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Abstract

The rapid advancement of Large Language001
Models (LLMs) has significantly enhanced per-002
formance across various natural language pro-003
cessing (NLP) tasks, yet the high computational004
costs and latency associated with deploying005
such models continue to pose critical bottle-006
necks, limiting their broader applicability. To007
mitigate these challenges, we propose a dy-008
namic hybrid inference framework, Firewall009
Routing, which efficiently selects between a010
strong and a weak LLMs based on the complex-011
ity of the query. A lightweight routing model is012
trained to optimize resource allocation by learn-013
ing from response quality and preventing long-014
tail queries, which are often too hard to solve015
by LLMs, from being routed to the stronger016
model. Moreover, our method incorporates017
multiple sampling to enhance query evaluation018
reliability while leveraging Hard Blocking and019
Soft Blocking to handle long-tail queries along020
with refining labels for model selection. Exten-021
sive experiments show our method outperforms022
existing routing strategies by up to 5.29% in023
APGR, demonstrating state-of-the-art perfor-024
mance across multiple benchmarks.025

1 Introduction026

In recent years, we have witnessed the rapid ad-027

vancement of artificial intelligence technologies,028

particularly the rise of large language models029

(LLMs) such as ChatGPT, which are reshaping030

the paradigms of our daily work. These mod-031

els, often containing billions or even trillions of032

parameters, generate fluent and contextually ap-033

propriate responses, enabling natural interactions034

without requiring specialized user knowledge (Ope-035

nAI et al., 2024; Touvron et al., 2023; Grattafiori036

et al., 2024). However, such remarkable capabil-037

ities come at a significant cost: deploying LLMs038

demands expensive infrastructure, such as multi-039

GPU systems with high memory capacity, or incurs040

higher per-token charges in cloud-based LLM ser- 041

vices for more capable models (Yu et al., 2022). 042

Moreover, larger models often introduce higher 043

latency, making them less suitable for real-time 044

or resource-constrained applications. Striking a 045

balance among strong model performance, high 046

efficiency, and economical costs remains an "im- 047

possible triangle," yet it is precisely this challenge 048

that drives ongoing research efforts in the field. 049

Making the "impossible triangle" possible re- 050

quires a paradigm shift in how we allocate com- 051

putational resources for language model inference. 052

Extensive experiments have demonstrated that not 053

all tasks require the full power of the largest models 054

(Grattafiori et al., 2024). Simpler queries can often 055

be handled effectively by smaller, lower-cost mod- 056

els without compromising quality, whereas more 057

complex queries leverage the advanced capabilities 058

of larger models. This principle forms the founda- 059

tion of Hybrid Inference. 060

Given the promising potential, Hybrid Infer- 061

ence has garnered significant attention from both 062

academia and industry. Existing strategies can be 063

broadly categorized into two main types: Cascade 064

methods (Chen et al., 2023; Gupta et al., 2024; 065

Ramírez et al., 2024), and Route methods (Shnitzer 066

et al., 2023; Šakota et al., 2024; Lu et al., 2023; Ong 067

et al., 2024; Ding et al., 2024). 068

Cascade methods first process all queries using 069

a weaker model. If the weaker model’s confidence 070

in its response is low, typically determined through 071

an internal evaluation mechanism, the query is es- 072

calated to a stronger model for reprocessing. Al- 073

though this approach is conceptually straightfor- 074

ward, it has several inherent limitations. On the 075

one hand, evaluating response quality before com- 076

pletion in generative tasks is inherently difficult, 077

leading to unreliable decision-making(Gupta et al., 078

2024). On the other hand, evaluating response 079

quality after completion brings greatly increased 080

latency. These factors make Cascade methods less 081
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Figure 1: Firewall Routing framework for dual-model hybrid inference, comprising a strong model, a weak model,
and a router model to balance performance and cost for LLM inference. By blocking long-tail queries from being
routed to the strong model, the framework achieves state-of-the-art performance.

efficient in real-world applications.082

Motivated by these considerations, we focus083

on Route methods, which leverage a lightweight084

router model to dynamically allocate queries to the085

most appropriate LLM under a given configuration.086

However, existing Route methods predominantly087

rely on collected preference data, which are of-088

ten limited by strict domain-specific constraints089

(Shnitzer et al., 2023; Šakota et al., 2024; Lu090

et al., 2023), or heavily depend on model-generated091

scores (Ong et al., 2024; Ding et al., 2024). More-092

over, these methods often depend on preference093

data or artificially generated labels based on model094

scoring. In the context of dual-model hybrid in-095

ference, where the strong model generally outper-096

forms the weak model, they fail to address long-tail097

queries that challenge both models, highlighting098

opportunities for further optimization.099

To address these challenges, we propose Fire-100

wall Routing, a dual-model hybrid inference sys-101

tem that builds on reliable benchmark results and102

manages to block long-tail queries, enhancing both103

performance and efficiency.104

Specifically, we propose a novel paradigm for105

training the router model. Unlike existing meth-106

ods, our approach utilizes multiple sampling during107

benchmark evaluations to obtain more accurate es-108

timations of the capabilities of both the strong and109

weak models. These estimations are then used to110

construct soft labels for router training. Through111

mathematical derivations, this paradigm highlights112

the generality of soft label training in the domain 113

of router optimization and demonstrates that the 114

hard label approach is a specific instance of this 115

broader framework. 116

To further address the challenge of long-tail 117

queries, we propose two novel approaches—Hard 118

Blocking and Soft Blocking—designed to effec- 119

tively manage these cases. Hard Blocking uti- 120

lizes statistical information to identify long-tail 121

queries and assigns them the label “route to the 122

weak model,” minimizing unnecessary computa- 123

tional overhead. In contrast, Soft Blocking lever- 124

ages the Pass Rate (pass@1) to generate refined 125

soft labels with more precise routing conditions, 126

further reducing computational inefficiencies. 127

To summarize, we make the following contribu- 128

tions: 129

1. We propose a novel router training paradigm 130

leveraging multiple sampling to generate soft 131

labels, which generalizes router optimization 132

and demonstrates hard label training as a spe- 133

cific case within this framework. 134

2. We propose Hard Blocking and Soft Block- 135

ing as automated mechanisms to enable our 136

approach to overcome the challenges associ- 137

ated with long-tail queries. 138

3. We validate our approach through extensive 139

experiments across diverse configurations. 140
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2 Related Works141

