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ABSTRACT

Large language models (LLMs) are increasingly deployed for tasks requiring com-
plex reasoning, prompting significant interest in improving their reasoning abilities
through post-training. Especially RL based methods using verifiable reward, like
the state-of-the-art GRPO, have shown to tremendously improve reasoning behav-
iors when applied as post-training methods. However, the lack of an explicit reward
or critic model limits GRPO’s ability to assign fine-grained credit across token
sequences. In this work, we present GRPO-) , a novel extension to GRPO that
enhances credit assignment in RL finetuning of LLMs for complex reasoning tasks.
We approximate learning from A-return with a reformulation of eligibility traces
using token-level log-probabilities applied after each sequence generation, and
a novel critic-free approximation of the temporal-difference error. We introduce
a few variations for the weighting of the A-return, and their applications to the
eligibility-trace, where all the variations provide significant gains over GRPO. We
compare GRPO-) against GRPO by training models from 1.5B to 7B parameters
on 4 different math reasoning datasets. The training plots demonstrate 30-40%
improved performance during RL training on both LLAMA-3.1 and QWEN-2.5
architectures. Finally, we show that with GRPO-\ , the resulting average perfor-
mance on AIME24, Math500, OlympiadMath, MinervaMath, and AMC improves
over GRPO by over 3 points and a 4.5 points improvement on the 7B model.

1 INTRODUCTION

There is now a widespread acceptance of large language models (LLMs), wherein they are consulted
on problems ranging from mundane tasks to ones requiring involved reasoning. For the latter, classical
pre-training has been deemed insufficient due to the lack of explicit reasoning elicitations in the
training data (Rajani et al.,|2019). Thus, the focus to improving the reasoning skills of LLMs has
been to expose them to problems requiring logic, such as mathematics and coding tasks, instead
of aiming to produce plausible and coherent text (Hui et al.| [2024; |Xu et al.| 2024} |Yang et al.|
2024; [Shao et al., 2024)). The recipe for scaling the performance on these reasoning tasks rests on
elaborate post-training methods, including techniques like supervised-finetuning (SFT, |Luo et al.
2023)), reinforcement learning (RL, |[Schulman et al.|2017) without or with human feedback (RLHF,
Ouyang et al.|[2022), hybrids such as direct preference optimization (DPO, Rafailov et al.[2023)), or
any of their combinations.

Among these post-training techniques, RL shows promise as it transforms the next-token prediction
problem to a reward maximization problem, allowing the LLM to freely generate new tokens as long
as the resulting sequence produces satisfactory rewards. This is particularly relevant for reasoning
problems such as mathematics and coding tasks, as the LLM needs to learn strategies that produce a
verifiable, ground-truth outcome (e.g., the solution of the math problem). Recently, Deepseek-R1
(Guo et al.} [2025) proposed an RL-based post-training method that resulted in the famously known
”Aha! moment”, where the model learned to perform self-reflection strategies. At its core lies group
relative policy optimization (GRPO, [Shao et al.|2024), which updates the LLM parameters using
Monte-Carlo estimates of the policy returns to reinforce positive reasoning.

Contrary to the widely used PPO algorithm, GRPO does not require a critic to estimate the expected
return of the policy. Instead, the expected return is approximated by taking the average over multiple
rollouts of the policy. This makes GRPO lightweight, as there is no additional memory footprint for
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the critic. However, what it does not do, contrary to PPO, is to use eligibility traces to update not
only the current token based on the next one, but earlier tokens as well.

In RL, eligibility traces are a way to combine
Monte-Carlo (MC) estimates and Temporal-
Difference (TD) updates. It allows for rapid rl'wa:;'diSti"'m
backpropagation of values to earlier states, and 0-8 s
improves learning stability, as it balances be-

tween the high bias resulting from TD updates 0.6
and the high variance resulting from MC esti-
mates. This balance is governed by a parameter
A € [0,1], where A = 0 results in a pure TD
update, and A = 1 only uses the MC estimates.
Importantly, this interpolation between one-step
TD and MC methods is used to update PPO.
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In this work, we reformulate these traces such

that they are directly applicable to the policy. . ) .

This allgws us to c0n>1,birll)£ eligibility tracez Witi/l F1g’ure 1: GRPO'A improves R1-D 1st111—.Qwen—
the value estimates from the rollouts produced 7B’s evaluation performance by over 4 points on
by GRPO. We thus keep the advantages of AYEIage across math benchmarks including a 10
GRPO, namely the lightweight memory foot- point improvement on AIME24.

print, while drastically improving the credit as-

signment through rapid value propagation to-

wards earlier tokens. Moreover, in the setting of LLM post-training, reformulating eligibility traces
for the policy can be seen as a form of token-specific weighting of the policy gradient loss. This
insight leads us to propose different token-specific weighting mechanisms for credit assignment.
Finally, thinking about eligibility traces made us focus on GRPO’s value estimates at a token level.
Since all GRPO’s rollouts are performed from the same start-state (i.e., the prompt with the question
to solve), its value estimates become increasingly inaccurate for later tokens in the sequence. We
bound this error, which may be of independent interest to the reader.

To summarize, the contributions are:

1. With|[Lemma 1|and [Theorem Ijwe propose, GRPO-) , that extends GRPO through credit
assignment with a novel reparameterization for PPO’s eligibility trace, in a critic-free TD
learning for language reasoning.

2. Finetuning different sized models and architectures on 4 different mathematical reason-
ing tasks show that GRPO-\ learns faster and improves 30-40% better than GRPO on
mathematical benchmarks tasks (Figure 4)).

3. Benchmark performance of GRPO-\ on 5 benchmarks shows an average increase of 3 points
over GRPO (Table 1). And, for Deepseek-R1-Distill-Qwen-7B GRPO-) improves over 4
points (Figure 1).

4. Using insights from the proposed bounds to explore alternate trace weight styles, showing
that for RL post-training of LLMs there are viable alternatives to the classic traces (Figure 3|
Appendix D).

2 BACKGROUND

Related work It has been an active field of research to distill deliberate reasoning abilities into
LLMs, as they are often prone to quick judgments (Li et al.l [2025). Early approaches attempted
to explicitly instill reasoning into language models via explanations in training data, an expensive
avenue as it requires large amounts of human-annotated data (Rajani et al.,|2019; Nye et al., 2022).
Chain-of-Thought (CoT) prompting provides a training-free alternative by simply prompting the
model to think step-by-step (Wei et al.l |2022bj | Kojima et al.| 2022), with potentially self-verification
steps (L1 et al., [2023; [Wei et al., 2022b) or diversification of reasoning paths (Wang et al.,|2023b;
Fu et al., 2023). A logical next step has been to use self-generated CoT as a training signal for
LLMs to iteratively improve their reasoning abilities (Zelikman et al.;,|2022). This is often done using
RL (Trung et al., 2024)). While the reward is usually provided at the end of the sequence (Singh
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et al., [2024), as is the case for our setting, other works have tried to improve the credit assignment of
intermediate steps using tree-search, at the expense of additional computations (Feng et al., 2023}
Zhang et al.| [2024). Finally, the provided reward is of crucial importance for the learned reasoning to
be generalizable (Yeo et al.l 2025). We refer to a broader overview of related work in[Appendix F|

Reinforcement Learning RL aims to solve a sequential decision problem, which can be modeled
as a Markov Decision Problem (MDP) (Puterman, |1994) (S, A, P, R,~). S is the set of all possible
states the environment can be in. A is the set of all possible actions that are available to the agent.
P:S, A — S encompasses the environment’s (stochastic) transition dynamics, R : S, A — Riis
the reward function and -y is the discount factor. The agent can interact with the environment through
a policy 7 : S, A — [0, 1] which maps a state to a probability distribution over the action-space
conditioned on the state. At each timestep ¢, the agent receives the current state as input s; € S and
takes the action a; ~ m(-|s;). The environment state is updated following the transition function
st+1 ~ P(+|st, ay) and gives a feedback to the agent in the form of a reward r; = R(s¢, at).

