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Abstract001

The widespread adoption of large language002
models (LLMs) has increased the need for re-003
liable AI-text detection. While current detec-004
tors perform well on benchmark datasets, we005
identify a critical vulnerability: increasing the006
temperature parameter during inference signif-007
icantly reduces detection accuracy. Based on008
this weakness, we propose TempParaphraser,009
a simple yet effective paraphrasing framework010
that simulates high-temperature sampling ef-011
fects through multiple normal-temperature gen-012
erations, effectively evading detection. Ex-013
periments show that TempParaphraser reduces014
detector accuracy by an average of 97.3%015
while preserving high text quality. We also016
demonstrate that training on TempParaphraser-017
augmented data improves detector robustness.018
All resources are publicly available to support019
future research.020

1 Introduction021

Large Language Models (LLMs) have significantly022

enhanced productivity across various fields includ-023

ing news reporting, story creation, and academic re-024

search (M Alshater, 2022; Yuan et al., 2022; Chris-025

tian, 2023). However, their rapid deployment raises026

concerns about their misuse in creating fake news,027

malicious reviews, and facilitating academic dis-028

honesty (Ahmed et al., 2021; Adelani et al., 2020;029

Lund et al., 2023; Lee et al., 2023). In response,030

AI-text detection technologies have been developed031

to differentiate between human and AI-generated032

texts (Mitchell et al., 2023; Bao et al., 2024; Guo033

et al., 2023).034

While current detectors show promising results035

on benchmark datasets (Mitchell et al., 2023; Bao036

et al., 2024; Guo et al., 2023), recent studies (Sada-037

sivan et al., 2023; Krishna et al., 2023; Zhou et al.,038

2024) have explored attack strategies against AI-039

text detectors, successfully misleading their predic-040

tions. Studies (Ippolito et al., 2020; Fishchuk and041

Figure 1: Effect of temperature on AI-text detectors.
As the temperature increases during LLM inference,
both statistical-based and neural-based detectors show
lower confidence in identifying the text as AI-generated.
Details about these detectors are in Appendix A.

Braun, 2023; Pu et al., 2023; Dugan et al., 2024) 042

have shown that simple adjustments to sampling 043

parameters, such as top-p, repetition penalty, and 044

temperature, can affect the performance of detec- 045

tors. 046

In this paper, we focus on the impact of the tem- 047

perature parameter. Our experiments show that 048

increasing the temperature significantly reduces 049

the confidence scores of AI-text detectors, making 050

AI-generated text more difficult to identify (see 051

Figure 1). Further analysis reveals a fundamental 052

limitation of current detection methods: detectors 053

rely on specific statistical patterns in text distri- 054

bution, which can be disrupted by the random- 055

ness introduced through higher temperature set- 056
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Figure 2: Our main idea is shown in the dashed box:
Using normal temperature for multiple independent
samplings simulates the smoother distribution of high-
temperature generation, leading to increased output ran-
domness.

tings (see Section 3.2 for detail analysis). Although057

higher temperatures can decrease detection accu-058

racy, their direct application during inference often059

leads to a noticeable decline in text quality (Peep-060

erkorn et al., 2024) (see Appendix B for details on061

the relationship between temperature and text qual-062

ity). As a result, previous research has generally063

focused on temperature settings within a narrow064

range (Fishchuk and Braun, 2023), where the ef-065

fect of randomness on detection performance is066

less significant. Consequently, this vulnerability067

has largely gone unnoticed.068

To further explore this vulnerability, we intro-069

duce a simple yet effective framework, TempPa-070

raphraser, designed to evade detection. Temp-071

Paraphraser operates as a post-processing tool. It072

Temporarily stores the original text generated by073

LLMs, paraphrases it and outputs an optimized074

version that can evade detection.075

This framework incorporates a paraphrasing076

model fine-tuned from an LLM using synthetic077

data. As shown in Figure 2, the TempParaphraser078

framework simulates the smoother distribution in079

high-Temperature generation by producing multi-080

ple paraphrased variants for each input. This pro-081

cess simulates the variability introduced by higher082

temperature values during inference. TempPara-083

phraser then increases the entropy of the generated084

text, disrupting the statistical patterns used by AI-085

text detectors.086

Our main contributions are as follows:087

• Through experiments with various detectors,088

we demonstrate that adjusting the temperature089

parameter effectively deceives AI-text detec-090

tors (Sec 3.1), revealing their reliability is-091

sues and providing insights into the underly-092

ing causes (Sec 3.2). 093

• We propose TempParaphraser, a plug-and- 094

play paraphrasing framework that operates in- 095

dependently of the original model (Sec 4.2). 096

By refining already generated texts, Temp- 097

Paraphraser achieves state-of-the-art perfor- 098

mance, reducing detector accuracy by an aver- 099

age of 97.3% while maintaining high text qual- 100

ity. Notably, this framework can also be used 101

to augment training data for AI-text detectors, 102

enhancing their robustness (Sec 5.3.3). 103

• We provide a high-quality data generation 104

framework for AI-text detection and adver- 105

sarial attack research (Sec 4.2.2). To support 106

future advancements in the field, we have re- 107

leased all training data, models, and code for 108

TempParaphraser1. 109

2 Related Work 110

AI-Text Detection Current detection methods can 111

be mainly categorized into two types: 1) Statistical- 112

based methods (Mitchell et al., 2023; Bao et al., 113

2024), which detect AI-generated text by ana- 114

lyzing differences in vocabulary distribution be- 115

tween human-written and machine-generated con- 116

tent. These methods assume that LLMs, trained 117

on large-scale corpora, tend to favor a specific sub- 118

set of high-frequency words. In contrast, human- 119

written text is more context-driven and exhibits 120

greater diversity in word choice (Gehrmann et al., 121

2019). 2) Neural classifiers (Guo et al., 2023; Su- 122

perAnnotate, 2024), which use deep learning mod- 123

els to distinguish AI-generated text from human- 124

written text. For example, OpenAI fine-tunes 125

RoBERTa-based (Liu et al., 2019) models to detect 126

GPT-2-generated text (OpenAI, 2019). Addition- 127

ally, (Hu et al., 2023) improves detection robust- 128

ness through adversarial training. 129

Additionally, there is a distinct approach, though 130

not a direct detection method, which involves wa- 131

termarking AI-generated text by embedding im- 132

perceptible patterns to facilitate its identification 133

(Kirchenbauer et al., 2023; Zhao et al., 2023). 134

Our proposed method is effective against all the 135

above-mentioned detection strategies. 136

Attacks on AI-Text Detection (Shi et al., 2024) 137

demonstrated the effectiveness of word substitu- 138

tion attacks against AI-text detectors. (Zhou et al., 139

2024) propose a framework utilizing adversarial 140

1Due to the anonymous review process, the open-source
link will be provided after the paper is published.
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attacks, designed to perform minor word-level per-141