Hybrid Inference balances response quality and142

inference cost by dynamically selecting models143

based on task complexity. For image classifica-144

tion, Kag et al. (2023) explored joint training of145

a small model, a large model, and a router, while146

in NLP tasks, the Tryage architecture (Hari and147

Thomson, 2023) employed a joint-trained router to148

optimize performance across domains. However,149

for LLMs, joint training is computationally expen-150

sive and deviates from the pre-training paradigm,151

leading to two main approaches: Cascade Meth-152

ods and Route Methods.153

Cascade Methods first query a weaker model154

and escalate the request to a stronger model only155

when necessary. FrugalGPT (Chen et al., 2023) es-156

timates response confidence using an LLM-based157

heuristic to decide whether a query should be for-158

warded to a larger model. Similarly, Gupta et al.159

(2024) proposed a confidence estimation method160

based on the conditional probability of the gener-161

ated response, serving as a reliability metric. By162

assessing the correctness of the weaker model’s re-163

sponses, these methods effectively reduce the num-164

ber of strong model invocations while maintaining165

high response quality. However, this approach in-166

troduces significant response time overhead, as the167

weaker model must first generate an output before168

determining whether escalation is required.169

Margin Sampling (Ramírez et al., 2024) is a dif-170

ferent cascade approach without introducing extra171

response time. Only when the probability differ-172

ence between the top two predicted tokens is small173

at the beginning of generation, indicating uncer-174

tainty, is the query escalated to the strong model.175

Route Methods introduce a router model to de-176

termine which model should handle a given query.177

Some works focus on selecting the most effec-178

tive model from a pool of equally scaled LLMs.179

For example, TensorOpera Router(Stripelis et al.,180

2024) proposes a complex and large-scale system181

that assigns each task to a specialized expert LLM.182

GraphRouter(Feng et al., 2025) builds upon exist-183

ing routing strategies and combines multiple types184

of routers within a unified framework to jointly op-185

timize both efficiency and performance in hybrid186

inference. Shnitzer et al. (2023) frame routing as an187

out-of-distribution (OOD) detection problem, pre-188

dicting model response correctness using k-nearest189

embedded queries. Similarly, Šakota et al. (2024)190

train a model to determine whether a query can be 191

correctly answered, incorporating a special token 192

to indicate which LLM should be used. Lu et al. 193

(2023) distill a reward model to predict the optimal 194

expert LLM for a given query. 195

Many recent works focus on dual-model hybrid 196

inference systems. For instance, RouteLLM (Ong 197

et al., 2024) uses preference pairs from multiple 198

LLMs in Chatbot Arena to train a Bradley-Terry 199

model (Bradley and Terry, 1952) as the router. Hy- 200

brid LLM (Ding et al., 2024) derives Win Rates for 201

queries through a biased comparison of response 202

BARTScores, creating a desired label distribution 203

to train the router. These approaches highlight the 204

potential for training routers with more reliable 205

evidence, such as pass@k (Chen et al., 2021), to 206

improve model selection. 207

3 Method 208

3.1 Router Training Criterions 209

3.1.1 Train with Hard Label 210

Early works on building up hybrid inference sys- 211

tems usually train a system with the router model 212

as a whole, where the router model learns how to 213

route under a fixed configuration(Kag et al., 2023). 214

Due to the high training costs associated with large- 215

scale models, most works in LLM hybrid inference 216

only train the router model. 217

In existing evaluation frameworks for large lan- 218

guage models, generative tasks typically follow a 219

greedy decoding paradigm, where the model out- 220

puts the token with the highest probability while 221

disregarding alternative token possibilities. Based 222

on this setting, existing methods (Ding et al., 2024) 223

adopt a “Hard Label” approach for router training. 224

Specifically, for a single query xi ∈ Q, let S(xi) 225

and W (xi) represent the responses generated by 226

the strong model S and the weak model W , re- 227

spectively, using greedy decoding. The correct- 228

ness of these responses is denoted as δ(S(xi)) and 229

δ(W (xi)), where δ(·) ∈ {0, 1}, with 1 indicating a 230

correct response and 0 indicating an incorrect one. 231

The decision on whether to route the query to the 232

weak model is determined by the label yi, defined 233

as yi := I[δ(S(xi)) ≤ δ(W (xi)]. Here, yi = 1 234

implies the weak model is capable of performing at 235

least as well as the strong model for query xi, and 236

thus the query should be routed to the weak model. 237

The hard-label router is trained by minimizing 238

the binary cross-entropy loss: 239
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L(θ) = − 1

