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Abstract
A common issue in learning decision-making poli-
cies in data-rich settings is spurious correlations
in the offline dataset, which can be caused by hid-
den confounders. Instrumental variable (IV) re-
gression, which utilises a key unconfounded vari-
able known as the instrument, is a standard tech-
nique for learning causal relationships between
confounded action, outcome, and context vari-
ables. Most recent IV regression algorithms use
a two-stage approach, where a deep neural net-
work (DNN) estimator learnt in the first stage is
directly plugged into the second stage, in which
another DNN is used to estimate the causal effect.
Naively plugging the estimator can cause heavy
bias in the second stage, especially when regular-
isation bias is present in the first stage estimator.
We propose DML-IV, a non-linear IV regression
method that reduces the bias in two-stage IV re-
gressions and effectively learns high-performing
policies. We derive a novel learning objective to
reduce bias and design the DML-IV algorithm
following the double/debiased machine learning
(DML) framework. The learnt DML-IV estimator
has strong convergence rate and O(N−1/2) sub-
optimality guarantees that match those when the
dataset is unconfounded. DML-IV outperforms
state-of-the-art IV regression methods on IV re-
gression benchmarks and learns high-performing
policies in the presence of instruments.

1. Introduction
Recent advances in deep learning (DL) have greatly facili-
tated the learning of decision-making policies in data-rich
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settings, but they often lack optimality guarantees. A com-
mon issue for learning from offline observational data is the
existence of spurious correlations, which are relationships
between variables that appear to be causal, but in fact are
not. For example, suppose we have aeroplane ticket sales
and pricing data in a ticket demand scenario (Hartford et al.,
2017), and we wish to learn a policy from this offline data
that maximises revenue. During holiday season, observa-
tional data may contain evidence of a concurrent surge in
both ticket sales and prices, which may result in the learn-
ing algorithm to learn an incorrect policy that higher ticket
prices will drive higher sales.

Spurious correlations are often caused by hidden con-
founders (Pearl, 2000), which are unobserved variables that
influence both the actions (or interventions) and the out-
come. In the aeroplane ticket example, the occurrence of
popular events and holidays serves as a hidden confounder
that raises both ticket prices (actions) and sales (outcome).
To properly account for these hidden confounders and un-
derstand the true causal effect of actions, we need to model
the causal (or structural) relationship between the action and
the outcome, which is expressed through a causal function.
However, learning the causal function in the presence of hid-
den confounders is known to be challenging and sometimes
infeasible (Shpitser & Pearl, 2008).

A popular approach to deal with hidden confounders is via
instrumental variables (IVs) (Wright, 1928), which are het-
erogeneous random variables that only affect the action, but
not the outcome. These IVs have been used extensively to
identify the causal effect of actions in many applications,
including econometrics (Reiersöl, 1945; Angrist & Pischke,
2009), drug testings (Angrist et al., 1996), and social sci-
ences (Angrist, 1990). In the aeroplane ticket example, we
can employ supply cost-shifters (e.g., fuel price) as instru-
mental variables, as their variations are independent of the
demand for aeroplane tickets and affect sales solely via
ticket prices (Blundell et al., 2012).

We focus on the problem of learning the causal function in
the presence of hidden confounders using IVs (known as
IV regression), in order to learn a decision policy that max-
imises the expected outcome in this setting (which we refer
to as the offline IV bandit problem, described in Section 2.3)
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and comes with suboptimality guarantees. Two-stage least
squares (2SLS) (Angrist et al., 1996) is a classical IV re-
gression algorithm, which has been extended to non-linear
settings that utilise machine learning (ML) techniques, in-
cluding deep neural networks (DNNs), to learn the causal
function. The use of DNNs allows for greater flexibility
in IV regression, as it does not impose strong assumptions
on the functional form and can learn directly from data.
However, regularisation is often employed to trade-off over-
fitting with the induced regularisation bias, especially for
high-dimensional inputs. Both regularisation bias and over-
fitting may cause heavy bias (Chernozhukov et al., 2018) in
estimating the causal function when the first stage estimator
is naively plugged in, which causes slow convergence of the
causal function estimator.

Double/Debiased Machine Learning (Chernozhukov et al.,
2018) (DML) is a statistical technique that provides an unbi-
ased estimator with convergence rate guarantees for general
two-stage regressions. DML relies on having a Neyman
orthogonal (Neyman & Scott, 1965) score function to deal
with regularisation bias, and uses cross-fitting, that is, an
efficient form of (randomised) data splitting, to tackle over-
fitting bias. However, the use of DML for IV regression that
utilises neural networks has not been explored.

In this work, we propose DML-IV, a novel IV regression
algorithm that adopts the DML framework to provide an
unbiased estimation of the causal function with fast conver-
gence rate guarantees. We derive a novel Neyman orthogo-
nal score for IV regression, and design a cross-fitting regime
such that, under mild regularity conditions, our estimator is
guaranteed to converge at the rate of N−1/2, where N is the
sample size. We then extend DML-IV to solve the offline IV
bandit problem, where we derive a policy from the DML-IV
estimator and provide a O(N−1/2) suboptimality bound
with high probability that matches the suboptimality bounds
of unconfounded offline bandit algorithms (Jin et al., 2021;
Nguyen-Tang et al., 2022). Finally, we evaluate DML-IV
on multiple benchmarks for IV regression and offline IV
bandits, where superior results are demonstrated compared
to state-of-the-art (SOTA) methods.

Novel Contributions.

• We propose DML-IV, a novel IV regression algorithm
that leverages the DML framework to provide unbiased
estimation of the causal function.

• We derive a novel, Neyman orthogonal, score function
for IV regression, and design a cross-fitting regime for
the DML-IV estimator to mitigate the bias.

• We provide the first convergence rate guarantees for
IV regression algorithms that use DL. Namely, we
show that DML-IV converges at N−1/2 rate leading to
O(N−1/2) suboptimality for the derived policy.

• On a range of IV regression and offline IV bandit
benchmarks, including two real-world datasets, we
experimentally demonstrate that DML-IV outperforms
other SOTA methods.

1.1. Related Works

IV Regression. A number of approaches have been de-
veloped to extend the two-stage least squares (2SLS) al-
gorithm (Angrist et al., 1996) to non-linear settings. A
common approach is to use non-linear basis functions, such
as Sieve IV (Newey & Powell, 2003; Blundell et al., 2007;
Chen & Christensen, 2018), Kernel IV (Singh et al., 2019)
and Dual IV (Muandet et al., 2020). These methods enjoy
theoretical benefits, but their flexibility is limited by the set
of basis functions. More recently, DFIV (Xu et al., 2020)
proposed to use basis functions parameterised by DNNs,
which remove the restrictions on the functional form. An-
other approach is to perform stage 1 regression through
conditional density estimation (Darolles et al., 2011), where
DeepIV (Hartford et al., 2017) adopts DNNs to perform
these regressions. DeepGMM (Bennett et al., 2019) is
a DNN-based method that is inspired by the Generalised
Method of Moments (GMM) to find a causal function that
ensures the regression residual and the instrument are inde-
pendent. The learning procedure of DeepGMM does not
offer stability comparable to 2SLS approaches, as it is based
on solving a smooth zero-sum game, similar to training
Generative Adversarial Networks (Goodfellow et al., 2014).
Our approach allows DNNs in both stages and compares
favourably to Deep IV, DeepGMM, Kernel IV and DFIV.

Double Machine Learning (DML). DML was originally
proposed for semiparametric regression (Robinson, 1988);
it relies on the derivation of a score function, which de-
scribes the regression problem that is Neyman orthogo-
nal (Neyman & Scott, 1965). DML was later extended
by adopting DNNs for generalised linear regressions (Cher-
nozhukov et al., 2021). Its strength is that it provides unbi-
ased estimations for causal effects when the causal effect
is identifiable (Jung et al., 2021) or there are no hidden
confounders (Chernozhukov et al., 2022b). DML offers
strong (N−1/2, where N is the size of the dataset) guar-
antees on the convergence rate, even in the presence of
high-dimensional input.

There are previous works on combining DML with IV re-
gression, but they are mainly focused on linear and partially
linear models. Belloni et al. (2012) propose a method to
use Lasso and then Post-Lasso methods for the first stage
estimation of linear IV to estimate the optimal instruments.
To avoid selection biases, Belloni et al. (2012) leverage
techniques from weak identification robust inference. In
addition, Chernozhukov et al. (2015) propose a Neyman-
orthogonalised score for the linear IV problem with control
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and instrument selection, to potentially be robust to regular-
isation and selection biases of Lasso as a model selection
method. Neyman orthogonality for partially linear models
with instruments was primarily discussed in the work of
Chernozhukov et al. (2018). Furthermore, DML techniques
for identifying the local average treatment effects (LATE)
for nonlinear models with a binary instrument and treat-
ment (action) have been explored before (Chernozhukov
et al., 2024). For additional discussion, we refer to the book
(Chernozhukov et al., 2024).

DML for semiparametric models (Chernozhukov et al.,
2022a; Ichimura & Newey, 2022) has been previously ap-
plied to solve the nonparametric IV (NPIV) problem. How-
ever, their methods require that the average moment of the
Neyman orthogonal score is affine (linear) in the nuisance
parameters. Therefore, when applied to solve NPIV, func-
tional assumptions regarding the IV set and the residual
function were made. Such assumptions are not required
in our work since we are considering a different problem
setting and their Neyman orthogonal score is very differ-
ent from ours. To the best of our knowledge, there is no
work that adopts the DML framework for IV regression with
DNNs.

Causality. Doubly robust estimation for causality prob-
lems predominantly revolved around the estimation of av-
erage treatment effects (ATE) (Robins et al., 1994; Funk
et al., 2011; Benkeser et al., 2017; Bang & Robins, 2005;
Słoczyński & Wooldridge, 2018). Recently, there has been
a surge in doubly robust identification of causal structures
beyond the ATE settings. Soleymani et al. (2022); Quinzan
et al. (2023) focus on finding direct causes of the target vari-
able by orthogonalised scores. Angelis et al. (2023) extend
this line for testing Granger causality in the time-series do-
main. In this work, we focus on doubly robust estimation of
the counterfactual prediction function, a central problem in
the field of causal inference, which could be of independent
interest beyond the IV settings.

