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ABSTRACT

Large language models (LLMs) are increasingly deployed for tasks requiring com-
plex reasoning, prompting significant interest in improving their reasoning abilities
through post-training. Especially RL based methods using verifiable reward, like
the state-of-the-art GRPO, have shown to tremendously improve reasoning behav-
iors when applied as post-training methods. However, the lack of an explicit reward
or critic model limits GRPO’s ability to assign fine-grained credit across token
sequences. In this work, we present GRPO-λ , a novel extension to GRPO that
enhances credit assignment in RL finetuning of LLMs for complex reasoning tasks.
We approximate learning from λ-return with a reformulation of eligibility traces
using token-level log-probabilities applied after each sequence generation, and
a novel critic-free approximation of the temporal-difference error. We introduce
a few variations for the weighting of the λ-return, and their applications to the
eligibility-trace, where all the variations provide significant gains over GRPO. We
compare GRPO-λ against GRPO by training models from 1.5B to 7B parameters
on 4 different math reasoning datasets. The training plots demonstrate 30-40%
improved performance during RL training on both LLAMA-3.1 and QWEN-2.5
architectures. Finally, we show that with GRPO-λ , the resulting average perfor-
mance on AIME24, Math500, OlympiadMath, MinervaMath, and AMC improves
over GRPO by over 3 points and a 4.5 points improvement on the 7B model.

1 INTRODUCTION

There is now a widespread acceptance of large language models (LLMs), wherein they are consulted
on problems ranging from mundane tasks to ones requiring involved reasoning. For the latter, classical
pre-training has been deemed insufficient due to the lack of explicit reasoning elicitations in the
training data (Rajani et al., 2019). Thus, the focus to improving the reasoning skills of LLMs has
been to expose them to problems requiring logic, such as mathematics and coding tasks, instead
of aiming to produce plausible and coherent text (Hui et al., 2024; Xu et al., 2024; Yang et al.,
2024; Shao et al., 2024). The recipe for scaling the performance on these reasoning tasks rests on
elaborate post-training methods, including techniques like supervised-finetuning (SFT, Luo et al.
2023), reinforcement learning (RL, Schulman et al. 2017) without or with human feedback (RLHF,
Ouyang et al. 2022), hybrids such as direct preference optimization (DPO, Rafailov et al. 2023), or
any of their combinations.

Among these post-training techniques, RL shows promise as it transforms the next-token prediction
problem to a reward maximization problem, allowing the LLM to freely generate new tokens as long
as the resulting sequence produces satisfactory rewards. This is particularly relevant for reasoning
problems such as mathematics and coding tasks, as the LLM needs to learn strategies that produce a
verifiable, ground-truth outcome (e.g., the solution of the math problem). Recently, Deepseek-R1
(Guo et al., 2025) proposed an RL-based post-training method that resulted in the famously known
”Aha! moment”, where the model learned to perform self-reflection strategies. At its core lies group
relative policy optimization (GRPO, Shao et al. 2024), which updates the LLM parameters using
Monte-Carlo estimates of the policy returns to reinforce positive reasoning.

Contrary to the widely used PPO algorithm, GRPO does not require a critic to estimate the expected
return of the policy. Instead, the expected return is approximated by taking the average over multiple
rollouts of the policy. This makes GRPO lightweight, as there is no additional memory footprint for
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the critic. However, what it does not do, contrary to PPO, is to use eligibility traces to update not
only the current token based on the next one, but earlier tokens as well.

Figure 1: GRPO-λ improves R1-Distill-Qwen-
7B’s evaluation performance by over 4 points on
average across math benchmarks including a 10
point improvement on AIME24.

In RL, eligibility traces are a way to combine
Monte-Carlo (MC) estimates and Temporal-
Difference (TD) updates. It allows for rapid
backpropagation of values to earlier states, and
improves learning stability, as it balances be-
tween the high bias resulting from TD updates
and the high variance resulting from MC esti-
mates. This balance is governed by a parameter
λ ∈ [0, 1], where λ = 0 results in a pure TD
update, and λ = 1 only uses the MC estimates.
Importantly, this interpolation between one-step
TD and MC methods is used to update PPO.

In this work, we reformulate these traces such
that they are directly applicable to the policy.
This allows us to combine eligibility traces with
the value estimates from the rollouts produced
by GRPO. We thus keep the advantages of
GRPO, namely the lightweight memory foot-
print, while drastically improving the credit as-
signment through rapid value propagation to-
wards earlier tokens. Moreover, in the setting of LLM post-training, reformulating eligibility traces
for the policy can be seen as a form of token-specific weighting of the policy gradient loss. This
insight leads us to propose different token-specific weighting mechanisms for credit assignment.
Finally, thinking about eligibility traces made us focus on GRPO’s value estimates at a token level.
Since all GRPO’s rollouts are performed from the same start-state (i.e., the prompt with the question
to solve), its value estimates become increasingly inaccurate for later tokens in the sequence. We
bound this error, which may be of independent interest to the reader.

To summarize, the contributions are:

1. With Lemma 1 and Theorem 1 we propose, GRPO-λ , that extends GRPO through credit
assignment with a novel reparameterization for PPO’s eligibility trace, in a critic-free TD
learning for language reasoning.

2. Finetuning different sized models and architectures on 4 different mathematical reason-
ing tasks show that GRPO-λ learns faster and improves 30-40% better than GRPO on
mathematical benchmarks tasks (Figure 4).

3. Benchmark performance of GRPO-λ on 5 benchmarks shows an average increase of 3 points
over GRPO (Table 1). And, for Deepseek-R1-Distill-Qwen-7B GRPO-λ improves over 4
points (Figure 1).

4. Using insights from the proposed bounds to explore alternate trace weight styles, showing
that for RL post-training of LLMs there are viable alternatives to the classic traces (Figure 3,
Appendix D).

2 BACKGROUND

Related work It has been an active field of research to distill deliberate reasoning abilities into
LLMs, as they are often prone to quick judgments (Li et al., 2025). Early approaches attempted
to explicitly instill reasoning into language models via explanations in training data, an expensive
avenue as it requires large amounts of human-annotated data (Rajani et al., 2019; Nye et al., 2022).
Chain-of-Thought (CoT) prompting provides a training-free alternative by simply prompting the
model to think step-by-step (Wei et al., 2022b; Kojima et al., 2022), with potentially self-verification
steps (Li et al., 2023; Wei et al., 2022b) or diversification of reasoning paths (Wang et al., 2023b;
Fu et al., 2023). A logical next step has been to use self-generated CoT as a training signal for
LLMs to iteratively improve their reasoning abilities (Zelikman et al., 2022). This is often done using
RL (Trung et al., 2024). While the reward is usually provided at the end of the sequence (Singh
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et al., 2024), as is the case for our setting, other works have tried to improve the credit assignment of
intermediate steps using tree-search, at the expense of additional computations (Feng et al., 2023;
Zhang et al., 2024). Finally, the provided reward is of crucial importance for the learned reasoning to
be generalizable (Yeo et al., 2025). We refer to a broader overview of related work in Appendix F.

Reinforcement Learning RL aims to solve a sequential decision problem, which can be modeled
as a Markov Decision Problem (MDP) (Puterman, 1994) (S,A,P,R, γ). S is the set of all possible
states the environment can be in. A is the set of all possible actions that are available to the agent.
P : S,A → S encompasses the environment’s (stochastic) transition dynamics, R : S,A → R is
the reward function and γ is the discount factor. The agent can interact with the environment through
a policy π : S,A → [0, 1] which maps a state to a probability distribution over the action-space
conditioned on the state. At each timestep t, the agent receives the current state as input st ∈ S and
takes the action at ∼ π(·|st). The environment state is updated following the transition function
st+1 ∼ P(·|st, at) and gives a feedback to the agent in the form of a reward rt = R(st, at).

We define the episodic return Gt as the summation of the discounted rewards obtained by an agent
along a trajectory following a policy π and starting from timestep t. Gt =

∑T
k=t γ

k−trk, where
T denotes the timestep at which the episode terminates. We further define the value function
Vπ(s) = Eπ[Gt|st = s] which evaluate the expected episodic return of an agent following policy π
and starting at a specific state st. The goal of RL is to find the optimal policy π∗ = argmaxπ{Vπ(s0)}
where s0 follows the initial state distribution of the environment.