|Q|

|Q|∑
i=1

((1− yi)log(1− pθ(xi))240

+ yilog(pθ(xi))), (1)241

where pθ(x) is output of router θ toward query x,242

where larger pθ(x) indicates that the queries should243

more likely to be routed to the weak model.244

The hard label approach is limited by its inabil-245

ity to account for the inherent variability in the246

responses of large models, thereby restricting the247

router’s ability to make fine-grained decisions. This248

limitation becomes particularly apparent in scenar-249

ios where the smaller model’s performance is often250

comparable to that of the larger model.251

3.1.2 Train with Soft Label252

To more objectively reflect the performance of large253

models, existing evaluations often involve multiple254

sampling of model outputs. Inspired by this ap-255

proach, we extend our approach by incorporating256

multiple sampling, which allows us to evaluate the257

models more thoroughly and account for response258

variability. This enhancement aims to improve the259

robustness and efficiency of the routing decisions260

in our hybrid inference framework.261

Specifically, for a single query xi , let262

S1(xi), . . . , S
n(xi) and W 1(xi), . . . ,W

n(xi) de-263

note the responses generated by the strong model S264

and the weak model W over n sampling iterations.265

The correctness of these responses is represented266

by δ(Sj(xi)) and δ(W j(xi)), where δ(·) ∈ {0, 1},267

with 1 indicating a correct response and 0 indi-268

cating an incorrect one. Each sampling iteration269

produces a noisy observation of yi, denoted as270

yji = I[δ(Sj(xi)) ≤ δ(W j(xi))]. In this setting,271

xi is associated with n data pairs in the training set,272

denoted as (xi, y1i ), (xi, y
2
i ), . . . , (xi, y

n
i ).273

Using this data, the router can still be trained274

with a hard label-based objective. However, this275

approach presents two significant challenges: first,276

the training cost scales proportionally with the num-277

ber of sampling attempts n; second, a single input278

can correspond to varying labels, potentially mis-279

leading the router’s behavior.280

Thus, we introduce the concept of the weak-to-281

strong Win Rate, defined as ri := 1
n

∑n
j=1 y

j
i ,282

which represents the probability that the weak283

model matches or exceeds the performance of the284

strong model. Furthermore, we demonstrate that285

optimization objectives based on Win Rate exhibit286

greater generality for router training. Notably, hard 287

label training inherently captures the concept of 288

Win Rate, which can be expressed in the following 289

form: 290

L(θ) = − 1

n|Q|

|Q|∑
i=1

n∑
j=1

((1− yji )log(1− pθ(xi)) 291

+ yji log(pθ(xi))) 292

= − 1

n|Q|

|Q|∑
i=1

((n−
n∑

j=1

yji )log(1− pθ(xi)) 293

+ (

n∑
j=1

yji )log(pθ(xi))) 294

= − 1

|Q|

|Q|∑
i=1

((1− ri)log(1− pθ(xi)) 295

+ rilog(pθ(xi))). (2) 296

Here, pθ(x) represents the output of the router θ 297

for the query x, where a larger pθ(x) indicates a 298

higher likelihood that the query should be routed 299

to the weak model. 300

This formulation naturally motivates the explo- 301

ration of more refined soft labels that capture the 302

nuanced behavior of large models through their win 303

rates. In contrast to existing approaches (Ding et al., 304

2024), which adopt probabilistic label construction 305

heuristically, we ground the transition from hard 306

to soft labels in a principled formulation. This 307

perspective sets the stage for our subsequent inves- 308

tigation into soft-label training strategies, where 309

we aim to better leverage signals for more effective 310

routing. 311

3.2 Blocking Long-tail Queries 312

Even for large models, there are instances where, 313

despite multiple sampling attempts n, the model 314

is still unable to resolve certain long-tail queries. 315

This limitation arises from the inherent complexity 316

and ambiguity in some queries, which even pow- 317

erful models may struggle to address consistently, 318

regardless of the number of samples taken. Con- 319

sequently, such cases highlight the need for more 320

sophisticated handling of long-tail queries in hybrid 321

inference systems. 322

3.2.1 Hard Blocking 323

To automatically identify long-tail queries, we in- 324

troduce multiple sample Pass Rate (pass@k when 325

k=1) from Chen et al. (2021)’s work to substitute 326

single sample correctness. For a single query xi ∈ 327
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Figure 2: Hard Blocking and Soft Blocking facilitate the automatic handling of long-tail queries by generating
reliable soft labels for router training. Queries assigned larger soft label values are more likely to be routed to the
weak model.