Offline Bandit. Most bandit algorithms assume uncon-
foundedness (e.g., Nguyen-Tang et al. (2022); Subramanian
& Ravindran (2022)). For bandit algorithms that consider
hidden confounders, most of them work in the online set-
ting, aiming to learn the best policy from scratch using the
least amount of online interactions (Zhang & Bareinboim,
2020; Subramanian & Ravindran, 2022), or with the help
of a pre-collected dataset (Lu et al., 2020). Few works are
dedicated to the offline confounded bandit, where only the
offline dataset is provided, as it is essentially a causal in-
ference problem. However, offline reinforcement learning
(RL) with hidden confounders has been studied. Pace et al.
(2023) develop a pessimistic algorithm based on the Del-
phic uncertainty due to hidden confounders, while other
methods adopt IV regression in combination with value iter-

ation (Liao et al., 2021) and Actor-Critic methods (Li et al.,
2021) to learn policies in offline RL. Offline policy evalua-
tion (OPE) under hidden confounders has also been studied.
Using IVs, doubly robust estimators for policy values are de-
rived through efficient influence functions (Xu et al., 2023)
and marginalised importance sampling (Fu et al., 2022).
Bennett et al. (2021) solve OPE under an infinite-horizon
ergodic MDP with hidden confounders using states and
actions as proxies for the hidden confounders to identify
policy values. Chen et al. (2021) consider the OPE problem
in a standard unconfounded MDP, where they view the pre-
vious (action, state) pair as the instrument for the Bellman
residual estimation problem of the current (action, state)
pair and directly apply existing IV regression methods to
estimate the Q value. We consider the setting of the offline
confounded bandit with IVs, for which we leverage DML
to obtain convergence and suboptimality guarantees.

2. Preliminaries
2.1. Notation

We use uppercase letters such as C to denote random vari-
ables. An observed realisation of C is denoted by a lower-
case letter c. We abbreviate E[R|C = c], a realisation of
the conditional expectation E[R|C], as E[R|c]. [N ] denotes
the set {1, ..., N} for N ∈ N. We write E[R|do(A = a)]
for the expectation of R under do intervention (Pearl, 2000)
of setting A = a. We use ∥·∥p to denote the functional
norm, defined as ∥f∥p := E[|f(C)|p]1/p, where the mea-
sure is implicit from the context. For a function f , we use
f0 to denote the true function and f̂ an estimator of the
true function. We use O and o to denote big-O and little-o
notations (Weisstein, 2023) respectively.

2.2. Contextual IV Setting

We begin with a description of the contextual IV set-
ting (Hartford et al., 2017) that we use in this paper. We
observe an action A ∈ A ⊆ RdA , a context C ∈ C ⊆ RdC ,
an instrumental variable (IV) Z ∈ Z ⊆ RdZ and an out-
come R ∈ R, where there exist unobserved confounders
that affect all of A, C and R through a hidden variable (or
noise) ϵ. IV directly affects the action A, does not directly
affect the outcome R and is not correlated with the hid-
den confounder ϵ. These causal relationships are illustrated
in Figure 1 and are represented by the following structural
causal model (Pearl, 2000):

R := fr(C,A) + ϵ, E[ϵ] = 0, E[ϵ|A,C] ̸= 0, (1)

where fr is an unknown, continuous, and potentially non-
linear causal function, and E[ϵ|A,C] is not necessarily zero.
Denote the set of observations (ci, zi, ai, ri), where i ∈ [N ],
generated from this model as the offline dataset D. The
goal of this paper is to learn the counterfactual prediction
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function (Hartford et al., 2017),

h0(C,A) := fr(C,A) + E[ϵ|C] = E[R|do(A), C],

which is the expected outcome under do(A) intervention
conditional on C, from the offline dataset D. This task is
also known as IV regression, and we aim to estimate h0
using a DNN. The term E[ϵ|C] is typically nonzero1, but
learning h0 still allows us to compare between different
actions when given a context as h0(C, a1) − h0(C, a2) =
fr(C, a1)− fr(C, a2) for all a1, a2 ∈ A, and in particular,
argmaxa h0(C, a) = argmaxa fr(C, a).

Generally, h0 is allowed to be infinite-dimensional, as com-
monly seen in nonparametric IV literature (Newey & Powell,
2003). We also allow h0 to be infinite-dimensional for the
Neyman orthogonal score introduced in Section 3.1, but
later, in Section 3.2, we restrict h0 to be finite-dimensional
and parameterised to obtain the theoretical results of the con-
vergence rate and the suboptimality bound of O(N−1/2).

The challenge of learning h0 from D is that E[ϵ|C,A] ̸= 0,
which reflects the existence of hidden confounders that ob-
scure the true causal effect. It has been shown (Bareinboim
& Pearl, 2012) that we cannot learn the causal effect of
actions in the presence of hidden confounders without struc-
tural assumptions. Fortunately, IVs enable the identification
of h0 if the following assumptions hold:

Assumption 2.1. (a) ϵ is additive to R and E[ϵ] = 0; (b)
E[ϵ|C,Z] = 0; and (c) P(A|C,Z) is not constant in Z.

Intuitively, Assumption 2.1 (a) and (b), introduced by Newey
& Powell (2003), is known as the exclusion restriction, and
requires that the instrument Z is uncorrelated with the hid-
den confounder ϵ. Assumption 2.1 (c), known as the rele-
vance condition, ensures that Z induces variation in action
and should be satisfied by the data generation policy. These
assumptions are standard for the IV setting (Newey & Pow-
ell, 2003; Xu et al., 2020; Singh et al., 2019), and allow for
the minimal condition to identify the causal effect.

2.3. Offline IV Bandit

The learnt estimator of h0 from the offline dataset D can
be used to solve the offline bandit problem in the con-
textual IV setting (Zhang et al., 2022), that is, to iden-
tify a (deterministic) policy π : C → A that max-
imises the value V (π) := Ec∼Ptest [R|do(A = π(c)), c] =
Ec∼Ptest [h0(c, π(c))], which is the expected outcome when
performing actions following π. Ptest is a test context distri-
bution that can potentially differ from the distribution of D.
The optimal policy π∗ should satisfy V (π∗) = maxπ V (π),
and suboptimality is defined as subopt(π) := V (π∗)−V (π).

1In the setting where E[ϵ|C] = 0 is assumed (Bennett et al.,
2019; Xu et al., 2020), h0 = fr and all our results apply.

Figure 1: The causal graph of the contextual IV setting,
where R = fr(C,A) + ϵ and Z is an instrumental variable
that affects R only through A.

We see that the optimal policy π∗ can be retrieved from h0
by selecting π∗(c) = argmaxa∈A h0(c, a).

2.4. Two-Stage IV Regression

In order to identify h0, a key observation (Newey & Pow-
ell, 2003) is that, by taking the expectation on both sides
of Eq. (1) conditional on (C,Z), we have

E[R|C,Z] = E
[
fr(C,A) + E[ϵ|C]

∣∣∣C,Z]
= E[h0(C,A)|C,Z] (2)

=

∫
h0(C,A)P(A|C,Z)dA,

where the expectation E[R|C,Z] and the distribution
P(A|C,Z) are both observable. However, solving this equa-
tion analytically is ill-posed (Nashed & Wahba, 1974). This
is an inverse problem for definite integrals that requires the
derivation of a function inside the definite integral based
on numerical integration values, which is thus not solvable
analytically. Recent IV regression methods instead estimate
ĥ in some space of continuous functions H by solving the
following optimisation problem with a two-stage approach:

min
h∈H

E[(R− E[h(C,A)|C,Z])2]. (3)

In the first stage, the conditional expectationE[h(C,A)|c, z]
is learnt as a function of (c, z) using observations, and in
the second stage, the loss in Eq. (3) is minimised using
the estimator obtained in stage 1. In both stages, linear
regression or parametric ML methods, such as DNN, can be
used to learn the true functions.

2.5. Double Machine Learning

DML is a parameter estimation method that can mitigate
certain biases in the learning process (Chernozhukov et al.,
2018; 2021; 2022b), which has been extended to work with
ML methods, including DL. DML considers the problem
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of estimating a function of interest h as a solution to an
equation of the form

E[ψ(D;h, η)] = 0, (4)

where ψ is referred to as a score function. Here, η is a
nuisance parameter, which is of no direct interest, but must
be estimated to obtain h. DML provides a set of tools to
derive an unbiased estimator of h with convergence rate
guarantees, even when the nuisance parameter η suffers
from regularisation, overfitting and other type of biases
present in the training of ML models, which typically causes
slow convergence when learning h.

In order to estimate h, DML reduces biases by using score
functions ψ that are Neyman orthogonal (Neyman & Scott,
1965) in η, which require the Gateaux derivative

∂

∂r

∣∣∣
r=0
E[ψ(D;h0, η0 + rη)] = 0, (5)

for all η. Here, h0 and η0 are the true parameters that
minimise the expected score, that is, E[ψ(D;h0, η0)] = 0.
Intuitively, the condition in Eq. (5) is met if small changes of
the nuisance parameter do not significantly affect the score
function around the true parameter h0. Neyman orthogonal-
ity is key in DML, as it allows fast convergence guarantees
for h, even if the estimator for the nuisance parameter η is
biased. For score functions that are Neyman orthogonal, we
define DML with K-fold cross-fitting as follows.
Definition 2.2 (DML, Definition 3.2 (Chernozhukov et al.,
2018)). Given a dataset D of N observations, consider
a score function ψ as in Eq. (4), and suppose that ψ is
Neyman orthogonal that satisfies Eq. (5). Take a K-fold
random partition {Ik}Kk=1 of observation indices [N ] each
with size n = N/K, and let DIk be the set of observations
{Di : i ∈ Ik}. Furthermore, define Ick := [N ] \ Ik for
each fold k, and construct estimators η̂k of the nuisance
parameter using DIc

k
. Then, construct an estimator ĥ as a

solution to the equation

1

K

K∑
k=1

Êk[ψ(DIk ; ĥ, η̂k)] = 0, (6)

where Êk is the empirical expectation over DIk .