In the context of LLM post-training, the MDP definition is peculiar: A represents all possible tokens
that can be generated by the LLM, and the state st consists of a sequence of generated tokens,
st = (st−1, at−1). For mathematical problems, the start-state s0 consists of a mathematical question
(also called prompt), tokenized to m tokens, i.e., s0 = (a0, . . . , am−1). The policy, in this case the
pretrained LLM, selects the next token at based on all previous tokens st. A special end-of-sequence
(EOS) action aEOS indicates the end of an episode. At that point, the generated answer is verified for
correctness, resulting in rT = 1 for correct answers, and rT = 0 otherwise. All intermediate rewards
are 0. This means that G0 = γT rT ∈ [0, 1].

PPO The fact that a pretrained LLM can be used as a good initial policy makes actor-critic methods,
that explicitly represent a policy, such as PPO (Schulman et al., 2017), a particularly good fit for this
setting. PPO is composed of an actor, the policy πθ parametrized by θ, and of a critic Vψ parametrized
by ψ, which is used to estimate the expected return.

The use of Vψ provides a major benefit. With it, there is no need to wait until the episode ends to
estimate Gt. Instead, one can bootstrap Gt using Vψ , e.g., Ĝt = rt + γrt+1 + · · ·+ γn−1rt+n−1 +
γnVψ(st+n). With n = T , this falls back to the episodic return Gt, resulting in potentially high
variance in returns between episodes due to the stochasticity of πθ. With n = 1, we mitigate the
variance issue, but this introduces bias if Vψ is inaccurate. The difference between the 1-step Ĝt and
the predicted value is also called the temporal-difference (TD) error δt = rt + γVψ(st+1)− Vψ(st).
A way to nicely balance this variance-bias trade-off is through generalized advantage estimation
(GAE), which computes a weighted sum over TD errors, AGAE(st) = δt + γλδt+1, with λ ∈ [0, 1]
the weighting coefficient, and can be also seen as a weighted trace over future TD errors.

PPO combines GAE with a clipped surrogate objective function to update its policy, ℓGAE =

min (πratio(st)AGAE(st), clip(πratio(st), 1− ϵ, 1 + ϵ)AGAE(st)), where πratio(st) = πθ(at|st)
πθold (at|st)

is
the ratio between the current policy πθ and the policy at the start of the epoch πθold , and clip-
ping πratio between 1 − ϵ and 1 + ϵ discourages πθ from changing too much from πθold which,
combined with GAE stabilizes learning. To update its critic Vψ, PPO minimizes a mean-
squared error (MSE) loss on the return, which in this case is bootstrapped using GAE, i.e.,
ℓψ = MSE (Vψ(st), sg(Vψ(st) +AGAE(st))), where sg(.) is the stop-gradient operator. Additionally,
specifically for LLM post-training, to avoid reward hacking (Trung et al., 2024; Yeo et al., 2025),
PPO is combined with a KL-divergence regularizer on the initial, pretrained policy (also called the
referent policy) πref := πθ0 , i.e., ℓKL = DKL(πθ||πref). Combined, this results in the following PPO
objective: ℓPPO = ℓψ + ℓGAE − βℓKL, where β is a small constant factor to weight the regularizer
term.
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GRPO All the benefits of PPO’s critic Vψ rely on the fact that Vψ is decently accurate. In practice,
for LLM post-training, this is a non-trivial task. First, the reward is sparse, only providing a binary
signal at the end of each sequence generation. This complicates the task of Vψ, which should be
accurate at every intermediate token. Second, πθ, having been pretrained before starting RL post-
training, is already far better than a random policy. This contrasts with Vψ , who is often initialized to
from a reward model (Huang et al., 2024), instead of predicting the policy’s expected return. This
disparity between πθ and Vψ means Vψ has to ”catch up” to πθ, which can hamper post-training. Next
to the challenges of training Vψ , it is also memory intensive, as Vψ has to be kept in memory with πθ.
GRPO (Shao et al., 2024), a recent extension of PPO, aims to tackle these challenges by removing Vψ
altogether. Instead, for a given prompt (i.e., a given start-state s0), GRPO generates multiple responses,
called a group G =

{
s00:T , . . . , s

g−1
0:T

}
, where g = |G| is a hyper-parameter denoting the size of the

group. The group’s average return is then used to approximate V (s0). Note that, since there is no
critic, GRPO does not use GAE. Instead, the advantage is computed using a normalized advantage
estimation (NAE), i.e.,ANAE(s

i
t) =

Gi
t−µ

i
t

σi
t

with i ∈ [g], where µit, σ
i
t are the mean, standard deviation

of all states
{
s0t , . . . , s

g−1
t

}
in group G. ANAE then replaces AGAE in PPO’s surrogate objective

function, i.e., ℓNAE = min
(
πratio(s

i
t)ANAE(s

i
t), clip(πratio(s

i
t), 1− ϵ, 1 + ϵ)ANAE(s

i
t)
)
. This results

in the following GRPO objective: ℓGRPO = ℓNAE − βℓKL.

3 GRPO-λ FOR RAPID REWARD PROPAGATION

GRPO provides an efficient alternative to the PPO critic, avoiding its additional memory requirements
and approximating the expected return with multiple Monte-Carlo rollouts. The use ofANAE, however,
comes with two downsides. First, since all the sequence generations from the same group were
performed from the same state s0, the baseline µit only estimates the expected return when t = 0, and
is a biased estimate for all t > 0. Estimating the expected return at every t would require to perform
multiple sequence generations for each st, an approach taken by VinePPO (Kazemnejad et al., 2024)
at the cost of a significantly higher compute overhead. Second, ANAE subtracts the baseline µit from
the return Git, which is used in policy gradient methods to reduce the variance of the policy updates.
But this does not provide a parametrized way of balancing variance and bias like GAE does. But,
precisely because GRPO uses biased estimates of V (st), ∀ t > 0, it should aim to use generalized
advantage estimates. This is the central motivation behind our proposed algorithm, GRPO-λ , which
incorporates a critic-free reformulation of GAE.

Theorem 1 The policy gradient estimate ĝ using traces from generalized advantage es-
timation AGAE can be re-parameterized with a critic-free TD-error δt such that ĝ =∑∞
t=0AGAE(st)∇θ log πθ(at|st) =

∑∞
t=0 δt

∑t
l=0(γλ)

l∇θ log πθ(at−l|st−l). Proof in Ap-
pendix A.2.

Intuitively, Theorem 1 provides an elegant reparameterization of the GAE formulation as
weighted cumulative action log-probabilities instead of a sum of TD residuals to enable gra-
dient estimation for the language generation setting. The resulting objective function, ℓπ =
min

(
πGAE

ratio (st)δt, clip(πGAE
ratio (st), 1− ϵ, 1 + ϵ)δt

)
, now incorporates GAE’s λ weighting mechanism

in πGAE
ratio (st):

πGAE
ratio (st) = exp

(
t∑
l=0

(γλ)l log πθ(at−l|st−l)−
t∑
l=0

(γλ)l log πθold(at−l|st−l)

)
. (1)

Additionally, since we do not have a critic Vψ , we approximate δt using the group returns as in GRPO,
i.e., δt = ANAE. Combined with the GAE weighting, this results in GRPO-λ , which significantly
improves the reasoning performance of the resulting post-trained LLM compared to GRPO. GRPO-λ
is also a generalization of GRPO, as it falls back to GRPO with λ = 0. Finally, although the
computational overhead increases linearly with the sequence length, it is negligible compared to the
overall LLM post-training process. In our experiments, we did not notice any significant walltime
difference between GRPO and GRPO-λ .
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3.1 BOUNDING THE NORMALIZED ADVANTAGE ESTIMATION BIAS

To better understand the bias GRPO introduces by using V (s0) estimates for states st, ∀ t > 0, we
analyze the difference between the value in s0 and in st:

Lemma 1 Considering an LLM post-training setting, i.e., a deterministic transition function
where st is defined by a0:t, and a binary reward signal, ∆V (st) ≡ V (s0) − V (st) ≤ 1 −∏t−1
k=0

∑
ak ̸=aEOS πθ(ak|sk), where aEOS corresponds to the action generating the end-of-sequence

token, and thus terminating the episode. Proof in Appendix A.1.