Q with n sampled responses R1(xi), ..., R
n(xi)328

from model R, Pass Rate is defined as the average329

correctness of these responses:330

pr(xi) :=
1

n

n∑
j=1

δ(Rj(xi)). (3)331

We are able to split queries into two sets, Qu332

and Qs = Q−Qu, representing long-tail and other333

queries, satisfying:334

∀xu ∈ Qu, prs(x
u) ≤ prw(x

u),335

∀xs ∈ Qs, prs(x
s) > prw(x

s), (4)336

here we identify long-tail queries as those on which337

the weak model outperform the strong model,338

which is also known as the complementary be-339

haviour between LLMs (Chen et al., 2023).340

By addressing long-tail queries through rout-341

ing them to the weak model, the decision to route342

other queries similarly hinges entirely on the weak343

model’s capability to handle these queries effec-344

tively:345

labeli =

{
prw(xi), xi ∈ Qs,

1, xi ∈ Qu,
(5)346

where labeli is the soft label used in router training347

to substitute ri in Eq.2.348

To further reduce the cost associated with la-349

bel collection in this method, it is also possible350

to split Qu and Qs using only the strong model’s351

greedy-decoding responses, subject to the follow- 352

ing restrictions: 353

∀xu ∈ Qu, δ(S(x
u)) = 0, 354

∀xs ∈ Qs, δ(S(x
s)) = 1. (6) 355

3.2.2 Soft Blocking 356

A closer examination of Eq.2 and the concept of the 357

Pass Rate reveals that ri functions as a noisy indica- 358

tor, capturing the behaviors of the two models when 359

processing the same query. A key insight is that the 360

performance of the strong model is independent 361

of whether the weak model answers correctly. In- 362

stead of treating the two models’ performances as a 363

joint distribution, we can more effectively leverage 364

the distributional information obtained from mul- 365

tiple samplings. By treating the two independent 366

events separately, we can more accurately estimate 367

ri through Pass Rate. To maximize the use of this 368

information, we define the joint event for routing 369

the query to the weak model by combining two 370

conditions: the weak model is correct and even if 371

the weak model is incorrect, the strong model also 372

fails. This method allows us to offer a more refined 373

and informative estimate of overall performance: 374

labeli = prw(xi) + (1− prw(xi))(1− prs(xi)) 375

= 1− (1− prw(xi))prs(xi), (7) 376

where labeli is the soft label used in router training 377

to substitute ri in Eq.2, and labeli is the observed 378

frequency that the strong model fail to overperform 379

the weak model. As shown in Fig 2, this method 380

also works well with long-tail queries. 381
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Datasets TriviaQA GSM8K HumanEval

Metrics APGR↑ Pass Rate↑
APGR↑ Pass Rate↑

APGR↑ Pass Rate↑
20% 50% 80% 20% 50% 80% 20% 50% 80%

Linear Interpolation 50.00 19.95 34.97 49.99 50.00 11.69 17.16 22.62 50.00 8.12 10.10 12.08
Hybrid LLM 49.17 18.98 34.38 49.99 62.08 14.38 20.75 24.79 51.94 8.10 10.50 12.35
RouteLLM (MF) 51.58 20.69 36.27 51.09 49.39 11.37 17.13 22.27 47.08 7.81 9.95 12.23
Margin Sampling 50.02 19.78 35.01 50.15 46.01 10.85 16.02 21.70 44.88 7.74 9.81 11.53

Ours (Hard Block) 53.16 22.09 37.85 50.96 67.37 16.34 22.46 24.67 54.36 8.17 10.77 12.27
Ours (Soft Block) 55.00 22.48 38.99 52.88 66.65 15.53 22.15 25.32 53.13 8.23 10.69 12.27

Table 1: Zero-shot performance of different methods across selected datasets. The weak model is Llama3.2-1B, and
the strong model is Llama3.1-70B. Linear Interpolation represents the combined performance of the two LLMs to
simulate random routing. Bolded values indicate the best-evaluated results. Note that Pass Rates at 0% and 100%
correspond to using only the weak or strong model, respectively, and thus remain identical across all methods.

