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Abstract

The widespread adoption of large language
models (LLMs) has increased the need for re-
liable Al-text detection. While current detec-
tors perform well on benchmark datasets, we
identify a critical vulnerability: increasing the
temperature parameter during inference signif-
icantly reduces detection accuracy. Based on
this weakness, we propose TempParaphraser,
a simple yet effective paraphrasing framework
that simulates high-temperature sampling ef-
fects through multiple normal-temperature gen-
erations, effectively evading detection. Ex-
periments show that TempParaphraser reduces
detector accuracy by an average of 97.3%
while preserving high text quality. We also
demonstrate that training on TempParaphraser-
augmented data improves detector robustness.
All resources are publicly available to support
future research.

1 Introduction

Large Language Models (LLMs) have significantly
enhanced productivity across various fields includ-
ing news reporting, story creation, and academic re-
search (M Alshater, 2022; Yuan et al., 2022; Chris-
tian, 2023). However, their rapid deployment raises
concerns about their misuse in creating fake news,
malicious reviews, and facilitating academic dis-
honesty (Ahmed et al., 2021; Adelani et al., 2020;
Lund et al., 2023; Lee et al., 2023). In response,
Al-text detection technologies have been developed
to differentiate between human and Al-generated
texts (Mitchell et al., 2023; Bao et al., 2024; Guo
etal., 2023).

While current detectors show promising results
on benchmark datasets (Mitchell et al., 2023; Bao
et al., 2024; Guo et al., 2023), recent studies (Sada-
sivan et al., 2023; Krishna et al., 2023; Zhou et al.,
2024) have explored attack strategies against Al-
text detectors, successfully misleading their predic-
tions. Studies (Ippolito et al., 2020; Fishchuk and
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Figure 1: Effect of temperature on Al-text detectors.
As the temperature increases during LLM inference,
both statistical-based and neural-based detectors show
lower confidence in identifying the text as Al-generated.
Details about these detectors are in Appendix A.

Braun, 2023; Pu et al., 2023; Dugan et al., 2024)
have shown that simple adjustments to sampling
parameters, such as top-p, repetition penalty, and
temperature, can affect the performance of detec-
tors.

In this paper, we focus on the impact of the tem-
perature parameter. Our experiments show that
increasing the temperature significantly reduces
the confidence scores of Al-text detectors, making
Al-generated text more difficult to identify (see
Figure 1). Further analysis reveals a fundamental
limitation of current detection methods: detectors
rely on specific statistical patterns in text distri-
bution, which can be disrupted by the random-
ness introduced through higher temperature set-
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tings (see Section 3.2 for detail analysis). Although
higher temperatures can decrease detection accu-
racy, their direct application during inference often
leads to a noticeable decline in text quality (Peep-
erkorn et al., 2024) (see Appendix B for details on
the relationship between temperature and text qual-
ity). As a result, previous research has generally
focused on temperature settings within a narrow
range (Fishchuk and Braun, 2023), where the ef-
fect of randomness on detection performance is
less significant. Consequently, this vulnerability
has largely gone unnoticed.

To further explore this vulnerability, we intro-
duce a simple yet effective framework, TempPa-
raphraser, designed to evade detection. Temp-
Paraphraser operates as a post-processing tool. It
Temporarily stores the original text generated by
LLMs, paraphrases it and outputs an optimized
version that can evade detection.

This framework incorporates a paraphrasing
model fine-tuned from an LLM using synthetic
data. As shown in Figure 2, the TempParaphraser
framework simulates the smoother distribution in
high-Temperature generation by producing multi-
ple paraphrased variants for each input. This pro-
cess simulates the variability introduced by higher
temperature values during inference. TempPara-
phraser then increases the entropy of the generated
text, disrupting the statistical patterns used by Al-
text detectors.

Our main contributions are as follows:

* Through experiments with various detectors,
we demonstrate that adjusting the temperature
parameter effectively deceives Al-text detec-
tors (Sec 3.1), revealing their reliability is-
sues and providing insights into the underly-

ing causes (Sec 3.2).

* We propose TempParaphraser, a plug-and-
play paraphrasing framework that operates in-
dependently of the original model (Sec 4.2).
By refining already generated texts, Temp-
Paraphraser achieves state-of-the-art perfor-
mance, reducing detector accuracy by an aver-
age of 97.3% while maintaining high text qual-
ity. Notably, this framework can also be used
to augment training data for Al-text detectors,
enhancing their robustness (Sec 5.3.3).

* We provide a high-quality data generation
framework for Al-text detection and adver-
sarial attack research (Sec 4.2.2). To support
future advancements in the field, we have re-
leased all training data, models, and code for

TempParaphraser!.

2 Related Work

AI-Text Detection Current detection methods can
be mainly categorized into two types: 1) Statistical-
based methods (Mitchell et al., 2023; Bao et al.,
2024), which detect Al-generated text by ana-
lyzing differences in vocabulary distribution be-
tween human-written and machine-generated con-
tent. These methods assume that LLMs, trained
on large-scale corpora, tend to favor a specific sub-
set of high-frequency words. In contrast, human-
written text is more context-driven and exhibits
greater diversity in word choice (Gehrmann et al.,
2019). 2) Neural classifiers (Guo et al., 2023; Su-
perAnnotate, 2024), which use deep learning mod-
els to distinguish Al-generated text from human-
written text. For example, OpenAl fine-tunes
RoBERTa-based (Liu et al., 2019) models to detect
GPT-2-generated text (OpenAl, 2019). Addition-
ally, (Hu et al., 2023) improves detection robust-
ness through adversarial training.

Additionally, there is a distinct approach, though
not a direct detection method, which involves wa-
termarking Al-generated text by embedding im-
perceptible patterns to facilitate its identification
(Kirchenbauer et al., 2023; Zhao et al., 2023).

Our proposed method is effective against all the
above-mentioned detection strategies.

Attacks on AlI-Text Detection (Shi et al., 2024)
demonstrated the effectiveness of word substitu-
tion attacks against Al-text detectors. (Zhou et al.,
2024) propose a framework utilizing adversarial

"Due to the anonymous review process, the open-source
link will be provided after the paper is published.



attacks, designed to perform minor word-level per-
turbations in Al-generated text to confuse detectors
and evade detection.

Paraphrasing is another common approach.
(Fishchuk and Braun, 2023) utilized carefully de-
signed prompts to instruct models to rephrase the
text. (Alexander, 2023) proposed prompts that
increase perplexity and burstiness, making Al-
generated text appear more human-like. (Sadasivan
et al., 2023) and (Krishna et al., 2023) explored
paraphrasers fine-tuned from LLMs to rewrite Al-
generated text. However, these methods apply
coarse modifications to entire text segments,
compromising fluency and semantic integrity.

Another line of research reveals that adjusting
sampling parameters such as repetition penalty,
temperature, top-p, and top-k can help evade detec-
tion to some extent (Ippolito et al., 2020; Fishchuk
and Braun, 2023; Pu et al., 2023; Dugan et al.,
2024). Yet most prior studies explore a limited
temperature range, leaving the deeper relation-
ship between temperature and detection success
insufficiently examined.