Intuitively, the probability of generating an EOS token aEOS increases with time, thus increasing the
probability of receiving a positive reward. And so, for a large enough t, πθ might have generated
many sequences shorter than t. It is those sequences that introduce a bias in GRPO’s value estimates.
Thus, earlier states have a more accurate estimation of their value.

3.2 ALTERNATIVE WEIGHTING MECHANISMS

The insights provided by Lemma 1 lead us to think more generally about per-token weighting of the
policy gradient. Assuming γ = 1, in our setting, returns and values are the same for each timestep
t. On one hand, the return for later states have less variance, which allows us to be confident about
their gradient updates. On the other hand, early states had more accurate critic estimates, since they
are closer to s0. Using our GAE reparameterization as a starting point, we propose reweighting
alternatives, that put a different emphasis on a token depending on its position in time.

Traces as per-token weighting The discount induced by λ < 1 results in an exponential decay
of weighting importance as we go back in time. Instead of applying it on action log-probabilities,
we propose to directly weight ℓNAE(st) with the

∑t
l=0(γλ)

l trace. This simplifies the problem, as
the trace only needs to be computed once, instead of having to sum all the log-probabilities at each
policy-update. We refer to this variant as GRPO-λ (ϵ-weight). A side-by-side comparison can be
found in Appendix A (algorithm 1 and algorithm 2).

Figure 2: ϵ-trace styles.

Varying the type of decay In the RL literature, multiple variations
of eligibility traces have been investigated (Williams, 1992; Singh &
Sutton, 1996; Seijen & Sutton, 2014; Sutton et al., 2016; van Hasselt
et al., 2021) that dictate how they accumulate over time, and thus
how much weight they provide at each timestep. Similarly, since our
analysis from Lemma 1 indicate two sources of inaccuracies, one
on the early tokens, one on the late tokens, we propose a variation
of the weighting scheme such that early tokens are considered as
important as the late ones:

πGAE
ratio (st) = exp

(
t∑
l=0

tr(t, l) log πθ(at−l|st−l)−
t∑
l=0

tr(t, l) log πθold(at−l|st−l)

)
, (2)

where tr(t, l) = max((γλ)l, (γλ)t−l). The distinction between the classic traces, which we call
recent, and the proposed variation, which we call both, is depicted in Figure 2. We perform extensive
experiments and comparisons on all combinations of the different variations, and show that all provide
significant improvement over GRPO (see Appendix D), proving that per-token weighting can greatly
boost performance for RL finetuning.

4 EXPERIMENTS

Training details We do an extensive comparison of our proposed GRPO-λ against GRPO with
LLMs of diverse sizes (1.5B, 3B and 7B) on mathematic reasoning, similar to related works (Kazem-
nejad et al., 2024; Roux et al., 2025; Yu et al., 2025; Zhang & Zuo, 2025). We focus on multiple
aspects. First, analyze the training efficiency by measuring the increase in average reward on the
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training dataset, while maintaining a low KL-divergence between πθt and πref. Next, we measure
the performance of the final checkpoints of our trained models on multiple challenging mathematic
reasoning benchmarks. Finally, to better understand the properties of GRPO-λ and the impact of
Lemma 1, we perform evaluations on the alternative token weighting mechanisms: recent and both
traces, and trace or weight token updates. We also assess the choice of λ, by performing the exper-
iments on our 1.5B models with both λ = 0.99 and λ = 0.98. We refer to Appendix B for a full
list of hyperparameters, and for the comprehensive information about computational resources to
Appendix E.

Specifically, we use Qwen/Qwen2.5-Math-1.5B-Instruct, Deepseekai/Deepseek-R1-
Distill-Qwen-1.5B, suayptalha/Deepseek-R1-Distill-LLaMA-3B, and
Deepseekai/Deepseek-R1-Distill-Qwen-7B. Our RL finetuning pipeline includes
an SFT step to train LLMs to reason within a specific format. For the RL finetuning datasets,
we use GSM8K Cobbe et al. (2021), Math-12K 1Lightman et al. (2023), MathRL-16K 2, and
ORZ MATH-57K Hu et al. (2025) which include a variety of challenging math problems. To
benchmark, we follow Liu et al. (2025) and evaluate on AIME24 Li et al. (2024), AMC Li et al.
(2024), OlympiadBench He et al. (2024), Math500 Hendrycks et al. (2021), and MinervaMath
Lewkowycz et al. (2022) benchmarks to report the individual and aggregated performance of the
different post-trained LLM checkpoints. For all but the 7B mode, we train across the RL finetuning
datasets for 10000 steps. Due to computational limitations, we limit the training of the 7B model to
3500 steps.

4.1 ANALYZING THE DIFFERENT TOKEN WEIGHTING SCHEMES

In Section 3.2, we propose alternative token weighting schemes to our re-parameterized general
advantage estimation, namely both, recent trace weighting styles and ϵ-weight, ϵ-trace token weighting
styles. We analyze their effect on the two 1.5B parameter models. Moreover, to better understand
the impact of the traces themselves, we incorporate 2 different values for λ (λ ∈ {0.98, 0.99}) in
these experiments. Specifically, for each model training on RL finetuning dataset across the different
hyper-parameters, we average the performance over the last 100 training steps to understand the
effect of different hyper-parameter choices.

Figure 3: Comparison of the final accuracy reward (smoothened over the last 20 training iterations) for
the token weighting schemes, for both 1.5B models trained on the ORZMath57K dataset. Overall, all
token weighting schemes improve training accuracy compared the the GRPO baseline. Interestingly,
the both-style trace weight results in higher performance compared to the classic recent-style, showing
that alternative token weighting schemes could greatly improve model performance.

First, we observe that the least sensitive hyperparameter is the token weighting style, as both ϵ-weight
and ϵ-trace have similar average performance across all datasets. This leads to promising avenues for
future work, by providing simple weighting mechanisms that focus on early and late tokens. Despite
the similar performance, we stick with ϵ-trace, which is supported theoretically by GAE and aligns
with the PPO-style clipped surrogate objective function.

1https://huggingface.co/datasets/hiyouga/math12k
2https://huggingface.co/datasets/riddickz/math-rl-16k
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Next, the choice of λ affects the back up, and the eligibility of the past states. As λ approaches
1, it increases the eligibility for distant state, potentially accelerating the updates. The opposite
is true when λ approaches 0. We found the performance to be the best at λ = 0.99 across the
different datasets and the two architectures. Finally, for the trace weighting style, both systematically
outperforms GRPO, and sometimes the classic recent style as well. An example of this can be seen
in Figure 3, with the other datasets available in Appendix D. Recent work (Bachmann & Nagarajan,
2024) discusses phenomenon where as the sequence progresses, the next-tokens start falling in
place thereby making the next token prediction slightly easier. So, while the better performance
of weighting style both compared to recent is interesting from an RL standpoint, the LLM text
generation presents not only a convincing explanation but also warrant further investigations for more
domain specific and informed credit assignments in RL for LLM scenarios.

Based on the analysis, we pick the best configuration from the experiments across the two models
to be (λ=0.99, weight style=both/recent, update style=ϵ-trace), and (λ=0.99, weight style=recent,
update style=ϵ-trace) for the experiments on the 3B and 7B models respectively.

4.2 TRAINING EFFICIENCY

Figure 4: Comparison of training on different RL Math datasets between the best hyperparameter
configuration of GRPO-λ and GRPO across the 4 different models used throughout this paper
(ordered by row). GRPO-λ systematically outperforms GRPO in terms of accuracy reward during
training.

In Figure 4, we compare the training of GRPO with GRPO-λ across the different RL-mathematical
reasoning datasets. We excluded the training comparison on GSM8K, for some models include public
datasets including GSM8K in their SFT or pretraining corpus thereby affecting the performance
3. The training plots show a trend of improved training exhibited from using GRPO-λ with the
average gap between the different variants of GRPO-λ and GRPO to be around 20-50%, while
the performance itself is affected by the choice of the architectures, and the dataset to post-train.