We define the episodic return G as the summation of the discounted rewards obtained by an agent

along a trajectory following a policy 7 and starting from timestep t. G; = Z;‘::t y*=tr), where
T denotes the timestep at which the episode terminates. We further define the value function
Vi (s) = Ex[Gt|sy = s] which evaluate the expected episodic return of an agent following policy 7
and starting at a specific state s;. The goal of RL is to find the optimal policy 7* = argmax_{V;(so)}
where sg follows the initial state distribution of the environment.

In the context of LLM post-training, the MDP definition is peculiar: 4 represents all possible tokens
that can be generated by the LLM, and the state s; consists of a sequence of generated tokens,
st = (8t—1,a;—1). For mathematical problems, the start-state sq consists of a mathematical question
(also called prompt), tokenized to m tokens, i.e., so = (ao, ceey am’l). The policy, in this case the
pretrained LLM, selects the next token a, based on all previous tokens s;. A special end-of-sequence
(EOS) action a8 indicates the end of an episode. At that point, the generated answer is verified for
correctness, resulting in 7 = 1 for correct answers, and 7 = 0 otherwise. All intermediate rewards
are 0. This means that Go = X € [0, 1].

PPO The fact that a pretrained LLM can be used as a good initial policy makes actor-critic methods,
that explicitly represent a policy, such as PPO (Schulman et al.,[2017), a particularly good fit for this
setting. PPO is composed of an actor, the policy mg parametrized by 6, and of a critic V;, parametrized
by %, which is used to estimate the expected return.

The use of V,, provides a major benefit. With it, there is no need to wait until the episode ends to
estimate (. Instead, one can bootstrap G, using V,, e.g., Gi=r + Yrepr F oY T
V"Vip (St4r). Withn = T, this falls back to the episodic return Gy, resulting in potentially high
variance in returns between episodes due to the stochasticity of my. With n = 1, we mitigate the
variance issue, but this introduces bias if V,; is inaccurate. The difference between the 1-step Gy and
the predicted value is also called the temporal-difference (TD) error 6, = 7 + YVip(Se41) — Vip(s4)-
A way to nicely balance this variance-bias trade-off is through generalized advantage estimation
(GAE), which computes a weighted sum over TD errors, Agag(st) = 0t + YAd¢41, with A € [0, 1]
the weighting coefficient, and can be also seen as a weighted trace over future TD errors.

PPO combines GAE with a clipped surrogate objective function to update its policy, {gag =

min (Mraio (5¢) Acak (s1), Clip(Teaio (1), 1 — €, 1+ ) Acag(s¢)), Where mio(s) =TT is
the ratio between the current policy mp and the policy at the start of the epoch 7y, and clip-
ping T, between 1 — € and 1 + € discourages my from changing too much from g, which,
combined with GAE stabilizes learning. To update its critic V,;, PPO minimizes a mean-
squared error (MSE) loss on the return, which in this case is bootstrapped using GAE, i.e.,
ly =MSE (Vi (s¢),88(Vip (s¢) + Acar(st))), where sg(.) is the stop-gradient operator. Additionally,
specifically for LLM post-training, to avoid reward hacking (Trung et al., [2024} |Yeo et al.| [2025),
PPO is combined with a KL-divergence regularizer on the initial, pretrained policy (also called the
referent policy) Trer = Tp,, 1.€., {x. = DL (7g||Trer). Combined, this results in the following PPO
objective: Ippo = €y, + Lgap — Blki, where (3 is a small constant factor to weight the regularizer
term.
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GRPO All the benefits of PPO’s critic V,, rely on the fact that V7, is decently accurate. In practice,
for LLM post-training, this is a non-trivial task. First, the reward is sparse, only providing a binary
signal at the end of each sequence generation. This complicates the task of V;,, which should be
accurate at every intermediate token. Second, 7y, having been pretrained before starting RL post-
training, is already far better than a random policy. This contrasts with V7, who is often initialized to
from a reward model (Huang et al., 2024), instead of predicting the policy’s expected return. This
disparity between 7y and Vy, means Vy, has to “catch up” to g, which can hamper post-training. Next
to the challenges of training Vy, it is also memory intensive, as Vy, has to be kept in memory with 7.
GRPO (Shao et al.,|2024), a recent extension of PPO, aims to tackle these challenges by removing V,,
altogether. Instead, for a given prompt (i.e., a given start-state sg), GRPO generates multiple responses,

called a group G = {30 S sg}l }, where g = |G| is a hyper-parameter denoting the size of the

group. The group’s average return is then used to approximate V' (sg). Note that, since there is no
critic, GRPO does not use GAE. Instead, the advantage is computed using a normalized advantage

estimation (NAE), i.e., Anag(s}) = % with i € [g], where pi, o} are the mean, standard deviation
t

of all states {s?, coy 8 _1} in group G. Anag then replaces Agag in PPO’s surrogate objective

function, i.e., {NaAg = min (wrdllo(st)ANAE( 8), clip(Trato(88), 1 — €, 1 + €) Anag(s )) This results
in the following GRPO objective: fGrRPO = KNAE — BlxL.

3 GRPO-)\ FOR RAPID REWARD PROPAGATION

GRPO provides an efficient alternative to the PPO critic, avoiding its additional memory requirements
and approximating the expected return with multiple Monte-Carlo rollouts. The use of Anag, however,
comes with two downsides. First, since all the sequence generations from the same group were
performed from the same state s, the baseline yi only estimates the expected return when ¢ = 0, and
is a biased estimate for all £ > 0. Estimating the expected return at every ¢ would require to perform
multiple sequence generations for each s;, an approach taken by VinePPO (Kazemnejad et al.| |2024)
at the cost of a significantly higher compute overhead. Second, Anag subtracts the baseline p} from
the return G, which is used in policy gradient methods to reduce the variance of the policy updates.
But this does not provide a parametrized way of balancing variance and bias like GAE does. But,
precisely because GRPO uses biased estimates of V' (s;),Vt¢ > 0, it should aim to use generalized
advantage estimates. This is the central motivation behind our proposed algorithm, GRPO-) , which
incorporates a critic-free reformulation of GAE.

Theorem 1 The policy gradient estimate § using traces from generalized advantage es-
timation Agap can be re-parameterized with a critic-free TD-error §; such that § =

S50 Acar(si)Velogma(arlss) = 00000 > 1_o(YN)!'Velogme(as—i|si—i).  Proof in Ap-

pendix[A.2]

Intuitively, provides an elegant reparameterization of the GAE formulation as
weighted cumulative action log-probabilities instead of a sum of TD residuals to enable gra-
dient estimation for the language generation setting. The resulting objective function, ¢, =
min (784E (s4)0y, clip(nShE(si),1 — €,1 + €)d;), now incorporates GAE’s A weighting mechanism

in mSAE (s4):

t t
T (5) = exp (Z(%) log mo(ar—i|si—1) = Y _(yN) log ma,, (ar—i]s; z)) )
=0

=0

Additionally, since we do not have a critic Vy,, we approximate d; using the group returns as in GRPO,
i.e., 0 = Anag- Combined with the GAE weighting, this results in GRPO-\ , which significantly
improves the reasoning performance of the resulting post-trained LLM compared to GRPO. GRPO-A
is also a generalization of GRPO, as it falls back to GRPO with A = 0. Finally, although the
computational overhead increases linearly with the sequence length, it is negligible compared to the
overall LLM post-training process. In our experiments, we did not notice any significant walltime
difference between GRPO and GRPO-\ .
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3.1 BOUNDING THE NORMALIZED ADVANTAGE ESTIMATION BIAS

To better understand the bias GRPO introduces by using V' (sg) estimates for states s¢, V¢ > 0, we
analyze the difference between the value in sy and in sy:

Lemma 1 Considering an LLM post-training setting, i.e., a deterministic transition function
where sy is defined by ag., and a binary reward signal, AV (s;) = V(sg) — V(sy) < 1 —
HZ_:% apatos To(ak|sk), where aF9 corresponds to the action generating the end-of-sequence
token, and thus terminating the episode. Proof in Appendix[A.1]

Intuitively, the probability of generating an EOS token a®°S increases with time, thus increasing the
probability of receiving a positive reward. And so, for a large enough ¢, mg might have generated
many sequences shorter than ¢. It is those sequences that introduce a bias in GRPO’s value estimates.
Thus, earlier states have a more accurate estimation of their value.