In contrast to previous methods, our work sys-
tematically investigates how high-temperature de-
coding disrupts the key distributional signals used
by detectors. We propose a sentence-level para-
phrasing framework that simulates the effect of
high-temperature generation. This finer control en-
ables us to preserve text quality while achieving
better evasion performance.

3 Preliminary Experiment

To explore the impact of temperature on Al-text
detection, we conducted a preliminary experiment.

3.1 Settings and Results

We selected 3,000 questions from the Dolly
(Conover et al., 2023) dataset and used the
Llama3.1-8B-Instruct (Dubey et al., 2024) model
to generate responses with different temperature
settings. In particular, the temperature of 0.0 repre-
sents greedy sampling.

As shown in Figure 1, the results reveal a strong
correlation between temperature and Al-text de-
tection confidence score. As the temperature in-
creases, detection scores decrease, meaning detec-
tors become less confident in classifying text gen-
erated at that temperature as Al-generated. This
suggests that higher-temperature sampling makes
Al-generated text harder to detect. In Section 3.2,
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Figure 3: Principle of Statistics-based Detection
Methods. Statistics-based detection methods assume
that different LLMs are trained on similar large corpora,
leading to similar distribution characteristics (Gehrmann
et al., 2019; Bao et al., 2024). The detector generates a
reference distribution using either the source or a sur-
rogate model. It then compares the token distribution
of the text to be detected with the reference distribu-
tion, quantifying their similarity. As shown in the figure,
Al-generated text tends to have higher similarity (lower
cross-entropy) with the reference distribution, resulting
in lower overall entropy. In contrast, human-generated
text, with greater diversity in expression, shows lower
similarity (higher cross-entropy) and higher entropy.
The cumulative entropy of individual tokens is then used
to infer the likelihood of the text being Al-generated or
human-written.

we analyze why temperature influences Al-text de-
tection performance.

3.2 Detailed Analysis

The probability of generating the next token in
mainstream large language models is given by:

exp(logp(t; | t<;))
tj | tey) =
Pty [ <)) > vevexp(logp(t | t<j))’

where V' is the vocabulary set.

Now, assume that the probability distribution of
the next token in human-written text, conditioned
on the preceding tokens, is given by phuman(t; |
t<j). Statistics-based detection methods assume
that LLMs, trained on vast corpora, exhibit distri-
butional preferences (Gehrmann et al., 2019; Bao
et al., 2024). As a result, machine-generated text
tends to show a more deterministic selection pat-
tern, favoring high-probability tokens. In contrast,
human-written text reflects greater variability due
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Figure 4: The pipeline of the TempParaphraser framework. First, we fine-tune the LLM using the data generated
in section 4.2.2 to obtain the paraphrasing model. Next, we input Al-generated text for processing. TempParaphraser
begins by segmenting the text into individual sentences. Each sentence is then paraphrased multiple times. Following
this, we employ the approach described in section 4.2.3 and use a text detector to select the best result for each
sentence. Finally, the selected sentences are combined in sequence to generate the final output.

to factors like semantics, context, and individual
writing style, leading to higher entropy in humans:

H(pai(tj [ t<;)) < H(phuman(t; | t<j))-

As shown in Figure 3, this is a key indicator in
previous statistical-based detection studies for iden-
tifying Al-generated text.

Next, we consider the adjustable temperature
parameter during LLM inference, which controls
the smoothness of the output probability distri-
bution by scaling the model’s logits. A higher
temperature creates a smoother distribution, in-
creasing the randomness in token selection (Peep-
erkorn et al., 2024). This increases the entropy
of Al-generated text, making it more similar to
human-written text and potentially helping it
evade detection.

However, our understanding of neural networks
is still limited (Rauker et al., 2023), making it dif-
ficult to directly analyze their internal decision-
making mechanisms. Based on our empirical re-
sults (Figure 1), it is reasonable to conclude that
neural-based detectors rely on the distributional
differences between human-written and machine-
generated text.

4 Methodology

In this section, we will show the core principles
and implementation details of the proposed Temp-
Paraphraser framework.

4.1 Core Principles

As analyzed in Section 3.2, while high-temperature
sampling enhances distribution smoothness and im-
proves evasion against detectors, it also degrades
text quality (Appendix B). To address this trade-
off, we propose an alternative approach that simu-
lates the effects of high-temperature sampling

through multiple independent samplings at a
normal temperature.

Specifically, we generate N independent se-
quences in parallel, where each sequence follows
its own unique sampling path. The conditional
probability of the j-th token in any given sequence,
sampled at normal temperature 7}orma1, 1S defined
as:

exp(logp(t; | tg-)/Tnormal)

()
anormal (t] | t< ) = i ’
J > v exp(logp(t | t%)/Tnormal)

)

where t(<Z ; Tepresents the divergent context from the
1-th independent generation path.

By averaging across multiple sampled trajecto-
ries, we define the ensemble token distribution:

N
1 .
pan (t]) = N Zannrmal (t] | t(<l.)7)
i=1

In an autoregressive model, differences in early
token selection propagate, causing divergence in
subsequent token distributions. Each individual
sample at Tjormar produces a relatively sharp prob-
ability distribution. While the per-sample en-
tropy H (pr,,,...,i) Témains characteristic of normal-
temperature sampling, the aggregated entropy sat-
isfies:

N

1
H (pavg) =N Z H (mermam) (Jensen’s Inequality).
i=1

This inequality guarantees that the ensemble en-
tropy strictly exceeds that of any individual sample,
thereby recovering the detector-evasion capacity of
high-temperature sampling.

4.2 Overall Framework and Implementation
Details

We define the sampling unit at the sentence level,
meaning that each sentence within the paraphrased



segment is sampled and rewritten multiple times.
This process is repeated until the entire segment is
fully paraphrased.

Although this approach may sacrifice some con-
textual coherence, focusing on sentence-level para-
phrasing allows the paraphrasing model to refine
each sentence more precisely.

Our overall framework is illustrated in Figure 4.
Next, we will explain the key details of our method.

4.2.1 The Paraphrasing Model

The paraphrasing model takes input text, para-
phrases it in a more human-like manner, and out-
puts the revised version. We choose a decoder-only
transformer model (Team, 2024; Dubey et al., 2024;
Javaheripi et al., 2023) as the paraphrasing model
and fine-tune it. Given the computational cost of
multiple samplings, we select lightweight LLMs
(with 1-3 billion parameters) as the paraphrasing
models.

4.2.2 High-Quality Data Synthesis
Framework

Unlabeled Pre-
Trained sentence

raw train data

OUTPUT :

AI-Text Detection Score Verification
Semantic Consistency Check
N-gram Constraint

Rule-Based Filtering

High-Quality Data

Figure 5: The pipeline of the High-Quality Data Syn-
thesis Framework.