In the definition above, ĥ is defined as a solution to Eq. (6).
In practice, however, finding an exact solution may not be
feasible. To circumvent this problem, we can also define
the estimator of interest ĥ as an ϵN -approximate solution
to Eq. (6), where ϵN = O(N−1/2), which allows for a small
optimisation error.

3. DML-IV Algorithm
We now present the main contributions of this paper. The
key to our results is the DML-IV algorithm, a novel two-
stage IV regression algorithm utilising DNNs in both stages

that provides guarantees on the convergence rate by lever-
aging the DML framework (see Section 2.5). The DML-
IV estimator is then utilised to solve an offline IV bandit
(see Section 2.3) by retrieving a deterministic policy with
suboptimality guarantees that match those of the uncoun-
founded bandit.

Firstly, we remark that, in order to estimate the coun-
terfactual prediction function h0 with convergence rate
guarantees, we need a Neyman orthogonal score. We let
g0(h, c, z) := E[h(C,A)|c, z] and let G to be some function
space that includes g0 and its potential estimators ĝ. Unfor-
tunately, the standard score (or loss) function for two-stage
IV regression ℓ = (R − g(h, c, z))2 in Eq. (3) is not Ney-
man orthogonal (details in Appendix B), which means that
small misspecifications or bias on g may lead to significant
changes to this loss function, and there are no guarantees on
the convergence rate if the first stage estimator ĝ is naively
plugged into the loss to estimate h0. To address this, we first
derive a novel Neyman orthogonal score function for the IV
regression problem and then design a DML algorithm with
K-fold cross-fitting adapted to the IV regression problem.

3.1. Neyman Orthogonal Score

We first derive a novel Neyman orthogonal score for learn-
ing h0 in the contextual IV setting. The key to constructing
a Neyman orthogonal score usually involves estimating ad-
ditional nuisance parameters (Chernozhukov et al., 2018)
and adding terms to the original score function to debias
it, so we first select relevant quantities that should be es-
timated as nuisance parameters. Following two-stage IV
regression approaches (Hartford et al., 2017), estimating g0
is essential for identifying h0, so we will estimate it as a nui-
sance parameter. We found that, by additionally estimating
s0(c, z) := E[R|c, z] inside some function space S , we can
construct a new score function

ψ(D;h, (s, g)) = (s(c, z)− g(h, c, z))2, (7)

by replacing R in the standard score with s(c, z). Here, the
nuisance parameters are η = (s, g). We see that ψ is a valid
score function sinceE[ψ(D;h0, (s0, g0))] = 0 with the true
functions (s0, g0) by Eq. (2), and the next theorem shows
that our score function is in fact Neyman orthogonal by
checking its Gateaux derivative vanishes at (h0, (s0, g0)),
where the proof is deferred to Appendix C.1.

Theorem 3.1. The score function ψ(D;h, (s, g)) =
(s(c, z)− g(h, c, z))2 obeys the Neyman orthogonality con-
ditions at (h0, (s0, g0)).

This Neyman orthogonal score function is abstract, in the
sense that it allows for general estimation methods for g0 and
s0, as long as they satisfy certain convergence conditions,
which are introduced in the next section.
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Algorithm 1 DML-IV with K-fold cross-fitting

Input: Dataset D of size N , number of folds K for cross-
fitting, mini-batch size nb
Output: The DML-IV estimator hθ̂
Get a partition (Ik)

K
k=1 of dataset indices [N ]

for k = 1 to K do
Ick := [N ] \ Ik
Learn ŝk and ĝk using {(Di) : i ∈ Ick}

end for
Initialise hθ̂
repeat

for k = 1 to K do
Sample nb data (cki , z

k
i ) from {(Di) : i ∈ Ik}

L = Ê(cki ,z
k
i )

[
(ŝk(c, z)− ĝk(hθ, c, z))

2
]

Update θ̂ to minimise loss L
end for

until convergence

3.2. Learning Causal Effects through DML

With the Neyman orthogonal score, we now introduce DML-
IV. While the DML-IV algorithm does not require any as-
sumptions on h, we assume that h is finite-dimensional and
parameterised for the theoretical analysis of DML-IV. Let
h0 = hθ0 and Θ ⊆ Rdθ be a compact space of parameters
of h, where the true parameter θ0 ∈ Θ is in the interior of
Θ, and H := {hθ : θ ∈ Θ} is the function space of h. The
procedure of the DML-IV algorithm for estimating h0 is
described in Algorithm 1. Given a dataset D of size N , we
split the dataset using a random partition {Ik}Kk=1 of dataset
indices [N ] such that the size of each fold Ik is N/K.

In the first stage of DML-IV, for each fold k ∈ [K], we
learn ŝk and ĝk using data DIc

k
with indices Ick := [N ] \ Ik.

ŝk ≈ E[R|C,Z] can be learnt through standard supervised
learning using a neural network with inputs (C,Z) and label
R. For ĝk, we follow (Hartford et al., 2017) to estimate
F0(A|C,Z), the conditional distribution of A given (C,Z),
with F̂ , and then estimate ĝ via

ĝ(h, c,z) =
∑

Ȧ∼F̂ (A|C,Z)

h(C, Ȧ)

≈
∫
h(C,A)F̂ (A|C,Z)dA ≈ E[h(C,A)|c, z].

If the action space is discrete, F̂ is a categorical model, e.g.,
a DNN with softmax output. For a continuous action space,
a mixture of Gaussian models is adopted to estimate the
distribution F0(A|C,Z), where a DNN is used to predict the
means and standard deviations of the Gaussian distributions.

In the second stage of DML-IV, we estimate θ̂ using our
Neyman orthogonal score function ψ in Eq. (7). The key
here is to optimise θ̂ with data from the k-th fold using

nuisance parameters ŝk, ĝk that are trained with data DIc
k
,

the complement of the data from the k-th fold. This is
important to fully debias the estimator θ̂. We alternate
between the K folds while sampling a mini-batch (cki , z

k
i )

of size nb from each fold k of the dataset to update θ̂ by
minimising the empirical loss on the mini-batch following
our Neyman orthogonal score ψ,

Ê(cki ,z
k
i )

[
(ŝk(c, z)− ĝk(hθ, c, z))

2
]

=
∑

(cki ,z
k
i )

1

nb

(
(ŝk(c, z)− ĝk(hθ, c, z))

2
)
.

When the second stage converges, we return the DML-IV
estimator hθ̂.

To obtain the DML convergence rate guarantees (Cher-
nozhukov et al., 2018) for hθ̂, i.e., for θ̂ to converge to
the true parameters θ0 at the rate of O(N−1/2) with high
probability, there are two key conditions: i) Neyman or-
thogonality of the score function, and ii) the nuisance pa-
rameters should converge to their true values at the crude
rate of o(N−1/4). The Neyman orthogonal score is given
in Theorem 3.1, so it remains to prove the convergence rate
of the nuisance parameters. Define GN to be the realisation
set such that ĝN , the estimator of g0 using a dataset of size
N , takes values in this set. Similarly, define SN to be the
realisation set of ŝN . These realisation sets are properly
shrinking neighbourhoods of the true functions g0 and s0,
and we later provide Lemma 3.3 that describes the rate of
shrinkage of these realisation sets, for which we require
boundedness of functions g, s, h and the outcome variable
R as stated in Assumption 3.2.

Assumption 3.2. We assume that (a): g0, s0, h0 ∈ G,S,H
are all bounded i.e., ∥g0∥∞, ∥s0∥∞, ∥h0∥∞ ≤ B; and (b):
the outcome ∥R∥∞ ≤ B, where B ∈ R+.

To improve readability, we provide here an informal state-
ment of the lemma, which expresses the relationship be-
tween the critical radius (Wainwright, 2019; Bartlett et al.,
2005) of the realisation sets and the convergence rate of the
nuisance parameters. We defer the formal statement and the
proof to Appendix C.1.

Lemma 3.3 (Informal: nuisance parameters convergence2).
If Assumption 3.2 holds, let δN be an upper bound on the
critical radius of the function spaces related to the realisa-
tion sets SN and GN . Then, with probability 1− ζ:

∥ŝ− s0∥22 = O

(
δ2N +

ln(1/ζ)

N

)
;

∥ĝ − g0∥22 = O

(
δ2N +

ln(1/ζ)

N

)
.

2See Lemma C.2 for the formal statement.
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The critical radius is a quantity that describes the com-
plexity of estimation, and it is typically shown that δN =
O(dNN

−1/2) (Chernozhukov et al., 2022b; 2021), where
dN is the effective dimension of the hypothesis space
(see Appendix C.3 for the derivation and formal defi-
nitions). This, together with Lemma 3.3, implies that
∥ŝ− s0∥2 = O(dNN

−1/2). Therefore, for function classes
with dN = o(N1/4), ∥ŝ− s0∥2 ≤ o(N−1/4) (and similarly
for ĝ). This is a broad class of functions that covers many
machine learning methods such as deep ReLU networks and
shallow regression trees (Chernozhukov et al., 2021). It has
also been shown that conditional density and expectation
estimation used for ĝ satisfies dN = o(N1/4) under mild as-
sumptions (Grünewälder, 2018; Bilodeau et al., 2021). We
refer to Chernozhukov et al. (2021) for additional discussion
and concrete convergence rates of nuisance estimators.

Lemma 3.3 shows that the nuisance parameters converge to
their true values at the rate of o(N−1/4) if dN = o(N1/4),
thus satisfying the second key condition to get the DML
convergence rate guarantees. This allows us, after checking
some mild regularity and continuity conditions, to obtain the
following theorem regarding the convergence of the DML-
IV estimator by applying Theorem 3.3 of Chernozhukov
et al. (2018), with proof deferred to Appendix C.1.