3.2 ALTERNATIVE WEIGHTING MECHANISMS

The insights provided by lead us to think more generally about per-token weighting of the
policy gradient. Assuming v = 1, in our setting, returns and values are the same for each timestep
t. On one hand, the return for later states have less variance, which allows us to be confident about
their gradient updates. On the other hand, early states had more accurate critic estimates, since they
are closer to sg. Using our GAE reparameterization as a starting point, we propose reweighting
alternatives, that put a different emphasis on a token depending on its position in time.

Traces as per-token weighting The discount induced by A < 1 results in an exponential decay
of weighting importance as we go back in time. Instead of applying it on action log-probabilities,
we propose to directly weight {nag(s:) with the ZLO (vA)! trace. This simplifies the problem, as
the trace only needs to be computed once, instead of having to sum all the log-probabilities at each
policy-update. We refer to this variant as GRPO-) (e-weight). A side-by-side comparison can be
found in[Appendix Al (algorithm I|and [algorithm 2J).

Varying the type of decay In the RL literature, multiple variations 1.00

of eligibility traces have been investigated (Williams) [1992;[Singh & /"~ i B recer}t
Sutton |1996; Seijen & Sutton, |2014; |Sutton et al.,|2016; van Hasselt ) /
et al., [2021) that dictate how they accumulate over time, and thus @050 * /
how much weight they provide at each timestep. Similarly, since our 0.25 J
analysis from [Lemma I|indicate two sources of inaccuracies, one T

on the early tokens, one on the late tokens, we propose a variation 0-001 ===mms 500 100

of the weighting scheme such that early tokens are considered as Time Step t

important as the late ones:
Figure 2: e-trace styles.

t t
7ORE(5,) = exp (Z tr(t, 1) log mo(as—i|st—1) — Ztr(t, 1) log Wgold(at_l|8t_l)>, 2)

1=0 =0

where tr(t,1) = max((y\)!, (yA)!~!). The distinction between the classic traces, which we call
recent, and the proposed variation, which we call both, is depicted in[Figure 2] We perform extensive
experiments and comparisons on all combinations of the different variations, and show that all provide

significant improvement over GRPO (see [Appendix D)), proving that per-token weighting can greatly
boost performance for RL finetuning.

4 EXPERIMENTS

Training details We do an extensive comparison of our proposed GRPO-) against GRPO with
LLMs of diverse sizes (1.5B, 3B and 7B) on mathematic reasoning, similar to related works (Kazem-
nejad et al., 2024} Roux et al.l 2025} Yu et al., [2025; |Zhang & Zuo) [2025). We focus on multiple
aspects. First, analyze the training efficiency by measuring the increase in average reward on the
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training dataset, while maintaining a low KL-divergence between 7y, and 7. Next, we measure
the performance of the final checkpoints of our trained models on multiple challenging mathematic
reasoning benchmarks. Finally, to better understand the properties of GRPO-) and the impact of

emma I| we perform evaluations on the alternative token weighting mechanisms: recent and both
traces, and trace or weight token updates. We also assess the choice of A, by performing the exper-
iments on our 1.5B models with both A = 0.99 and A = 0.98. We refer to[Appendix B| for a full
list of hyperparameters, and for the comprehensive information about computational resources to

Append

Specifically, we use Qwen/Qwen2.5-Math-1.5B-Instruct, Deepseekai/Deepseek-R1-
Distill-Qwen-1.5B, suayptalha/Deepseek—-R1-Distill-LLaMA-3B, and
Deepseekai/Deepseek-R1-Distill-Qwen-7B. Our RL finetuning pipeline includes
an SFT step to train LLMs to reason within a specific format. For the RL finetuning datasets,
we use GSMSK [Cobbe et al| (2021), Math-12K [[Lightman et al] (2023), MathRL-16K [} and
ORZ_MATH-57K Hu et al.| (2025) which include a variety of challenging math problems. To
benchmark, we follow [Liu et al.| (2025) and evaluate on AIME24 |Li et al.| (2024)), AMC [L1i et al.
(2024), OlympiadBench [He et al.| (2024)), Math500 Hendrycks et al.| (2021, and MinervaMath
Lewkowycz et al.|(2022) benchmarks to report the individual and aggregated performance of the
different post-trained LLM checkpoints. For all but the 7B mode, we train across the RL finetuning
datasets for 10000 steps. Due to computational limitations, we limit the training of the 7B model to
3500 steps.

4.1 ANALYZING THE DIFFERENT TOKEN WEIGHTING SCHEMES

In Section [3.2] we propose alternative token weighting schemes to our re-parameterized general
advantage estimation, namely both, recent trace weighting styles and e-weight, e-trace token weighting
styles. We analyze their effect on the two 1.5B parameter models. Moreover, to better understand
the impact of the traces themselves, we incorporate 2 different values for A (A € {0.98,0.99}) in
these experiments. Specifically, for each model training on RL finetuning dataset across the different
hyper-parameters, we average the performance over the last 100 training steps to understand the
effect of different hyper-parameter choices.

0.7
Distill-1.5B Trace weights Update style )
I e e e e e 1 pmmmm e 1 rpmmmm e 1
0.6 & 1 R 1 I 1
B i 0.55 i ! 054 |
1 - 0.52 1 0.52 4 '
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3 XX BRI
g X 3050005
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GRPO both recent e-weight &-trace 0.99

Figure 3: Comparison of the final accuracy reward (smoothened over the last 20 training iterations) for
the token weighting schemes, for both 1.5B models trained on the ORZMath57K dataset. Overall, all
token weighting schemes improve training accuracy compared the the GRPO baseline. Interestingly,
the both-style trace weight results in higher performance compared to the classic recent-style, showing
that alternative token weighting schemes could greatly improve model performance.

First, we observe that the least sensitive hyperparameter is the token weighting style, as both e-weight
and e-trace have similar average performance across all datasets. This leads to promising avenues for
future work, by providing simple weighting mechanisms that focus on early and late tokens. Despite
the similar performance, we stick with e-trace, which is supported theoretically by GAE and aligns
with the PPO-style clipped surrogate objective function.

Thttps://huggingface.co/datasets/hiyouga/math 12k
Zhttps://huggingface.co/datasets/riddickz/math-rl-16k
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Next, the choice of \ affects the back up, and the eligibility of the past states. As A approaches
1, it increases the eligibility for distant state, potentially accelerating the updates. The opposite
is true when A approaches 0. We found the performance to be the best at A = 0.99 across the
different datasets and the two architectures. Finally, for the trace weighting style, both systematically
outperforms GRPO, and sometimes the classic recent style as well. An example of this can be seen
in with the other datasets available in Recent work (Bachmann & Nagarajan|
2024) discusses phenomenon where as the sequence progresses, the next-tokens start falling in
place thereby making the next token prediction slightly easier. So, while the better performance
of weighting style both compared to recent is interesting from an RL standpoint, the LLM text
generation presents not only a convincing explanation but also warrant further investigations for more
domain specific and informed credit assignments in RL for LLM scenarios.

Based on the analysis, we pick the best configuration from the experiments across the two models
to be (A=0.99, weight style=both/recent, update style=e-trace), and (A=0.99, weight style=recent,
update style=e-trace) for the experiments on the 3B and 7B models respectively.