turbations in AI-generated text to confuse detectors142

and evade detection.143

Paraphrasing is another common approach.144

(Fishchuk and Braun, 2023) utilized carefully de-145

signed prompts to instruct models to rephrase the146

text. (Alexander, 2023) proposed prompts that147

increase perplexity and burstiness, making AI-148

generated text appear more human-like. (Sadasivan149

et al., 2023) and (Krishna et al., 2023) explored150

paraphrasers fine-tuned from LLMs to rewrite AI-151

generated text. However, these methods apply152

coarse modifications to entire text segments,153

compromising fluency and semantic integrity.154

Another line of research reveals that adjusting155

sampling parameters such as repetition penalty,156

temperature, top-p, and top-k can help evade detec-157

tion to some extent (Ippolito et al., 2020; Fishchuk158

and Braun, 2023; Pu et al., 2023; Dugan et al.,159

2024). Yet most prior studies explore a limited160

temperature range, leaving the deeper relation-161

ship between temperature and detection success162

insufficiently examined.163

In contrast to previous methods, our work sys-164

tematically investigates how high-temperature de-165

coding disrupts the key distributional signals used166

by detectors. We propose a sentence-level para-167

phrasing framework that simulates the effect of168

high-temperature generation. This finer control en-169

ables us to preserve text quality while achieving170

better evasion performance.171

3 Preliminary Experiment172

To explore the impact of temperature on AI-text173

detection, we conducted a preliminary experiment.174

3.1 Settings and Results175

We selected 3,000 questions from the Dolly176

(Conover et al., 2023) dataset and used the177

Llama3.1-8B-Instruct (Dubey et al., 2024) model178

to generate responses with different temperature179

settings. In particular, the temperature of 0.0 repre-180

sents greedy sampling.181

As shown in Figure 1, the results reveal a strong182

correlation between temperature and AI-text de-183

tection confidence score. As the temperature in-184

creases, detection scores decrease, meaning detec-185

tors become less confident in classifying text gen-186

erated at that temperature as AI-generated. This187

suggests that higher-temperature sampling makes188

AI-generated text harder to detect. In Section 3.2,189

Figure 3: Principle of Statistics-based Detection
Methods. Statistics-based detection methods assume
that different LLMs are trained on similar large corpora,
leading to similar distribution characteristics (Gehrmann
et al., 2019; Bao et al., 2024). The detector generates a
reference distribution using either the source or a sur-
rogate model. It then compares the token distribution
of the text to be detected with the reference distribu-
tion, quantifying their similarity. As shown in the figure,
AI-generated text tends to have higher similarity (lower
cross-entropy) with the reference distribution, resulting
in lower overall entropy. In contrast, human-generated
text, with greater diversity in expression, shows lower
similarity (higher cross-entropy) and higher entropy.
The cumulative entropy of individual tokens is then used
to infer the likelihood of the text being AI-generated or
human-written.

we analyze why temperature influences AI-text de- 190

tection performance. 191

3.2 Detailed Analysis 192

The probability of generating the next token in 193

mainstream large language models is given by: 194

p(tj | t<j) =
exp(log p(tj | t<j))∑
t′∈V exp(log p(t′ | t<j))

, 195

where V is the vocabulary set. 196

Now, assume that the probability distribution of 197

the next token in human-written text, conditioned 198

on the preceding tokens, is given by phuman(tj | 199

t<j). Statistics-based detection methods assume 200

that LLMs, trained on vast corpora, exhibit distri- 201

butional preferences (Gehrmann et al., 2019; Bao 202

et al., 2024). As a result, machine-generated text 203

tends to show a more deterministic selection pat- 204

tern, favoring high-probability tokens. In contrast, 205

human-written text reflects greater variability due 206
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Figure 4: The pipeline of the TempParaphraser framework. First, we fine-tune the LLM using the data generated
in section 4.2.2 to obtain the paraphrasing model. Next, we input AI-generated text for processing. TempParaphraser
begins by segmenting the text into individual sentences. Each sentence is then paraphrased multiple times. Following
this, we employ the approach described in section 4.2.3 and use a text detector to select the best result for each
sentence. Finally, the selected sentences are combined in sequence to generate the final output.

to factors like semantics, context, and individual207

writing style, leading to higher entropy in humans:208

H(pAI(tj | t<j)) < H(phuman(tj | t<j)).209

As shown in Figure 3, this is a key indicator in210

previous statistical-based detection studies for iden-211

tifying AI-generated text.212

Next, we consider the adjustable temperature213

parameter during LLM inference, which controls214

the smoothness of the output probability distri-215

bution by scaling the model’s logits. A higher216

temperature creates a smoother distribution, in-217

creasing the randomness in token selection (Peep-218

erkorn et al., 2024). This increases the entropy219

of AI-generated text, making it more similar to220

human-written text and potentially helping it221

evade detection.222

However, our understanding of neural networks223

is still limited (Räuker et al., 2023), making it dif-224

ficult to directly analyze their internal decision-225

making mechanisms. Based on our empirical re-226

sults (Figure 1), it is reasonable to conclude that227

neural-based detectors rely on the distributional228

differences between human-written and machine-229

generated text.230

4 Methodology231

In this section, we will show the core principles232

and implementation details of the proposed Temp-233

Paraphraser framework.234

4.1 Core Principles235

As analyzed in Section 3.2, while high-temperature236

sampling enhances distribution smoothness and im-237

proves evasion against detectors, it also degrades238

text quality (Appendix B). To address this trade-239

off, we propose an alternative approach that simu-240

lates the effects of high-temperature sampling241

through multiple independent samplings at a 242

normal temperature. 243

Specifically, we generate N independent se- 244

quences in parallel, where each sequence follows 245

its own unique sampling path. The conditional 246

probability of the j-th token in any given sequence, 247

sampled at normal temperature Tnormal, is defined 248

as: 249

pTnormal(tj | t
(i)
<j) =

exp(log p(tj | t(i)<j)/Tnormal)∑
t′ exp(log p(t

′ | t(i)<j)/Tnormal)
, 250

where t(i)<j represents the divergent context from the 251

i-th independent generation path. 252

By averaging across multiple sampled trajecto- 253

ries, we define the ensemble token distribution: 254

pavg(tj) =
1

N

N∑
i=1

pTnormal(tj | t
(i)
<j). 255

In an autoregressive model, differences in early 256

token selection propagate, causing divergence in 257

subsequent token distributions. Each individual 258

sample at Tnormal produces a relatively sharp prob- 259

ability distribution. While the per-sample en- 260

tropy H(pTnormal,i) remains characteristic of normal- 261

temperature sampling, the aggregated entropy sat- 262

isfies: 263

H(pavg) ≥
1

N

N∑
i=1

H(pTnormal,i) (Jensen’s Inequality). 264

This inequality guarantees that the ensemble en- 265

tropy strictly exceeds that of any individual sample, 266

thereby recovering the detector-evasion capacity of 267

high-temperature sampling. 268

4.2 Overall Framework and Implementation 269

Details 270

We define the sampling unit at the sentence level, 271

meaning that each sentence within the paraphrased 272
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segment is sampled and rewritten multiple times.273