To train our paraphrasing model, we develop a
data synthesis framework that eliminates the need
for labeled datasets. Instead, it relies solely on
human-written sentences, which are extracted from
pre-trained corpora (Gao et al., 2021a; Biderman
et al., 2022), avoiding the complexities of manual
annotation.

As shown in Figure 5, we first extract single-
sentence fragments from paragraphs within pre-
trained corpora. These sentences are then para-
phrased using Llama3.1-8B-Instruct (Dubey et al.,
2024), guided by carefully designed prompts (de-
tailed in Appendix J.1). The paraphrased sen-
tences form the basis of our raw dataset: the para-
phrased text serves as model inputs for fine-tuning,

while the original human-written sentences serve
as ground truth outputs.

Then we use the following steps to filter the
data: 1) AI Detection Rate Verification: We
use Al-text detectors to ensure that the original
human-written texts have low Al-generated like-
lihood scores, keeping the dataset effective. 2)
Semantic Consistency Check: We employ an
embedding-based similarity model to compare sen-
tence representations before and after paraphrasing,
ensuring that meaning is preserved. 3) N-gram
Constraint: We track sentence modifications us-
ing N-gram overlap metrics, ensuring that the para-
phrased output balances textual diversity and fi-
delity to the original sentence. 4) Rule-Based
Filtering: Rule-based mechanisms are applied to
remove redundant symbols.

4.2.3 Incorporating Heuristic Strategies for
Selecting Paraphrased Outputs

The results in Figure 1 show that detectors consis-
tently respond to increases in temperature, indicat-
ing a shared detection mechanism across models.
This insight helps refine our approach.

When generating multiple sentences at each step,
we need to aggregate these outputs. Our method
uses a detector to evaluate the outputs and selects
the one with the lowest Al-text detection confi-
dence as the final result. This heuristic search strat-
egy iteratively identifies the optimal sequence, min-
imizing the likelihood of being detected in the final
paraphrased text.

S Experiments

5.1 Experimental Setup
5.1.1 Evaluation Metrics

We evaluate performance on two aspects:

Attack Effectiveness: We assess the attack ef-
fectiveness using several recent open-source Al-
text detectors, including Neural-Based Detectors:
HC3 (Guo et al., 2023) detector, SA (SuperAnno-
tate, 2024) detector, and Statistics-Based Detec-
tors: Fast-DetectGPT (Bao et al., 2024) detector.

We treat the problem as a binary classification
task. In testing, all original texts are Al-generated,
and we evaluate the prediction accuracy (ACC) of
Al-text detectors on the attacked texts.

Text Quality: Our goal is to ensure that the mod-
ified texts resemble human-written texts. We first
compute the perplexity (PPL) of human-written



Method Detection ACC (%) Text Quality

HC3 | SA | Fast | Avg | IAPPLI | Flesh 7 Sim 1
Origin Al-Generated Text 99.8 99.8 98.9 99.5 - - -
WordNet(Fellbaum, 2010) 97.3 86.5 46.5 76.8 14.142 57.109 0.991
BERT(Devlin et al., 2018) 96.1 78.2 48.9 74.4 12.288 60.151 0.974
BART(Lewis et al., 2020) 92.2 98.1 93.5 94.6 24.331 59.497 0.980
BackTrans(Zhou et al., 2024) 99.0 99.8 90.7 96.5 24.072 56.284 0.981
EDP(Fishchuk and Braun, 2023) 70.4 823 87.8 80.2 18.688 52.602 0.917
FMP(Alexander, 2023) 60.9 75.0 90.1 75.3 18.875 55.709 0.923
DIPPER(Krishna et al., 2023) 87.9 90.3 87.7 88.6 19.251 62.650 0.936
HMGC(Zhou et al., 2024) 2.7 239 53 10.6 3.629 53.240 0.921
oursyi 45.6 13.7 8.5 22.6 8.785 66.747 0.963
oursyz 2.1 1.9 2.6 22 2.532 66.159 0.958

Table 1: Comparison of attack methods on Al-text detection and text quality. Detection accuracy (ACC) is
evaluated using three detectors: HC3 (Guo et al., 2023), SA (SuperAnnotate, 2024), and Fast-DetectGPT (Bao
et al., 2024). Text quality is measured by absolute perplexity difference (IAPPLI), Flesch Reading Ease score
(Flesch), and semantic similarity (Sim) between the paraphrased and original text. Lower detection accuracy ({)
indicates better evasion, while higher Flesch and Sim scores () reflect better readability and semantic preservation.
The subscript IV in Oursy; and Oursy; represents the sampling times setting. Both HMGC and Oursy; are
white-box attacks requiring an open-source detector, with HC3 used in our experiments.
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Figure 6: Detection ACC heatmap before and after applying TempPa- text detectors when different de-
raphraser on the Fast-DetectGPT (Bao et al., 2024) detector across tectors are used within the Temp-
different models and domains. (a) shows the detection ACC for original Paraphraser framework for para-

LLM-generated text. (b) shows the detection ACC after applying TempPa- phrased outputs selection.
raphraser. Results for additional detectors can be found in Appendix E.

text using the GPT-2 model?. We then evaluate the
difference in PPL between the attacked and human-
written texts, denoted as APPL. We use TextStat?
to measure the Flesch Reading Ease score*, which
assesses the readability of the attacked text. A
higher score indicates greater readability. We com-
pute the semantic similarity (Sim) between the at-
tacked text and the original text to measure how
well the meaning is preserved.

5.1.2 Baselines

Referring to recent research (Sadasivan et al., 2023;
Krishna et al., 2023; Zhou et al., 2024), we estab-
lish the following baselines:

Perturbation Methods: These methods involve
replacing words or sentences in the original text to
alter the Token distribution characteristics, includ-

2We extract 10,000 human-written texts from the RAID
dataset as a reference. The benchmark human PPL is 35.836.

Shttps://github.com/textstat/textstat

4https ://en.wikipedia.org/wiki/Flesch-Kincaid_
readability_tests#Flesch_reading_ease

ing: 1) Token-level perturbation: Randomly delet-
ing some words and using WordNet (Fellbaum,
2010) and BERT (Devlin et al., 2018) to complete
these words. 2) Sentence-level perturbation: Using
BART (Lewis et al., 2020) to randomly replace
some sentences with synonymous ones. 3) Adver-
sarial perturbation: HMGC (Zhou et al., 2024)
achieves SOTA performance in this category.

Paraphrasing Methods: These methods in-
volve paraphrasing the original text to express the
same content differently, including: 1) Back trans-
lation: Translating the original English text into
German and then back to English. 2) Prompt-
based paraphrasing: Crafting the prompt to in-
struct an LLM for paraphrasing. We employ
two types of prompts: evasion-driven paraphras-
ing (EDP)(Fishchuk and Braun, 2023), which di-
rectly instructs the model to evade text detectors
by rephrasing the content while preserving its
meaning, and feature-maximization paraphras-
ing (FMP)(Alexander, 2023), which directs the
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model to enhance specific linguistic features, such
as perplexity and burstiness, to increase text vari-
ation. Detailed prompts used are listed in Ap-
pendix J.3. 3) Fine-tuned paraphrasing models:
We compare our approach with DIPPER (Krishna
et al., 2023), using lex=40 and order=40 in our
experiments.

