, FedYogi) demonstrate limited311

efficacy in mitigating performance degradation for both architectures under non-IID conditions. This312

emphasizes the need for architecture-aware FL optimization strategies specifically tailored to address313

heterogeneity challenges in vision-centric VLM tasks.314

Takeaway 5: Both encoder-based and encoder-free VLMs exhibit robust performance on text-
centric tasks under non-IID conditions, while vision-centric tasks show pronounced sensitivity to
non-IID, with encoder-free VLMs exhibiting larger performance drops. Current FL optimization
methods show limited effectiveness in both encoder-free and encoder-based VLMs, calling for
novel solutions addressing vision-centric heterogeneity challenges.

315

5.4 How Do Various FL VLM Architectures Perform in Real-world FL Multi-task Scenarios?316

Here, we investigate various VLM architectures and FL algorithms on the two multi-task FL datasets317

(Fed-Nature and Fed-Med). Our evaluation on real-world non-IID multitask FL benchmarks reveals318

a striking divergence from single-task FL observations: while single-task FL struggles with vision-319

centric performance degradation under non-IID data, federated multitask training achieves near-ceiling320

performance comparable to centralized training across both text- and vision-centric tasks, regardless321

of VLM architectures, see Tab.6. Additionally, while there is no clear winner among the existing322

FL algorithms on multi-task learning, the naive FedAvg provides more stable performance across323

various tasks compared to other FL-optimized methods. These findings underscore the viability of FL324

multitask learning as a privacy-preserving alternative to centralized training in real-world multi-task325

vision-language systems, particularly given the growing prevalence of multitask VLM deployments.326

Takeaway 6: Both encoder-based and encoder-free VLMs achieve near-ceiling centralized
performance in real-world federated multitask learning, demonstrating their viability as privacy-
preserving alternatives in multitask VLM deployments.

327

6 Conclusion328

We present FedVLMBench, the first comprehensive benchmark for federated VLM fine-tuning,329

addressing critical gaps in architectural diversity (encoder-based vs. encoder-free VLMs), task330

coverage, and multi-task FL scenarios. Through systematic evaluation across 6 datasets, 5 FL331

algorithms, and 4 fine-tuning strategies, we demonstrate that 2-layer MLP connectors with concurrent332

connector-LLM tuning optimize encoder-based VLM performance, identify task-specific tuning333

strategies (LLM tuning for text-centric vs. connector-tuning for vision-centric tasks), and reveal334

that multi-task FL achieves near-centralized accuracy despite non-IID data. Notably, our findings335

reveal that conventional FL optimization methods for vision-centric tasks (e.g., detection) exhibit336

higher sensitivity to data heterogeneity than text-centric tasks in federated VLM tuning, demanding337

novel solutions addressing vision-centric heterogeneity challenges. We hope this work provides338

foundational support for advancing federated VL systems in real-world applications where data339

decentralization and task diversity coexist.340
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to reproduce that algorithm.543
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the dataset).549

(d) We recognize that reproducibility may be tricky in some cases, in which case550
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tions to faithfully reproduce the main experimental results, as described in supplemental557

material?558
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versions (if applicable).578
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• The method for calculating the error bars should be explained (closed form formula,607

call to a library function, bootstrap, etc.)608

• The assumptions made should be given (e.g., Normally distributed errors).609
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• It should be clear whether the error bar is the standard deviation or the standard error610

of the mean.611

• It is OK to report 1-sigma error bars, but one should state it. The authors should612

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis613

of Normality of errors is not verified.614

• For asymmetric distributions, the authors should be careful not to show in tables or615

figures symmetric error bars that would yield results that are out of range (e.g. negative616

error rates).617

• If error bars are reported in tables or plots, The authors should explain in the text how618

they were calculated and reference the corresponding figures or tables in the text.619

8. Experiments compute resources620

Question: For each experiment, does the paper provide sufficient information on the com-621

puter resources (type of compute workers, memory, time of execution) needed to reproduce622

the experiments?623

Answer: [Yes]624

Justification: Details of the experimental setup are provided in Section 5.1.625

Guidelines:626

• The answer NA means that the paper does not include experiments.627

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,628

or cloud provider, including relevant memory and storage.629

• The paper should provide the amount of compute required for each of the individual630

experimental runs as well as estimate the total compute.631

• The paper should disclose whether the full research project required more compute632

than the experiments reported in the paper (e.g., preliminary or failed experiments that633

didn’t make it into the paper).634

9. Code of ethics635

Question: Does the research conducted in the paper conform, in every respect, with the636

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?637

Answer: [Yes]638

Justification: There are no human subjects or participants involved in this work.639

Guidelines:640

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.641

• If the authors answer No, they should explain the special circumstances that require a642

deviation from the Code of Ethics.643

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-644

eration due to laws or regulations in their jurisdiction).645

10. Broader impacts646

Question: Does the paper discuss both potential positive societal impacts and negative647

societal impacts of the work performed?648

Answer: [No]649

Justification: The datasets we use are all publicly available and do not involve adverse social650

impacts.651

Guidelines:652

• The answer NA means that there is no societal impact of the work performed.653

• If the authors answer NA or No, they should explain why their work has no societal654

impact or why the paper does not address societal impact.655

• Examples of negative societal impacts include potential malicious or unintended uses656