4 Experiments382

4.1 Settings383

Datasets We evaluate our method on generative384

tasks commonly used to assess the capabilities of385

large language models (LLMs). Following prior386

work (Ong et al., 2024), we adopt three bench-387

marks: TriviaQA (Joshi et al., 2017) for com-388

monsense question answering, GSM8K (Cobbe389

et al., 2021) for mathematical reasoning, and Hu-390

manEval (Chen et al., 2021) for code generation.391

The training set is constructed from the training392

splits of TriviaQA and GSM8K, totaling over 68K393

examples, while HumanEval is used solely as a test394

set to evaluate the router’s out-of-domain (OOD)395

generalization capability. Across all datasets, we396

use a simple zero-shot prompt format without sys-397

tem prompts, where each input is structured as:398

"Question: {question}\nAnswer:". Generat-399

ing training labels in such generative settings is400

computationally intensive, as it requires producing401

n = 32 response samples per query. In our setup,402

these labels are derived from LLaMA3.2-1B, 3B,403

and LLaMA3.1-70B models, making the data col-404

lection process particularly expensive, which also405

limits us to conduct experiments on more LLMs.406

Models In this study, we utilize two large lan-407

guage models (LLMs) from the Llama family408

(Grattafiori et al., 2024) for our experiments:409

Llama3.2-1B serves as the weak model, while410

Llama3.1-70B is employed as the strong model411

for training the router. Furthermore, to assess the412

generalizability of the trained router, we test it on413

an alternative model pair, substituting Llama3.2-3B414

as the weak model.415

Routers Aligned with prior studies (Ding et al.,416

2024), we adopt DeBERTa-v3-large (He et al.,417

2023) as the backbone for the router model, aug- 418

mented with an additional linear layer to output 419

the probability of assigning each query to either 420

the weak or strong model. The router is trained for 421

10 epochs using the designated loss function, and 422

the final evaluation is based on the checkpoint that 423

achieves the best performance on the validation 424

set. Since our configuration largely follows that of 425

prior works, and it is worth noting that, compared 426

to the strong model (LLaMA3.1-70B), the compu- 427

tational cost of both the weak model and the router 428

is negligible. As a result, the overall latency, and 429

the reciprocal of speedup rate closely approximate 430

the routing ratio. Therefore, we report these values 431

in Appendix A for completeness. 432

Baselines We compare our approach with several 433

state-of-the-art methods, including Hybrid LLM 434

(Ding et al., 2024), RouteLLM (Ong et al., 2024), 435

and Margin Sampling (Ramírez et al., 2024). For 436

Hybrid LLM, we reproduce the best methodology 437

and hyperparameter selection as outlined in the 438

original paper, "the probabilistic router with data 439

transformation." The determistic variant is repro- 440

duced as Hard Label in Table 3. For RouteLLM, 441

we employ the best practices with downloadable 442

pre-trained weights, utilizing Matrix Factorization 443

(MF) with OpenAI’s text-embedding-3-small to 444

embed the queries. For Margin Sampling, we treat 445

it as a train-free baseline. We also adopt Random 446

Routing (i.e., linear interpolation) as a baseline, 447

which approximates the expected performance be- 448

tween always routing to the weak or strong model. 449

Full results are reported in Appendix A. 450

Metrics We evaluate the performance of the hy- 451

brid inference system using the Pass Rate, defined 452

as pass@1 (Chen et al., 2021), based on n = 32 453

sampling iterations. The system’s performance is 454

6



Datasets TriviaQA GSM8K HumanEval

Metrics APGR↑ Pass Rate↑
APGR↑ Pass Rate↑

APGR↑ Pass Rate↑
20% 50% 80% 20% 50% 80% 20% 50% 80%

Linear Interpolation 50.00% 25.75 38.59 51.44 50.00% 12.60 17.72 22.85 50.00% 10.27 11.44 12.61
Hybrid LLM 49.15% 24.86 38.04 51.50 61.09% 14.38 20.75 24.79 51.94% 10.42 11.47 12.63
RouteLLM (MF) 51.22% 26.14 39.45 52.28 49.11% 15.11 20.72 24.66 50.33% 10.10 11.26 12.65
Margin Sampling 51.21% 26.07 39.15 52.49 43.82% 11.71 16.11 21.42 44.88% 9.97 11.41 12.42

Ours (Hard Block) 53.29% 27.61 41.15 52.28 65.97% 16.68 22.30 24.54 50.86% 10.04 11.62 12.63
Ours (Soft Block) 55.38% 27.91 42.28 54.28 65.48% 16.01 22.04 25.24 52.37% 10.33 11.72 12.80

Table 2: Zero-shot performance of various methods across selected datasets, generalizing to different model pairs.
Trained on the hybrid inference system of Llama3.2-1B and Llama3.1-70B, and evaluated on the hybrid inference
system of Llama3.2-3B and Llama3.1-70B. Linear Interpolation simulates random routing by combining the
performance of the two LLMs. Bolded values indicate the best-evaluated results. Note that Pass Rates at 0% and
100% correspond to using only the weak or strong model, respectively, and thus remain identical across all methods.

reported at different proportions (20%, 50%, 80%)455

of queries routed to the strong model. Furthermore,456

we incorporate the Average Performance Gap Re-457

covered (APGR) metric from RouteLLM (Ong458

et al., 2024), which quantifies the system’s abil-459

ity to recover the performance gap between two460

LLMs. APGR is computed across a range of rout-461

ing ratios (0%, 10%, . . . , 100%) and yields values462

between 0% and 100%, reflecting how much of463

the performance discrepancy is resolved through464

dynamic routing. While APGR serves as a robust465

and interpretable metric, another metric introduced466

in the same work—Call-Performance Threshold467

(CPT)—is less reliable. In particular, closing the468

bottom-n% performance gap is substantially easier469

than the top-n%, making CPT prone to inflation.470

Although our method still achieves state-of-the-art471

CPT results, we include this metric only in Ap-472

pendix B. It is also important to emphasize that ex-473

isting route methods are commonly evaluated on474

a per-task basis, often using task-specific thresh-475

olds and evaluation metrics.476

4.2 Main Results477

4.2.1 Overall Performance478

Table 1 summarizes the overall performance of479

various routing methods within a hybrid inference480

system utilizing Llama3.2-1B and Llama3.1-70B.481

Methods achieving higher APGR also exhibit im-482

proved performance across different proportions of483

queries routed to the strong model. Our proposed484

methods outperform existing approaches, with a no-485

table improvement of 3.72% on TriviaQA, 5.29%486

on GSM8K, and 2.42% on HumanEval, demon-487

strating robustness across diverse query scenarios.488

Additional visualizations of these results are pro-489

vided in Appendix D. 490

On TriviaQA, Soft Blocking achieves the best 491

performance, with Hard Blocking also outperform- 492

ing all baselines. Hybrid LLM performs poorly, 493

likely due to its reliance on BartScore-based win 494

rates, which—according to Appendix C—do not 495

reliably reflect response quality across datasets. 496

Other methods consistently outperform random 497

routing, confirming their effectiveness. On 498

GSM8K and HumanEval, baseline methods show 499

consistent trends—either strong or weak on 500

both—whereas our methods consistently yield 501

state-of-the-art results. Despite using the same 502

training data, Hybrid LLM underperforms due to 503

its less effective objective formulation. 504

RouteLLM and Margin Sampling struggle to 505

generalize. For RouteLLM, the drop may stem 506

from domain shifts and OOD routing issues; its 507

original paper also reports weak GSM8K perfor- 508

mance without additional data, which we could not 509

obtain. Margin Sampling also suffers on reasoning 510

tasks like math, where its core assumption—based 511

on output margin—is challenged by the presence 512

of multiple valid solutions, especially when using 513

smaller LLMs. 514

4.2.2 Generalizing to Different Model Pairs 515

Generalizing to different model pairs is not a 516

mandatory property for router models. However, 517

considering that the training cost of a router is often 518

dominated not by the router architecture itself, but 519

by the label collection process—which can be com- 520

putationally expensive—it is desirable to examine 521

whether the router can generalize across similar 522

model combinations. In this work, we explore a 523

mild generalization setting by replacing the weak 524

model with a nearby alternative (e.g., swapping the 525
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Datasets TriviaQA GSM8K HumanEval Sample Cost
Metrics APGR↑ Pass Rate↑

APGR↑ Pass Rate↑
APGR↑ Pass Rate↑

20% 50% 80% 20% 50% 80% 20% 50% 80%

Weak Model Pass Rate 50.96 20.00 35.88 50.94 51.17 12.18 17.48 22.63 53.42 8.19 10.56 12.31 32+0
Strong Model Pass Rate 54.31 21.44 38.53 53.28 65.98 15.24 21.82 25.35 49.16 7.87 9.95 12.27 0+32
Hard Label 52.05 20.80 36.51 51.51 63.26 14.68 21.02 24.91 50.63 8.61 10.12 11.97 32+32