This process is repeated until the entire segment is274

fully paraphrased.275

Although this approach may sacrifice some con-276

textual coherence, focusing on sentence-level para-277

phrasing allows the paraphrasing model to refine278

each sentence more precisely.279

Our overall framework is illustrated in Figure 4.280

Next, we will explain the key details of our method.281

4.2.1 The Paraphrasing Model282

The paraphrasing model takes input text, para-283

phrases it in a more human-like manner, and out-284

puts the revised version. We choose a decoder-only285

transformer model (Team, 2024; Dubey et al., 2024;286

Javaheripi et al., 2023) as the paraphrasing model287

and fine-tune it. Given the computational cost of288

multiple samplings, we select lightweight LLMs289

(with 1–3 billion parameters) as the paraphrasing290

models.291

4.2.2 High-Quality Data Synthesis292

Framework293

Figure 5: The pipeline of the High-Quality Data Syn-
thesis Framework.

To train our paraphrasing model, we develop a294

data synthesis framework that eliminates the need295

for labeled datasets. Instead, it relies solely on296

human-written sentences, which are extracted from297

pre-trained corpora (Gao et al., 2021a; Biderman298

et al., 2022), avoiding the complexities of manual299

annotation.300

As shown in Figure 5, we first extract single-301

sentence fragments from paragraphs within pre-302

trained corpora. These sentences are then para-303

phrased using Llama3.1-8B-Instruct (Dubey et al.,304

2024), guided by carefully designed prompts (de-305

tailed in Appendix J.1). The paraphrased sen-306

tences form the basis of our raw dataset: the para-307

phrased text serves as model inputs for fine-tuning,308

while the original human-written sentences serve 309

as ground truth outputs. 310

Then we use the following steps to filter the 311

data: 1) AI Detection Rate Verification: We 312

use AI-text detectors to ensure that the original 313

human-written texts have low AI-generated like- 314

lihood scores, keeping the dataset effective. 2) 315

Semantic Consistency Check: We employ an 316

embedding-based similarity model to compare sen- 317

tence representations before and after paraphrasing, 318

ensuring that meaning is preserved. 3) N-gram 319

Constraint: We track sentence modifications us- 320

ing N-gram overlap metrics, ensuring that the para- 321

phrased output balances textual diversity and fi- 322

delity to the original sentence. 4) Rule-Based 323

Filtering: Rule-based mechanisms are applied to 324

remove redundant symbols. 325

4.2.3 Incorporating Heuristic Strategies for 326

Selecting Paraphrased Outputs 327

The results in Figure 1 show that detectors consis- 328

tently respond to increases in temperature, indicat- 329

ing a shared detection mechanism across models. 330

This insight helps refine our approach. 331

When generating multiple sentences at each step, 332

we need to aggregate these outputs. Our method 333

uses a detector to evaluate the outputs and selects 334

the one with the lowest AI-text detection confi- 335

dence as the final result. This heuristic search strat- 336

egy iteratively identifies the optimal sequence, min- 337

imizing the likelihood of being detected in the final 338

paraphrased text. 339

5 Experiments 340

5.1 Experimental Setup 341

5.1.1 Evaluation Metrics 342

We evaluate performance on two aspects: 343

Attack Effectiveness: We assess the attack ef- 344

fectiveness using several recent open-source AI- 345

text detectors, including Neural-Based Detectors: 346

HC3 (Guo et al., 2023) detector, SA (SuperAnno- 347

tate, 2024) detector, and Statistics-Based Detec- 348

tors: Fast-DetectGPT (Bao et al., 2024) detector. 349

We treat the problem as a binary classification 350

task. In testing, all original texts are AI-generated, 351

and we evaluate the prediction accuracy (ACC) of 352

AI-text detectors on the attacked texts. 353

Text Quality: Our goal is to ensure that the mod- 354

ified texts resemble human-written texts. We first 355

compute the perplexity (PPL) of human-written 356
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Method Detection ACC (%) Text Quality
HC3 ↓ SA ↓ Fast ↓ Avg ↓ |∆PPL| ↓ Flesh ↑ Sim ↑

Origin AI-Generated Text 99.8 99.8 98.9 99.5 − − −
WordNet(Fellbaum, 2010) 97.3 86.5 46.5 76.8 14.142 57.109 0.991
BERT(Devlin et al., 2018) 96.1 78.2 48.9 74.4 12.288 60.151 0.974
BART(Lewis et al., 2020) 92.2 98.1 93.5 94.6 24.331 59.497 0.980
BackTrans(Zhou et al., 2024) 99.0 99.8 90.7 96.5 24.072 56.284 0.981
EDP(Fishchuk and Braun, 2023) 70.4 82.3 87.8 80.2 18.688 52.602 0.917
FMP(Alexander, 2023) 60.9 75.0 90.1 75.3 18.875 55.709 0.923
DIPPER(Krishna et al., 2023) 87.9 90.3 87.7 88.6 19.251 62.650 0.936
HMGC(Zhou et al., 2024) 2.7 23.9 5.3 10.6 3.629 53.240 0.921
oursN1 45.6 13.7 8.5 22.6 8.785 66.747 0.963
oursN7 2.1 1.9 2.6 2.2 2.532 66.159 0.958

Table 1: Comparison of attack methods on AI-text detection and text quality. Detection accuracy (ACC) is
evaluated using three detectors: HC3 (Guo et al., 2023), SA (SuperAnnotate, 2024), and Fast-DetectGPT (Bao
et al., 2024). Text quality is measured by absolute perplexity difference (|∆PPL|), Flesch Reading Ease score
(Flesch), and semantic similarity (Sim) between the paraphrased and original text. Lower detection accuracy (↓)
indicates better evasion, while higher Flesch and Sim scores (↑) reflect better readability and semantic preservation.
The subscript N in OursN1 and OursN7 represents the sampling times setting. Both HMGC and OursN7 are
white-box attacks requiring an open-source detector, with HC3 used in our experiments.

(a) Origin Text (b) After TempParaphraser Attack

Figure 6: Detection ACC heatmap before and after applying TempPa-
raphraser on the Fast-DetectGPT (Bao et al., 2024) detector across
different models and domains. (a) shows the detection ACC for original
LLM-generated text. (b) shows the detection ACC after applying TempPa-
raphraser. Results for additional detectors can be found in Appendix E.