4.2 TRAINING EFFICIENCY

ORZMath-57K Math-12K MathRL-16K

© 0.75 — GRPO i o
] GRPO-A Y NP PLE E:
£ 0.50 S nniEs . 58
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< /,.\_.__—-M e S Y -
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[ - g R (;E
S 0.25 § o
§ ! i ] =
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0.8 .
goe / 1 e
© L =5
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0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000
Global step Global step Global step

Figure 4: Comparison of training on different RL Math datasets between the best hyperparameter
configuration of GRPO-A and GRPO across the 4 different models used throughout this paper
(ordered by row). GRPO-\ systematically outperforms GRPO in terms of accuracy reward during
training.

In we compare the training of GRPO with GRPO-\ across the different RL-mathematical
reasoning datasets. We excluded the training comparison on GSMS8K, for some models include public
datasets including GSMS8K in their SFT or pretraining corpus thereby affecting the performance
E The training plots show a trend of improved training exhibited from using GRPO-)\ with the
average gap between the different variants of GRPO-)\ and GRPO to be around 20-50%, while
the performance itself is affected by the choice of the architectures, and the dataset to post-train.

3For a complete training comparison across all RL finetuning datasets ref. [Appendix C




Under review as a conference paper at ICLR 2026

For example, the instruct-tuned Qwen2.5-Math-1.5B architecture performs significantly better than
Deepseek-R1-Distill-Qwen-1.5B, which is an R1-distilled Qwen2.5-Base model. Likewise, with
the size of the architecture the average performance across the methods increases. The 7B model
significantly performs better than the 1.5B and 3B models, although, the gap between 3B model
and 1.5B models are not very significant. We take this to be an artifact of the model for the base
models in Qwen2.5 series have a significantly better performance over LLaMA-3.1 base (Yang
et al.| 2024} Hui et al.| 2024)). Depending on the dataset, the difficulty of the sampled mathematical
problems varies significantly. For example, post-training on GSMS8K results in a higher training
performance compared to MathRL-16k or Math12k datasets, as GSM8k’s questions are much easier
to solve. Also, unsurprisingly the size of the architecture does affect the magnitude of the gains during
training for the improvement on 7B model is much lower than on the smaller models. Despite these
differences in sizes, datasets and architectures, GRPO-)\ demonstrates a significant improvement over
GRPO through applying the traces for improved reasoning with accelerated update resulting in (a)
faster convergence across the models, and (2) improved performance on RL training across smaller
architectures.

In addition to the accuracy reward evolution over the steps, we monitor the KL-divergence between
the updated policy 7y, at timestep ¢ and the reference model 7s. The accumulated log-probabilities
in GRPO-\ ’s objective function mean their gradients are larger than for GRPO, which increase the
risk of deviating from ;. We observe that the KL-divergence stays low throughout training (ref
[Appendix C), which shows that GRPO-) ’s increase in performance is not coming at the cost of
overfitting. This is because we adopt two specific techniques to ensure a smooth and stable training:

Clamping the advantage function For fine-tuning LLMs with RL, Roux et al.| (2025) have
observed that positive and negative returns in the policy gradient loss produce drastically different
behavior in terms of gradient updates. Negative returns encourage 7 to move as far as possible from
the corresponding trajectory, which can act as a destructive force on model parameters. GRPO-\
multiplies advantages instead of returns with log 7 (ay, s¢), but, as-is, we observe similar trends
as |Roux et al./s observations. To mitigate this issue, we adopt a similar approach, i.e., we clamp
negative advantages to a small value (—0.1 in our experiments). With the proposed clamping, the
KL-divergence is stable, albeit higher than GRPO. We argue that a higher - but stable - KL-divergence
may in fact improve learning, as a too strong KL regularization potentially limits exploration during
policy optimization (Hu et al.,[2025};[Zhang & Zuo| [2025)), and a high reguralization term (5) does
not correlate with better learning (Lambert et al., [2024).

Mitigate reward hacking: We observed during training of GRPO-\ on non-SFT’ed LLMs
(Qwen2.5-Math-1.5B-Instruct) with the objective of optimizing both the “format” and “accuracy” of
the response generated may lead to an unstable training, where the LLM learns to hack the reward
functions to end up optimizing for the easier reward functions after a long number of steps Skalse
et al.[(2022). To avoid this behavior, we train LLM with single reward RL, to maximize the accuracy
reward, and a pre-SFT step to improve formatting. We observe the format reward to stay high
throughout the RL training without forgetting the formatting learnt in the SFT step.

The results across two different architectures (LLaMA3.1, and Qwen2.5) and different sizes 1.5B, 3B
and 7B on 4 different training datasets demonstrate that GRPO- ) is indeed stable and is much better
than GRPO to train better on RL datasets through credit assignment.

4.3 BENCHMARK PERFORMANCE

In we compare the performance of LLMs post-trained with GRPO and GRPO-\ on differ-
ent train-datasets across 5 challenging and popular math-reasoning benchmarks, AIME24, AMC,
OlympiaBench, Math500 and MinervaMath. We observe that the average improvement that GRPO-A
has over GRPO is quite significant. However, the choice of the dataset to post-train appears to have
an effect on the benchmark performance.

First, models that have been trained on the ORZMath57K perform far worse on the evaluation tasks
than the models trained on other benchmarks. This is consistent across multiple model architectures
and sizes, be it for GRPO and for GRPO-\ . Upon further investigation, we found that these models
are much less accurate in providing an answer in the valid format. The effect of different datasets on
the RL finetuning warrants a special treatment, which, however, is out of scope for this paper. Next,
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Table 1: Average performance for each evaluation benchmark across the different training datasets.
This table only contains GRPO-) , not the variations introduced in [subsection 3.2

Evaluation benchmark (accuracy)

Model Method —\\ o rage | AIME24 | AMC | MATH | Minerva | Olympiad
GRPO 0.334 0067 | 0380 | 0.68 | 0219 0318
Qwen-1.5B
GRPO-A  0.346 0.104 | 0381 | 0699 | 0215 0.333
RI-Distill-Qwen1.58  ORPO 0335 0117 | 0416 | 0675 | 0.191 0.278
GRPO-\  0.363 0.142 | 0443 | 0716 | 0212 0.303
RLDistill.LLaMA3p  ORPO 0.142 0042 | 0092 | 0309 | o0.114 0.092
GRPO-\  0.200 0034 | 0202 | 0450 | 0.172 0.144
RI-DistllQwen78  ORPO 0.429 0200 | 0491 | 0775 | 0320 0361
GRPO-A  0.451 0217 | 0518 | 0800 | 0.334 0.384

we observe that the 3B model performs worse on the evaluation benchmarks than the smaller 1.5B
models. We believe this is due to the fact that the 3B model is the only one using a Llama architecture,
while the other ones use Qwen2.5, which generally performs better than Llama3.1 on mathematical
tasks (Yang et al.| [2024]). Finally, post-training on the MathRL-16k dataset results in particularly good
performance on the evaluation benchmarks for both GRPO and GRPO-\ , with GRPO- resulting
in an improvement of over 5 points (0.0552) across the benchmarks. This impressively leads to the
7B model post-trained with GRPO-\ producing a correct answer 47.6% of the time, as shown in

We refer to[Appendix E|for complete benchmarking performance of all the checkpoints.

5 LIMITATIONS

While fine-tuning a LLM with GRPO-\ greatly improve its training and evaluation performance
compared to GRPO, it comes at the expense of a decrease in training stability. The KL-divergence
between GRPO-A ’s fine-tuned 7y and 7 is larger than for GRPO, and becomes order of magnitudes
larger with the negative advantage clamping. Moreover, even though we derive a bound on the bias
of using V'(s¢) instead of V'(s;), explicitly incorporating this bias into the advantage estimation was
detrimental to the policy improvement (see related experiments in and more extended
discussion in [subsection A.2). This seems to indicate that GRPO-) ’s objective function is quite
sensitive. Additionally, all the experiments we performed are focused on mathematical reasoning
datasets. It is unknown if we will also witness the same gain in performance we have seen on these
benchmarks on other reasoning tasks, such as coding, or even general-purpose tasks. Finally, even
though indicates that the improvement gap between GRPO-\ and GRPO is larger on the
3B and 7B models than the 1.5B models, it remains to be seen if this improvement gap scales to
models with even more parameters, e.g., the 32B or 72B variants of Qwen2.5, due to computation
restrictions.