Hard Blocking w/o SMS 54.48 22.23 38.62 52.61 63.43 14.95 21.09 25.05 54.44 8.86 10.48 12.60 32+1
Hard Block 53.16 22.09 37.85 50.96 67.37 16.34 22.46 24.67 54.36 8.17 10.77 12.27 32+32
Soft Block 55.00 22.48 38.99 52.88 66.65 15.53 22.15 25.32 53.13 8.23 10.69 12.27 32+32

Table 3: Zero-shot performance of various label designs across selected datasets. All models were trained and
evaluated using Llama3.2-1B as the weak model and Llama3.1-70B as the strong model. Bolded values indicate the
best results. Note that Pass Rates at 0% and 100% correspond to using only the weak or strong model, respectively,
and thus remain consistent across all methods. Sample Cost denotes the number of sampling process required to
get Pass Rate for a single training example, represented as {a+ b}, where a is the number of samples drawn from
the weak model and b from the strong model.

Datasets TriviaQA GSM8K HumanEval

Metrics APGR↑

Hard Blocking (Causal) 51.78% 57.16% 54.44%
Hard Blocking (DeBERTa) 53.16% 67.37% 54.36%

Soft Blocking (Causal) 52.44% 58.55% 55.31%
Soft Blocking (DeBERTa) 55.00% 66.65% 53.13%

Table 4: Zero-shot performance of different backbone
models (DeBERTa-v3-large, Llama3.2-1B) across se-
lected datasets. Trained and evaluated within the hybrid
inference system of Llama3.2-1B and Llama3.1-70B.
Bolded values indicate the best-evaluated results.

1B model with a 3B variant).526

In Table 2, we evaluate the performance of the527

hybrid inference system configured with Llama3.2-528

3B and Llama3.1-70B, utilizing routers trained in529

prior experiments without any additional retraining.530

Our methods, particularly Soft Blocking, consis-531

tently demonstrate superior performance in this532

configuration, achieving an APGR improvement533

of 4.16% on TriviaQA, 4.88% on GSM8K, and534

0.43% on HumanEval, which highlights the gen-535

eralization capability of our method, where routers536

trained on one model pair exhibit consistent per-537

formance when applied to another, confirming its538

adaptability. Additional visualizations of these re-539

sults are provided in Appendix D.540

4.3 Ablation Study541

4.3.1 Router Models542

An alternative choice for the router model back-543

bone is causal LLMs (Ong et al., 2024). How-544

ever, we argue that using a router model larger than545

the weak model incurs unnecessary computational546

costs and impacts response time. As a result, we547

train the weak model as the router for comparison.548

As shown in Table 4, DeBERTa-v3-large (300M)549

outperforms Llama3.2-1B, despite its smaller size, 550

demonstrating better performance. Llama3.2-1B 551

performs better on HumanEval, indicating potential 552

generalization ability. 553

4.3.2 Label Designs 554

We conduct an ablation study on various label 555

strategies, as shown in Table 3. Training the router 556

solely with the weak model’s pass rate yields per- 557

formance only marginally above random routing, 558

indicating that the weak model alone provides lim- 559

ited routing signal. In contrast, using the strong 560

model’s pass rate leads to better results, as it im- 561

plicitly reflects query difficulty—queries that chal- 562

lenge the strong model tend to be universally hard. 563

Nonetheless, both strategies are outperformed by 564

our proposed methods. Hard labels derived from 565

greedy decoding offer additional improvements, 566

suggesting that the router benefits from discrete 567

supervision and can learn beyond merely detect- 568

ing weak model failures. Lastly, a cost-efficient 569

variant— Hard Blocking without Strong Model 570

Sampling, which is described in Eq 6—replaces 571

full sampling of the strong model with a single 572

greedy decoding step and achieves comparable per- 573

formance, making it a practical alternative under 574

constrained computational budgets. 575

5 Conclusions 576

In this work, we propose Firewall Routing, a dual- 577

model hybrid inference framework that leverages 578

multiple sampling and innovative blocking tech- 579

niques to optimize query routing. Through ex- 580

tensive experiments across various benchmarks, 581

our approach demonstrates state-of-the-art perfor- 582

mance, significantly reducing computational costs 583

while maintaining high response quality. 584
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Limitations585

The generalization of the proposed hybrid inference586

system across different model pairs and datasets587

remains an area for further exploration. Future588

work should include a broader evaluation across589

diverse models and datasets to assess the scalability590

and applicability of the proposed approach in real-591

world, heterogeneous settings.592
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A System Metrics of the Router Model 979

Regarding the choice of router model, we follow established practices in prior work and provide latency 980

comparisons to contextualize its overhead. For instance, the appendix of HybridLLM (Ding et al., 2024) 981

(Table 5) reports that the latency introduced by the router model is negligible: 982

Model Latency (seconds)

Router 0.036± 0.002
FLAN-T5 (800M) 0.46± 0.039
LLaMA-2 (7B) 7.99± 0.15
LLaMA-2 (13B) 14.61± 0.27

Table 5: Latency values for different models reported in HybridLLM (Ding et al., 2024).

We report our empirical latency values in Table 6. Taking GSM8K as an example—which has the shortest 983

average input and output lengths among our benchmarks (approximately 60 tokens for input and 35 tokens 984

for generation)—we observe that longer sequences significantly increase LLM latency. In contrast, the 985

router latency remains negligible and is unaffected by input or output length. 986

Model Latency (seconds)

DeBERTa-v3-large (300M) 0.024± 0.002
LLaMA-3.2 (1B) – First Token 0.012± 0.001
LLaMA-3.2 (1B) – Finish Generation 0.890± 0.086
LLaMA-3.2 (3B) – First Token 0.048± 0.003
LLaMA-3.2 (3B) – Finish Generation 3.56± 0.103
LLaMA-3.1 (70B) – First Token 0.845± 0.005
LLaMA-3.1 (70B) – Finish Generation 57.85± 0.872

Table 6: Latency values for different models in our experiments.