TempParaphraser
with

Detection ACC (%)
HC3 ↓ SA ↓ Fast ↓

HC3 2.1 1.9 2.6
SA 19.2 ≈ 0 2.7
Fast 39.4 7.1 0

Table 2: Detection ACC (%) of AI-
text detectors when different de-
tectors are used within the Temp-
Paraphraser framework for para-
phrased outputs selection.

text using the GPT-2 model2. We then evaluate the357

difference in PPL between the attacked and human-358

written texts, denoted as ∆PPL. We use TextStat3359

to measure the Flesch Reading Ease score4, which360

assesses the readability of the attacked text. A361

higher score indicates greater readability. We com-362

pute the semantic similarity (Sim) between the at-363

tacked text and the original text to measure how364

well the meaning is preserved.365

5.1.2 Baselines366

Referring to recent research (Sadasivan et al., 2023;367

Krishna et al., 2023; Zhou et al., 2024), we estab-368

lish the following baselines:369

Perturbation Methods: These methods involve370

replacing words or sentences in the original text to371

alter the Token distribution characteristics, includ-372

2We extract 10,000 human-written texts from the RAID
dataset as a reference. The benchmark human PPL is 35.836.

3https://github.com/textstat/textstat
4https://en.wikipedia.org/wiki/Flesch-Kincaid_

readability_tests#Flesch_reading_ease

ing: 1) Token-level perturbation: Randomly delet- 373

ing some words and using WordNet (Fellbaum, 374

2010) and BERT (Devlin et al., 2018) to complete 375

these words. 2) Sentence-level perturbation: Using 376

BART (Lewis et al., 2020) to randomly replace 377

some sentences with synonymous ones. 3) Adver- 378

sarial perturbation: HMGC (Zhou et al., 2024) 379

achieves SOTA performance in this category. 380

Paraphrasing Methods: These methods in- 381

volve paraphrasing the original text to express the 382

same content differently, including: 1) Back trans- 383

lation: Translating the original English text into 384

German and then back to English. 2) Prompt- 385

based paraphrasing: Crafting the prompt to in- 386

struct an LLM for paraphrasing. We employ 387

two types of prompts: evasion-driven paraphras- 388

ing (EDP)(Fishchuk and Braun, 2023), which di- 389

rectly instructs the model to evade text detectors 390

by rephrasing the content while preserving its 391

meaning, and feature-maximization paraphras- 392

ing (FMP)(Alexander, 2023), which directs the 393
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model to enhance specific linguistic features, such394

as perplexity and burstiness, to increase text vari-395

ation. Detailed prompts used are listed in Ap-396

pendix J.3. 3) Fine-tuned paraphrasing models:397

We compare our approach with DIPPER (Krishna398

et al., 2023), using lex=40 and order=40 in our399

experiments.400

For our proposed TempParaphraser method, two401

key hyperparameters are considered: the number402

of sampling times and the temperature of the para-403

phrasing model. We first conduct a hyperparameter404

study (see Appendix D) to analyze their effects and405

set the temperature to 1.2 for the main experiments.406

More details on the experimental setup and im-407

plementation can be found in Appendix C.408

5.2 Main Results409

In this section, we present the main results of our410

experiments. First, we compare TempParaphraser411

with previous methods on the widely used HC3412

dataset (Guo et al., 2023), as shown in Table 1.413

Next, we evaluate its performance across differ-414

ent models and domains on the more recent RAID415

dataset (Dugan et al., 2024), illustrated in Figure 6.416

We also assess its ability to generalize across vari-417

ous detectors (see Table 2) and bypass watermark-418

based detection systems.419

TempParaphraser achieves superior attack420

success rates while maintaining text quality.421

In Table 1, our method outperforms previous ap-422

proaches by effectively manipulating text to evade423

detection from three different detectors, achieving424

optimal success rates.425

The texts generated by TempParaphraser achieve426

the lowest |∆PPL|, differing by only 2.532 from427

the human-written text. Additionally, the Flesch428

Reading Ease score exceeds all baseline methods,429

indicating the generated text has high readability.430

TempParaphraser is effective across differ-431

ent models and domains. As shown in Figure 6,432

we evaluate the attack performance on text gen-433

erated by mainstream models across different do-434

mains. Regardless of the model or domain, Temp-435

Paraphraser significantly reduces the probability436

of being detected. On average, the detection accu-437

racy dropped by 92.3% across five LLMs and six438

domains.439

TempParaphraser exhibits strong generaliza-440

tion across different detectors. The TempPara-441

phraser framework uses an open-source detector to442

select paraphrased outputs. As discussed in Section443

4.2.3, we leverage a shared detection mechanism444

observed across different detectors. By exploit- 445

ing this consistency, any single detector used for 446

selection can effectively evade detection by other 447

detectors. Table 2 illustrates this generalization 448

capability. 449

Notably, TempParaphraser attacks detectors 450

without requiring access to their internal weights, 451

relying solely on their output probabilities. In con- 452

trast, baseline methods like HMGC (Zhou et al., 453

2024) necessitate access to detector weights for 454

optimal performance. 455

Moreover, TempParaphraser is also effective 456

in evading watermark-based detection methods 457

(Kirchenbauer et al., 2023). The experimental re- 458

sults are provided in Appendix F. 459

5.3 More Analyses 460

5.3.1 Can TempParaphraser Effectively 461

Simulate High-Temperature Values? 462

Figure 7: Token distribution at different temperature
settings, with token id below 50,000. For detailed token
counts, refer to Appendix H.

As discussed in Section 4.1, TempParaphraser 463

mimics high-temperature effects by performing 464

multiple normal-temperature samples, enriching 465

the token distribution p(tj | t<j) at each position. 466

In this experiment, we compare token distributions 467

between texts processed by TempParaphraser and 468

those generated at varying temperatures during in- 469

ference. 470

We used the LLaMA3.2-3B-Instruct (Dubey 471

et al., 2024) model to perform 5,000 inference runs 472

at low (0.7) and high (1.9) temperatures using an 473

identical input. Additionally, we apply TempPa- 474

raphraser to 5000 texts generated at temperature 475

0.7. The paraphrasing model, fine-tuned from the 476

LLaMA3.2 series, ensures a consistent tokenizer 477

with the inference model, allowing for a direct com- 478

parison. For simplicity, we focus on the token 479

distribution at position j = 8, comparing token 480

frequencies from both the direct inference and the 481

TempParaphraser outputs. 482

Figure 7 shows that at temperature 0.7, the most 483

frequent token makes up over 60%, making the text 484

more detectable by AI-text detectors. At tempera- 485

ture 1.9, this frequency drops to around 7%, indi- 486
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cating greater variability in the selection of tokens.487

TempParaphraser-processed texts show similar to-488

ken distribution patterns, effectively simulating the489

high-temperature sampling effects.490

5.3.2 Ablation Study491

Figure 8: Impact of fine-tuning and data filtering on
the paraphrasing model. (Left) Detection accuracy
(%) of SA(SuperAnnotate, 2024) detectors under differ-
ent settings. (Right) Semantic similarity under different
settings. In the legend, Ablation 1 compares the effects
of fine-tuning versus no fine-tuning of the paraphrasing
model. Ablation 2 compares the use of filtered data (as
described in Section 4.2.2) with random data selection.
All results use sampling times N = 1.