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations657

(e.g., deployment of technologies that could make decisions that unfairly impact specific658

groups), privacy considerations, and security considerations.659
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• The conference expects that many papers will be foundational research and not tied660

to particular applications, let alone deployments. However, if there is a direct path to661

any negative applications, the authors should point it out. For example, it is legitimate662

to point out that an improvement in the quality of generative models could be used to663

generate deepfakes for disinformation. On the other hand, it is not needed to point out664

that a generic algorithm for optimizing neural networks could enable people to train665

models that generate Deepfakes faster.666

• The authors should consider possible harms that could arise when the technology is667

being used as intended and functioning correctly, harms that could arise when the668

technology is being used as intended but gives incorrect results, and harms following669

from (intentional or unintentional) misuse of the technology.670

• If there are negative societal impacts, the authors could also discuss possible mitigation671

strategies (e.g., gated release of models, providing defenses in addition to attacks,672

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from673

feedback over time, improving the efficiency and accessibility of ML).674

11. Safeguards675

Question: Does the paper describe safeguards that have been put in place for responsible676

release of data or models that have a high risk for misuse (e.g., pretrained language models,677

image generators, or scraped datasets)?678

Answer: [No]679

Justification: The datasets used in this article are all publicly available and do not involve680

this risk.681

Guidelines:682

• The answer NA means that the paper poses no such risks.683

• Released models that have a high risk for misuse or dual-use should be released with684

necessary safeguards to allow for controlled use of the model, for example by requiring685

that users adhere to usage guidelines or restrictions to access the model or implementing686

safety filters.687

• Datasets that have been scraped from the Internet could pose safety risks. The authors688

should describe how they avoided releasing unsafe images.689

• We recognize that providing effective safeguards is challenging, and many papers do690

not require this, but we encourage authors to take this into account and make a best691

faith effort.692

12. Licenses for existing assets693

Question: Are the creators or original owners of assets (e.g., code, data, models), used in694

the paper, properly credited and are the license and terms of use explicitly mentioned and695

properly respected?696

Answer: [Yes]697

Justification: We provide citations for the data used in our work.698

Guidelines:699

• The answer NA means that the paper does not use existing assets.700

• The authors should cite the original paper that produced the code package or dataset.701

• The authors should state which version of the asset is used and, if possible, include a702

URL.703

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.704

• For scraped data from a particular source (e.g., website), the copyright and terms of705

service of that source should be provided.706

• If assets are released, the license, copyright information, and terms of use in the707

package should be provided. For popular datasets, paperswithcode.com/datasets708

has curated licenses for some datasets. Their licensing guide can help determine the709

license of a dataset.710

• For existing datasets that are re-packaged, both the original license and the license of711

the derived asset (if it has changed) should be provided.712
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• If this information is not available online, the authors are encouraged to reach out to713

the asset’s creators.714

13. New assets715

Question: Are new assets introduced in the paper well documented and is the documentation716

provided alongside the assets?717

Answer: [Yes]718

Justification: Code and datasets are in the link provided in the abstract.719

Guidelines:720

• The answer NA means that the paper does not release new assets.721

• Researchers should communicate the details of the dataset/code/model as part of their722

submissions via structured templates. This includes details about training, license,723

limitations, etc.724

• The paper should discuss whether and how consent was obtained from people whose725

asset is used.726

• At submission time, remember to anonymize your assets (if applicable). You can either727

create an anonymized URL or include an anonymized zip file.728

14. Crowdsourcing and research with human subjects729

Question: For crowdsourcing experiments and research with human subjects, does the paper730

include the full text of instructions given to participants and screenshots, if applicable, as731

well as details about compensation (if any)?732

Answer: [NA]733

Justification: This work does not involve crowdsourcing nor research with human subjects.734

Guidelines:735

• The answer NA means that the paper does not involve crowdsourcing nor research with736

human subjects.737

• Including this information in the supplemental material is fine, but if the main contribu-738

tion of the paper involves human subjects, then as much detail as possible should be739

included in the main paper.740

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,741

or other labor should be paid at least the minimum wage in the country of the data742

collector.743

15. Institutional review board (IRB) approvals or equivalent for research with human744

subjects745

Question: Does the paper describe potential risks incurred by study participants, whether746

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)747

approvals (or an equivalent approval/review based on the requirements of your country or748

institution) were obtained?749

Answer: [NA]750

Justification: This work does not involve crowdsourcing nor research with human subjects.751

Guidelines:752

• The answer NA means that the paper does not involve crowdsourcing nor research with753

human subjects.754

• Depending on the country in which research is conducted, IRB approval (or equivalent)755

may be required for any human subjects research. If you obtained IRB approval, you756

should clearly state this in the paper.757

• We recognize that the procedures for this may vary significantly between institutions758

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the759

guidelines for their institution.760

• For initial submissions, do not include any information that would break anonymity (if761

applicable), such as the institution conducting the review.762

16. Declaration of LLM usage763
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Question: Does the paper describe the usage of LLMs if it is an important, original, or764

non-standard component of the core methods in this research? Note that if the LLM is used765

only for writing, editing, or formatting purposes and does not impact the core methodology,766

scientific rigorousness, or originality of the research, declaration is not required.767

Answer: [NA]768

Justification: The core method development in this work does not involve LLMs as any769

important, original, or non-standard components.770

Guidelines:771

• The answer NA means that the core method development in this research does not772

involve LLMs as any important, original, or non-standard components.773

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)774

for what should or should not be described.775
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