6 CONCLUSION AND FUTURE WORK

We present GRPO-)\ , which significantly outperforms GRPO both in terms of training and evaluation
performance across 4 training datasets, 5 mathematical reasoning benchmarks, 3 different model
sizes and 2 different model architectures. In contrast to GRPO, GRPO-\ incorporates a reformulation
of the generalized advantage estimation, allowing it to rapidly back-propagate the sequence reward
to relevant tokens. We show that GRPQO’s advantage term increasingly biases value estimates for
later tokens, spurring us to investigate alternative token weighting schemes that put a higher focus on
early tokens. Extensive experiments show that this can result in higher performance than the classic
traces used by GAE. This leads to an interesting avenue for future work, i.e., by analyzing the impact
of different types of traces. Moreover, even though our experiments when incorporating the bound
directly into the advantage estimate were inconclusive, we believe it warrants further investigation, to
not only improve the accuracy of the updates, but also better stabilize GRPO-\ ’s training.
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A  GRPO-)\ THEORY

We propose a re-parametrization of the generalized advantage estimation so they can be taken
advantage of by critic-free methods such as GRPO.

A.1 FULL VERSION OF LEMMAII

First, we take a look at GRPO’s advantage estimation, which is centered around producing multiple
rollouts from the start-state so, and using their resulting scores to estimate x4}, the mean return of all

states {3?7 e sf_l} in group G.

The mean 4! serves as a baseline to reduce the variance of G in PPO’s policy update. Indeed, a
learned function of the state b(s;) (where typically b(s;) = V(s¢)) can be used as a baseline, keeping
the policy gradient unbiased. However, p} does not really depend on sy, as it is an average of returns
starting from sq. This difference AV (s;) = V(sg) — V(s¢) and the bias it introduces is what we
analyze in the following Lemma.

Lemma 1 Considering an LLM post-training setting, i.e., a deterministic transition function

where s; is defined by ap.:, and a binary reward signal, AV (s;) = V(sg) — V(sy) < 1 —
t—1

[Th—o Xay aros To(ax|s), where a3

token, and thus terminating the episode.

corresponds to the action generating the end-of-sequence

Proof: By definition, the value V' (s) is the expectation over the returns from any given state s.
Thus, V' (s¢) can be written as,

VTI'(SO) = Eﬂ' [GO} = ETF

T
zwﬂ
t=0

The sum until 7" can be split into two terms, 0 — ¢, and t — T'. Then,

Vﬂ-(SO) = ]E

t—1 T

Z ’Yka + Z ’)’krk‘|

k=0 k=t

t—1 T
Z vk_trkl .
k=t

3

=E ] ++'E

Z'Ykrk

k=0

The second term is the expected return from s;, which is nothing but V; (s;). Then,

t—1
V(so) =E [Z Yere| +9'V (s0),
k=0

AV (s) = V(so) — V(s1)
< V(so) = 7'V (st)

t—1
gﬂzwm
k=0

“

In our LLM post-training setting, all intermediate rewards are zero, i.e., r; = 0,V¢ < T. When an
EOS-token is selected as action, the reward rr is either 1 (the policy provided the correct answer to
the problem) or O (the policy provided an incorrect answer). Thus, V (s;) > 0, Vs;. More interestingly,

E {ZZ;B vk rk] > 0 only if there exist cases where the episode ends before timestep ¢.
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Assuming every episode is successful, i.e., every EOS-token yields a reward of 1, then
E {Zz;lo 7k rk} is upper-bounded by the probability of generating at least one EOS-token at any
time during an episode. Thus,

Visy) <E

Zwk]ﬂ— H > wolaklsk) )

k=0 aj,7aFoS

probability of not generating
at least one EOS-token in ¢ timesteps

A.2 FULL VERSION OF THEOREM[]]

Next, we repurpose the bias-variance trade-off from GAE towards a critic-free policy-update like
GRPO.

Theorem 1 The policy gradient estimate § using traces from generalized advantage es-
timation Agap can be re-parameterized with a critic-free TD-error 6; such that § =

Zfio Acag(st) Ve log ma(as|si) = Z;io ot ZLO (W)\)lve log mp (at—1]st—1)-

Proof: We reorganlze the many terms of the policy gradient formulzﬂ so that the gradient is of
the form: g = E, [>;°, r+¥], where 1, can depend only on the states, actions, and rewards that
occurred before (or immediately after) the arrival of r,. We will approximate for an online estimator
of the policy gradient §:

g= ZAGAE(St) Vo log ma(as | s¢) (©)
t=0
= V9 log mp(as | s¢) Z YA) 5t+l @)
t=0 1=0

Let us introduce the following shorthand:

V. = Vplog m(as | st), )

then expand the sum:

G=Vo(y + (YN8Y + YNy + ...)

+V1(6) + (YN)Y + (AN)26Y + ...) )
+ Va(63 + (YA)SY + (AN)26) + ...)
+ ...
group the 6, terms:
§=234 Vo
+6Y (V1 + (YA) Vo) (10)
+385 (V2 + (YA V1 + (YA)* Vo)

*With the existence of REINFORCE [Williams|(1992) and policy gradient methods, several works (e.g.,[Sun
et al.| (2018)) have used the reformulation of the policy gradients under different settings.
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and summarize:

t
57> (N (11)
5/ Y (YN Vo log me(ar—i | $1-1) (12)

Moreover, by defining eligibility trace as the inner sum in that equation:

t
&= (WW'V, (13)
1=0
and converting to a recursive formula:
€0 = Vo (14)
€t 1— (’}/)\)Etfl + Vt, (15)

we have our online generalized advantage estimator for the policy gradient:

g=> 6 e (16)
t=0

So at each time-step, we compute the gradient term §; = 8, ¢; as the product of the TD error. The
role of A € [0, 1] is unchanged, remaining a bias-variance trade-off. For A = 0, the problem reduces
to the (unbiased) TD(0) function. As we increase A towards 1, we reduce the variance of our estimator
but increase the bias.

Relation with GRPO’s normalized advantage estimation (NAE) In this work, we consider
5tV = Anag(st). The advantage is often used in policy-gradient methods |Mnih et al.|(2016)), where
subtracting the value-estimate of the current state is used as a variance-reduction technique:

5tV = Gt - V(St)

However, Anag(s¢) subtracts V(sg) instead of V' (s;). Using AV (s;) = V(sg) — V(s¢) introduced
in results in:

52/ = Gt — V(So) + AV(Sf)

We can thus potentially reduce the bias from using V' (s¢) by including knowledge about AV (s;) in
5.

In preliminary experiments, we simply added the upper bound for AV (s;) to ANag(st).

However, results were inconclusive. The bias bound assumes that the policy is optimal, resulting in
the highest potential value for AV. GRPO removes this term, resulting in a pessimistic advantage
value (compared to having an actual critic). By naively adding the upper bound of AV, we surmise
this might be over-correcting the bias term, resulting in an optimistic advantage value. This means
that including the bound could reinforce action-probabilities that lead to O-rewards (encouraging false
positives) while, in the case of GRPO, it instead reduces action-probabilities that lead to 1-rewards
(penalizing the false negatives). In the former case, we are stuck in suboptimal behavior, while in
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the latter, there could be alternative paths towards solving the problem. As such, a more careful bias
correction term is needed. It is important to mention that this only focuses on Ay in the GRPO
setup, not GRPO-) . Adding eligibility traces balances the bias-variance trade-off, which is one of
the reasons why GRPO-\ outperforms GRPO. We aim to further this direction in future work.