3For a complete training comparison across all RL finetuning datasets ref. Appendix C.
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For example, the instruct-tuned Qwen2.5-Math-1.5B architecture performs significantly better than
Deepseek-R1-Distill-Qwen-1.5B, which is an R1-distilled Qwen2.5-Base model. Likewise, with
the size of the architecture the average performance across the methods increases. The 7B model
significantly performs better than the 1.5B and 3B models, although, the gap between 3B model
and 1.5B models are not very significant. We take this to be an artifact of the model for the base
models in Qwen2.5 series have a significantly better performance over LLaMA-3.1 base (Yang
et al., 2024; Hui et al., 2024). Depending on the dataset, the difficulty of the sampled mathematical
problems varies significantly. For example, post-training on GSM8K results in a higher training
performance compared to MathRL-16k or Math12k datasets, as GSM8k’s questions are much easier
to solve. Also, unsurprisingly the size of the architecture does affect the magnitude of the gains during
training for the improvement on 7B model is much lower than on the smaller models. Despite these
differences in sizes, datasets and architectures, GRPO-λ demonstrates a significant improvement over
GRPO through applying the traces for improved reasoning with accelerated update resulting in (a)
faster convergence across the models, and (2) improved performance on RL training across smaller
architectures.

In addition to the accuracy reward evolution over the steps, we monitor the KL-divergence between
the updated policy πθt at timestep t and the reference model πref. The accumulated log-probabilities
in GRPO-λ ’s objective function mean their gradients are larger than for GRPO, which increase the
risk of deviating from πref. We observe that the KL-divergence stays low throughout training (ref
Appendix C), which shows that GRPO-λ ’s increase in performance is not coming at the cost of
overfitting. This is because we adopt two specific techniques to ensure a smooth and stable training:

Clamping the advantage function For fine-tuning LLMs with RL, Roux et al. (2025) have
observed that positive and negative returns in the policy gradient loss produce drastically different
behavior in terms of gradient updates. Negative returns encourage π to move as far as possible from
the corresponding trajectory, which can act as a destructive force on model parameters. GRPO-λ
multiplies advantages instead of returns with log πθ(at, st), but, as-is, we observe similar trends
as Roux et al.’s observations. To mitigate this issue, we adopt a similar approach, i.e., we clamp
negative advantages to a small value (−0.1 in our experiments). With the proposed clamping, the
KL-divergence is stable, albeit higher than GRPO. We argue that a higher - but stable - KL-divergence
may in fact improve learning, as a too strong KL regularization potentially limits exploration during
policy optimization (Hu et al., 2025; Zhang & Zuo, 2025), and a high reguralization term (β) does
not correlate with better learning (Lambert et al., 2024).

Mitigate reward hacking: We observed during training of GRPO-λ on non-SFT’ed LLMs
(Qwen2.5-Math-1.5B-Instruct) with the objective of optimizing both the “format” and “accuracy” of
the response generated may lead to an unstable training, where the LLM learns to hack the reward
functions to end up optimizing for the easier reward functions after a long number of steps Skalse
et al. (2022). To avoid this behavior, we train LLM with single reward RL, to maximize the accuracy
reward, and a pre-SFT step to improve formatting. We observe the format reward to stay high
throughout the RL training without forgetting the formatting learnt in the SFT step.

The results across two different architectures (LLaMA3.1, and Qwen2.5) and different sizes 1.5B, 3B
and 7B on 4 different training datasets demonstrate that GRPO-λ is indeed stable and is much better
than GRPO to train better on RL datasets through credit assignment.

4.3 BENCHMARK PERFORMANCE

In Table 1, we compare the performance of LLMs post-trained with GRPO and GRPO-λ on differ-
ent train-datasets across 5 challenging and popular math-reasoning benchmarks, AIME24, AMC,
OlympiaBench, Math500 and MinervaMath. We observe that the average improvement that GRPO-λ
has over GRPO is quite significant. However, the choice of the dataset to post-train appears to have
an effect on the benchmark performance.

First, models that have been trained on the ORZMath57K perform far worse on the evaluation tasks
than the models trained on other benchmarks. This is consistent across multiple model architectures
and sizes, be it for GRPO and for GRPO-λ . Upon further investigation, we found that these models
are much less accurate in providing an answer in the valid format. The effect of different datasets on
the RL finetuning warrants a special treatment, which, however, is out of scope for this paper. Next,
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Table 1: Average performance for each evaluation benchmark across the different training datasets.
This table only contains GRPO-λ , not the variations introduced in subsection 3.2.

Model Method
Evaluation benchmark (accuracy)

Average AIME24 AMC MATH Minerva Olympiad

Qwen-1.5B
GRPO 0.334 0.067 0.380 0.686 0.219 0.318
GRPO-λ 0.346 0.104 0.381 0.699 0.215 0.333

R1-Distill-Qwen-1.5B
GRPO 0.335 0.117 0.416 0.675 0.191 0.278
GRPO-λ 0.363 0.142 0.443 0.716 0.212 0.303

R1-Distill-LLaMA-3B
GRPO 0.142 0.042 0.092 0.309 0.114 0.092
GRPO-λ 0.200 0.034 0.202 0.450 0.172 0.144

R1-Distill-Qwen-7B
GRPO 0.429 0.200 0.491 0.775 0.320 0.361
GRPO-λ 0.451 0.217 0.518 0.800 0.334 0.384

we observe that the 3B model performs worse on the evaluation benchmarks than the smaller 1.5B
models. We believe this is due to the fact that the 3B model is the only one using a Llama architecture,
while the other ones use Qwen2.5, which generally performs better than Llama3.1 on mathematical
tasks (Yang et al., 2024). Finally, post-training on the MathRL-16k dataset results in particularly good
performance on the evaluation benchmarks for both GRPO and GRPO-λ , with GRPO-λ resulting
in an improvement of over 5 points (0.0552) across the benchmarks. This impressively leads to the
7B model post-trained with GRPO-λ producing a correct answer 47.6% of the time, as shown in
Figure 1. We refer to Appendix E for complete benchmarking performance of all the checkpoints.

5 LIMITATIONS

While fine-tuning a LLM with GRPO-λ greatly improve its training and evaluation performance
compared to GRPO, it comes at the expense of a decrease in training stability. The KL-divergence
between GRPO-λ ’s fine-tuned πθ and πref is larger than for GRPO, and becomes order of magnitudes
larger with the negative advantage clamping. Moreover, even though we derive a bound on the bias
of using V (s0) instead of V (st), explicitly incorporating this bias into the advantage estimation was
detrimental to the policy improvement (see related experiments in Appendix E, and more extended
discussion in subsection A.2). This seems to indicate that GRPO-λ ’s objective function is quite
sensitive. Additionally, all the experiments we performed are focused on mathematical reasoning
datasets. It is unknown if we will also witness the same gain in performance we have seen on these
benchmarks on other reasoning tasks, such as coding, or even general-purpose tasks. Finally, even
though Table 1 indicates that the improvement gap between GRPO-λ and GRPO is larger on the
3B and 7B models than the 1.5B models, it remains to be seen if this improvement gap scales to
models with even more parameters, e.g., the 32B or 72B variants of Qwen2.5, due to computation
restrictions.

6 CONCLUSION AND FUTURE WORK

We present GRPO-λ , which significantly outperforms GRPO both in terms of training and evaluation
performance across 4 training datasets, 5 mathematical reasoning benchmarks, 3 different model
sizes and 2 different model architectures. In contrast to GRPO, GRPO-λ incorporates a reformulation
of the generalized advantage estimation, allowing it to rapidly back-propagate the sequence reward
to relevant tokens. We show that GRPO’s advantage term increasingly biases value estimates for
later tokens, spurring us to investigate alternative token weighting schemes that put a higher focus on
early tokens. Extensive experiments show that this can result in higher performance than the classic
traces used by GAE. This leads to an interesting avenue for future work, i.e., by analyzing the impact
of different types of traces. Moreover, even though our experiments when incorporating the bound
directly into the advantage estimate were inconclusive, we believe it warrants further investigation, to
not only improve the accuracy of the updates, but also better stabilize GRPO-λ ’s training.
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A GRPO-λ THEORY

We propose a re-parametrization of the generalized advantage estimation so they can be taken
advantage of by critic-free methods such as GRPO.