Ablation 1: Fine-tuning of the paraphrasing492

model (Section 4.2.1) In Figure 8, we compare the493

performance of TempParaphraser with and without494

fine-tuning the paraphrasing model. The results495

show that fine-tuning significantly improves eva-496

sion performance and enhances semantic preser-497

vation. Additionally, comparisons with different498

LLM-based paraphrasing models are provided in499

Appendix G.500

Ablation 2: Data filtering method (Section501

4.2.2) The data filtering process is another key502

factor. Removing the filter causes a noticeable503

increase in detection accuracy, indicating that504

unfiltered paraphrases still retain detectable AI-505

generated features. Moreover, semantic similarity506

(SIM) decreases significantly. These findings high-507

light the importance of careful data curation when508

training an effective paraphrasing model.509

Additionally, our framework includes a detection510

module (Section 4.2.3) that selects paraphrased sen-511

tences. Without this module, the model degenerates512

to N = 1, performing a single sampling, similar513

to previous paraphrasing methods. As shown in514

Table 1, OursN1 still outperforms traditional meth-515

ods.516

5.3.3 Improving AI-Text Detection with517

TempParaphraser-Augmented Data518

Malicious users can easily bypass detection by gen-519

erating text with high-temperature decoding and520

manually adjusting it (Sadasivan et al., 2023). This 521

process essentially replicates the effects of high- 522

temperature model output, as the adjusted text re- 523

tains the same randomness. Therefore, improving 524

the detector’s robustness to temperature variations 525

is essential. 526

TempParaphraser can strengthen the training pro- 527

cess of AI-text detectors by augmenting their exist- 528

ing dataset, without the need for additional manu- 529

ally curated data. We fine-tune the RoBERTa-based 530

model (Liu et al., 2019) using the HC3 dataset’s 531

(Guo et al., 2023) training set to obtain an initial 532

detector. Then, we select a 5% subset of the HC3 533

dataset and apply TempParaphraser to rewrite the 534

AI-generated text. This augmented data is subse- 535

quently used to further fine-tune the initial detector. 536

Experimental details are in Appendix I.1. 537

Figure 9: Impact of TempParaphraser-augmented
training on detection robustness. The figure compares
detection ACC across different temperature settings
for the Initial Detector and the TempParaphraser-
Augmented Detector.

As shown in Figure 9, the TempParaphraser- 538

augmented detector shows improved robustness 539

across different temperature settings, with greater 540

gains at higher temperatures. Additionally, this 541

method maintains the detector’s original perfor- 542

mance under normal conditions and reduces the 543

risk of TempParaphraser’s future misuse (see Ap- 544

pendix I.2 for detailed results). 545

6 Conclusion 546

This paper highlights a key vulnerability in AI-text 547

detection systems, where adjusting the temperature 548

during inference significantly reduces detection per- 549

formance. We introduced the TempParaphraser 550

framework, which exploits this weakness to effec- 551

tively evade detection while maintaining high text 552

quality. Experiments show that TempParaphraser 553

achieves SOTA evasion success rates and provides 554

insights for improving future detection systems. 555
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Limitations556

Although TempParaphraser is highly effective in557

evading AI-text detection, it has some limitations558

that require further exploration.559

Our framework operates primarily at the sen-560

tence level, which may result in a loss of long-561

range contextual coherence in complex texts. Fu-562

ture research could focus on advanced methods563

to enhance contextual integrity while preserving564

strong evasion performance.565

Additionally, while our approach disrupts the566

statistical patterns used by current detectors, it567

is unclear how human evaluators would perceive568

the paraphrased text. A thorough human assess-569

ment is necessary to ensure that TempParaphraser-570

generated text remains semantically faithful and571

indistinguishable from human writing.572

Ethical Considerations573

The goal of this paper is to identify and highlight574

vulnerabilities in current AI text detection systems,575

particularly concerning paraphrasing-based evasion576

techniques. While we demonstrate the effective-577

ness of the TempParaphraser in bypassing detec-578

tion mechanisms, we want to emphasize that our579

intention is not to develop tools for malicious use.580

Instead, our primary aim is to raise awareness of581

the potential weaknesses in AI text detectors, en-582

couraging researchers and developers to address583

these vulnerabilities and strengthen the robustness584

of detection systems against paraphrasing-based585

attacks.586

We also recognize that the TempParaphraser587

framework has the potential to contribute positively588

to the development of more resilient AI text de-589

tection systems (Section 5.3.3). By using para-590

phrased text to augment training datasets, Temp-591

Paraphraser can help enhance the performance of592

detection models, making them better equipped to593

defend against evasion attacks. This dual-purpose594

functionality—serving both as an exploration of595

potential attack methods and as a tool to improve596

detection systems—supports our broader objective597

of advancing more secure and reliable AI technolo-598

gies.599

In alignment with our commitment to advanc-600

ing the field in a responsible and ethical manner,601

we have made our research openly available, in-602

cluding models, code, and data. This openness603

is intended to promote collaborative efforts to im-604

prove AI text detection, ensuring that our findings605

are accessible for constructive purposes. We be- 606

lieve that by sharing our research, the community 607

can collectively work toward identifying and ad- 608

dressing weaknesses in existing detection methods, 609

ultimately leading to the development of safer and 610

more trustworthy AI systems. 611
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• LogRank(Gehrmann et al., 2019): Average881

log of ranks in descending order by probabili-882

ties. This test assesses the absolute rank of a883

word.884

• Entropy(Gehrmann et al., 2019): Mean token885

entropy of the distribution.886

• Fast-DetectGPT(Bao et al., 2024): Intro-887

duces the concept of conditional probability888

curvature to elucidate discrepancies in word889

choices between LLMs and humans within a890

given context.891

A.2 Neural-based Methods892

• Hello-SimpleAI/chatgpt-detector-893

roberta(Guo et al., 2023)894

• SuperAnnotate/roberta-large-llm-content-895

detector(SuperAnnotate, 2024)896

• openai-community/roberta-large-openai-897

detector(Solaiman et al., 2019)898

• TrustSafeAI/RADAR-Vicuna-7B(Hu et al.,899

2023)900

• menglinzhou/e5-small-lora-ai-generated-901

detector(Dugan et al., 2024)902

B Impact of Temperature on Text Quality903

Figure 10: This figure shows that as the temperature
parameter increases during LLM inference, the log(PPL)
exhibits a significant upward trend.

As the temperature increases, the perplexity904

(PPL) of the generated text rises sharply, even-905

tually reaching unacceptable levels, as shown in906

Figure 10.907

We use TextStat5 to measure the Flesch Read-908

ing Ease score6, which serves as an indicator909

of text readability. The results show a clear910

5https://github.com/textstat/textstat
6https://en.wikipedia.org/wiki/Flesch-Kincaid_

readability_tests#Flesch_reading_ease

Figure 11: This figure shows that as the temperature
parameter increases during LLM inference, the Flesch
Reading Ease Score decreases significantly, indicating
that the text becomes more difficult to understand.