A.3 PSEUDOCODE

In we introduce GRPO-) , the variant e-trace follows the traditional RL literature and
applies the trace before the PPO clipping objective. (left) represents GRPO-) , with
the traces derived from Likewise, the trace-inspired e-weight variant is illustrated in
We color code the pseudocodes where blue denotes the modifications on the GRPO
algorithm done for the e-trace variant of the GRPO-)\ and red denote the modifications for the
e-weight variant.

A less rigorous explanation of e-weight variant is that the loss at each step (token) essentially gets
reweighted implicitly with e-trace. e-weight does this reweighting of the loss explicitly. To that, this
uses the PPO-clip to provide the td-error, §¥. Multiplying the trace weights with log 7T,f.i provides

the traces, €, which then multiplied with the advantage estimated explicitly weighs the loss of

different tokens (e;‘fi‘Azi log mp). However, we observe multiplying that log wfﬂ- results in instability.
We alleviate that by soft clamping log Tl'zr with 1 + o(log ﬂzi — 1). The choice of the clamping

function, f, sigmoid can be replaced with tanh. The clamping function, f, (a) ensures linear
dependence on the gradient and preserve the spirit of the traces, and (b) acts as a regularization to
prevent extreme values.

Algorithm 1: GRPO-) (e-trace) Algorithm 2: GRPO-) (e-weight)
InplIt: G, 7763 ﬂ,ref’ 7Y, Estyle, Eclip, ﬁ, ANAE IHPUt: G, 770, ﬂ_ref, 7Y Estyles Eclips ,87 ANAE
for i € |G| do fori € |G| do
ANAE <— maX(ANAE, —0.1); ANAE < max(ANAE, —0.1);
coefy < coefy + exp(log TI':i — log Tr;’fzd);
t t
t . ) coefy «— clamp(coef1, 1 =+ €cip);
exp(Y_(yN)' logmy; — we < S _o(PN)h o
l:to A:rf + — min(coefy, coefs) Anag(}.) ;
S () log it ) € < w@(1+o(logny; — 1);
1=0 o lorpo- — €0; AT75
Lorro-x < Lorro-x + B - UKL

coefy < clamp(coef1, 1 £ €aip); -
v A Y.
azi <~ ANAE(JU;L«)a

GRPO-)

< — min(coefy, coef2)s; ;
d

Larro-n < Lorro-x + B - Lk L;

Upper bound AV; The estimation of §V by requires an upper bound for AV;. In
we derive the upper bound to be the probability of generating an EOS-token. Our
implementation does not use this upper bound in its advantage.

Trace weights Trace matrix is a non-learnable precomputed lower-triangular matrix with 1s on
the leading diagonal. The two variants of GRPO-\ uses recent and both styles for the trace-weights,
which is computed with get _trace (). The get _trace () method takes in as arguments: (7, A,
max_length, style: both, recent). For the choice both, the trace matrix is estimated as:

1 if rows = cols
both ’
t = 17
race {max (max (€, (YA)" 7<), (yA)«),  otherwise ’ a7
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for recent:

1, if rows = cols

max (e, (yA)max(eols)=cols) = otherwise (18)

trace'f‘ecent — {

Usage of weight style both as an alternate to recent, and the strong training and benchmark perfor-
mance that this provides is encouraging and serves as a precursor to explore alternate weighting styles
that are domain or data dependent.
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B HYPERPARAMETERS

This section provides a complete overview of all hyperparameters used to run our experiments. Our
codebase is based on Huggingface OpenR1.

For evaluation, we use the understanding-r1-zero codebase.

Table 2: Hyperparameter configurations used for GRPO-\ .

Model size | 1.5B | 3B | 7B
Precision bflée
Distributed type Deepspeed
Number of devices 4
Supervised Finetuning stage
Epochs 1
Max sequence length 4096
Learning rate 2x107°
Per device batch-size 2
Gradient accumulation steps 8
Full finetuning (no LoRA) yes | yes | no
GRPO and GRPO-\ configuration
Training steps 10000 | 3500
Maximum prompt length 256
Group size (number of generations) 8
Maximum gradient norm 1.0
KL-divergence coefficient (53) 0.04
Accuracy reward weight 1.0
Format reward weight 0.0
Maximum completion length 256 | 256 | 768
Per device batch-size 16 16 8
Gradient accumulation steps 1 1 2
Full finetuning (no LoRA) yes | yes no

GRPO-\ specific configuration

Advantage clamping \ -0.1

B.1 COMPUTATIONAL RESOURCES

The performed experiments were executed on a High Performance Computing (HPC) cluster com-
prised of 42 nodes, each containing 4 NVIDIA H100 GPUs, 2 Intel Xeon Gold 6442Y CPUs, and
512GB memory. Each experiment required one node (4 H100 GPUs), with 1.5B and 3B models
running for 16 hours (full-finetuning, with no gradient accumulation), and the 7B model running
for 40 hours (LoRA finetuning, with gradient accumulation of 2). For each 1.5B, 3B, 7B parameter
model, we performed 1 baseline experiment (GRPO) and 8, 2, 1 variations of GRPO-A , respectively,
on 4 different datasets. This resulted in a total of 250 GPU-days.
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C TRAINING PLOTS

This section provides the training plots of all the experiments performed in this work. We show
that, regardless of the value for A, the weighting update (e-trace, e-weight) or the type of trace (both,
recent) used, GRPO-\ has a higher training accuracy than GRPO.

Additionally, we show the plots comparing the KL-divergence between 7y and 7.s. While the KL-
divergence is higher for GRPO-\ than for GRPO, it remains quite stable over the training duration.
The crucial aspect to avoid explosion of KL-divergence is the clamping of negative advantages
to —0.1, inspired by |Roux et al.|(2025).
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C.1 QWEN2.5-MATH-1.5B-INSTRUCT
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(a) Comparison of training reward over time across all hyperparameters with A = 0.98 on Qwen2.5-Math-
Instruct-1.5B.
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(b) Comparison of training reward over time across all hyperparameters with A = 0.99 on Qwen2.5-Math-
Instruct-1.5B.
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(a) Comparison of KL(6¢||0:.s) across all hyperparameters with A = 0.98 on Qwen2.5-Math-Instruct-1.5B.
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(b) Comparison of KL(6¢||0y) across all hyperparameters with A = 0.99 on Qwen2.5-Math-Instruct-1.5B.
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C.2 DEEPSEEK-R1-DISTILL-QWEN-1.5B
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(a) Comparison of training reward over time across all hyperparameters with A = 0.98 on DeepSeek-R1-Distill-
Qwen-1.5B.
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(b) Comparison of training reward over time across all hyperparameters with A = 0.99 on DeepSeek-R1-Distill-
Qwen-1.5B.
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(a) Comparison of KL(6;||6y) across all hyperparameters with A = 0.98 on DeepSeek-R1-Distill-Qwen-1.5B.
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(b) Comparison of KL(6;||0,.s) across all hyperparameters with A = 0.99 on DeepSeek-R1-Distill-Qwen-1.5B.
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C.3 DEEPSEEK-R1-DISTILL-LLAMA-3B
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(a) Comparison of training reward over time across all hyperparameters with A = 0.99 on R1-Distill-Llama-3B.
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(b) Comparison of KL(:||0;.s) across all hyperparameters with A = 0.99 on DeepSeek-R1-Distill-Llama-3B.
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C.4 DEEPSEEK-R1-DISTILL-QWEN-7B
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(a) Comparison of training reward over time across all hyperparameters with A = 0.99 on DeepSeek-R1-Distill-
Qwen-7B.
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(b) Comparison of KL(0¢||0r.s) across all hyperparameters with A = 0.99 on DeepSeek-R1-Distill-Qwen-7B.
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in the main manuscript shows the final training performance for each variation of each 1.5B

0.98

both

training performance plots for the models post-trained on the other datasets. The observations made

parameter model, using the ORZMath57K dataset for RL post-training. Here, we show the same
in [subsection 4.1]remain valid for the other datasets.
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D HYPER-PARAMETER COMPARISONS
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E COMPLETE BENCHMARK RESULTS