Even for small-scale LLMs such as LLaMA-3.2 (1B), the latency introduced by router-based methods 987

remains negligible compared to cascade-based approaches, which require waiting until the full generation 988

is completed. This gap is further amplified in real-world scenarios, where modern LLMs often operate 989

with long system prompts and extensive contexts. In such settings, cascade models experience even 990

greater latency due to the need to process full outputs before making downstream decisions, whereas 991

router models remain lightweight and unaffected by sequence length. 992

It is worth noting that, compared to the strong model (LLaMA3.1-70B), the computational overhead 993

introduced by both the weak model and the router (DeBERTa-v3-large) is negligible. This is particularly 994

evident in our setting, where the weak model (either LLaMA3.2-1B or 3B) requires only 0.9s or 3.56s to 995

complete generation, and the router takes merely 0.024s per query. In contrast, the strong model takes 996

approximately 57.85s to finish generation, meaning that the total latency in our method is overwhelmingly 997

dominated by the fraction of queries dispatched to the strong model. 998

Consequently, the overall latency of the routing system closely approximates a linear interpolation 999

between the weak and strong model latencies, weighted by the routing ratio. This also implies that the 1000

speedup over full strong model inference is roughly proportional to the percentage of queries filtered away 1001

from the strong model. For example, at a routing ratio of 50%, our method achieves a latency of 29.38s 1002

with the 1B weak model (compared to 57.85s with full strong model usage), leading to a nearly 1.97× 1003

speedup. Full results for both latency and speedup under different routing ratios, for both 1B and 3B weak 1004

models, are summarized in Table 7. 1005
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Routing Ratio Avg. Latency (s) Speedup
1B 3B 1B 3B

0% 0.902 3.560 64.14× 16.25×
20% 12.619 14.442 4.58× 4.01×
50% 29.377 30.729 1.97× 1.88×
80% 46.135 47.016 1.25× 1.23×
100% 57.850 57.850 1.00× 1.00×

Table 7: Overall latency (in seconds) and relative speedup under different routing ratios, using either LLaMA-3.2
1B or 3B as the weak model, and LLaMA-3.1 70B as the strong model. Latency includes the cost of DeBERTa
router, weak model generation, and strong model generation. Speedup is computed as the ratio of 70B-only latency
to current latency.

In our study, we adopt a linear interpolation baseline—i.e., Random Routing—which serves as a1006

reference point that approximates the expected performance between two extremes: always routing to1007

the weak model and always routing to the strong model. This baseline provides a meaningful point of1008

comparison for evaluating the effectiveness of various routing strategies. For completeness, we summarize1009

the zero-shot performance of the constituent LLMs in Table 8.1010

Model TriviaQA GSM8K HumanEval

LLaMA3.2-1B 9.94% 8.05% 6.80%
LLaMA3.2-3B 17.18% 9.18% 9.49%
LLaMA3.1-70B 60.00% 26.27% 13.39%

Table 8: Zero-shot pass rates of the weak and strong models. These serve as endpoints for evaluating the effectiveness
of routing policies under a linear interpolation baseline.
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B Call-Performance Threshold (CPT) 1011

Call-Performance Threshold (CPT) (Ong et al., 2024) measures the minimum percentage of queries that 1012

need to be routed to the strong model in order to achieve a certain percentage (e.g., 20%, 50%, or 80%) of 1013

the full performance gap between the weak and strong models. However, this formulation suffers from 1014

an inherent bias: closing the bottom-n% of the performance gap is significantly easier than closing the 1015

top-n%. This is because a large fraction of “easy” queries can be accurately predicted by even simple 1016

heuristics (e.g., margin-based uncertainty), enabling models to quickly reduce the apparent performance 1017

gap with relatively few strong model calls. In contrast, the remaining “hard” queries require deeper 1018

reasoning or more expressive models and are disproportionately challenging to resolve. 1019

As a result, CPT is highly sensitive to the distribution of query difficulty, and improvements on CPT 1020

can often be inflated by correctly routing trivial or low-complexity queries while failing to address more 1021

meaningful or representative cases. Moreover, CPT provides no insight into whether the selected routing 1022

decisions generalize well or preserve robustness across datasets and tasks. 1023

Although our method still achieves state-of-the-art CPT scores, we do not adopt it as a primary metric 1024

for evaluation. Instead, we include it in the appendix for completeness and reproducibility, and base our 1025

main analysis on metrics like Pass Rate and APGR, which better reflect the trade-off between quality and 1026

efficiency in practical deployments. 1027

Datasets TriviaQA GSM8K HumanEval

Metrics
CPT↓

20% / 50% / 80 %

Hybrid LLM 20 / 50 / 80 10 / 30 / 62 20 / 44 / 76
RouteLLM (MF) 18 / 46 / 76 20 / 50 / 82 22 / 54 / 78
Margin Sampling 20 / 48 / 78 24 / 54 / 84 26 / 50 / 88

Ours (Hard Block) 16 / 42 / 72 10 / 28 / 58 10 / 46 / 72
Ours (Soft Block) 14 / 42 / 72 8 / 24 / 54 18 / 40 / 72

Table 9: Zero-shot CPT performance of different methods across selected datasets. The weak model is Llama3.2-1B,
and the strong model is Llama3.1-70B. Bolded values indicate the best-evaluated results.