For our proposed TempParaphraser method, two
key hyperparameters are considered: the number
of sampling times and the temperature of the para-
phrasing model. We first conduct a hyperparameter
study (see Appendix D) to analyze their effects and
set the temperature to 1.2 for the main experiments.

More details on the experimental setup and im-
plementation can be found in Appendix C.

5.2 Main Results

In this section, we present the main results of our
experiments. First, we compare TempParaphraser
with previous methods on the widely used HC3
dataset (Guo et al., 2023), as shown in Table 1.
Next, we evaluate its performance across differ-
ent models and domains on the more recent RAID
dataset (Dugan et al., 2024), illustrated in Figure 6.
We also assess its ability to generalize across vari-
ous detectors (see Table 2) and bypass watermark-
based detection systems.

TempParaphraser achieves superior attack
success rates while maintaining text quality.
In Table 1, our method outperforms previous ap-
proaches by effectively manipulating text to evade
detection from three different detectors, achieving
optimal success rates.

The texts generated by TempParaphraser achieve
the lowest | APPLY|, differing by only 2.532 from
the human-written text. Additionally, the Flesch
Reading Ease score exceeds all baseline methods,
indicating the generated text has high readability.

TempParaphraser is effective across differ-
ent models and domains. As shown in Figure 6,
we evaluate the attack performance on text gen-
erated by mainstream models across different do-
mains. Regardless of the model or domain, Temp-
Paraphraser significantly reduces the probability
of being detected. On average, the detection accu-
racy dropped by 92.3% across five LLMs and six
domains.

TempParaphraser exhibits strong generaliza-
tion across different detectors. The TempPara-
phraser framework uses an open-source detector to
select paraphrased outputs. As discussed in Section
4.2.3, we leverage a shared detection mechanism

observed across different detectors. By exploit-
ing this consistency, any single detector used for
selection can effectively evade detection by other
detectors. Table 2 illustrates this generalization
capability.

Notably, TempParaphraser attacks detectors
without requiring access to their internal weights,
relying solely on their output probabilities. In con-
trast, baseline methods like HMGC (Zhou et al.,
2024) necessitate access to detector weights for
optimal performance.

Moreover, TempParaphraser is also effective
in evading watermark-based detection methods
(Kirchenbauer et al., 2023). The experimental re-
sults are provided in Appendix F.

5.3 More Analyses

5.3.1 Can TempParaphraser Effectively
Simulate High-Temperature Values?

Temperature 0.7

Temperature 0.7 Temperature 1.9 + TempParaphraser

2

3
~
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Figure 7: Token distribution at different temperature
settings, with token id below 50,000. For detailed token
counts, refer to Appendix H.

As discussed in Section 4.1, TempParaphraser
mimics high-temperature effects by performing
multiple normal-temperature samples, enriching
the token distribution p(t; | t<;) at each position.
In this experiment, we compare token distributions
between texts processed by TempParaphraser and
those generated at varying temperatures during in-
ference.

We used the LLaMA3.2-3B-Instruct (Dubey
et al., 2024) model to perform 5,000 inference runs
at low (0.7) and high (1.9) temperatures using an
identical input. Additionally, we apply TempPa-
raphraser to 5000 texts generated at temperature
0.7. The paraphrasing model, fine-tuned from the
LLaMA3.2 series, ensures a consistent tokenizer
with the inference model, allowing for a direct com-
parison. For simplicity, we focus on the token
distribution at position j = 8, comparing token
frequencies from both the direct inference and the
TempParaphraser outputs.

Figure 7 shows that at temperature 0.7, the most
frequent token makes up over 60 %, making the text
more detectable by Al-text detectors. At tempera-
ture 1.9, this frequency drops to around 7%, indi-



cating greater variability in the selection of tokens.
TempParaphraser-processed texts show similar to-
ken distribution patterns, effectively simulating the
high-temperature sampling effects.

5.3.2 Ablation Study

Semantic Similarity (%)

Fine-Tuned (Baseline) ©

—+— Non-Fine-Tuned (Ablation 1)
—a— Random Fine-Tuned (Ablation 2)

Fine-Tuned (Baseline)
—4— Non-Fine-Tuned (Ablation 1)
—=— Random Fine-Tuned (Ablation 2)
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Figure 8: Impact of fine-tuning and data filtering on
the paraphrasing model. (Left) Detection accuracy
(%) of SA(SuperAnnotate, 2024) detectors under differ-
ent settings. (Right) Semantic similarity under different
settings. In the legend, Ablation 1 compares the effects
of fine-tuning versus no fine-tuning of the paraphrasing
model. Ablation 2 compares the use of filtered data (as
described in Section 4.2.2) with random data selection.
All results use sampling times N = 1.

Ablation 1: Fine-tuning of the paraphrasing
model (Section 4.2.1) In Figure 8, we compare the
performance of TempParaphraser with and without
fine-tuning the paraphrasing model. The results
show that fine-tuning significantly improves eva-
sion performance and enhances semantic preser-
vation. Additionally, comparisons with different
LLM-based paraphrasing models are provided in
Appendix G.

Ablation 2: Data filtering method (Section
4.2.2) The data filtering process is another key
factor. Removing the filter causes a noticeable
increase in detection accuracy, indicating that
unfiltered paraphrases still retain detectable Al-
generated features. Moreover, semantic similarity
(SIM) decreases significantly. These findings high-
light the importance of careful data curation when
training an effective paraphrasing model.

Additionally, our framework includes a detection
module (Section 4.2.3) that selects paraphrased sen-
tences. Without this module, the model degenerates
to N = 1, performing a single sampling, similar
to previous paraphrasing methods. As shown in
Table 1, Oursy still outperforms traditional meth-
ods.

5.3.3 Improving AI-Text Detection with
TempParaphraser-Augmented Data

Malicious users can easily bypass detection by gen-
erating text with high-temperature decoding and

manually adjusting it (Sadasivan et al., 2023). This
process essentially replicates the effects of high-
temperature model output, as the adjusted text re-
tains the same randomness. Therefore, improving
the detector’s robustness to temperature variations
is essential.

TempParaphraser can strengthen the training pro-
cess of Al-text detectors by augmenting their exist-
ing dataset, without the need for additional manu-
ally curated data. We fine-tune the ROBERTa-based
model (Liu et al., 2019) using the HC3 dataset’s
(Guo et al., 2023) training set to obtain an initial
detector. Then, we select a 5% subset of the HC3
dataset and apply TempParaphraser to rewrite the
Al-generated text. This augmented data is subse-
quently used to further fine-tune the initial detector.
Experimental details are in Appendix L.1.

Detection Accuracy (%)

—A— Initial Detector
TempParaphraser-Augmented Detector
Gain

19 20

170 11 12 13 14 15 16 17 18
Temperature

Figure 9: Impact of TempParaphraser-augmented
training on detection robustness. The figure compares
detection ACC across different temperature settings
for the Initial Detector and the TempParaphraser-
Augmented Detector.