A.1 FULL VERSION OF LEMMA 1

First, we take a look at GRPO’s advantage estimation, which is centered around producing multiple
rollouts from the start-state s0, and using their resulting scores to estimate µit, the mean return of all
states

{
s0t , . . . , s

g−1
t

}
in group G.

The mean µit serves as a baseline to reduce the variance of Gt in PPO’s policy update. Indeed, a
learned function of the state b(st) (where typically b(st) = Vπ(st)) can be used as a baseline, keeping
the policy gradient unbiased. However, µit does not really depend on st, as it is an average of returns
starting from s0. This difference ∆V (st) ≡ V (s0) − V (st) and the bias it introduces is what we
analyze in the following Lemma.

Lemma 1 Considering an LLM post-training setting, i.e., a deterministic transition function
where st is defined by a0:t, and a binary reward signal, ∆V (st) ≡ V (s0) − V (st) ≤ 1 −∏t−1
k=0

∑
ak ̸=aEOS πθ(ak|sk), where aEOS corresponds to the action generating the end-of-sequence

token, and thus terminating the episode.

Proof: By definition, the value V (s) is the expectation over the returns from any given state s.
Thus, V (s0) can be written as,

Vπ(s0) = Eπ [G0] = Eπ

[
T∑
t=0

γtrt

]

The sum until T can be split into two terms, 0− t, and t− T . Then,

Vπ(s0) = E

[
t−1∑
k=0

γkrk +

T∑
k=t

γkrk

]

= E

[
t−1∑
k=0

γkrk

]
] + γtE

[
T∑
k=t

γk−trk

]
.

(3)

The second term is the expected return from st, which is nothing but Vπ(st). Then,

V (s0) = E

[
t−1∑
k=0

γkrk

]
+ γtV (st),

∆V (st) = V (s0)− V (st)

≤ V (s0)− γtV (st)

≤ E

[
t−1∑
k=0

γkrk

]
.

(4)

In our LLM post-training setting, all intermediate rewards are zero, i.e., rt = 0,∀t < T . When an
EOS-token is selected as action, the reward rT is either 1 (the policy provided the correct answer to
the problem) or 0 (the policy provided an incorrect answer). Thus, V (st) ≥ 0, ∀st. More interestingly,
E
[∑t−1

k=0 γ
krk

]
> 0 only if there exist cases where the episode ends before timestep t.
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Assuming every episode is successful, i.e., every EOS-token yields a reward of 1, then
E
[∑t−1

k=0 γ
krk

]
is upper-bounded by the probability of generating at least one EOS-token at any

time during an episode. Thus,

∆V (st) ≤ E

[
t−1∑
k=0

γkrk

]
≤ 1−

t−1∏
k=0

∑
ak ̸=aEOS

πθ(ak|sk)︸ ︷︷ ︸
probability of not generating

at least one EOS-token in t timesteps

. (5)

■

A.2 FULL VERSION OF THEOREM 1

Next, we repurpose the bias-variance trade-off from GAE towards a critic-free policy-update like
GRPO.

Theorem 1 The policy gradient estimate ĝ using traces from generalized advantage es-
timation AGAE can be re-parameterized with a critic-free TD-error δt such that ĝ =∑∞
t=0AGAE(st)∇θ log πθ(at|st) =

∑∞
t=0 δt

∑t
l=0(γλ)

l∇θ log πθ(at−l|st−l).

Proof: We reorganize the many terms of the policy gradient formula4 so that the gradient is of
the form: g = Eπ [

∑∞
t=0 rtψt], where ψt can depend only on the states, actions, and rewards that

occurred before (or immediately after) the arrival of rt. We will approximate for an online estimator
of the policy gradient ĝ:

ĝ =

∞∑
t=0

AGAE(st) ∇θ log πθ(at | st) (6)

=

∞∑
t=0

∇θ log πθ(at | st)
∞∑
l=0

(γλ)lδVt+l (7)

Let us introduce the following shorthand:

∇t := ∇θ log πθ(at | st), (8)

then expand the sum:

ĝ = ∇0(δ
V
0 + (γλ)δV1 + (γλ)2δV2 + . . . )

+∇1(δ
V
1 + (γλ)δV2 + (γλ)2δV3 + . . . ) (9)

+∇2(δ
V
2 + (γλ)δV3 + (γλ)2δV4 + . . . )

+ . . .

group the δVt terms:

ĝ = δV0 ∇0

+ δV1 (∇1 + (γλ)∇0) (10)

+ δV2 (∇2 + (γλ)∇1 + (γλ)2∇0)

+ ...

4With the existence of REINFORCE Williams (1992) and policy gradient methods, several works (e.g., Sun
et al. (2018)) have used the reformulation of the policy gradients under different settings.
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and summarize:

ĝ =

∞∑
t=0

δVt

t∑
l=0

(γλ)l∇t−l (11)

=

∞∑
t=0

δVt

t∑
l=0

(γλ)l∇θ log πθ(at−l | st−l) (12)

Moreover, by defining eligibility trace as the inner sum in that equation:

ϵt :=

t∑
l=0

(γλ)l∇t−l (13)

and converting to a recursive formula:

ϵ0 := ∇0 (14)
ϵt := (γλ)ϵt−1 +∇t, (15)

we have our online generalized advantage estimator for the policy gradient:

ĝ =

∞∑
t=0

δVt ϵt (16)

So at each time-step, we compute the gradient term ĝt = δVt ϵt as the product of the TD error. The
role of λ ∈ [0, 1] is unchanged, remaining a bias-variance trade-off. For λ = 0, the problem reduces
to the (unbiased) TD(0) function. As we increase λ towards 1, we reduce the variance of our estimator
but increase the bias.

■

Relation with GRPO’s normalized advantage estimation (NAE) In this work, we consider
δVt = ANAE(st). The advantage is often used in policy-gradient methods Mnih et al. (2016), where
subtracting the value-estimate of the current state is used as a variance-reduction technique:

δVt = Gt − V (st).

However, ANAE(st) subtracts V (s0) instead of V (st). Using ∆V (st) ≡ V (s0)− V (st) introduced
in Lemma 1 results in:

δVt = Gt − V (s0) + ∆V (st).

We can thus potentially reduce the bias from using V (s0) by including knowledge about ∆V (st) in
δVt .

In preliminary experiments, we simply added the upper bound for ∆V (st) to ANAE(st).

However, results were inconclusive. The bias bound assumes that the policy is optimal, resulting in
the highest potential value for ∆V . GRPO removes this term, resulting in a pessimistic advantage
value (compared to having an actual critic). By naively adding the upper bound of ∆V , we surmise
this might be over-correcting the bias term, resulting in an optimistic advantage value. This means
that including the bound could reinforce action-probabilities that lead to 0-rewards (encouraging false
positives) while, in the case of GRPO, it instead reduces action-probabilities that lead to 1-rewards
(penalizing the false negatives). In the former case, we are stuck in suboptimal behavior, while in
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the latter, there could be alternative paths towards solving the problem. As such, a more careful bias
correction term is needed. It is important to mention that this only focuses on ∆V in the GRPO
setup, not GRPO-λ . Adding eligibility traces balances the bias-variance trade-off, which is one of
the reasons why GRPO-λ outperforms GRPO. We aim to further this direction in future work.

A.3 PSEUDOCODE

In section 3, we introduce GRPO-λ , the variant ϵ-trace follows the traditional RL literature and
applies the trace before the PPO clipping objective. algorithm 1 (left) represents GRPO-λ , with
the traces derived from Theorem 1. Likewise, the trace-inspired ϵ-weight variant is illustrated in
algorithm 2. We color code the pseudocodes where blue denotes the modifications on the GRPO
algorithm done for the ϵ-trace variant of the GRPO-λ and red denote the modifications for the
ϵ-weight variant.