15



C Is BartScore a Reliable Metric of Response?1028

We calculate the BartScore for the responses of different LLMs on TriviaQA and GSM8K. The responses1029

are sorted based on their BartScore, and the sorted responses are grouped into bins. Average accuracy is1030

then calculated within each bin to assess the performance of the models at different levels of response1031

correctness.1032

As shown in Figure 3, 4, a correlation between BartScore and accuracy is only observed on TriviaQA1033

with Llama3.1-70B. In other cases, no consistent or discernible pattern is evident.1034
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Figure 3: BartScore analysis of LLM responses on TriviaQA, GSM8K, and HumanEval. The responses are sorted
by BartScore and grouped into bins, with accuracy calculated within each bin to evaluate performance at varying
levels of response quality.
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Figure 4: BartScore analysis of LLM responses on training set of TriviaQA and GSM8K. The responses are sorted
by BartScore and grouped into bins, with accuracy calculated within each bin to evaluate performance at varying
levels of response quality.
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D Visualization of Route Method Performance 1035

Similarly, we rank all queries based on the values predicted by the models, and patch them into distinct 1036

bins. For each bin, we compute the average pass rate of the strong model and the weak model. Additionally, 1037

we evaluate the improvement in pass rate achieved by routing the queries in each bin to the strong model, 1038

rather than to the weak model. 1039
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(a) Pass Rates on TriviaQA
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(b) Pass Rates on GSM8K
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(c) Pass Rates on HumanEval
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(d) Improvements on TriviaQA
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(f) Improvements on HumanEval
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Figure 5: Performance evaluation of reproduced Hybrid LLM on selected datasets. The system utilizes Llama3.2-1B
as weak model and Llama3.1-70B as strong model. Results are presented in a zero-shot setting.
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(f) Improvements on HumanEval
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Figure 6: Performance evaluation on generalization of reproduced Hybrid LLM on selected datasets. Evaluated on a
system with Llama3.2-3B as weak model and Llama3.1-70B as strong model. Results are presented in a zero-shot
setting.
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(b) Pass Rates on GSM8K
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(f) Improvements on HumanEval
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Figure 7: Performance evaluation of Matrix Factorization from RouteLLM on selected datasets. The system utilizes
Llama3.2-1B as weak model and Llama3.1-70B as strong model. Results are presented in a zero-shot setting.
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(c) Pass Rates on HumanEval
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(f) Improvements on HumanEval
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Figure 8: Performance evaluation on generalization of Matrix Factorization from RouteLLM on selected datasets.
Evaluated on a system with Llama3.2-3B as weak model and Llama3.1-70B as strong model. Results are presented
in a zero-shot setting.
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(b) Pass Rates on GSM8K

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Ranking Percentage

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Av
er

ag
e 

Pa
ss

ed
 R

at
e

Strong Model
Weak Model

(c) Pass Rates on HumanEval
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(f) Improvements on HumanEval
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Figure 9: Performance evaluation of Margin Sampling on selected datasets. The system utilizes Llama3.2-1B as
weak model and Llama3.1-70B as strong model. Results are presented in a zero-shot setting.
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(b) Pass Rates on GSM8K
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(f) Improvements on HumanEval
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Figure 10: Performance evaluation on generalization of Margin Sampling on selected datasets. Evaluated on a
system with Llama3.2-3B as weak model and Llama3.1-70B as strong model. Results are presented in a zero-shot
setting.
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(e) Improvements on GSM8K

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Ranking Percentage

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e 

Im
pr

ov
em

en
t o

n 
Pa

ss
ed

 R
at

e

(f) Improvements on HumanEval
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Figure 11: Performance evaluation of Hard Blocking on selected datasets. The system utilizes Llama3.2-1B as weak
model and Llama3.1-70B as strong model. Results are presented in a zero-shot setting.
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(b) Pass Rates on GSM8K

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Ranking Percentage

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e 

Pa
ss

ed
 R

at
e

Strong Model
Weak Model
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(f) Improvements on HumanEval
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Figure 12: Performance evaluation on generalization of the Hard Blocking on selected datasets. Evaluated on a
system with Llama3.2-3B as weak model and Llama3.1-70B as strong model. Results are presented in a zero-shot
setting.
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Figure 13: Performance evaluation of Soft Blocking on selected datasets. The system utilizes Llama3.2-1B as weak
model and Llama3.1-70B as strong model. Results are presented in a zero-shot setting.
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(f) Improvements on HumanEval
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Figure 14: Performance evaluation on generalization of the Soft Blocking on selected datasets. Evaluated on a
system with Llama3.2-3B as weak model and Llama3.1-70B as strong model. Results are presented in a zero-shot
setting.
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(f) Improvements on HumanEval
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Figure 15: Performance evaluation of the router trained on Weak Model’s Pass Rates across selected datasets. The
system utilizes Llama3.2-1B as weak model and Llama3.1-70B as strong model. Results are presented in a zero-shot
setting.
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(f) Improvements on HumanEval
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Figure 16: Performance evaluation of the router trained on Strong Model’s Pass Rates across selected datasets.
The system utilizes Llama3.2-1B as weak model and Llama3.1-70B as strong model. Results are presented in a
zero-shot setting.
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(f) Improvements on HumanEval

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Ranking Percentage

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e 

Im
pr

ov
em

en
t o

n 
Pa

ss
ed

 R
at

e

Figure 17: Performance evaluation of the router trained on Hard Labels attained with greedy decoding across
selected datasets. The system utilizes Llama3.2-1B as weak model and Llama3.1-70B as strong model. Results are
presented in a zero-shot setting.
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(f) Improvements on HumanEval
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Figure 18: Performance evaluation of the router trained using Hard Blocking without conducting sampling on the
strong model across selected datasets The system utilizes Llama3.2-1B as weak model and Llama3.1-70B as strong
model. Results are presented in a zero-shot setting.
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