Figure 12: This figure shows that as the temperature pa-
rameter increases during LLM inference, the proportion
of difficult words in the text increases, making it harder
to read.

trend—readability decreases significantly as the 911

temperature increases, as illustrated in Figure 11. 912

Additionally, we use the TextStat tool to calcu- 913

late the proportion of difficult words in sentences. 914

A higher proportion indicates a tendency to use rare 915

and complex words, reducing text readability. The 916

results are shown in Figure 12. 917

To provide an intuitive comparison of how tem- 918

perature affects text generation, we present exam- 919

ples of model responses at different temperature 920

settings in Table 3. 921

The examples demonstrate that at a low tem- 922

perature (0.0), the model produces a concise and 923

factual response. At a moderate temperature (1.2), 924

the response contains additional but still relevant 925

information. However, at a high temperature (2.0), 926

the text becomes increasingly disorganized and ul- 927

timately nonsensical. 928
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Question: "Which is a species of fish? Tope or
Rope"(Conover et al., 2023)

Temperature 0.0 Answer:
"The correct answer is Tope. Tope
(Galeorhinus galeus) is a species of
requiem shark, while Rope is not a
species of fish."

Temperature 1.2 Answer:
"The correct answer is Tope. The
Tope is a species of shark and, more
specifically, a drum species belonging
to the Scombridae family. Rope, on the
other hand, does not refer to a specific
species of fish. The word ’rope’
is a general term for a long, thick
string made of fibers, commonly used
for climbing, securing, or connecting
objects."

Temperature 2.0 Answer:
"Probability of Richtorsi insults
Torchoids nods
River experts Configuration Variables
acting Seeing bol At Bald Answer
HttpClient missribbonSlot Ville
Attempts comparisons verbosity complete
burdens dominate Alger Lent_____ Few
PyQt ang Right Persona Curtain water
both approximation.)" (Text becomes
incoherent)

Table 3: Examples of text generated at different tem-
perature settings. Higher temperatures introduce more
randomness, increasing verbosity and eventually lead-
ing to gibberish.

C Main Experiment Implementation929

Details930

C.1 Dataset931

The HC3 (Human ChatGPT Comparison Corpus)932

(Guo et al., 2023) dataset is used for comparing933

answers from human experts and ChatGPT. It in-934

cludes question-answer pairs from various domains935

such as open-domain, computer science, finance,936

medicine, law, and psychology. The data is sourced937

from publicly available datasets (e.g., ELI5 and938

WikiQA) and knowledge points scraped from web-939

sites like Wikipedia and BaiduBaike. Human an-940

swers primarily come from experts or highly-rated941

users, while ChatGPT responses are generated942

based on human questions and adjusted with spe- 943

cific instructions to resemble human-like answers. 944

RAID (Robust AI Detection) dataset (Dugan 945

et al., 2024) includes over 6 million text gener- 946

ations from 11 different language models across 8 947

diverse domains, such as News, Wikipedia, Books, 948

Reddit, and Poetry. This benchmark dataset fea- 949

tures a wide range of models to ensure comprehen- 950

sive evaluation, including variants of GPT (GPT-2 951

XL, GPT-3 text-davinci-003, GPT-4, and ChatGPT) 952

(Brown et al., 2020; Achiam et al., 2023), as well as 953

LLaMA 2 70B (Touvron et al., 2023), Mistral mod- 954

els (7B and its chat variant) (Jiang et al., 2023), 955

MPT models (30B and its chat variant) (Team, 956

2023), and Cohere (Cohere, 2024). The dataset in- 957

cludes 509,014 generated texts and 14,971 human- 958

written documents, totaling 6,287,820 texts. 959

For our experiments, we randomly selected a 960

subset of 10,000 samples from the HC3 test set 961

(Guo et al., 2023), as provided by (Zhou et al., 962

2024). This subset includes 3,218 AI-generated 963

texts. We use the RAID dataset (Dugan et al., 964

2024) to evaluate attacks across various LLMs 965

and text domains. We primarily focus on common 966

models, including "ChatGPT", "GPT-4", "Mistral- 967

Chat", "LLaMA-Chat" and "MPT-Chat" along with 968

typical domains such as "News", "Wiki", "Re- 969

views", "Books", "Poetry" and "Reddit". Each 970

model-domain combination contains 500 machine- 971

generated texts, including both greedy and random 972

sampling (temperature=1, top-p=1). Note that only 973

AI-generated texts from the dataset are used as 974

the original texts for the attack in Section 5.2. Our 975

main experiments are based on these datasets. 976

C.2 Implementation Details of 977

TempParaphraser 978

For training the paraphrasing model, we began with 979

texts from the Llama3.1-8B-Instruct Paraphrasing 980

pre-training corpus (Gao et al., 2021a) to obtain 981

raw data, which was then filtered. We first used the 982

SA detector (SuperAnnotate, 2024) to verify the AI 983

detection rate of the texts. Next, we calculated rep- 984

resentations using NovaSearch/stella_en_400M_v5 985

(Zhang et al., 2025) and used cosine similarity 986

to measure the distance between these representa- 987

tions to assess text similarity, setting the similarity 988

threshold to 0.6. Additionally, we computed the 989

Jaccard similarity based on 2-grams and 3-grams. 990

The data selection criterion was as follows: 991

ngram3_similarity×3+ngram2_similarity ≥ 1.2 992
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In the end, we synthesized a total of 151,189993