A less rigorous explanation of ϵ-weight variant is that the loss at each step (token) essentially gets
reweighted implicitly with ϵ-trace. ϵ-weight does this reweighting of the loss explicitly. To that, this
uses the PPO-clip to provide the td-error, δV . Multiplying the trace weights with log πθxi

r
provides

the traces, ϵwxi
r
, which then multiplied with the advantage estimated explicitly weighs the loss of

different tokens (ϵwxi
r
Aθxi

r
log πθ). However, we observe multiplying that log πθxi

r
results in instability.

We alleviate that by soft clamping log πθxr
i

with 1 + σ(log πθxi
r
− 1). The choice of the clamping

function, f , sigmoid can be replaced with tanh. The clamping function, f , (a) ensures linear
dependence on the gradient and preserve the spirit of the traces, and (b) acts as a regularization to
prevent extreme values.

Algorithm 1: GRPO-λ (ϵ-trace)
Input: G, πθ , πref , γ, ϵstyle, ϵclip, β, ANAE
for i ∈ |G| do

ÂNAE ← max(ANAE,−0.1);
coef1 ←

exp(

t∑
l=0

(γλ)l log πθ
xi
t−l
−

t∑
l=0

(γλ)l log πold
xi
t−l

)

coef2 ← clamp(coef1, 1± ϵclip);
δVxi

r
← ÂNAE(x

i
r);

ℓGRPO-λ
xi
t

← −min(coef1, coef2)δ
V
xi
r

;
ℓGRPO-λ ← ℓGRPO-λ + β · ℓKL;

Algorithm 2: GRPO-λ (ϵ-weight)
Input: G, πθ , πref , γ, ϵstyle, ϵclip, β, ANAE
for i ∈ |G| do

ÂNAE ← max(ANAE,−0.1);
coef1 ← exp(log πθ

xi
t
− log πold

xi
t
);

coef2 ← clamp(coef1, 1± ϵclip);
wt ←

∑t
l=0(γλ)

l;
A

πθ

xi
r
← −min(coef1, coef2)ÂNAE(x

i
r) ;

ϵwxi
r
← w @ (1 + σ(log πθ

xi
r
− 1));

ℓGRPO-λ ← ϵwxi
r
A

πθ

xi
r

;
ℓGRPO-λ ← ℓGRPO-λ + β · ℓKL

Upper bound ∆Vt The estimation of δV by Theorem 1 requires an upper bound for ∆Vt. In
Lemma 1 we derive the upper bound to be the probability of generating an EOS-token. Our
implementation does not use this upper bound in its advantage.

Trace weights Trace matrix is a non-learnable precomputed lower-triangular matrix with 1s on
the leading diagonal. The two variants of GRPO-λ uses recent and both styles for the trace-weights,
which is computed with get trace(). The get trace() method takes in as arguments: (γ, λ,
max length, style: both, recent). For the choice both, the trace matrix is estimated as:

traceboth =

{
1, if rows = cols
max

(
max

(
ϵ, (γλ)n−cols

)
, (γλ)cols

)
, otherwise

, (17)
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for recent:

tracerecent =
{
1, if rows = cols
max

(
ϵ, (γλ)max(cols)−cols

)
, otherwise

(18)

Usage of weight style both as an alternate to recent, and the strong training and benchmark perfor-
mance that this provides is encouraging and serves as a precursor to explore alternate weighting styles
that are domain or data dependent.
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B HYPERPARAMETERS

This section provides a complete overview of all hyperparameters used to run our experiments. Our
codebase is based on Huggingface OpenR1.

For evaluation, we use the understanding-r1-zero codebase.

Table 2: Hyperparameter configurations used for GRPO-λ .

Model size 1.5B 3B 7B

Precision bf16
Distributed type Deepspeed
Number of devices 4

Supervised Finetuning stage
Epochs 1
Max sequence length 4096
Learning rate 2× 10−5

Per device batch-size 2
Gradient accumulation steps 8
Full finetuning (no LoRA) yes yes no

GRPO and GRPO-λ configuration
Training steps 10000 3500
Maximum prompt length 256
Group size (number of generations) 8
Maximum gradient norm 1.0
KL-divergence coefficient (β) 0.04
Accuracy reward weight 1.0
Format reward weight 0.0
Maximum completion length 256 256 768
Per device batch-size 16 16 8
Gradient accumulation steps 1 1 2
Full finetuning (no LoRA) yes yes no

GRPO-λ specific configuration

Advantage clamping −0.1

B.1 COMPUTATIONAL RESOURCES

The performed experiments were executed on a High Performance Computing (HPC) cluster com-
prised of 42 nodes, each containing 4 NVIDIA H100 GPUs, 2 Intel Xeon Gold 6442Y CPUs, and
512GB memory. Each experiment required one node (4 H100 GPUs), with 1.5B and 3B models
running for 16 hours (full-finetuning, with no gradient accumulation), and the 7B model running
for 40 hours (LoRA finetuning, with gradient accumulation of 2). For each 1.5B, 3B, 7B parameter
model, we performed 1 baseline experiment (GRPO) and 8, 2, 1 variations of GRPO-λ , respectively,
on 4 different datasets. This resulted in a total of 250 GPU-days.
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C TRAINING PLOTS

This section provides the training plots of all the experiments performed in this work. We show
that, regardless of the value for λ, the weighting update (ϵ-trace, ϵ-weight) or the type of trace (both,
recent) used, GRPO-λ has a higher training accuracy than GRPO.

Additionally, we show the plots comparing the KL-divergence between πθ and πref. While the KL-
divergence is higher for GRPO-λ than for GRPO, it remains quite stable over the training duration.
The crucial aspect to avoid explosion of KL-divergence is the clamping of negative advantages
to −0.1, inspired by Roux et al. (2025).
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C.1 QWEN2.5-MATH-1.5B-INSTRUCT
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(a) Comparison of training reward over time across all hyperparameters with λ = 0.98 on Qwen2.5-Math-
Instruct-1.5B.
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(b) Comparison of training reward over time across all hyperparameters with λ = 0.99 on Qwen2.5-Math-
Instruct-1.5B.
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(a) Comparison of KL(θt||θref ) across all hyperparameters with λ = 0.98 on Qwen2.5-Math-Instruct-1.5B.
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(b) Comparison of KL(θt||θref ) across all hyperparameters with λ = 0.99 on Qwen2.5-Math-Instruct-1.5B.
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C.2 DEEPSEEK-R1-DISTILL-QWEN-1.5B
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(a) Comparison of training reward over time across all hyperparameters with λ = 0.98 on DeepSeek-R1-Distill-
Qwen-1.5B.
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(b) Comparison of training reward over time across all hyperparameters with λ = 0.99 on DeepSeek-R1-Distill-
Qwen-1.5B.
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(a) Comparison of KL(θt||θref ) across all hyperparameters with λ = 0.98 on DeepSeek-R1-Distill-Qwen-1.5B.
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(b) Comparison of KL(θt||θref ) across all hyperparameters with λ = 0.99 on DeepSeek-R1-Distill-Qwen-1.5B.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.3 DEEPSEEK-R1-DISTILL-LLAMA-3B
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(a) Comparison of training reward over time across all hyperparameters with λ = 0.99 on R1-Distill-Llama-3B.
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(b) Comparison of KL(θt||θref ) across all hyperparameters with λ = 0.99 on DeepSeek-R1-Distill-Llama-3B.
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C.4 DEEPSEEK-R1-DISTILL-QWEN-7B
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(a) Comparison of training reward over time across all hyperparameters with λ = 0.99 on DeepSeek-R1-Distill-
Qwen-7B.
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(b) Comparison of KL(θt||θref ) across all hyperparameters with λ = 0.99 on DeepSeek-R1-Distill-Qwen-7B.
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D HYPER-PARAMETER COMPARISONS

Figure 3 in the main manuscript shows the final training performance for each variation of each 1.5B
parameter model, using the ORZMath57K dataset for RL post-training. Here, we show the same
training performance plots for the models post-trained on the other datasets. The observations made
in subsection 4.1 remain valid for the other datasets.
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E COMPLETE BENCHMARK RESULTS