As shown in Figure 9, the TempParaphraser-
augmented detector shows improved robustness
across different temperature settings, with greater
gains at higher temperatures. Additionally, this
method maintains the detector’s original perfor-
mance under normal conditions and reduces the
risk of TempParaphraser’s future misuse (see Ap-
pendix 1.2 for detailed results).

6 Conclusion

This paper highlights a key vulnerability in Al-text
detection systems, where adjusting the temperature
during inference significantly reduces detection per-
formance. We introduced the TempParaphraser
framework, which exploits this weakness to effec-
tively evade detection while maintaining high text
quality. Experiments show that TempParaphraser
achieves SOTA evasion success rates and provides
insights for improving future detection systems.



Limitations

Although TempParaphraser is highly effective in
evading Al-text detection, it has some limitations
that require further exploration.

Our framework operates primarily at the sen-
tence level, which may result in a loss of long-
range contextual coherence in complex texts. Fu-
ture research could focus on advanced methods
to enhance contextual integrity while preserving
strong evasion performance.

Additionally, while our approach disrupts the
statistical patterns used by current detectors, it
is unclear how human evaluators would perceive
the paraphrased text. A thorough human assess-
ment is necessary to ensure that TempParaphraser-
generated text remains semantically faithful and
indistinguishable from human writing.

Ethical Considerations

The goal of this paper is to identify and highlight
vulnerabilities in current Al text detection systems,
particularly concerning paraphrasing-based evasion
techniques. While we demonstrate the effective-
ness of the TempParaphraser in bypassing detec-
tion mechanisms, we want to emphasize that our
intention is not to develop tools for malicious use.
Instead, our primary aim is to raise awareness of
the potential weaknesses in Al text detectors, en-
couraging researchers and developers to address
these vulnerabilities and strengthen the robustness
of detection systems against paraphrasing-based
attacks.

We also recognize that the TempParaphraser
framework has the potential to contribute positively
to the development of more resilient Al text de-
tection systems (Section 5.3.3). By using para-
phrased text to augment training datasets, Temp-
Paraphraser can help enhance the performance of
detection models, making them better equipped to
defend against evasion attacks. This dual-purpose
functionality—serving both as an exploration of
potential attack methods and as a tool to improve
detection systems—supports our broader objective
of advancing more secure and reliable Al technolo-
gies.

In alignment with our commitment to advanc-
ing the field in a responsible and ethical manner,
we have made our research openly available, in-
cluding models, code, and data. This openness
is intended to promote collaborative efforts to im-
prove Al text detection, ensuring that our findings

are accessible for constructive purposes. We be-
lieve that by sharing our research, the community
can collectively work toward identifying and ad-
dressing weaknesses in existing detection methods,
ultimately leading to the development of safer and
more trustworthy Al systems.
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A Detectors Tested in Preliminary
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A.1 Statistical-based Methods
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tribution using the source or reference model and
compare it with the distribution of the text to be
detected. The comparison method is as follows:

* Likelihood(Gehrmann et al., 2019): Mean log
probabilities. This test evaluates the probabil-
ity of the word, pdet(Xi = Xz ‘ Xl:i—l), to
determine if a word is sampled from the top
of the distribution.


https://proceedings.mlr.press/v202/mitchell23a.html
https://proceedings.mlr.press/v202/mitchell23a.html
https://proceedings.mlr.press/v202/mitchell23a.html
https://openai.com/research/gpt-2-1-5b-release
https://computationalcreativity.net/iccc24/papers/ICCC24_paper_70.pdf
https://computationalcreativity.net/iccc24/papers/ICCC24_paper_70.pdf
https://computationalcreativity.net/iccc24/papers/ICCC24_paper_70.pdf
https://doi.org/10.1109/SP46215.2023.10179387
https://doi.org/10.1109/SP46215.2023.10179387
https://doi.org/10.1109/SP46215.2023.10179387
https://doi.org/10.1109/SaTML54575.2023.00039
https://doi.org/10.1109/SaTML54575.2023.00039
https://doi.org/10.1109/SaTML54575.2023.00039
https://doi.org/10.1109/SaTML54575.2023.00039
https://doi.org/10.1109/SaTML54575.2023.00039
https://doi.org/10.48550/ARXIV.2303.11156
https://doi.org/10.1162/tacl_a_00639
https://doi.org/10.1162/tacl_a_00639
https://doi.org/10.1162/tacl_a_00639
https://huggingface.co/SuperAnnotate/roberta-large-llm-content-detector
https://huggingface.co/SuperAnnotate/roberta-large-llm-content-detector
https://huggingface.co/SuperAnnotate/roberta-large-llm-content-detector
https://www.mosaicml.com/blog/mpt-7b
https://www.mosaicml.com/blog/mpt-7b
https://www.mosaicml.com/blog/mpt-7b
https://www.mosaicml.com/blog/mpt-7b
https://www.mosaicml.com/blog/mpt-7b
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.1145/3490099.3511105
https://doi.org/10.1145/3490099.3511105
https://doi.org/10.1145/3490099.3511105
https://arxiv.org/abs/2412.19048
https://arxiv.org/abs/2412.19048
https://arxiv.org/abs/2412.19048
https://proceedings.mlr.press/v202/zhao23i.html
https://proceedings.mlr.press/v202/zhao23i.html
https://proceedings.mlr.press/v202/zhao23i.html
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://aclanthology.org/2024.lrec-main.739
https://aclanthology.org/2024.lrec-main.739
https://aclanthology.org/2024.lrec-main.739
https://aclanthology.org/2024.lrec-main.739
https://aclanthology.org/2024.lrec-main.739

* LogRank(Gehrmann et al., 2019): Average
log of ranks in descending order by probabili-
ties. This test assesses the absolute rank of a
word.

* Entropy(Gehrmann et al., 2019): Mean token
entropy of the distribution.

¢ Fast-DetectGPT(Bao et al., 2024): Intro-
duces the concept of conditional probability
curvature to elucidate discrepancies in word
choices between LLMs and humans within a
given context.

A.2 Neural-based Methods

* Hello-SimpleAl/chatgpt-detector-
roberta(Guo et al., 2023)

* SuperAnnotate/roberta-large-llm-content-
detector(SuperAnnotate, 2024)

* openai-community/roberta-large-openai-
detector(Solaiman et al., 2019)

¢ TrustSafeAI/RADAR-Vicuna-7B(Hu et al.,
2023)

* menglinzhou/eS-small-lora-ai-generated-
detector(Dugan et al., 2024)

B Impact of Temperature on Text Quality

llama3.1-8B PPL
—— GPT2PPL

log(PPL)
(=2}

EN

%AO 0.7 08 09 10 11 12 13 14 15 16 1.7 18 19 20
Temperature

Figure 10: This figure shows that as the temperature
parameter increases during LLM inference, the log(PPL)
exhibits a significant upward trend.