data points for training.994

For the main experiment, we selected the995

LLaMA3.2-1B-Instruct model as the base model996

and performed full fine-tuning using LLaMA-997

Factory (Zheng et al., 2024). The training was998

conducted with a learning rate of 2e-5, a batch999

size of 32, and a total of 1*L40 for training time.1000

Fine-tuning took approximately 3 hours.1001

In the TempParaphraser framework, sentence1002

segmentation is done by splitting the text at English1003

periods (" . "). Sentences with fewer than four1004

words are not paraphrased.1005

C.3 Evaluation Metrics Details1006

We treat the task as a binary classification problem.1007

The HC3 detector makes predictions based on the1008

relative magnitudes of the logits for the two classes,1009

selecting the class with the higher logit value as the1010

final output.1011

In contrast, both the SA detector and Fast-1012

DetectGPT detector apply a fixed decision thresh-1013

old of 0.5, classifying a text as AI-generated if its1014

confidence score exceeds this threshold. During1015

testing, all original texts are AI-generated, and we1016

evaluate the prediction accuracy (Acc) of the AI-1017

text detectors on the attacked texts.1018

For the perplexity (PPL) calculation of human-1019

written text, we use the RAID dataset as a reference,1020

with a benchmark human PPL value of 35.836.1021

This value is used to compute ∆PPL, the difference1022

in perplexity between the attacked texts and human-1023

written texts.1024

For semantic similarity, we compute the em-1025

beddings of the texts using the princeton-nlp/sup-1026

simcse-roberta-large model (Gao et al., 2021b). We1027

then calculate the cosine similarity between the em-1028

beddings of the attacked and original texts to assess1029

how well the meaning is preserved.1030

Some baseline attack result texts are taken from1031

the study by (Zhou et al., 2024).1032

D Impact of the Hyperparameters1033

In the TempParaphraser framework, two key ad-1034

justable parameters are temperature and sampling1035

times. This section examines their effects on model1036

performance.1037

We conducted experiments by varying temper-1038

ature from 0.5 to 1.6 in increments of 0.1 and1039

adjusting sampling times from 1 to 8.1040

Our results indicate that as both temperature1041

(a) AI-Text Detection ACC

(b) Semantic Similarity

(c) Flesch Reading Ease

Figure 13: Hyperparameter Search

and sampling times increase, the accuracy (ACC) 1042

of AI-text detection drops significantly, as shown 1043

in Figure 13a. This demonstrates that modifying 1044

temperature and performing multiple samplings 1045

together enhance the attack success rate. 1046
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(a) HC3 Detector - Before Attack (b) HC3 Detector - After Attack

(c) SA Detector - Before Attack (d) SA Detector - After Attack

Figure 14: Detection rates before and after applying TempParaphraser across multiple detectors. The heatmaps
depict results for HC3 and SA detectors, demonstrating that TempParaphraser consistently reduces AI-text detection
rates across different models and domains.

However, as illustrated in Figure 13b, we also1047

observe a decline in semantic similarity with in-1048

creasing temperature. This effect is likely due to1049

higher temperature producing a smoother proba-1050

bility distribution, which results in outputs deviat-1051

ing further from the original meaning. Furthermore,1052

under different hyperparameter settings, the Flesch1053

Reading Ease score also decreases significantly, as1054

shown in Figure 13c, indicating that the generated1055

text becomes harder to read.1056

Notably, changes in sampling times have mini-1057

mal impact on semantic similarity and the Flesch1058

Reading Ease score. This highlights a key advan-1059

tage of our paraphrasing model—despite multiple1060

samplings, it maintains high text quality.1061

E Additional Detection Results Across1062

Different Models and Domains1063

To further validate the effectiveness of TempPa-1064

raphraser, we provide additional detection results1065

using multiple AI-text detectors, including HC31066

and SA. Figure 14 presents heatmaps illustrating1067

the detection rates before and after applying Temp-1068

Paraphraser across different models and domains. 1069

These results reinforce the findings presented in 1070

Figure 6, confirming that TempParaphraser remains 1071

effective across various AI-text detection methods. 1072

The consistent reduction in detection rates suggests 1073

that our approach is robust against diverse detection 1074

strategies. 1075

F Attacking the Watermarking Methods 1076

Figure 15: The attack results of watermark method.

TempParaphraser disrupts AI-text detectors by 1077

altering the token distribution characteristics and 1078
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Model Detection ACC (%) Text Quality

HC3 ↓ SA ↓ Fast ↓ Flesh ↑ |∆PPL| ↓ Sim ↑

llama3.2-1B(Dubey et al., 2024) 45.6 13.7 8.5 66.747 8.785 0.963
llama3.2-3B(Dubey et al., 2024) 49.8 18.6 11.0 66.280 9.666 0.966
phi2-2.7B(Javaheripi et al., 2023) 54.1 35.4 15.1 65.943 12.019 0.965
Qwen2.5-1.5B(Team, 2024) 48.1 19.5 10.9 66.220 10.043 0.965

Table 4: Comparison of detection accuracy and text quality across different models. The experiment was conducted
with hyperparameters: sampling times = 1 and temperature = 1.2.

is also effective against watermarking methods.1079

To evaluate this, we selected 1,000 samples from1080

the Dolly dataset and utilized the watermark injec-1081

tion framework proposed in (Kirchenbauer et al.,1082

2023) to embed watermarks into responses gener-1083

ated by the LLaMA3.1-8B-Instruct (Dubey et al.,1084

2024) model. We then tested these watermarked1085

responses using the provided detection algorithm.1086

Subsequently, we applied TempParaphraser to1087

the watermarked responses to assess whether our1088

method could effectively undermine watermark de-1089

tection. For this experiment, we set the temperature1090

to 1.2 and the number of sampling times to 1.1091

The results of the experiment are illustrated in1092

Figure 15. In the original responses, 56% of the1093

samples were detected as having watermarks. In1094

contrast, only 1.7% of the samples processed by1095

TempParaphraser were detected as having water-1096

marks. This substantial reduction in detection rate1097

demonstrates that TempParaphraser effectively dis-1098

rupts watermarking methods.1099

G Effectiveness of Different Paraphrasing1100

Models on Detection Evasion1101

To examine how different paraphrasing models im-1102

pact detection evasion, we fine-tune various models1103

on the same dataset using identical hyperparam-1104

eters. The evaluation results are summarized in1105

Table 4.1106

Our findings indicate that all tested models suc-1107

cessfully reduce AI-text detection accuracy, con-1108

firming that diverse paraphrasing models can ef-1109

fectively evade detection. Notably, even relatively1110

small models demonstrate strong evasion capabili-1111

ties, suggesting that paraphrasing, rather than sheer1112

model size, plays a crucial role in obfuscating AI-1113

generated text.1114

Interestingly, the larger LLaMA3.2-3B-Instruct1115

model does not achieve superior detection evasion1116

compared to its smaller counterpart, LLaMA3.2-1117

1B-Instruct. In fact, LLaMA3.2-1B-Instruct pro-1118

duces paraphrased text with a lower perplexity1119

(PPL) that is closer to human-written content, high- 1120

lighting that increasing model size does not neces- 1121

sarily enhance evasion performance. This suggests 1122

that fine-tuning LLM on high-quality paraphras- 1123

ing data is more influential than model scale in 1124

generating human-like text while evading AI-text 1125

detectors. 1126

These results demonstrate that various paraphras- 1127

ing models can serve as effective evasion tools, 1128

with model selection depending on the balance be- 1129

tween computational efficiency and text natural- 1130

ness. 1131

H Token Frequency Analysis 1132

In Experiment 5.3.1, we ran 5,000 inferences 1133

with the same input on Llama3.2-3B-Instruct and 1134

recorded the frequency of token IDs at position 1135

j = 8 (the eighth generated token). The hyperpa- 1136

rameters for TempParaphraser were set to N = 7 1137

and T = 1.0. Table 5 shows the token frequencies 1138

for the top 20 most frequent tokens under three 1139

different temperature settings. The input is "What 1140

climate are cacti typically found in?". 1141

The results indicate that as the temperature in- 1142

creases, the distribution of generated tokens be- 1143

comes more diverse. At a lower temperature (0.7), 1144

a few token IDs dominate the outputs, whereas 1145

at a higher temperature (1.9), the distribution be- 1146

comes significantly more spread out. The Temp- 1147

Paraphraser method shows a further redistribution 1148

of token probabilities, promoting a more balanced 1149

and varied selection of tokens compared to stan- 1150

dard temperature-based sampling. Notably, Temp- 1151

Paraphraser reduces the reliance on the highest- 1152

probability token (Token ID = 802), mitigating the 1153

bias in LLM-generated text. 1154

I Experimental Details for RoBERTa 1155

Fine-Tuning 1156

I.1 Training Detail 1157

To get the Initial RoBERTa-based AI-text detec- 1158

tor, we use the following hyperparameters: 1159
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Token ID Temperature 0.7 Temperature 1.9 TempParaphraser