E.1 EVALUATION SCORES

Table 3: Benchmark results for Qwen2.5-Math-1.5B-Instruct

Trace Style GRPO both recent
Update Style GRPO ϵ-trace ϵ-weight ϵ-trace ϵ-weight
λ GRPO 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99

Trained on math12k

AIME 0.067 0.067 0.133 0.100 0.033 0.067 0.133 0.100 0.100
MATH 0.704 0.744 0.756 0.746 0.682 0.720 0.688 0.718 0.696
AMC 0.386 0.458 0.470 0.410 0.410 0.410 0.422 0.361 0.337
OLBen 0.324 0.348 0.366 0.360 0.317 0.327 0.317 0.336 0.301
MIN 0.191 0.206 0.217 0.199 0.221 0.213 0.195 0.232 0.213

AVG 0.334 0.365 0.388 0.363 0.333 0.347 0.351 0.349 0.329

Trained on math-rl-16k

AIME 0.067 0.100 0.133 0.067 0.200 0.100 0.167 0.033 0.100
MATH 0.652 0.684 0.682 0.710 0.696 0.692 0.704 0.626 0.712
AMC 0.325 0.325 0.410 0.373 0.506 0.313 0.325 0.337 0.434
OLBen 0.293 0.293 0.323 0.307 0.366 0.323 0.321 0.277 0.332
MIN 0.202 0.228 0.191 0.206 0.246 0.217 0.199 0.173 0.206

AVG 0.308 0.326 0.348 0.333 0.403 0.329 0.343 0.289 0.357

Trained on gsm8k

AIME 0.067 0.100 0.067 0.200 0.167 0.067 0.133 0.100 0.100
MATH 0.706 0.666 0.716 0.716 0.706 0.684 0.704 0.710 0.718
AMC 0.422 0.337 0.398 0.410 0.410 0.422 0.398 0.410 0.422
OLBen 0.345 0.319 0.344 0.369 0.356 0.348 0.350 0.338 0.335
MIN 0.257 0.188 0.213 0.213 0.202 0.254 0.217 0.224 0.228

AVG 0.359 0.322 0.347 0.382 0.368 0.355 0.360 0.356 0.360

Trained on orzmath57k

AIME 0.067 0.067 0.133 0.067 0.133 0.100 0.067 0.033 0.033
MATH 0.682 0.630 0.686 0.716 0.736 0.692 0.708 0.606 0.684
AMC 0.386 0.386 0.350 0.398 0.446 0.386 0.373 0.386 0.386
OLBen 0.311 0.244 0.292 0.333 0.333 0.335 0.341 0.262 0.324
MIN 0.226 0.254 0.202 0.202 0.210 0.228 0.195 0.151 0.217

AVG 0.334 0.316 0.332 0.343 0.378 0.348 0.337 0.276 0.323
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Table 4: Benchmark results for r1-Qwen-distill-1.5B

Trace Style GRPO both recent
Update Style GRPO ϵ-trace ϵ-weight ϵ-trace ϵ-weight
λ GRPO 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99

Trained on math12k

AIME 0.133 0.033 0.133 0.100 0.167 0.133 0.167 0.133 0.133
MATH 0.640 0.656 0.690 0.712 0.752 0.708 0.708 0.632 0.698
AMC 0.398 0.410 0.458 0.446 0.482 0.410 0.494 0.325 0.422
OLBen 0.264 0.277 0.279 0.311 0.339 0.289 0.283 0.247 0.268
MIN 0.199 0.202 0.206 0.158 0.243 0.210 0.180 0.143 0.180

AVG 0.327 0.316 0.353 0.345 0.397 0.350 0.366 0.296 0.340

Trained on math-rl-16k

AIME 0.000 0.133 0.100 0.067 0.067 0.133 0.167 0.000 0.133
MATH 0.658 0.564 0.630 0.714 0.492 0.694 0.726 0.396 0.686
AMC 0.373 0.434 0.434 0.446 0.301 0.422 0.446 0.253 0.422
OLBen 0.255 0.271 0.270 0.299 0.197 0.305 0.323 0.141 0.256
MIN 0.154 0.180 0.184 0.228 0.217 0.224 0.210 0.110 0.184

AVG 0.288 0.316 0.323 0.351 0.255 0.356 0.374 0.180 0.336

Trained on gsm8k

AIME 0.200 0.133 0.067 0.133 0.133 0.133 0.100 0.100 0.167
MATH 0.756 0.680 0.628 0.706 0.726 0.736 0.704 0.746 0.742
AMC 0.494 0.422 0.373 0.446 0.482 0.446 0.410 0.518 0.506
OLBen 0.330 0.271 0.255 0.305 0.324 0.311 0.283 0.338 0.329
MIN 0.243 0.151 0.162 0.199 0.239 0.199 0.213 0.232 0.261

AVG 0.405 0.331 0.297 0.358 0.381 0.365 0.342 0.387 0.401
Trained on orzmath57k

AIME 0.133 0.067 0.133 0.133 0.133 0.167 0.133 0.167 0.133
MATH 0.644 0.684 0.646 0.726 0.740 0.728 0.728 0.686 0.748
AMC 0.400 0.422 0.349 0.518 0.470 0.422 0.494 0.386 0.470
OLBen 0.262 0.286 0.292 0.350 0.354 0.305 0.329 0.284 0.311
MIN 0.169 0.186 0.195 0.220 0.254 0.217 0.239 0.176 0.191

AVG 0.321 0.329 0.323 0.390 0.390 0.366 0.385 0.340 0.371
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Table 5: Benchmark results for R1-Distill-Llama-3B

Trace Style GRPO both recent GRPO both recent
Update Style GRPO ϵ-trace ϵ-trace GRPO ϵ-trace ϵ-trace
λ GRPO 0.99 0.99 GRPO 0.99 0.99

Trained on math12k gsm8k

AIME 0.100 0.033 0.067 0.033 0.033 0.067
MATH 0.458 0.460 0.432 0.272 0.524 0.518
AMC 0.193 0.157 0.205 0.145 0.277 0.205
OLBen 0.129 0.124 0.121 0.090 0.179 0.166
MIN 0.165 0.165 0.217 0.088 0.132 0.154

AVG 0.209 0.188 0.208 0.126 0.277 0.222

Trained on orzmath57k math-rl-16k

AIME 0.000 0.000 0.000 0.033 0.000 0.000
MATH 0.300 0.434 0.410 0.356 0.214 0.440
AMC 0.024 0.157 0.193 0.108 0.060 0.205
OLBen 0.046 0.135 0.117 0.105 0.052 0.173
MIN 0.096 0.195 0.151 0.107 0.121 0.165

AVG 0.093 0.184 0.174 0.142 0.089 0.197

E.2 DEEPSEEK-R1-DISTILL-QWEN-7B

Table 6: Benchmark results for r1-Qwen-distill-7B

Trace Style GRPO recent GRPO recent GRPO recent GRPO recent
Update Style GRPO ϵ-trace GRPO ϵ-trace GRPO ϵ-trace GRPO ϵ-trace
λ GRPO 0.99 GRPO 0.99 GRPO 0.99 GRPO 0.99

Trained on math12k math-rl-16k gsm8k orzmath57k

AIME 0.200 0.200 0.167 0.267 0.167 0.233 0.267 0.167
MATH 0.778 0.824 0.774 0.792 0.770 0.766 0.778 0.820
AMC 0.494 0.566 0.518 0.578 0.458 0.458 0.494 0.470
OLBen 0.361 0.388 0.356 0.397 0.353 0.344 0.375 0.407
MIN 0.305 0.338 0.342 0.346 0.335 0.298 0.298 0.353

AVG 0.428 0.463 0.431 0.476 0.416 0.420 0.442 0.443
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E.3 GENERATION LENGTHS
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Figure 12: Comparison of the average generation length during evaluation between GRPO and
GRPO-λ when post-trained on Qwen2.5-Math-1.5B-Instruct. GRPO-λ shows the average length
across hyperparameter settings.
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Figure 13: Comparison of the average generation length during evaluation between GRPO and
GRPO-λ when post-trained on r1-Qwen-distill-1.5B. GRPO-λ shows the average length across
hyperparameter settings.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