Theorem 3.4 (Convergence of the DML-IV estimator). If
the effective dimension dN = o(N1/4) for ŝ, ĝ, and Assump-
tion 2.1, & 3.2 hold, we have that the DML-IV estimator
θ̂ is concentrated in a 1/

√
N neighbourhood of θ0, and is

approximately linear and centred Gaussian:
√
N(θ̂ − θ0) → N (0, σ2) in distribution,

where the estimator variance is given by

σ2 := J−1
0 E[ψ(D, θ0, η0)ψ(D, θ0, η0)T ](J−1

0 )T ,

which is constant w.r.t N and J0 denotes the Jacobian ma-
trix of E[ψ] w.r.t θ.

Theorem 3.4 states that, with adequately trained nuisance
parameter estimators, the estimator error θ̂ − θ0 is normally
distributed and variance shrinks at the rate of N−1/2. This
implies that θ̂ converges to θ0 at the rate O(N−1/2) with
high probability, which allows us to deduce suboptimaltiy
bounds for the policy induced by hθ̂ in the next section.

3.3. Suboptimality Bounds

From the DML-IV estimator hθ̂, we retrieve (an estimate of)
the induced optimal policy as π̂(c) := argmaxa hθ̂(c, a).
Recall that the suboptimality of a policy is subopt(π̂) :=
V (π∗)− V (π̂). Next, we show a suboptimality bound for
the DML-IV policy in terms of the sample size N .

Theorem 3.5 (Suboptimality Bounds). Let the learnt policy
from a dataset of size N be π̂(c) := argmaxa hθ̂(c, a),

where θ̂ is the DML-IV estimator. Let L be a constant such
that |hθ(C,A) − hθ′(C,A)| ≤ L∥θ − θ′∥ for all C in the
support of Ptest, A ∈ A, and θ, θ′ ∈ Θ. Then, for all
ζ ∈ (0, 1], we have that the suboptimality of π̂ satisfies

subopt(π̂) = O

(
L

√
ln(1/ζ)

N

)
,

with probability 1− ζ.

The proof is deferred to Appendix C.2. To the best of our
knowledge, this is the first time that the convergence rate and
suboptimality bounds ofO(N−1/2) have been proved for IV
regression methods that use DL, matching the suboptimality
bounds of the unconfounded bandit. On the other hand, most
other DL-based IV regression methods only demonstrate
that their estimators converge in the limit.

4. Experimental Results
In this section, we empirically evaluate DML-IV for IV
regression and offline IV bandit problems. In addition, we
evaluate a computationally efficient version of DML-IV,
referred to as CE-DML-IV, which does not apply K-fold
cross-fitting. It trains ŝ and ĝ only once (instead of K times)
using the entire dataset, and can also be considered as an
ablation study on K-fold cross-fitting. Without K-fold
cross-fitting, it lacks the theoretical convergence rate guar-
antees but it still enjoys the partial debiasing effect (Mackey
et al., 2018) from the Neyman orthogonal score and trades
off computational complexity with bias. We found that CE-
DML-IV empirically performs as well as standard DML-IV
on low-dimensional datasets. We provide details and discus-
sion regarding CE-DML-IV in Appendix A.

Our evaluation considers both low- and high-dimensional
contexts, as well as semi-synthetic real-world datasets. We
compare our methods with leading modern IV regression
methods Deep IV (Hartford et al., 2017), DeepGMM (Ben-
nett et al., 2019), KIV (Singh et al., 2019) and DFIV (Xu
et al., 2020). In this section we use DNN estimators for both
stages with network architecture and hyper-parameters pro-
vided in Appendix F. Additional results of DML-IV using
tree-based estimators such as Random Forests and Gradi-
ent Boosting are provided in Appendix G.2, where SOTA
performance is also demonstrated. The algorithms are im-
plemented using PyTorch (Paszke et al., 2019), and the code
is available on GitHub3.

4.1. Aeroplane Ticket Demand Dataset

We first conduct experiments for IV regression on the aero-
plane ticket demand dataset, which is a synthetic dataset
introduced by Hartford et al. (2017) that is now a standard

3https://github.com/shaodaqian/DML-IV
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(a) The mean squared error of ĥ. (b) The average reward following the pol-
icy π̂ derived from ĥ.

(c) The average reward following π̂ with
out of training distribution context.

Figure 2: Results on the aeroplane ticket demand dataset with low-dimensional context.

(a) The mean squared error of ĥ. (b) The average reward following the pol-
icy π̂ derived from ĥ.

(c) The average reward following π̂ with
out of training distribution context.

Figure 3: Results on the aeroplane ticket demand dataset with high-dimensional context.

benchmark for nonlinear IV methods. In this dataset, we aim
to understand how ticket prices p affect ticket sales r. We
observe two context variables, which are the time of year t ∈
[0, 10] and customer type s ∈ [7] variables, the latter cate-
gorised by the level of price sensitivity. Price and context af-
fect sales through h0((t, s), p) = 100+(10+p)·s·ψ(t)−2p,
where ψ(t) is a complex nonlinear function. However, the
noise of r and p is correlated, which indicates the existence
of unobserved confounders. The fuel price z is introduced as
an instrumental variable. Details of this dataset are included
in Appendix D.1.

The results for learning h0 with this dataset of various sizes
are provided in Figure 2a. We ran each method 20 times and
report the mean squared errors (MSE) between the estima-
tors ĥ and h0, where the median, 25th and 75th percentiles
are shown. It can be seen that DML-IV performs better than
other IV regression methods for all dataset sizes. CE-DML-
IV, which requires significantly less computation, matches
the performance of DML-IV in this case.

High-Dimensional Feature Space

In real applications, we typically do not observe variables

such as the customer type as explicit categories. There-
fore, we follow Hartford et al. (2017) and consider the case
where the customer type s ∈ [7] is replaced by images
of the corresponding handwritten digits from the MNIST
dataset (LeCun & Cortes, 2010) to evaluate our methods
with high-dimensional (282=784 dimensions) inputs. The
task remains to learn h0, but the algorithms are no longer
explicitly given the 7 customer types, and instead have to in-
fer the relationship between the image data and the outcome.
Results for IV regression are plotted in Figure 3a, where
DML-IV and CE-DML-IV outperforms all other methods.
In these high-dimensional settings, regularisation is heavily
used to avoid overfitting. DML-IV demonstrates the ben-
efits of using DML to reduce both the regularisation and
overfitting bias caused by learning the nuisance parameters.

To demonstrate the robustness of DML-IV, we first provide
a sensitivity analysis against hyperparameter changes in Ap-
pendix G.3. We evaluate DML-IV and CE-DML-IV on the
aeroplane ticket demand datasets under a range of hyperpa-
rameters, where stable performance is observed. In addition,
we consider the case when the IV is weakly correlated with
the action in Appendix G.1, where we empirically demon-
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strate that DML-IV and CE-DML-IV perform significantly
better than SOTA methods under weak instruments.

4.2. Offline IV Bandit

We also evaluate DML-IV’s ability to learn good decision
policies in the offline IV bandit problem. We reuse the
aeroplane ticket demand dataset and aim to find the best
pricing policy that maximises sales. From the learnt ĥ, for
each context sampled from the test distribution, we retrieve
the best action by uniformly sampling actions from the
action space A and selecting the action for which ĥ returns
the highest value. Using this induced policy π̂, we compare
the expected reward following π̂ over the test distribution.

For the low-dimensional ticket demand dataset, we first set
the test distribution to be the same as the training distribu-
tion and plot the average rewards in Figure 2b. In Figure 2c,
we shift the test distribution out of the training distribution
by incrementing the distribution of t by 1. For the high-
dimensional setting, Figure 3b and Figure 3c demonstrate
the expected rewards for test distributions in and out of the
training distribution, respectively. There is a clear trend that
a better fitted (low MSE) ĥ leads to an induced policy with
higher expected reward. In all cases, DML-IV outperforms
all other methods, especially in the high-dimensional set-
ting, where DML-IV consistently learns the near-optimal
policy with only 2000 samples. CE-DML-IV, on the other
hand, only matches the performance of DML-IV for the low-
dimensional setting, but still outperforms the other methods
in the high-dimensional setting.

We only compare with other IV regression methods because
there are no offline bandit methods that consider the IV
setting, and standard offline bandit algorithms (e.g., (Valko
et al., 2013; Jin et al., 2021; Nguyen-Tang et al., 2022)) fail
to learn meaningful policies when the dataset is confounded,
as demonstrated in Appendix E.

4.3. Real-World Decision Problem

Lastly, we test the performance of DML-IV on real-world
datasets. The true counterfactual prediction function is
rarely available for real-world data. Therefore, in line with
previous approaches (Shalit et al., 2017; Wu et al., 2023;
Schwab et al., 2019; Bica et al., 2020), we instead consider
two semi-synthetic real-world datasets IHDP4 (Hill, 2011)
and PM-CMR5 (Wyatt et al., 2020). We directly use the
continuous variables from IHDP and PM-CMR as context
variables, and generate the outcome variable with a nonlin-
ear synthetic function following Wu et al. (2023). There
are 470 and 1350 training samples in IHDP and PM-CMR,
respectively (for details see Appendix D.2). We also run

4IHDP: https://www.fredjo.com/.
5PM-CMR:https://doi.org/10.23719/1506014.

Figure 4: The mean squared error of ĥ and average reward
following π̂ for the real-world datasets.

each method 20 times, where the MSE of ĥ and the expected
reward of the induced policy π̂ on the test dataset are plot-
ted in Figure 4. DML-IV and CE-DML-IV demonstrate
comparable, if not lower, MSE of fitting ĥ than the other
methods, while outperforming all other methods in average
reward. This shows that our algorithm can reliably learn
the counterfactual prediction function and policies with the
highest average reward from real-world data.

5. Conclusion
We have proposed a novel method for instrumental variable
regression, DML-IV. By leveraging IVs and DML on of-
fline data, DML-IV can learn counterfactual predictions and
effective decision policies with fast convergence rate and
suboptimality guarantees by mitigating the regularisation
and overfitting biases of DL. We evaluated DML-IV on IV
regression benchmarks and IV bandit problems, including
semi-synthetic real-world data, experimentally showing it is
superior compared to SOTA IV regression methods.