As the temperature increases, the perplexity
(PPL) of the generated text rises sharply, even-
tually reaching unacceptable levels, as shown in
Figure 10.

We use TextStat® to measure the Flesch Read-
ing Ease score®, which serves as an indicator
of text readability. The results show a clear

Shttps://github.com/textstat/textstat
6h'ctps ://en.wikipedia.org/wiki/Flesch-Kincaid_
readability_tests#Flesch_reading_ease
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Figure 11: This figure shows that as the temperature
parameter increases during LLM inference, the Flesch
Reading Ease Score decreases significantly, indicating
that the text becomes more difficult to understand.
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Figure 12: This figure shows that as the temperature pa-
rameter increases during LLM inference, the proportion
of difficult words in the text increases, making it harder
to read.

trend—readability decreases significantly as the
temperature increases, as illustrated in Figure 11.

Additionally, we use the TextStat tool to calcu-
late the proportion of difficult words in sentences.
A higher proportion indicates a tendency to use rare
and complex words, reducing text readability. The
results are shown in Figure 12.

To provide an intuitive comparison of how tem-
perature affects text generation, we present exam-
ples of model responses at different temperature
settings in Table 3.

The examples demonstrate that at a low tem-
perature (0.0), the model produces a concise and
factual response. At a moderate temperature (1.2),
the response contains additional but still relevant
information. However, at a high temperature (2.0),
the text becomes increasingly disorganized and ul-
timately nonsensical.


https://github.com/textstat/textstat
https://en.wikipedia.org/wiki/Flesch-Kincaid_readability_tests#Flesch_reading_ease
https://en.wikipedia.org/wiki/Flesch-Kincaid_readability_tests#Flesch_reading_ease

Question: "Which is a species of fish? Tope or
Rope"(Conover et al., 2023)

Temperature 0.0 Answer:

"The correct answer is Tope. Tope
(Galeorhinus galeus) is a species of
requiem shark, while Rope is not a
species of fish.”

Temperature 1.2 Answer:

"The correct answer 1is Tope. The
Tope is a species of shark and, more

specifically, a drum species belonging
to the Scombridae family. Rope, on the
other hand, does not refer to a specific
species of fish. The word ’rope’
is a general term for a long, thick
string made of fibers, commonly used
for climbing, securing, or connecting
objects.”

Temperature 2.0 Answer:

"Probability of
Torchoids nods
River experts Configuration Variables
acting Seeing bol At Bald Answer
HttpClient missribbonSlot Ville
Attempts comparisons verbosity complete
burdens dominate Alger Lent_____ Few
PyQt ang Right Persona Curtain water
both  approximation.)" (Text becomes
incoherent)

Richtorsi insults

Table 3: Examples of text generated at different tem-
perature settings. Higher temperatures introduce more
randomness, increasing verbosity and eventually lead-
ing to gibberish.

C Main Experiment Implementation
Details

C.1 Dataset

The HC3 (Human ChatGPT Comparison Corpus)
(Guo et al., 2023) dataset is used for comparing
answers from human experts and ChatGPT. It in-
cludes question-answer pairs from various domains
such as open-domain, computer science, finance,
medicine, law, and psychology. The data is sourced
from publicly available datasets (e.g., ELIS and
WikiQA) and knowledge points scraped from web-
sites like Wikipedia and BaiduBaike. Human an-
swers primarily come from experts or highly-rated
users, while ChatGPT responses are generated
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based on human questions and adjusted with spe-
cific instructions to resemble human-like answers.

RAID (Robust Al Detection) dataset (Dugan
et al., 2024) includes over 6 million text gener-
ations from 11 different language models across 8
diverse domains, such as News, Wikipedia, Books,
Reddit, and Poetry. This benchmark dataset fea-
tures a wide range of models to ensure comprehen-
sive evaluation, including variants of GPT (GPT-2
XL, GPT-3 text-davinci-003, GPT-4, and ChatGPT)
(Brown et al., 2020; Achiam et al., 2023), as well as
LLaMA 2 70B (Touvron et al., 2023), Mistral mod-
els (7B and its chat variant) (Jiang et al., 2023),
MPT models (30B and its chat variant) (Team,
2023), and Cohere (Cohere, 2024). The dataset in-
cludes 509,014 generated texts and 14,971 human-
written documents, totaling 6,287,820 texts.

For our experiments, we randomly selected a
subset of 10,000 samples from the HC3 test set
(Guo et al., 2023), as provided by (Zhou et al.,
2024). This subset includes 3,218 Al-generated
texts. We use the RAID dataset (Dugan et al.,
2024) to evaluate attacks across various LLMs
and text domains. We primarily focus on common
models, including "ChatGPT", "GPT-4", "Mistral-
Chat", "LLaMA-Chat" and "MPT-Chat" along with
typical domains such as "News", "Wiki", "Re-
views", "Books", "Poetry" and "Reddit". Each
model-domain combination contains 500 machine-
generated texts, including both greedy and random
sampling (temperature=1, top-p=1). Note that only
Al-generated texts from the dataset are used as
the original texts for the attack in Section 5.2. Our
main experiments are based on these datasets.

C.2 Implementation Details of
TempParaphraser

For training the paraphrasing model, we began with
texts from the Llama3.1-8B-Instruct Paraphrasing
pre-training corpus (Gao et al., 2021a) to obtain
raw data, which was then filtered. We first used the
SA detector (SuperAnnotate, 2024) to verify the Al
detection rate of the texts. Next, we calculated rep-
resentations using NovaSearch/stella_en_400M_v5
(Zhang et al., 2025) and used cosine similarity
to measure the distance between these representa-
tions to assess text similarity, setting the similarity
threshold to 0.6. Additionally, we computed the
Jaccard similarity based on 2-grams and 3-grams.
The data selection criterion was as follows:

ngram3_similarity X 3 + ngram?2_similarity > 1.2



In the end, we synthesized a total of 151,189
data points for training.

For the main experiment, we selected the
LLaMA3.2-1B-Instruct model as the base model
and performed full fine-tuning using LLaMA-
Factory (Zheng et al., 2024). The training was
conducted with a learning rate of 2e-5, a batch
size of 32, and a total of 1*¥L40 for training time.
Fine-tuning took approximately 3 hours.

In the TempParaphraser framework, sentence
segmentation is done by splitting the text at English
periods (" . "). Sentences with fewer than four
words are not paraphrased.

C.3 Evaluation Metrics Details

We treat the task as a binary classification problem.
The HC3 detector makes predictions based on the
relative magnitudes of the logits for the two classes,
selecting the class with the higher logit value as the
final output.

In contrast, both the SA detector and Fast-
DetectGPT detector apply a fixed decision thresh-
old of 0.5, classifying a text as Al-generated if its
confidence score exceeds this threshold. During
testing, all original texts are Al-generated, and we
evaluate the prediction accuracy (Acc) of the Al-
text detectors on the attacked texts.

For the perplexity (PPL) calculation of human-
written text, we use the RAID dataset as a reference,
with a benchmark human PPL value of 35.836.
This value is used to compute APPL, the difference
in perplexity between the attacked texts and human-
written texts.