AIME AMC MATH MIN OLBen AVG
0

1000

2000

3000

G
en

er
at

io
n 

le
ng

th

3000 3000 2991 2983 2989 29862921 2907 2931 2923 2966 2939

GRPO-
GRPO

AIME AMC MATH MIN OLBen AVG
0

1000

2000

3000

G
en

er
at

io
n 

le
ng

th

3000 3000 2999 3000 3000 29993000 2940 2917 2876 2818 2954

GRPO-
GRPO

AIME AMC MATH MIN OLBen AVG
0

1000

2000

3000

G
en

er
at

io
n 

le
ng

th

3000 3000 2999 3000 3000 2999
2537 2364 2393

2152
2431 2484

GRPO-
GRPO

AIME AMC MATH MIN OLBen AVG
0

1000

2000

3000

G
en

er
at

io
n 

le
ng

th

3000 2998 2991 2983 2983 29943000 3000 2999 3000 3000 2999

GRPO-
GRPO

G
SM

8K
O

R
ZM

at
h-

57
K

M
at

h-
12

K
M

at
hR

L-
16

K

Figure 14: Comparison of the average generation length during evaluation between GRPO and
GRPO-λ when post-trained on r1-R1-Distill-Llama-3B. GRPO-λ shows the average length across
hyperparameter settings.
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Figure 15: Comparison of the average generation length during evaluation between GRPO and
GRPO-λ when post-trained on r1-r1-Qwen-distill-7B. GRPO-λ shows the average length across
hyperparameter settings.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

F RELATED WORK

Recent advances in the scalable training of large architectures Kaplan et al. (2020); Chowdhery et al.
(2023), the development of extensive pretraining corpora Wei et al. (2022a), and refined fine-tuning
strategies such as instruction tuning Zhang et al. (2023) have substantially improved the capabilities
of large language models (LLMs). These improvements have enabled LLMs to produce compelling
responses across a wide range of tasks, including both closed- and open-ended question answering. In
parallel, significant research has been devoted to minimizing undesirable behaviors through methods
broadly categorized under preference learning or alignment techniques.

F.1 IMPROVING ALIGNMENT THROUGH PREFERENCES

Pairwise preferences LLMs trained via next-token prediction often fall short in instruction-
following tasks, frequently generating toxic or untruthful content. The RLHF (Reinforcement Learn-
ing with Human Feedback) framework for LLMs introduced by InstructGPT Ouyang et al. (2022)
addressed this by learning a reward model r(x, y) that scores responses y conditioned on prompts x. In
the pairwise setting, given a preferred response yw and a less desirable response yl, the model defines
the preference likelihood using the Bradley-Terry model: P (yw > yl|x) = σ(r(x, yw)− r(x, yl))
Bradley & Terry (1952).

To improve upon the original RLHF approach, DPO (Direct Preference Optimization) Rafailov et al.
(2023) proposed a reparameterization of the PPO-based objective that eliminates the need for an
explicit reward or value model. Subsequent variants such as β-DPO Wu et al. (2024), sDPO (Stepwise
DPO) Kim et al. (2024), and TDPO (Token-level DPO) Zeng et al. (2024) aim to enhance stability,
mitigate overfitting, and preserve generation diversity.

Extensions with binary and listwise preferences Several efforts have explored alternative forms
of preference data to reduce annotation burdens and improve learning. KTO (Kahneman-Tversky
Optimization) Ethayarajh et al. (2024) and DRO (Direct Reward Optimization) Richemond et al.
(2024) use binary feedback instead of pairwise comparisons, avoiding the need to collect pairwise
preferences. KTO incorporates principles from prospect theory, introducing hyperparameters α and λ
to shape the value function’s curvature and steepness. In contrast, DRO learns a parameterized value
function jointly with the policy, showing superior empirical results relative to KTO. Alternativvely,
LiPO (Listwise Preference Optimization) Liu et al. (2024) extends pairwise preferences by utilizing
listwise preference data, arguing that richer signals from ranked outputs enable better alignment.
However, the approach is sensitive to data quality and requires non-trivial filtering to remove noise
from the training signal.

Advanced CoT with on-policy samples LLMs are increasingly applied to complex domains such
as scientific QA, mathematical reasoning, and code generation. With sophisticated pretraining and
high quality SFT, Ding et al. (2023); Xu et al. (2023a;b) noted that variance in policy updates were no
longer an issue. This variance reduction resulted in RLOO (REINFORCE Leave-one-out) (Ahmadian
et al., 2024), that uses multiple on-policy samples to estimate the baseline for the REINFORCE
policy gradient update. RLOO demonstrated significant performance improvement over DPO and
PPO especially when more on-policy samples can be generated. GRPO (Shao et al., 2024), a related
method, avoids the leave-one-out step by estimating normalized advantages using a z-score across
sampled completions. DeepseekMath, Deepseek-R1, and Deepseek-R2 all utilize GRPO for their
significantly superior reasoning trajectories.

Improvements to GRPO GRPO originally aggregates token-level losses normalized by sequence
length, which introduces a length bias favoring shorter responses. Dr. GRPO (Liu et al., 2025)
mitigates this by normalizing over the maximum completion length instead. Other extensions to
GRPO include BNPO (batch normalized GRPO) (von Werra et al., 2020), which introduces a
minor yet effective modification: loss normalization across active tokens in a batch. When the
batch size=1 the loss behaves like the orginal GRPO loss. DAPO Yu et al. (2025) decouples
the PPO clipping parameter into ϵhigh and ϵlow, and employs dynamic resampling to maintain
meaningful gradients when batch rewards are either all 0 or all 1. GRPO has also been extended
with improvements such as explicit penalties for undesirable responses, length-aware reward shaping,
and difficulty-weighted advantage scaling (Zhang & Zuo, 2025). Complementary to these, GRPO-λ
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proposes trace-weighted advantage estimation for better credit assignment, accelerating learning and
improving robustness on challenging benchmarks.

F.2 IMPROVING LLM REASONING

Training for improved credit assignment RLHF (Christiano et al., 2017; Ouyang et al., 2022),
based on PPO Schulman et al. (2017), relies on explicit value models for reward and baseline
estimation. DPO Rafailov et al. (2023), in contrast, treats the response as a single bandit action,
eliminating the need for value modeling. GRPO (Shao et al., 2024) and RLOO (Ahmadian et al.,
2024) similarly avoid explicit critics, instead estimating baselines from multiple samples. While
value models can accelerate learning, they can suffer from drift, causing misalignment between the
critic and policy. VinePPO (Kazemnejad et al., 2024) addresses this via Monte Carlo rollouts from
intermediate states, yielding more accurate value estimates. Beyond architectural modifications,
recent work has explored leveraging both positive and negative samples to enhance learning. Setlur
et al. (2024) show that incorporating negative trajectories helps unlearn spurious correlations and
establish a connection to advantage-weighted reinforcement learning. In a similar vein, Hwang
et al. (2024) propose Self-Explore, wherein the model identifies its first incorrect reasoning step and
generates multiple continuations to construct step-level preference data. This enables fine-grained
updates via DPO and leads to improved reasoning capabilities.

Inference-time reasoning enhancements In addition to their role in training, value estimates have
proven effective during inference, particularly in planning-based approaches such as AlphaGo Silver
et al. (2016) and AlphaZero Silver et al. (2017), which use tree search guided by value networks.
Analogous strategies have been adapted for LLMs to enhance inference-time reasoning. Several
approaches operate without explicit value critics but instead rely on structured prompting or model-
internal heuristics. Tree-of-Thoughts prompting (Yao et al., 2023) enables models to generate multiple
intermediate reasoning paths and iteratively evaluate them to choose the most promising trajectory.
Alternatively, Weng et al. (2022) checks the correctness of their own intermediate outputs through
self-verification to improve the quality of CoT generation, while Shinn et al. (2023) reflects over
the partial generation to improve and align better with the preferences and prompt. Planning-based
techniques take this further by explicitly decomposing a complex input query into a sequence of
subproblems (Wang et al., 2023a). Even lightweight inference-time strategies like self-consistency
decoding (Wang et al., 2022) have demonstrated performance gains, outperforming deterministic
decoding strategies such as greedy or beam search.
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