Future work includes considering other estimation meth-
ods for the nuisance parameters following our Neyman-
orthogonal score, and extending the method to sequential
decision problems and reinforcement learning in the pres-
ence of hidden confounders (Namkoong et al., 2020).
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A. Computationally Efficient CE-DML-IV

Algorithm 2 Computationally Efficient CE-DML-IV

Input: Dataset D with size N , mini-batch size nb
Output: The CE-DML-IV estimator hθ̂
Learn ŝ and ĝ using D
Initialise hθ̂
repeat

Sample nb data (ci, zi) from D
L = Ê(ci,zi)

[
(ŝ(c, z)− ĝ(hθ, c, z))

2
]

Update θ̂ to minimise loss L
until convergence

The standard DML-IV with K-fold cross-fitting trains ŝ and ĝ K times on different subsets of the dataset to tackle
overfitting bias, but it is computationally expensive. Therefore, as mentioned in Section 4, we also evaluate CE-DML-IV,
a computationally efficient version of DML-IV that does not apply K-fold cross-fitting and trains ŝ and ĝ only once
using the entire dataset. It uses the same Neyman orthogonal score as the standard DML-IV, so it still enjoys the partial
debiasing effect (Mackey et al., 2018) from the Neyman orthogonal score. However, without K-fold cross-fitting, it lacks
the theoretical convergence rate guarantees provided by Theorem 3.4 and Theorem 3.5. CE-DML-IV can be viewed as
a trade-off between computational complexity and theoretical guarantees, and we found that CE-DML-IV empirically
performs as well as standard DML-IV on low-dimensional datasets, where overfitting bias is not prevalent.

B. Standard Loss Function for IV Regression
The standard score (or loss) function for two-stage IV regression is ℓ = (R − g(h, c, z))2, as described in Eq. (3).
This score is not Neyman orthogonal because, first of all, E[(R − g0(h0, c, z))

2] = E[(R − E[R|C,Z])2] ̸= 0 since
E[h0|C,Z] = E[R|C,Z] and R− E[R|C,Z] ̸= 0 due to the noise on R.

Secondly, the derivative against small changes in g for score E[(R− g0(h0, c, z))
2] is

∂

∂r
E
[
(R− g0(h0, C, Z)− r · g(h0, C, Z))2

]
=
∂

∂r
E
[
(R− g0(h0, C, Z))

2 − 2r · (R− g0(h0, C, Z))g(h0, C, Z) + r2 · g(h0, C, Z)2
]

=E
[
2(R− g0(h0, C, Z))g(h0, C, Z) + 2r · g(h0, C, Z)2

]
,

and, when r = 0, this derivative evaluates to

E[2(R− g0(h0, c, z))g(h0, c, z)] = E[2(R− E[R|C,Z])g(h0, c, z)]

which does not equal to 0 for general g ∈ G since generally g(h0, c, z) and the residual (R − E[R|C,Z]) are correlated.
Therefore, the standard score function for two-stage IV regression can not be used to create a DML estimator.

C. Omitted Proofs
In this section, we state all the conditions required to prove the N−1/2 convergence rate guarantees for the DML-IV
estimator, and provide the omitted proofs in the main paper for Theorem 3.1, Lemma 3.3, Theorem 3.4 and Theorem 3.5.

C.1. DML-IV N−1/2 Convergence Rate Guarantees

To obtain N−1/2 convergence rate guarantees of the DML-IV estimator, the following conditions must be satisfied.

Condition C.1 (Conditions for N−1/2 convergence of DML, Assumption 3.3 and 3.4 in Chernozhukov et al. (2018)). For
N ≥ 3, all the following conditions hold. (a): The true parameter θ0 obeys E[ψ(D;h0, (s0, g0))] = 0 and Θ contains
a ball of radius c1N−1/2 logN centered at θ0. (b): The map (θ, (s, g)) 7→ E[ψ(D;hθ, (s, g))] is twice continuously
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Gateaux-differentiable. (c): For all θ ∈ Θ, the identification relationship

∥E[ψ(D;hθ, (s0, g0))]∥ ≳ ∥J0(θ − θ0)∥ (8)

is satisfied, where J0 := ∂θ′{E[ψ(D;hθ′ , (s0, g0))]}|θ′=θ0 is the Jacobian matrix, with singular values strictly positive
(bounded away from zero). (d): The score ψ obeys the Neyman orthogonality. (e): Let K be a fixed integer. Given a random
partition {Ik}Kk=1 of indices [N ] each of size n = N/K, we have that the nuisance parameter estimator η̂ learnt using data
with indices Ick belongs to a shrinking realisation set TN , and the nuisance parameters should be estimated at the o(N−1/4)
rate, i.e., ∥η̂ − η0∥2 = o(N−1/4). (f): All eigenvalues of the matrix E[ψ(D;hθ0 , (s0, g0))ψ(D;hθ0 , (s0, g0))

T ] are strictly
positive (bounded away from zero).

We will check all these conditions in Theorem 3.1, Lemma C.2 and Theorem 3.4.

Proof of Theorem 3.1: Firstly, by Equation 2, we have s0(C,Z) = g0(h0, C, Z), thus

ψ(D;h0, (s0, g0)) = E
[
(s0(C,Z)− g0(h0, C, Z))

2
]
= 0

Then we compute the derivative w.r.t. small changes in the nuisance parameters. For all s, g ∈ S,G,

∂

∂r
E
[
(s0(C,Z) + r · s(C,Z)− g0(h0, C, Z)− r · g(h0, C, Z))2

]
=
∂

∂r
E
[
2r(s0(C,Z)− g0(h0, C, Z))(s(C,Z)− g(h0, C, Z)) + r2(s(C,Z)− g(h0, C, Z))

2
]

=E
[
2(s0(C,Z)− g0(h0, C, Z))(s(C,Z)− g(h0, C, Z)) + 2r(s(C,Z)− g(h0, C, Z))

2
]
,

and, when at r = 0, the derivative evaluates to

E
[
2(s0(C,Z)− g0(h0, C, Z))(s(C,Z)− g(h0, C, Z))

]
= E

[
0× (s(C,Z)− g(h0, C, Z))

]
= 0 ∀s, g ∈ S,G,

since s0(C,Z) = E[R|C,Z] = E[h0|C,Z] = g0(h0, C, Z). Therefore, our moment function ψ is Neyman orthogonal at
(h0, (s0, g0)).

Lemma C.2 (Formal version of Lemma 3.3: Nuisances parameters convergence). If Assumption 3.2 holds, let δN be an
upper bound on the critical radius of the two following function spaces:

{(C,Z) 7→ γ(s(C,Z)− s0(C,Z)) : s ∈ SN , γ ∈ [0, 1]}; (9)
{(C,Z) 7→ γ(g(C,Z, h0)− g0(C,Z, h0)) : g ∈ GN , γ ∈ [0, 1]}, (10)

and suppose that all functions f in the two spaces above satisfy ∥f∥∞ ≤ B for some B ∈ R+. Then, for some universal
constants c1 and c2, we have that with probability 1− ζ:

∥ŝ− s0∥22 ≤ c1

(
δ2N +

B2 log(1/ζ)

N
+ inf

s∗∈SN

∥s∗ − s0∥22
)
;

∥ĝ − g0∥22 ≤ c2

(
δ2N +

B2 log(1/ζ)

N
+ inf

g∗∈GN

∥g∗ − g0∥22
)
.

Proof of Lemma C.2: We will mainly use the result from Theorem 1 of Chernozhukov et al. (2021), which states the
following. For a function α that is the minimizer of a loss function that can be represented as E[−2m(D, α) + α(x)2],
where D is the offline dataset and m is some moment function that satisfies

E[(m(W,α)−m(W,α′))2] ≤M∥α− α′∥22 ∀α, α′ ∈ AN .
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Let δN be an upper bound on the critical radius of the two function spaces:

{W 7→ γ(α(W )− α0(W )) : α ∈ AN , γ ∈ [0, 1]};
{W 7→ γ(m(W,α)−m(W,α0)) : α ∈ AN , γ ∈ [0, 1]}.

Then, if ∥α∥∞ ≤ B for some B ∈ R+, there exists a universal constant c such that with probability 1− ζ,

∥α̂− α0∥22 ≤ c

(
δ2N +

M log(1/ζ)

N
+ inf

α∗∈AN

∥α∗ − α0∥22
)
.

In our case, we show that the loss function for both s and g satisfies the above conditions, and thus Theorem 1 of
Chernozhukov et al. (2021) is applicable to provide an upper bound on the convergence rate of our nuisance parameters.

The loss function for s ∈ SN is

s0 = argmin
s∈S

E
[
(R− s(C,Z))2

]
= argmin

s∈S
E
[
R2 − 2Rs(C,Z) + s(C,Z)2

]
= argmin

s∈S
E
[
−2Rs(C,Z) + s(C,Z)2

]
,

where we can set m(W, s) = Rs(C,Z) and check that

E[(Rs(C,Z)−Rs0(C,Z))
2] ≤ E[R2(s(C,Z)− s0(C,Z))

2]

≤ ∥R2∥∞E[(s(C,Z)− s0(C,Z))
2]

= B2∥s(C,Z)− s0(C,Z)∥22,

by Hölder’s inequality and the assumption that ∥R∥∞ ≤ B. Therefore, by Theorem 1 of Chernozhukov et al. (2021), there
exists a universal constant c1 such that with probability 1− ζ,

∥ŝ− s0∥22 ≤ c1

(
δ2N +

B2 log(1/ζ)

N
+ inf

s∗∈SN

∥s∗ − s0∥22
)
,

where recall δN is an upper bound on the critical radius of the function spaces defined in Eq. (9).