For semantic similarity, we compute the em-
beddings of the texts using the princeton-nlp/sup-
simcse-roberta-large model (Gao et al., 2021b). We
then calculate the cosine similarity between the em-
beddings of the attacked and original texts to assess
how well the meaning is preserved.

Some baseline attack result texts are taken from
the study by (Zhou et al., 2024).

D Impact of the Hyperparameters

In the TempParaphraser framework, two key ad-
justable parameters are temperature and sampling
times. This section examines their effects on model
performance.

We conducted experiments by varying temper-
ature from 0.5 to 1.6 in increments of 0.1 and
adjusting sampling times from 1 to 8.

Our results indicate that as both temperature
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Figure 13: Hyperparameter Search

and sampling times increase, the accuracy (ACC)
of Al-text detection drops significantly, as shown
in Figure 13a. This demonstrates that modifying
temperature and performing multiple samplings
together enhance the attack success rate.
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Figure 14: Detection rates before and after applying TempParaphraser across multiple detectors. The heatmaps
depict results for HC3 and SA detectors, demonstrating that TempParaphraser consistently reduces Al-text detection

rates across different models and domains.

However, as illustrated in Figure 13b, we also
observe a decline in semantic similarity with in-
creasing temperature. This effect is likely due to
higher temperature producing a smoother proba-
bility distribution, which results in outputs deviat-
ing further from the original meaning. Furthermore,
under different hyperparameter settings, the Flesch
Reading Ease score also decreases significantly, as
shown in Figure 13c, indicating that the generated
text becomes harder to read.

Notably, changes in sampling times have mini-
mal impact on semantic similarity and the Flesch
Reading Ease score. This highlights a key advan-
tage of our paraphrasing model—despite multiple
samplings, it maintains high text quality.

E Additional Detection Results Across
Different Models and Domains

To further validate the effectiveness of TempPa-
raphraser, we provide additional detection results
using multiple Al-text detectors, including HC3
and SA. Figure 14 presents heatmaps illustrating
the detection rates before and after applying Temp-
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Paraphraser across different models and domains.

These results reinforce the findings presented in
Figure 6, confirming that TempParaphraser remains
effective across various Al-text detection methods.
The consistent reduction in detection rates suggests
that our approach is robust against diverse detection
strategies.

F Attacking the Watermarking Methods

The attack results of watermark method

mmm Detection Successful mmm Detection failed

origin

Attacked

400 600
Number of Samples

800 1000

Figure 15: The attack results of watermark method.

TempParaphraser disrupts Al-text detectors by
altering the token distribution characteristics and



Model Detection ACC (%) Text Quality

HC3| SA| Fast| Flesh?T IAPPLI] Sim?
llama3.2-1B(Dubey et al., 2024) 45.6 13.7 8.5 66.747 8.785 0.963
llama3.2-3B(Dubey et al., 2024) 49.8 18.6 11.0 66.280 9.666 0.966
phi2-2.7B(Javaheripi et al., 2023) 54.1 35.4 15.1 65.943 12.019 0.965
Qwen2.5-1.5B(Team, 2024) 48.1 19.5 10.9 66.220 10.043 0.965

Table 4: Comparison of detection accuracy and text quality across different models. The experiment was conducted
with hyperparameters: sampling times = 1 and temperature = 1.2.

is also effective against watermarking methods.
To evaluate this, we selected 1,000 samples from
the Dolly dataset and utilized the watermark injec-
tion framework proposed in (Kirchenbauer et al.,
2023) to embed watermarks into responses gener-
ated by the LLaMA3.1-8B-Instruct (Dubey et al.,
2024) model. We then tested these watermarked
responses using the provided detection algorithm.
Subsequently, we applied TempParaphraser to
the watermarked responses to assess whether our
method could effectively undermine watermark de-
tection. For this experiment, we set the temperature
to 1.2 and the number of sampling times to 1.

The results of the experiment are illustrated in
Figure 15. In the original responses, 56% of the
samples were detected as having watermarks. In
contrast, only 1.7% of the samples processed by
TempParaphraser were detected as having water-
marks. This substantial reduction in detection rate
demonstrates that TempParaphraser effectively dis-
rupts watermarking methods.

G Effectiveness of Different Paraphrasing
Models on Detection Evasion

To examine how different paraphrasing models im-
pact detection evasion, we fine-tune various models
on the same dataset using identical hyperparam-
eters. The evaluation results are summarized in
Table 4.

Our findings indicate that all tested models suc-
cessfully reduce Al-text detection accuracy, con-
firming that diverse paraphrasing models can ef-
fectively evade detection. Notably, even relatively
small models demonstrate strong evasion capabili-
ties, suggesting that paraphrasing, rather than sheer
model size, plays a crucial role in obfuscating Al-
generated text.

Interestingly, the larger LLaMA3.2-3B-Instruct
model does not achieve superior detection evasion
compared to its smaller counterpart, LLaMA3.2-
1B-Instruct. In fact, LLaMA3.2-1B-Instruct pro-
duces paraphrased text with a lower perplexity

16

(PPL) that is closer to human-written content, high-
lighting that increasing model size does not neces-
sarily enhance evasion performance. This suggests
that fine-tuning LLLM on high-quality paraphras-
ing data is more influential than model scale in
generating human-like text while evading Al-text
detectors.

These results demonstrate that various paraphras-
ing models can serve as effective evasion tools,
with model selection depending on the balance be-
tween computational efficiency and text natural-
ness.

H Token Frequency Analysis

In Experiment 5.3.1, we ran 5,000 inferences
with the same input on Llama3.2-3B-Instruct and
recorded the frequency of token IDs at position
j = 8 (the eighth generated token). The hyperpa-
rameters for TempParaphraser were setto N = 7
and 7" = 1.0. Table 5 shows the token frequencies
for the top 20 most frequent tokens under three
different temperature settings. The input is "What
climate are cacti typically found in?".

The results indicate that as the temperature in-
creases, the distribution of generated tokens be-
comes more diverse. At a lower temperature (0.7),
a few token IDs dominate the outputs, whereas
at a higher temperature (1.9), the distribution be-
comes significantly more spread out. The Temp-
Paraphraser method shows a further redistribution
of token probabilities, promoting a more balanced
and varied selection of tokens compared to stan-
dard temperature-based sampling. Notably, Temp-
Paraphraser reduces the reliance on the highest-
probability token (Token ID = 802), mitigating the
bias in LLM-generated text.