E.1 EVALUATION SCORES

Table 3: Benchmark results for Qwen2.5-Math-1.5B-Instruct

Trace Style GRPO both recent
Update Style | GRPO e-trace e-weight e-trace e-weight
A GRPO | 098 099 098 099 098 099 098 0.99
Trained on math12k
AIME 0.067 | 0.067 0.133 0.100 0.033 0.067 0.133 0.100 0.100
MATH 0.704 | 0.744 0.756 0.746 0.682 0.720 0.688 0.718 0.696
AMC 0.386 | 0.458 0.470 0.410 0410 0.410 0422 0.361 0.337
OLBen 0.324 | 0.348 0.366 0.360 0.317 0.327 0317 0.336 0.301
MIN 0.191 | 0.206 0.217 0.199 0.221 0.213 0.195 0.232 0.213
AVG 0.334 | 0.365 0.388 0.363 0333 0.347 0351 0.349 0.329
Trained on math-rl-16k
AIME 0.067 | 0.100 0.133 0.067 0.200 0.100 0.167 0.033 0.100
MATH 0.652 | 0.684 0.682 0.710 0.696 0.692 0.704 0.626 0.712
AMC 0.325 | 0.325 0410 0.373 0.506 0.313 0325 0.337 0434
OLBen 0.293 | 0.293 0.323 0.307 0.366 0.323 0.321 0.277 0.332
MIN 0.202 | 0.228 0.191 0.206 0.246 0.217 0.199 0.173 0.206
AVG 0.308 | 0.326 0.348 0333 0.403 0329 0.343 0.289 0.357
Trained on gsm8k
AIME 0.067 | 0.100 0.067 0.200 0.167 0.067 0.133 0.100 0.100
MATH 0.706 | 0.666 0.716 0.716 0.706 0.684 0.704 0.710 0.718
AMC 0.422 | 0.337 0.398 0410 0410 0.422 0398 0410 0.422
OLBen 0.345 | 0.319 0.344 0369 0.356 0.348 0.350 0.338 0.335
MIN 0.257 | 0.188 0.213 0.213 0.202 0.254 0.217 0.224 0.228
AVG 0.359 | 0322 0347 0.382 0.368 0.355 0.360 0.356 0.360
Trained on orzmath57k
AIME 0.067 | 0.067 0.133 0.067 0.133 0.100 0.067 0.033 0.033
MATH 0.682 | 0.630 0.686 0.716 0.736 0.692 0.708 0.606 0.684
AMC 0.386 | 0.386 0.350 0.398 0.446 0.386 0.373 0.386 0.386
OLBen 0.311 | 0.244 0.292 0.333 0.333 0.335 0.341 0.262 0.324
MIN 0.226 | 0.254 0.202 0.202 0.210 0.228 0.195 0.151 0.217
AVG 0.334 ] 0316 0332 0.343 0.378 0.348 0337 0276 0.323
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Table 4: Benchmark results for r1-Qwen-distill-1.5B

Trace Style GRPO both recent
Update Style | GRPO e-trace e-weight e-trace e-weight
A GRPO 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99
Trained on math12k
AIME 0.133 | 0.033 0.133 0.100 0.167 0.133 0.167 0.133 0.133
MATH 0.640 | 0.656 0.690 0.712 0.752 0.708 0.708 0.632 0.698
AMC 0.398 | 0410 0458 0446 0482 0410 0.494 0.325 0.422
OLBen 0.264 | 0.277 0.279 0.311 0.339 0.289 0.283 0247 0.268
MIN 0.199 | 0.202 0.206 0.158 0.243 0.210 0.180 0.143 0.180
AVG 0.327 \ 0316 0353 0345 0.397 0350 0366 0.296 0.340
Trained on math-rl-16k
AIME 0.000 | 0.133 0.100 0.067 0.067 0.133 0.167 0.000 0.133
MATH 0.658 | 0.564 0.630 0.714 0.492 0.694 0.726 0.396 0.686
AMC 0373 | 0434 0434 0446 0301 0422 0446 0.253 0.422
OLBen 0.255 | 0.271 0270 0.299 0.197 0.305 0.323 0.141 0.256
MIN 0.154 | 0.180 0.184 0.228 0.217 0.224 0.210 0.110 0.184
AVG 0.288 \ 0316 0323 0351 0255 0356 0374 0.180 0.336
Trained on gsm8k
AIME 0.200 | 0.133 0.067 0.133 0.133 0.133 0.100 0.100 0.167
MATH 0.756 | 0.680 0.628 0.706 0.726 0.736 0.704 0.746 0.742
AMC 0494 | 0422 0.373 0446 0482 0446 0410 0.518 0.506
OLBen 0.330 | 0.271 0.255 0.305 0.324 0.311 0.283 0.338 0.329
MIN 0.243 | 0.151 0.162 0.199 0.239 0.199 0.213 0.232 0.261
AVG 0.405 \ 0.331 0.297 0358 0381 0365 0342 0387 0.401
Trained on orzmath57k
AIME 0.133 | 0.067 0.133 0.133 0.133 0.167 0.133 0.167 0.133
MATH 0.644 | 0.684 0.646 0.726 0.740 0.728 0.728 0.686 0.748
AMC 0.400 | 0422 0.349 0.518 0470 0422 0494 0.386 0.470
OLBen 0.262 | 0.286 0.292 0.350 0.354 0.305 0.329 0.284 0.311
MIN 0.169 | 0.186 0.195 0.220 0.254 0.217 0.239 0.176 0.191
AVG 0.321 \ 0.329 0.323 0390 0.390 0.366 0.385 0.340 0.371
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Table 5: Benchmark results for R1-Distill-Llama-3B

Trace Style GRPO both  recent | GRPO both  recent

Update Style | GRPO | e-trace e-trace | GRPO | e-trace e-trace

A GRPO 0.99 0.99 | GRPO 0.99 0.99

Trained on | math12k | gsm8k

AIME 0.100 | 0.033 0.067 | 0.033 | 0.033 0.067

MATH 0.458 | 0460 0432 | 0.272 | 0524 0.518

AMC 0.193 | 0.157 0.205 | 0.145 | 0.277  0.205

OLBen 0.129 | 0.124  0.121 | 0.090 | 0.179  0.166

MIN 0.165 | 0.165 0.217 | 0.088 | 0.132  0.154

AVG | 0209 | 0.188 0.208 | 0.126 | 0277 0.222

Trained on | orzmath57k | math-rl-16k

AIME 0.000 | 0.000  0.000 | 0.033 | 0.000  0.000

MATH 0.300 | 0.434 0410 | 0.356 | 0.214 0.440

AMC 0.024 | 0.157 0.193 | 0.108 | 0.060 0.205

OLBen 0.046 | 0.135 0.117 | 0.105 | 0.052 0.173

MIN 0.096 | 0.195 0.151 | 0.107 | 0.121  0.165

AVG | 0.093 | 0.184 0.174 | 0.142 | 0.089  0.197

E.2 DEEPSEEK-R1-DISTILL-QWEN-7B
Table 6: Benchmark results for r1-Qwen-distill-7B