For the second part of the proof, recall that

g(h, c, z) =

∫
h(C,A)F (A | C,Z)dA,

where F (A | C,Z) is some distribution over A and F0(A | C,Z) = P(A | C,Z) is the distribution of A conditional on
(C,Z). Therefore, g0 should minimise the following loss:

g0 = argmin
g∈G

E

[(∫
h0(C,A)P(A | C,Z)dA− g(C,Z, h0)

)2
]

= argmin
g∈G

E

[
−2

∫
h0(C,A)P(A | C,Z)dA · g(C,Z, h0) + g(C,Z, h0)

2

]
,
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where we can set m(D, g) =
∫
h0(C,A)P(A | C,Z)dA · g(C,Z, h0) and check that

E

[(∫
h0(C,A)P(A | C,Z)dA · g(C,Z, h0)−

∫
h0(C,A)P(A | C,Z)dA · g0(C,Z, h0)

)2
]

=E

[(∫
h0(C,A)P(A | C,Z)dA

)2

· (g(C,Z, h0)− g0(C,Z, h0))
2

]
=E

[
g0(C,Z, h0)

2 · (g(C,Z, h0)− g0(C,Z, h0))
2
]

≤∥g20∥∞∥g(C,Z, h0)− g0(C,Z, h0)∥22
≤B2∥g(C,Z, h0)− g0(C,Z, h0)∥22,

by Hölder’s inequality, where M is a constant since g is bounded. Therefore, by Theorem 1 of Chernozhukov et al. (2021),
there exists a universal constant c2 such that with probability 1− ζ,

∥g − g0∥22 ≤ c2

(
δ2N +

B2 log(1/ζ)

N
+ inf

g∗∈GN

∥g∗ − g0∥22
)
,

where again δN is an upper bound on the critical radius of the function spaces defined in Equation 10, which completes the
proof.

Now, we are ready to prove Theorem 3.4, which is our main theorem that states the N−1/2 convergence rate guarantees for
the DML-IV estimator.

Proof of Theorem 3.4: We mainly use Theorem 3.3 from Chernozhukov et al. (2018), where properties of the DML
estimator for non-linear scores are demonstrated. It states that, if Condition C.1 holds, the DML estimator θ̂ is concentrated
in a 1/

√
N neighbourhood of θ0:

√
N

σ
(θ̂ − θ0) =

1√
N

∑
ψ̄(Di) +O(ρN ) → N (0, 1) in distribution,

where ψ̄(·) := −σ−1J−1
0 ψ(·, θ0, η0) is the influence function, J0 is the Jacobian of ψ, the approximate variance is

σ2 := J−1
0 E[ψ(D, θ0, η0)ψ(D, θ0, η0)T ](J−1

0 )T , and the size of the remainder ρN converges to 0. Therefore, we only
need to check whether, under Assumption 2.1 and 3.2, all of Condition C.1 for DML N−1/2 convergence rate is satisfied.
Conditions (a) and (d) are satisfied by Theorem 3.1. Condition (b) is satisfied since (s − g)2 is twice continuously
differentiable with respect to s and g.

Condition (c) is a sufficient identifiability condition, which states the closeness of the loss function at point θ to zero and
implies the closeness of θ to θ0. This assumption is standard in condition moment problems. To check condition (c), we first
point out that under analytical assumptions for s, g, and h, we can write down first order Taylor series for the score function
E[ψ(D;hθ, (s0, g0))] around the point θ0,

E[ψ(D;hθ, (s0, g0))] = E[ψ(D;hθ0 , (s0, g0))] + J0(θ − θ0) +O(∥θ − θ0∥2).

Plugging in validity of the score function ψ(D;hθ, (s0, g0)), i.e., E[ψ(D;hθ0 , (s0, g0))] = 0, we infer that

∥E[ψ(D;hθ, (s0, g0))]∥ ≳ ∥J0(θ − θ0)∥.

Now for identifiability, we only need to assume that J0JT
0 is non-singular, which is a common technical assumption.

Condition (e) is satisfied since we have that the effective dimension dN = o(N1/4), and together with Lemma C.2 and
the fact that the upper bound of the critical radius δN = O(dNN

−1/2) (see Appendix C.3), the nuisance parameters
converge sufficiently quickly to ensure ∥ŝ − s0∥2 ≤ O(δN + N−1/2) = O(dNN

−1/2) = o(N−1/4) and ∥ĝ − g0∥2 ≤
O(δN +N−1/2) = O(dNN

−1/2) = o(N−1/4).

Condition (f) is the non-degeneracy assumption for covariance of the score function ψ(D;hθ, (s0, g0)). By definition,

E[ψ(D;hθ, (s0, g0))ψ(D;hθ, (s0, g0))
T ] =

∫
ψ(D;hθ, (s0, g0))ψ(D;hθ, (s0, g0))

T dP(D).
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By trace trick, for each datapoint D, the only eigenvalue of ψ(D;hθ, (s0, g0))ψ(D;hθ, (s0, g0))
T is ∥ψ(D;hθ, (s0, g0))∥2 ≥

0, with ψ(D;hθ, (s0, g0)) as the corresponding eigenvector. Therefore, E[ψ(D;hθ, (s0, g0))ψ(D;hθ, (s0, g0))
T ] is positive-

definite if for each member d of the support of P, which is the distribution of D, there are at least as many eigenvectors of d
as the number of dimension of ψ(D;hθ, (s0, g0)), which is true in our setting as the co-domain of ψ(D;hθ, (s0, g0)) is R.

Therefore, all conditions for Theorem 3.3 (Chernozhukov et al., 2018) to hold are satisfied, which concludes the proof.

C.2. Suboptimaltiy

Proof of Theorem 3.5: From theorem 3.4, we have that the parameters θ̂ for hθ̂ learned from a dataset of size N using

DML-IV satisfy (θ̂− θ0)
d−→ N (0, σ2/N), where σ2 is the is the DML-IV estimator variance. This means that, for all ϵ > 0

and ζ > 0, there exists an integer K > 0 such that for all N ≥ K,

P(∥θ̂ − θ0∥ > ϵ) ≤ 1− Φ
(
ϵ ·

√
N/σ

)
+ ζ/2,

where Φ is the CDF of a standard Gaussian distribution. If we assume L to be a constant such that |hθ(C,A)−hθ′(C,A)| ≤
L∥θ− θ′∥ for all C,A ∈ suppM (C,A) and θ ∈ Θ, we have that for all ϵ > 0 and ζ > 0, there exists an integer K > 0 such
that for all N ≥ K,

P(|hθ̂(C,A)− hθ0(C,A)| > L · ϵ) ≤ 1− Φ(ϵ ·
√
N/σ) + ζ/2 ∀C,A ∈ suppM (C,A). (11)

Next, we can show that the suboptimality of π̂ satisfies

subopt(π̂) = V (π∗)− V (π̂)

= EC∼Ptest [R | C, do(A = π∗(c))]− EC∼Ptest [R | C, do(A = π̂(c))]

= EC∼Ptest [fr(C, π
∗(C))− fr(C, π̂(C))]

= EC∼Ptest [h(C, π
∗(C))− h(C, π̂(C))]

≤ max
c∈supp(Ptest)

(h(c, π∗(c))− h(c, π̂(c)))

≤ max
c∈supp(Ptest)

|h(c, π∗(c))− hθ̂(c, π
∗(c))|+ (hθ̂(c, π

∗(c))− hθ̂(c, π̂(c))) + |hθ̂(c, π̂(c))− h(c, π̂(c))|

≤ 2L · ϵ with probability
(
Φ(ϵ ·

√
N/σ)− ζ/2

)
(12)

where supp(Ptest) is the support of Ptest, by Equation 11 and the fact that hθ̂(C, π
∗(C)) − hθ̂(C, π̂(C)) ≤ 0. Setting

Φ(ϵ ·
√
N/σ) = 1− ζ/2 in Equation 12 and substituting ϵ yields

subopt(π̂) ≤ 2LΦ−1(1− ζ/2)σ/
√
N with probability 1− ζ.

From Blair et al.’s approximation for the inverse of the error function (erf) (Blair et al., 1976), we have that for all y ∈ (0, 1],
Φ−1(1− y) ≤

√
−2 ln(y). Thus, we conclude that there exists K > 0 such that for all N > K

subopt(π̂N ) ≤ 2
√
2Lσ

√
ln(2/ζ)

N
with probability 1− ζ,

which completes the proof.

C.3. Critical Radius and Effective Dimension

Definition C.3 (Wainwright (2019)). The critical radius denoted by δN is defined as the minimum δ that satisfies the
following upper bound on the local Gaussian complexity of a star-shaped function class F∗6, G(F∗, δ) ≤ δ2/2, where local
Gaussian complexity is defined as

G(F∗, δ) = Eϵ[ sup
g∈F∗:∥g∥N≤δ

⟨ϵ, g⟩],

with ϵ being a random i.i.d. zero-mean Gaussian vector.

6A function class F is star-shaped if for every f ∈ F and α ∈ [0, 1], we have αf ∈ F .
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The critical radius is a standard notion to bound the estimation error in the regression problem. Since local Gaussian
complexity can be viewed as an expected value of a supremum of a stochastic process indexed by g, we can apply empirical
process theory tools, namely the Dudley’s entropy integral (Wainwright, 2019; Van Handel, 2014), to provide a bound on
the critical radius,

G(F∗, δ) ≤ inf
α≥0

{
α+

1√
N

∫ δ

α/4

√
logN (F∗, L2(PN ), ϵ) dϵ

}
,

where N (F∗, L2(PN ), ϵ) is the ϵ-covering number of function class F∗ in L2(PN ) norm. Now, by placing α = 0, when
the integral is a single scale value of

√
logN (F∗, L2(Pn), ϵ), we infer that

G(F∗, δ) ≤ δ√
N

√
logN (F∗, L2(PN ), ϵ).

Thus, the critical radius will be upper bounded by

δN ≲

√
logN (F∗, L2(PN ), ϵ)√

N
= O(dNN

−1/2).

Chernozhukov et al. (2022b; 2021) referred to dN =
√

logN (F∗, L2(PN ), ϵ) as the effective dimension of the hypothesis
space. Note that this matches the minimax lower bound of fixed design estimation for this setting (Yang & Barron, 1999).