Count % Count % Count %

802 3184 63.68 360 7.2 160 3.2
9235 1459 29.18 268 5.36 330 6.6
4106 258 5.16 161 3.22 154 3.08
304 3 0.06 79 1.58 261 5.22
11 0 0.0 41 0.82 291 5.82
323 0 0.0 29 0.58 288 5.76
527 0 0.0 14 0.28 220 4.4
72 0 0.0 7 0.14 206 4.12
307 1 0.02 27 0.54 171 3.42
533 0 0.0 0 0.0 166 3.32

18768 0 0.0 10 0.2 151 3.02
8369 50 1.0 62 1.24 22 0.44
24521 21 0.42 63 1.26 27 0.54
1766 0 0.0 11 0.22 97 1.94
311 0 0.0 25 0.5 83 1.66
279 2 0.04 45 0.9 48 0.96
272 0 0.0 3 0.06 68 1.36
356 0 0.0 0 0.0 65 1.3
449 0 0.0 6 0.12 55 1.1

13918 0 0.0 34 0.68 22 0.44

Table 5: Top 20 most frequent tokens at position j = 8 under different temperature settings.

• Dataset: HC3-text dataset(Guo et al., 2023)1160

(Guo et al., 2023)1161

• Base Model: RoBERTa-base (Liu et al.,1162

2019)1163

• Batch Size: 161164

• Learning Rate: 5e-51165

• Optimizer: AdamW1166

• Epochs: 11167

• Max Sequence Length: 5121168

To get the TempParaphraser-augmented detec-1169

tor, we use the following hyperparameters:1170

• Dataset: 5% subset of HC3-text for TempPa-1171

raphraser, retaining human-written text while1172

only modifying AI-generated text.1173

• Base Model: Initial RoBERTa-based AI-1174

text detector1175

• Batch Size: 161176

• Learning Rate: 1e-61177

• Optimizer: AdamW1178

• Epochs: 11179

• Max Sequence Length: 5121180

We use the standard binary classification setup,1181

where the model predicts whether a given text is 1182

AI-generated or human-written. 1183

I.2 Further Evaluation of the 1184

TempParaphraser-Augmented Detector 1185

Figure 16: Performance of the TempParaphraser-
Augmented Detector on the HC3 test set across dif-
ferent domains. The figure shows that while fine-tuning
with TempParaphraser-augmented data slightly reduces
detection performance in some domains, the overall
accuracy remains high.

We further evaluate the TempParaphraser- 1186

augmented detector on the HC3 test set across mul- 1187
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(a) Baseline Detector (b) TempParaphraser-Augmented Detector

Figure 17: Detection accuracy heatmap of TempParaphraser-augmented detector on TempParaphraser-
processed text. The heatmaps compare the detection performance of (a) the baseline detector and (b) the
TempParaphraser-augmented detector across different domains and models. The accuracy improved by an average
of 42.8% across five LLMs and six domains. The results indicate that fine-tuning with TempParaphraser-augmented
data improves the detector’s ability to recognize text modified by TempParaphraser, mitigating potential misuse.

tiple domains under standard settings. As shown in1188

Figure 16, while fine-tuning with TempParaphraser-1189

augmented data leads to slight performance drops1190

in some domains, the detector still maintains high1191

overall accuracy.1192

Additionally, using the same multi-domain,1193

multi-model evaluation setup from Section 5.2,1194

we assess the ability of the TempParaphraser-1195

augmented detector to detect text processed by1196

TempParaphraser. The results, presented in Fig-1197

ure 17, demonstrate that the augmented detector1198

can effectively counteract the impact of TempPa-1199

raphraser, reducing the risk of its misuse and pre-1200

venting improper applications of our method.1201

Our findings suggest that TempParaphraser can1202

serve as a data augmentation tool for enhanc-1203

ing AI-text detection datasets. By generating para-1204

phrased variations of AI-generated text, TempPara-1205

phraser introduces more diverse linguistic patterns1206

into training data, helping detectors generalize bet-1207

ter to real-world adversarial scenarios. A more1208

detailed study on improving detector performance1209

is left for future work.1210

J Prompt Design1211

J.1 Prompt for High-Quality Data Synthesis1212

Framework1213

In the High-Quality Data Synthesis Framework,1214

we use the following prompt to guide the LLM in1215

generating paraphrased text:1216

"Rewrite and paraphrase the following1217

sentence. Focus on changing the struc-1218

ture and vocabulary while preserving the 1219

original meaning and tone. Return the 1220

rewritten sentence directly without in- 1221

cluding any additional content." 1222

J.2 System Prompt for Fine-Tuning the 1223

Paraphrasing Model 1224

For fine-tuning the paraphrasing model, we employ 1225

the following system prompt: 1226

"Rewrite the following text to sound more 1227

natural and human-like. Maintain the 1228

same information and overall structure, 1229

but use more casual language, varied 1230

sentence structures, and subtle personal 1231

touches." 1232

J.3 Prompts Used in Baseline Methods 1233

Below are the prompts used in baseline methods 1234

for comparison. We made slight modifications to 1235

adapt them to our task while preserving the core 1236

structure of the prompts. 1237

EDP (Fishchuk and Braun, 2023): 1238

"Rewrite the following content in a way 1239

that minimizes the likelihood of being 1240

detected as AI-generated text. Ensure 1241

the text exhibits characteristics of human- 1242

authored writing, including natural syn- 1243

tactic diversity, idiomatic expressions, 1244

contextual adaptability, and organic co- 1245

herence in argumentation: {text} Pro- 1246

vide the results directly without any ad- 1247

ditional explanation." 1248
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FMP (Alexander, 2023):1249

"Rewrite the following content to make it1250

sound more natural and human-like. In1251

effective rewriting, two key factors are1252

crucial: perplexity and burstiness. Per-1253

plexity measures the complexity of the1254

text, while burstiness compares varia-1255

tions in sentence structure. Human writ-1256

ing tends to have greater burstiness, fea-1257

turing a mix of longer, complex sentences1258

and shorter ones. AI-generated text, in1259

contrast, is often more uniform. When1260

rewriting the following content, ensure1261

it has a good balance of perplexity and1262

burstiness: {text} Provide the results di-1263

rectly without any additional explana-1264

tion."1265
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