I Experimental Details for RoOBERTa
Fine-Tuning
I.1 Training Detail

To get the Initial RoOBERTa-based Al-text detec-
tor, we use the following hyperparameters:



Temperature 0.7 Temperature 1.9 TempParaphraser

Token ID

Count % Count %0 Count %

802 3184 63.68 360 7.2 160 3.2

9235 1459 29.18 268 5.36 330 6.6
4106 258 5.16 161 3.22 154 3.08
304 3 0.06 79 1.58 261 5.22
11 0 0.0 41 0.82 291 5.82
323 0 0.0 29 0.58 288 5.76
527 0 0.0 14 0.28 220 4.4
72 0 0.0 7 0.14 206 4.12
307 1 0.02 27 0.54 171 3.42
533 0 0.0 0 0.0 166 3.32
18768 0 0.0 10 0.2 151 3.02
8369 50 1.0 62 1.24 22 0.44
24521 21 0.42 63 1.26 27 0.54
1766 0 0.0 11 0.22 97 1.94
311 0 0.0 25 0.5 83 1.66
279 2 0.04 45 0.9 48 0.96
272 0 0.0 3 0.06 68 1.36
356 0 0.0 0 0.0 65 1.3

449 0 0.0 6 0.12 55 1.1
13918 0 0.0 34 0.68 22 0.44

Table 5: Top 20 most frequent tokens at position j = 8 under different temperature settings.

* Dataset: HC3-text dataset(Guo et al., 2023)  where the model predicts whether a given text is

(Guo et al., 2023) Al-generated or human-written.
e Base Model: RoBERTa-base (Liu et al.,
2019) LI.2 Further Evaluation of the
¢ Batch Size: 16 TempParaphraser-Augmented Detector

* Learning Rate: 5e-5
* Optimizer: AdamW 00| 2% g 0

° EpOChS: 1 90 g
* Max Sequence Length: 512 »
To get the TempParaphraser-augmented detec- ZZ

99.2% 98.9%  100.0% 100.0%
91.1%

79.4%

F1 Score

tor, we use the following hyperparameters:

I Initial Detect:
¢ Dataset: 5% subset of HC3-text for TempPa— 10 grpr;::h?;ser-Augmented Detector

raphraser, retaining human-written text while T e R
only modifying Al-generated text.
* Base Model: Initial RoBERTa-based AI-  Figure 16: Performance of the TempParaphraser-
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text detector Augmented Detector on the HC3 test set across dif-
¢ Batch Size: 16 ferent domains. The figure shows that while fine-tuning
* Learning Rate: le-6 with TempParaphraser-augmented data slightly reduces

detection performance in some domains, the overall
accuracy remains high.

e Optimizer: AdamW
* Epochs: 1

* Max Sequence Length: 512
We further evaluate the TempParaphraser-

We use the standard binary classification setup,  augmented detector on the HC3 test set across mul-

17



100

chatgpt - 13.8% 11.8% 2.0%

2.0% [ 11.4%

1.0%

80

gptd - 5.6% 10.6% 37.2% 9.4% 1.0%

60

mistral-chat - 35.0% 41.2% 24.2% 25.2% 11.4%

-40

llama-chat - 15.4% 24.0%

37.0% 29.0% F{EYN 30.6%

wiki reviews books poetry

1.4% 36.8% 35.8% 3.0%

-20
mpt-chat - 43.4% 6.0%
news reddit

(a) Baseline Detector

100

45.8%
(+34.4%)

67.4%

i 0,
chatgpt 37.6 % (+65.4%)

(+48.2%) | (+59.2%) [MEAX)

80

gptd -ErA/N 48.6% | 11V 15.8% 45.4% LRV
AN (+38.0%) | EEEGEA) (-21.4%) | (+36.0%) |G
60
mistral-chat LR 38.2% KLY AKEE Y
(+6 LW (+59.4%) | (+74.0%)

- 40
42.8% NERY,

o
RN (+72.2%)
-20

0.6%) 7
llama-chat —
(+79.0 44,
mpt-chat -E:L ¥4/ . 78.6%
(+54.8%) | (+43

0%) | (+49.6%)
| | ]
news

g
wiki reviews books

23.6%
(-46.8%)

84.0%

(+53.4%)

81.4%
(+75.4%)

poetry reddit

(b) TempParaphraser-Augmented Detector

Figure 17: Detection accuracy heatmap of TempParaphraser-augmented detector on TempParaphraser-
processed text. The heatmaps compare the detection performance of (a) the baseline detector and (b) the
TempParaphraser-augmented detector across different domains and models. The accuracy improved by an average
of 42.8% across five LLMs and six domains. The results indicate that fine-tuning with TempParaphraser-augmented
data improves the detector’s ability to recognize text modified by TempParaphraser, mitigating potential misuse.

tiple domains under standard settings. As shown in
Figure 16, while fine-tuning with TempParaphraser-
augmented data leads to slight performance drops
in some domains, the detector still maintains high
overall accuracy.

Additionally, using the same multi-domain,
multi-model evaluation setup from Section 5.2,
we assess the ability of the TempParaphraser-
augmented detector to detect text processed by
TempParaphraser. The results, presented in Fig-
ure 17, demonstrate that the augmented detector
can effectively counteract the impact of TempPa-
raphraser, reducing the risk of its misuse and pre-
venting improper applications of our method.

Our findings suggest that TempParaphraser can
serve as a data augmentation tool for enhanc-
ing Al-text detection datasets. By generating para-
phrased variations of Al-generated text, TempPara-
phraser introduces more diverse linguistic patterns
into training data, helping detectors generalize bet-
ter to real-world adversarial scenarios. A more
detailed study on improving detector performance
is left for future work.

J Prompt Design

J.1 Prompt for High-Quality Data Synthesis
Framework

In the High-Quality Data Synthesis Framework,
we use the following prompt to guide the LLM in
generating paraphrased text:

"Rewrite and paraphrase the following
sentence. Focus on changing the struc-
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ture and vocabulary while preserving the
original meaning and tone. Return the
rewritten sentence directly without in-
cluding any additional content."

J.2  System Prompt for Fine-Tuning the
Paraphrasing Model

For fine-tuning the paraphrasing model, we employ
the following system prompt:

"Rewrite the following text to sound more
natural and human-like. Maintain the
same information and overall structure,
but use more casual language, varied
sentence structures, and subtle personal
touches."”

J.3 Prompts Used in Baseline Methods

Below are the prompts used in baseline methods
for comparison. We made slight modifications to
adapt them to our task while preserving the core
structure of the prompts.

EDP (Fishchuk and Braun, 2023):

"Rewrite the following content in a way
that minimizes the likelihood of being
detected as Al-generated text. Ensure
the text exhibits characteristics of human-
authored writing, including natural syn-
tactic diversity, idiomatic expressions,
contextual adaptability, and organic co-
herence in argumentation: {text} Pro-
vide the results directly without any ad-
ditional explanation.”



FMP (Alexander, 2023):

"Rewrite the following content to make it
sound more natural and human-like. In
effective rewriting, two key factors are
crucial: perplexity and burstiness. Per-
plexity measures the complexity of the
text, while burstiness compares varia-
tions in sentence structure. Human writ-
ing tends to have greater burstiness, fea-
turing a mix of longer, complex sentences
and shorter ones. Al-generated text, in
contrast, is often more uniform. When
rewriting the following content, ensure
it has a good balance of perplexity and
burstiness: {text} Provide the results di-
rectly without any additional explana-
tion."
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