D. Datasets Details
In this section, we provide details of the datasets considered in this paper.

D.1. Aeroplane Ticket Demand Dataset

Here, we describe the aeroplane ticket demand dataset, first introduced by Hartford et al. (2017). The observable variables
are generated by the following model:

r = h0((t, s), p) + ϵ, E[ϵ|t, s, p] = 0;

p = 25 + (z + 3)ψ(t) + ω,

where r is the ticket sales (as the outcome variable) and p is the ticket price (as the action variable). (t, s) are observed
context variables, where t is the time of year and s is the customer type. The fuel price z is introduced as an instrumental
variable, which only affects the ticket price p. The noises ϵ and ω are correlated with correlation ρ ∈ [0, 1], where in our
experiments we set ρ = 0.9. h0 is the true counterfactual prediction function, defined as

h0((t, s), p) = 100 + (10 + p) · s · ψ(t)− 2p,

ψ(t) = 2

(
(t− 5)4

600
+ exp(−4(t− 5)2) +

t

10
− 2

)
,

where ψ(t) is a complex non-linear function of t plotted in Figure 5. The offline dataset is sampled with the following
distributions:

s ∼ Unif{1, ..., 7}
t ∼ Unif(0, 10)
z ∼ N (0, 1)

ω ∼ N (0, 1)

ϵ ∼ N (ρω, 1− ρ2).

From the observations (r, p, t, s, z), we estimate ĥ using IV regression methods, and the mean squared error between ĥ and
the true causal function h0 are computed on 10000 random samples from the above model. For the out of distribution test
samples, we sample t ∼ Unif(1, 11) instead.
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Figure 5: A graph of the nonlinear function ψ(t) in the aeroplane ticket demand dataset.

We standardise the action and outcome variables p and r to centre the data around a mean of zero and a standard deviation
of one following Hartford et al. (2017). This is standard practice for DNN training, which improves training stability and
optimization efficiency.

High-Dimensional Setting

For the high-dimensional setting, we again follow Hartford et al. (2017) to replace the customer type s ∈ [7] in the
low-dimensional setting with images of the corresponding handwritten digits from the MNIST dataset (LeCun & Cortes,
2010). For each digit d ∈ [7], we select a random MNIST image from the digit class d as the new customer type variable s.
The images are 28× 28 = 784 dimensional.

D.2. Real-World Datasets

Following previously studied causal inference methods (Shalit et al., 2017; Wu et al., 2023; Schwab et al., 2019; Bica
et al., 2020), we consider two semi-synthetic real-world datasets IHDP7 (Hill, 2011) and PM-CMR8 (Wyatt et al., 2020) for
experiments, since the true counterfactual prediction function is rarely available for real-world datasets.

IHDP, the Infant Health and Development Program (IHDP), comprises 747 units with 6 pre-treatment continuous variables,
one action variable and 19 discrete variables related to the children and their mothers, aiming at evaluating the effect of
specialist home visits on the future cognitive test scores of premature infants. From the original data, We select all 6
continuous covariance variables as our context variable C.

PM-CMR studies the impact of PM2.5 particle level on the cardiovascular mortality rate (CMR) in 2132 counties in the
United States using data provided by the National Studies on Air Pollution and Health (Wyatt et al., 2020). We use 6
continuous variables about CMR in each city as our context variable C.

Following Wu et al. (2023), from the context variables C obtained from real-world datasets, we generate the instrument Z,
the action A and the outcome R using the following model:

Z ∼ P(Z = z) = 1/K, z ∈ [1..K];

A =

K∑
z=1

1Z=z

dC∑
i=1

wiz(Ci + 0.2ϵ+ fz(z)) + δA, wiz ∼ Unif(−1, 1);

R = 9A2 − 1.5A+

dC∑
i=1

Ci

dC
+ |C1C2| − sin (10 + C2C3) + 2ϵ+ δR,

where Ci denotes the i-th variable in C, fz is a function that returns different constants depending on the input z,
δR, δA ∼ N (0, 1) and ϵ ∼ N (0, 0.1) is the unobserved confounder. The fully generated semi-synthetic datasets IHDP and
PM-CMR have 747 and 2132 samples respectively, and we randomly split them into training (63%), validation (27%), and
testing (10%) following Wu et al. (2023).

7IHDP: https://www.fredjo.com/.
8PM-CMR:https://doi.org/10.23719/1506014.

20

https://www.fredjo.com/
https://doi.org/10.23719/1506014


DML-IV: Non-linear IV Regression through DML

Figure 6: Comparing the average reward obtained by policies learned using offline bandit algorithms that do not take IVs
into account with a random policy on the aeroplane ticket demand dataset with low-dimensional context.

E. Failure of Standard Offline Bandit Algorithms
It has been demonstrated that standard supervised learning that does not take IVs into account fails to learn the causal
function or the counterfactual prediction function from a confounded offline dataset (Hartford et al., 2017). Similarly, we
demonstrate here that standard offline bandit algorithms also fail to learn meaningful policies from confounded offline
datasets. We evaluate PEVI, also called LinLCB (Jin et al., 2021), NeuraLCB (Nguyen-Tang et al., 2022), KernLCB (Valko
et al., 2013), NeuralLinLCB (Nguyen-Tang et al., 2022) and NeuralLinGreedy (Nguyen-Tang et al., 2022) algorithms, for
which we combine the context C and instrument Z variables together as the new context input for these offline bandit
algorithms. For algorithms that only support discrete actions, we discretise the action space A into 20 discrete actions.

For all methods, we follow the network architecture and hyper parameters from the original papers, and we adopt the
implementation9 of Nguyen-Tang et al. (2022). We evaluate these methods on the aeroplane ticket demand dataset described
in Appendix D.1 and compare the average reward obtained by the learned policies with a random policy in Figure 6. It can
be seen that all the offline bandit algorithms do not outperform a random policy while DML-IV achieves an average reward
higher then 1 as shown in Figure 2b. This is unsurprising because these bandit methods do not exploit IVs explicitly and are
unable to learn the true causal effect of actions.

F. Network Structures and Hyper-Parameters
Here, we describe the network architecture and hyper-parameters of all experiments. Unless otherwise specified, all neural
network algorithms are optimised using AdamW (Loshchilov & Hutter, 2017) with learning rate = 0.001, β = (0.9, 0.999)
and ϵ = 10−8. In addition, we set K = 10 for K-fold cross-fitting in DML-IV.

F.1. Aeroplane Ticket Demand Dataset

For DML-IV and CE-DML-IV, we use the network architecture described in Table 1. We use a learning rate of 0.0002 with
a weight decay of 0.001 (L2 regularisation) and a dropout rate of 1000

5000+N that depends on the data size N . For DeepGMM,
we use the same structure as the outcome network of DML-IV with dropout = 0.1 and the same learning rate as DML-IV.
For DFIV, we follow the original structure proposed in Xu et al. (2020) with regularisers λ1, λ2 both set to 0.1 and weight
decay of 0.001. For DeepIV, we use the same network architectures as action network and stage 2 network for DML-IV,
with the dropout rate in Hartford et al. (2017) and weight decay of 0.001. For KIV, we use the Gaussian kernel, where the
bandwidth is determined by the median trick as originally described by Singh et al. (2019), and we use the random Fourier
feature trick with 100 dimensions.

9https://github.com/thanhnguyentang/offline_neural_bandits
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Table 1: Network architecture for DML-IV and CE-DML-IV for the aeroplane ticket demand low-dimensional dataset. For
the input layer, we provide the input variables. For mixture of Gaussians output, we report the number of components. The
dropout rate is given in the main text.

(a) Action Network for ĝ

Layer Type Configuration

Input C,Z
FC + ReLU in:3 out:128

Dropout -
FC + ReLU in:128 out:64

Dropout -
FC + ReLU in:64 out:32

Dropout -
MixtureGaussian 10

(b) Outcome Network for ŝ

Layer Type Configuration

Input C,Z
FC + ReLU in:3 out:128

Dropout -
FC + ReLU in:128 out:64

Dropout -
FC + ReLU in:64 out:32

Dropout -
FC in:32 out:1

(c) Stage 2 Network for ĥ

Layer Type Configuration

Input C,A
FC + ReLU in:3 out:128

Dropout -
FC + ReLU in:128 out:64

Dropout -
FC + ReLU in:64 out:32

Dropout -
FC in:32 out:1

F.2. Aeroplane Ticket Demand with MNIST

For DML-IV and CE-DML-IV, we use a convolutional neural network (CNN) feature extractor, which we denote as
ImageFeature, described in Table 2, for all networks. The full network architecture is described in Table 3; we use weight
decay of 0.05. For DeepGMM, we use the same structure as the outcome network of DML-IV, with a dropout rate of 0.1
and weight decay of 0.05. For DFIV, we follow the original structure proposed in Xu et al. (2020) with regularisers λ1,
λ2 both set to 0.1 and weight decay of 0.05. For DeepIV, we use the same network architecture as the action network and
stage 2 network for DML-IV, with the dropout rate in Hartford et al. (2017) and weight decay of 0.05. For KIV, we use the
Gaussian kernel, where the bandwidth is determined by the median trick as originally described by Singh et al. (2019), and
we use the random Fourier feature trick with 100 dimensions.

F.3. IHDP and PM-CMR

For the two real-world datasets, we use the same network architectures described in Table 1 as in the low-dimensional ticket
demand setting, where the input dimension is increased to 7 for all networks. We use a dropout rate of 0.1 and weight decay
of 0.001. For DeepGMM, we use the same structure as the outcome network of DML-IV with dropout = 0.1. For DFIV, we
also use the same network architectures as in the low dimensional ticket demand setting with regularisers λ1, λ2 both set
to 0.1 and weight decay of 0.001. For DeepIV, we use the same network architectures as the action network and stage 2
network of DML-IV, with a dropout rate of 0.1 and weight decay of 0.001. For KIV, we use the Gaussian kernel where the
bandwidth is determined by the median trick as originally described by Singh et al. (2019), and we use the random Fourier
feature trick with 100 dimensions.

F.4. Valiadation and Hyper-Parameter Tuning

Validation procedures are crucial for tuning DNN hyper-parameters and optimizer parameters. All the DML-IV and
CE-DML-IV training stages can be validated by simply evaluating the respective losses on held-out data, as discussed
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Table 2: Network architecture of the feature extractor used for the aeroplane ticket demand dataset with MNIST. For each
convolution layer, we list the kernel size, input dimension and output dimension, where s stands for stride and p stands for
padding. For max-pooling, we provide the size of the kernel. The dropout rate here is set to 0.3. We denote this feature
extractor as ImageFeature.