Trace Style GRPO | recent | GRPO | recent | GRPO | recent | GRPO | recent
Update Style | GRPO | e-trace | GRPO | e-trace | GRPO | e-trace | GRPO | e-trace
A GRPO 0.99 | GRPO 0.99 | GRPO 0.99 | GRPO 0.99
Trained on | math12k | math-rl-16k | gsm8k | orzmath57k
AIME 0.200 | 0.200 | 0.167 | 0.267 | 0.167 | 0.233 | 0.267 | 0.167
MATH 0.778 | 0.824 | 0.774 | 0.792 | 0.770 | 0.766 | 0.778 | 0.820
AMC 0494 | 0.566 | 0.518 | 0.578 | 0.458 | 0458 | 0.494 | 0470
OLBen 0.361 | 0388 | 0356 | 0.397 | 0353 | 0.344 | 0.375 | 0.407
MIN 0.305 | 0338 | 0342 | 0346 | 0335 | 0.298 | 0.298 | 0.353
AVG | 0428 | 0.463 | 0431 | 0476 | 0416 | 0.420 | 0.442 | 0.443
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E.3 GENERATION LENGTHS
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Figure 12: Comparison of the average generation length during evaluation between GRPO and
GRPO-) when post-trained on Qwen2.5-Math-1.5B-Instruct. GRPO-X shows the average length
across hyperparameter settings.
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Figure 13: Comparison of the average generation length during evaluation between GRPO and
GRPO-\ when post-trained on r1-Qwen-distill-1.5B. GRPO-X shows the average length across
hyperparameter settings.
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Figure 14: Comparison of the average generation length during evaluation between GRPO and
GRPO-\ when post-trained on r1-R1-Distill-Llama-3B. GRPO-\ shows the average length across
hyperparameter settings.
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Figure 15: Comparison of the average generation length during evaluation between GRPO and
GRPO-\ when post-trained on rl1-r1-Qwen-distill-7B. GRPO-) shows the average length across
hyperparameter settings.
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F RELATED WORK

Recent advances in the scalable training of large architectures Kaplan et al.[(2020); (Chowdhery et al.
(2023), the development of extensive pretraining corpora|Wei et al.|(2022a), and refined fine-tuning
strategies such as instruction tuning [Zhang et al.|(2023)) have substantially improved the capabilities
of large language models (LLMs). These improvements have enabled LLMs to produce compelling
responses across a wide range of tasks, including both closed- and open-ended question answering. In
parallel, significant research has been devoted to minimizing undesirable behaviors through methods
broadly categorized under preference learning or alignment techniques.

F.1 IMPROVING ALIGNMENT THROUGH PREFERENCES

Pairwise preferences LLMs trained via next-token prediction often fall short in instruction-
following tasks, frequently generating toxic or untruthful content. The RLHF (Reinforcement Learn-
ing with Human Feedback) framework for LLMs introduced by InstructGPT |Ouyang et al.[(2022)
addressed this by learning a reward model r(z, y) that scores responses y conditioned on prompts . In
the pairwise setting, given a preferred response y,, and a less desirable response ¥;, the model defines
the preference likelihood using the Bradley-Terry model: P(y,, > y|z) = o(r(z, yw) — 7(z,91))
Bradley & Terry| (1952).

To improve upon the original RLHF approach, DPO (Direct Preference Optimization) |[Rafailov et al.
(2023)) proposed a reparameterization of the PPO-based objective that eliminates the need for an
explicit reward or value model. Subsequent variants such as 5-DPO Wu et al.[(2024), sDPO (Stepwise
DPO) Kim et al.[(2024), and TDPO (Token-level DPO) [Zeng et al.| (2024) aim to enhance stability,
mitigate overfitting, and preserve generation diversity.

Extensions with binary and listwise preferences Several efforts have explored alternative forms
of preference data to reduce annotation burdens and improve learning. KTO (Kahneman-Tversky
Optimization) [Ethayarajh et al.|(2024)) and DRO (Direct Reward Optimization) |Richemond et al.
(2024)) use binary feedback instead of pairwise comparisons, avoiding the need to collect pairwise
preferences. KTO incorporates principles from prospect theory, introducing hyperparameters o and A
to shape the value function’s curvature and steepness. In contrast, DRO learns a parameterized value
function jointly with the policy, showing superior empirical results relative to KTO. Alternativvely,
LiPO (Listwise Preference Optimization) Liu et al.|(2024) extends pairwise preferences by utilizing
listwise preference data, arguing that richer signals from ranked outputs enable better alignment.
However, the approach is sensitive to data quality and requires non-trivial filtering to remove noise
from the training signal.

Advanced CoT with on-policy samples LLMs are increasingly applied to complex domains such
as scientific QA, mathematical reasoning, and code generation. With sophisticated pretraining and
high quality SFT,|Ding et al.| (2023); Xu et al.[(2023aib)) noted that variance in policy updates were no
longer an issue. This variance reduction resulted in RLOO (REINFORCE Leave-one-out) (Ahmadian
et al., 2024), that uses multiple on-policy samples to estimate the baseline for the REINFORCE
policy gradient update. RLOO demonstrated significant performance improvement over DPO and
PPO especially when more on-policy samples can be generated. GRPO (Shao et al.|[2024), a related
method, avoids the leave-one-out step by estimating normalized advantages using a z-score across
sampled completions. DeepseekMath, Deepseek-R1, and Deepseek-R?2 all utilize GRPO for their
significantly superior reasoning trajectories.

Improvements to GRPO GRPO originally aggregates token-level losses normalized by sequence
length, which introduces a length bias favoring shorter responses. Dr. GRPO (Liu et al., [2025)
mitigates this by normalizing over the maximum completion length instead. Other extensions to
GRPO include BNPO (batch normalized GRPO) (von Werra et al., |2020), which introduces a
minor yet effective modification: loss normalization across active tokens in a batch. When the
batch_size=1 the loss behaves like the orginal GRPO loss. DAPO |Yu et al.| (2025)) decouples
the PPO clipping parameter into €45, and €;,,,, and employs dynamic resampling to maintain
meaningful gradients when batch rewards are either all O or all 1. GRPO has also been extended
with improvements such as explicit penalties for undesirable responses, length-aware reward shaping,
and difficulty-weighted advantage scaling (Zhang & Zuol [2025). Complementary to these, GRPO-)
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proposes trace-weighted advantage estimation for better credit assignment, accelerating learning and
improving robustness on challenging benchmarks.

F.2 IMPROVING LLM REASONING

Training for improved credit assignment RLHF (Christiano et al.||2017; Ouyang et al., 2022),
based on PPO |Schulman et al.| (2017)), relies on explicit value models for reward and baseline
estimation. DPO |Rafailov et al.| (2023)), in contrast, treats the response as a single bandit action,
eliminating the need for value modeling. GRPO (Shao et al., [2024) and RLOO (Ahmadian et al.,
2024) similarly avoid explicit critics, instead estimating baselines from multiple samples. While
value models can accelerate learning, they can suffer from drift, causing misalignment between the
critic and policy. VinePPO (Kazemnejad et al.,[2024)) addresses this via Monte Carlo rollouts from
intermediate states, yielding more accurate value estimates. Beyond architectural modifications,
recent work has explored leveraging both positive and negative samples to enhance learning. Setlur|
et al.| (2024) show that incorporating negative trajectories helps unlearn spurious correlations and
establish a connection to advantage-weighted reinforcement learning. In a similar vein, Hwang
et al.| (2024) propose Self-Explore, wherein the model identifies its first incorrect reasoning step and
generates multiple continuations to construct step-level preference data. This enables fine-grained
updates via DPO and leads to improved reasoning capabilities.

Inference-time reasoning enhancements In addition to their role in training, value estimates have
proven effective during inference, particularly in planning-based approaches such as AlphaGo |Silver
et al.| (2016) and AlphaZero |Silver et al.[|(2017), which use tree search guided by value networks.
Analogous strategies have been adapted for LLMs to enhance inference-time reasoning. Several
approaches operate without explicit value critics but instead rely on structured prompting or model-
internal heuristics. Tree-of-Thoughts prompting (Yao et al.,|2023)) enables models to generate multiple
intermediate reasoning paths and iteratively evaluate them to choose the most promising trajectory.
Alternatively, Weng et al.|(2022) checks the correctness of their own intermediate outputs through
self-verification to improve the quality of CoT generation, while [Shinn et al.| (2023)) reflects over
the partial generation to improve and align better with the preferences and prompt. Planning-based
techniques take this further by explicitly decomposing a complex input query into a sequence of
subproblems (Wang et al.l 2023a)). Even lightweight inference-time strategies like self-consistency
decoding (Wang et al., 2022) have demonstrated performance gains, outperforming deterministic
decoding strategies such as greedy or beam search.
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