Layer Type Configuration

Input 28× 28
Conv + ReLU 3× 3× 32, s:1, p:0
Max Pooling 2× 2, s:2

Dropout -
Conv + ReLU 3× 3× 64, s:1, p:0
Max Pooling 2× 2, s:2

Dropout -
Conv + ReLU 3× 3× 64, s:1, p:0

Dropout -
FC + ReLU in: 576, out:64

Table 3: Network architecture for DML-IV and CE-DML-IV for the aeroplane ticket demand dataset with MNIST. For the
input layer, we provide the input variables. For a mixture of Gaussians output, we report the number of components. The
dropout rate is given in the main text.

(a) Action Network for ĝ

Layer Type Configuration

Input ImageFeature(C), Z
FC + ReLU in:66 out:32

Dropout -
MixtureGaussian 10

(b) Outcome Network for ŝ

Layer Type Configuration

Input ImageFeature(C), Z
FC + ReLU in:66 out:32

Dropout -
FC in:32 out:1

(c) Stage 2 Network for ĥ

Layer Type Configuration

Input ImageFeature(C), A
FC + ReLU in:66 out:32

Dropout -
FC in:32 out:1

in Hartford et al. (2017). This allows independent validation and hyperparameter tuning of the two first stage networks
(the action and the outcome networks), and perform second stage validation using the best network selected in the first
stage. This validation procedure guards against the ‘weak instruments’ bias (Bound et al., 1995) that can occur when the
instruments are only weakly correlated with the actions variable (see detailed discussion in Hartford et al. (2017)).

G. Additional Experimental Results
In this section, we provide additional experimental results including the effects of weak IVs, performance with tree-based
estimators, and a hyperparameter sensitivity analysis.

G.1. Effects of Weak Instruments

When the correlation between instruments and the endogenous variable (the action in our case) is weak, IV regression
methods generally become unreliable (Andrews et al., 2019) because the weak correlation induces variance and bias in the
first stage estimator thus induces bias in the second stage estimator, especially for non-linear IV regressions. In theory,
DML-IV should be more resistant to biases in the first stage thanks to the DML framework, as long as the causal effect
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IV Strength 1.0 0.8 0.6 0.4 0.2 0.01

DML-IV 0.0676(0.0116) 0.0984(0.0161) 0.1295(0.0168) 0.1859(0.0376) 0.2899(0.0494) 0.4872(0.1295)

CE-DML-IV 0.0765(0.0119) 0.1064(0.0120) 0.1514(0.0203) 0.2070(0.0329) 0.3194(0.0572) 0.5302(0.1625)

DeepIV 0.1213(0.0209) 0.2039(0.0269) 0.3051(0.0415) 0.4476(0.0656) 0.6891(0.1210) 0.9293(0.2382)

DFIV 0.1124(0.0481) 0.1586(0.0320) 0.3080(0.1907) 0.8117(0.2779) 0.9622(0.3892) 1.6503(0.6845)

DeepGMM 0.2699(0.0522) 0.3330(0.1171) 0.4762(0.1056) 0.8666(0.2248) 1.0056(0.4334) 2.0218(0.6555)

KIV 0.2312(0.0272) 0.3149(0.0218) 0.4275(0.0368) 0.6646(0.0538) 0.8099(0.0657) 1.226(0.1014)

Table 4: Results for the low-dimensional ticket demand dataset when the IV is weakly correlated with the action.

is identifiable under the weak instrument. Under this identifiability condition, Lemma 3.3, Theorem 3.4 and 3.5 all hold,
and the convergence rate guarantees still apply. However, while causal identifiability with weak instruments are studied
theoretically in the linear setting (Andrews et al., 2019), such a theoretical study for non-linear IV models, to the best of our
knowledge, does not exist due to the difficulty of analyzing non-linear models and estimators.

Experimentally, for the airplane ticket demand dataset, we alter the instrument strength by changing how much the instrument
z affects the price p. Recall from Appendix D.1 that p = 25 + (z + 3)ψ(t) + ω, where ψ is a nonlinear function and ω is
the noise. We add an IV strength parameter ϱ such that p = 25 + (ϱ · z + 3)ψ(t) + ω. In Table 4, we present the mean
and standard deviation of the MSE of ĥ for various IV strengths ϱ from 0.01 to 1 and sample size N = 5000. It is very
interesting to see that DML-IV indeed performs significantly better than SOTA nonlinear IV regression methods under weak
instruments.

G.2. Performance of DML-IV with tree-based estimators

The DML-IV framework allows for general estimators following the Neyman orthogonal score function. While deep
learning is flexible and widely used in SOTA non-linear IV regression methods, Gradient Boosting and Random Forests
regression are all good candidate estimators for DML-IV. In addition, as discussed in Lemma 3.3, the convergence rate and
suboptimality guarantees in Theorem 3.4 and 3.5 both hold for these tree-based regressions.

Empirically, we replace the DNN estimators in DML-IV, CE-DML-IV and DeepIV with Random Forests and Gradient
Boosting regressors (using scikit-learn implementation). DeepIV is a good baseline for comparison, since it optimizes
directly using a non-Neyman-orthogonal score and allows for direct replacement of all DNN estimators with tree-based
estimators. We use 500 trees for both regressors, with minimum samples required at each leaf node of 100 for the nuisance
parameters and 10 for ĥ.

In Table 5, we present the mean and standard deviation of the MSE of ĥ with Random Forests and Gradient Boosting
estimators on the aeroplane ticket demand dataset with various dataset sample sizes. The results demonstrate the benefits
of our Neyman orthogonal score function, and interestingly the performance of Gradient Boosting is comparable to DNN
estimators.

G.3. Sensitivity analysis for different Hyperparameters

The tunable hyperparameters in DML-IV are the learning rate, network width, weight decay and dropout rate (see Ap-
pendix F). As a sensitivity analysis, we provide results for the mean and standard deviation of the MSE of the DML-IV
estimator ĥ with different hyperparameter values for both the low-dimensional and high-dimensional datasets with sam-
ple size N=5000 in Table 6 and Table 7. Overall, we see that DML-IV is not very sensitive to small changes of the
hyperparameters.
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Dataset Size DNN (results in the paper) Random Forests Gradient Boosting

DML-IV 2000 0.1308(0.0206) 0.1689(0.0172) 0.1301(0.0112)

CE-DML-IV 2000 0.1410(0.0246) 0.1733(0.0198) 0.1329(0.0125)

DeepIV 2000 0.2388(0.0438) 0.2642(0.0261) 0.2052(0.0232)

DML-IV 5000 0.0676(0.0129) 0.1067(0.0131) 0.0632(0.0107)

CE-DML-IV 5000 0.0765(0.0119) 0.1154(0.0138) 0.0699(0.0069)

DeepIV 5000 0.1213(0.0209) 0.1626(0.0128) 0.1020(0.0091)

DML-IV 10000 0.0378(0.0094) 0.0657(0.0062) 0.0482(0.0079)

CE-DML-IV 10000 0.0442(0.0070) 0.0721(0.0039) 0.0523(0.0059)

DeepIV 10000 0.0714(0.0140) 0.1106(0.0080) 0.1017(0.0075)

Table 5: Results for the low-dimensional ticket demand dataset using tree-based estimators compared to DNN estimators.

Learning Rate Weight Decay Dropout DNN Width DML-IV CE-DML-IV

0.0002 0.001 0.1 128 0.0676(0.0129) 0.0765(0.0119)

0.0005 0.0752(0.0122) 0.0897(0.0196)

0.0001 0.0703(0.0195) 0.0794(0.0201)

0.0005 0.0794(0.0185) 0.0823(0.0149)

0.005 0.0765(0.0135) 0.0809(0.0159)

0.01 0.0820(0.0162) 0.0865(0.0174)

0.05 0.0715(0.0074) 0.0813(0.0089)

0.2 0.0836(0.0100) 0.0919(0.0157)

64 0.0830(0.0162) 0.0924(0.0121)

256 0.0943(0.0179) 0.0981(0.0126)

0.0005 0.2 0.0805(0.0133) 0.0910(0.0106)

0.005 0.05 0.0672(0.0116) 0.0742(0.0102)

0.01 0.05 0.0825(0.0152) 0.0914(0.0125)

0.2 256 0.0810(0.0129) 0.0852(0.0121)

0.05 64 0.0907(0.0149) 0.0963(0.0161)

0.005 256 0.0939(0.0146) 0.0991(0.0093)

Table 6: Results for the low-dimensional ticket demand dataset for a range of hyperparameter values. The default
hyperparameters in this case are: learning rate=0.0002, weight decay=0.001, dropout=0.1 and DNN width 128.
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Learning Rate Weight Decay Dropout CNN Channels DML-IV CE-DML-IV

0.001 0.05 0.2 64 0.3513(0.0125) 0.3808(0.0150)

0.0005 0.4063(0.0129) 0.5008(0.0369)

0.002 0.3659(0.0219) 0.4133(0.0267)

0.005 0.3377(0.0218) 0.3555(0.0202)

0.01 0.3935(0.0176) 0.4461(0.0478)

0.02 0.3595(0.03013) 0.3851(0.0293)

0.1 0.4066(0.0172) 0.5160(0.0329)

0.1 0.4136(0.0211) 0.5386(0.0398)

0.3 0.3857(0.0171) 0.4002(0.0249)

128 0.4176(0.01941) 0.5129(0.0630)

256 0.4942(0.0226) 0.6180(0.0396)

0.1 0.1 0.4163(0.0214) 0.5952(0.0343)

0.01 0.3 0.3636(0.0186) 0.3995(0.0250)

0.3 128 0.4006(0.0187) 0.4764(0.0216)

0.3 256 0.3429(0.0215) 0.3971(0.0264)

0.1 256 0.4170(0.0283) 0.5335(0.0371)

Table 7: Results for the high-dimensional ticket demand dataset for a range of hyperparameter values. The default
hyperparameters in this case are: learning rate 0.001, weight decay=0.05, dropout=0.2 and 64 CNN channels.
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