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ABSTRACT

This work presents Fair4Free, a novel generative model to generate synthetic fair
data using data-free distillation in the latent space. Fair4Free can work on the
situation when the data is private or inaccessible. In our approach, we first train
a teacher model to create fair representation and then distil the knowledge to a
student model (using a smaller architecture). The process of distilling the student
model is data-free, i.e. the student model does not have access to the training
dataset while distilling. After the distillation, we use the distilled model to gen-
erate fair synthetic samples. Our extensive experiments show that our synthetic
samples outperform state-of-the-art models in all three criteria (fairness, utility
and synthetic quality) with a performance increase of 5% for fairness, 8% for
utility and 12% in synthetic quality for both tabular and image datasets.

1 INTRODUCTION

Nowadays, people rely on Artificial Intelligence-based applications to seek answers or make deci-
sions. These AI-based models are trained with the data available in the real world. However, the
available data in the real world is often full of machine or human biases (Liu et al., 2022). So, there
is a possibility that those models will reflect biases when making a decision. For this reason, there is
a strong need for bias mitigation models or bias-free datasets to ensure fairness within the models or
datasets themselves. Furthermore, not all data is publicly accessible due to proprietary or sensitive
cases, i.e. medical records. So, there is a need for a way to deal with these situations, too. Over the
years, various approaches have been proposed to mitigate the bias issue from the model or datasets
themselves, and researchers have categorized these techniques into three categories: Pre-processing,
in-processing and post-processing techniques (Caton & Haas, 2024; Ntoutsi et al., 2020; Mehrabi
et al., 2021). In the pre-processing technique, the dataset is processed to lower the correlation be-
tween the sensitive and non-sensitive attributes. However, in this process, valuable information can
be lost. Post-processing techniques involve changing the output of the model in such a manner that
the outcome of the model becomes fair towards demographics. These models also suffer accuracy
as the model output is changed. In the in-processing techniques, the model is trained in such a way
that during training time, the output of the model becomes fair. Though these approaches suffer
from optimization problems (Oussidi & Elhassouny, 2018), a trade-off exists between fairness and
accuracy. So, there is room for improvement.

Fair Generative Models (FGMs) are examples of in-processing bias-mitigation techniques. Over
the years, different generative approaches have been proposed to tackle this issue. Variational au-
toencoder, Generative Adversarial Networks, and Diffusion-based models have seen outstanding
performance in the tabular, text, and image domains (Jung et al., 2021; Choi et al., 2020; Wang
et al., 2022). Different fairness constraints have been used to enforce the fairness quality in the gen-
erative samples, i.e., FairDisco (Liu et al., 2022) uses a distance correlation minimization method to
weaken the connection between the sensitive and non-sensitive attributes. FairGAN (Li et al., 2022)
uses dual discriminator-based generative adversarial networks architecture for generating fair syn-
thetic samples. TabFairGAN (Rajabi & Garibay, 2022) generates synthetic fair data in two stages,
first training a GAN to generate synthetic data, then adding a constraint on the synthetic samples
to make it fair. FLDGMs (Ramachandranpillai et al., 2023) generate fair synthetic samples by gen-
erating the latent space with the help of GAN and diffusion architecture. Though these models
generate high-fidelity fair synthetic samples, training these requires heavy computational resources;
sometimes, these models do not converge while training, resulting in poor-quality synthetic samples.
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Table 1: Comparison of existing fair models with our model over different key areas of interest: Fair
Representation, Generative Models, and data-free training.

Models Fair Representation Generative Models Support Multiple Data Free Training
Data Type

TabFairGAN (Rajabi & Garibay, 2022) ✗ ✓ ✗ ✗
Decaf (Van Breugel et al., 2021) ✗ ✓ ✗ ✗
FairGAN (Li et al., 2022) ✗ ✓ ✗ ✗
FairDisco (Liu et al., 2022) ✓ ✗ ✓ ✗
FLDGMs (Ramachandranpillai et al., 2023) ✓ ✗ ✓ ✗
Fair4Free (ours) ✓ ✓ ✓ ✓

Along these issues, if the training data is unavailable for some reason, we cannot use these models
as the data is necessary to train these models.

Transferring knowledge from one learned model (teacher model) to another model (student model,
generally smaller architecture than the teacher model) is known as knowledge distillation. Usually,
the student model tries to learn by taking the output of the intermediate or last layer of the teacher
model. This approach helps reduce computational resources. However, one of the downsides of
this approach is that the data label needs to be known for distillation. Recent, fair distillation works
(Dong et al., 2023; Zhu et al., 2024) rely on data labels, and these approaches cannot be used while
distilling data representation.

So, from these motivations, in this work, we present Fair4Free, a novel generative approach for
generating high-fidelity synthetic fair data, where we use knowledge distillation to distil the fair
representation. The main contribution of our work is that while distilling the fair representation, we
do not use any training data; we only use noise as input for the distilled model, so the approach for
distillation is entirely data-free. The data-free distillation mitigates the issue of the dataset being
sensitive and inaccessible. We first train a Variational Autoencoder (VAE) to learn the fair repre-
sentation, then use it as a teacher model and take a smaller architecture (student model) to distil the
fair representation. After distilling the fair representation, we use the trained decoder (from VAE)
and student model to reconstruct high-fidelity fair synthetic samples. Using a smaller architecture
also allows the possibility of deploying the model in edge devices. We do substantial experiments
with both tabular and image data and show that our data-free distillation-based generative model
performs better on the fairness, utility and synthetic samples than the state-of-the-art models. Table
1 shows the high-level comparison of other works with ours.

Our contributions to this work are as follows:

1. We present a Fair4Free, a novel data-free distillation-based fair generative model for gen-
erating fair synthetic samples.

2. Our distillation process works on latent space and requires no training data.
3. We show our distillation performance for both tabular and image datasets.

2 RELATED WORK

Research on data fairness and fair models has recently seen advancement due to their usefulness
in real-life decision-making and other matters. To create a fair model, some research focuses on
creating fair representation, Learning Fair Representation (LFR) (Zemel et al., 2013) create fair
representation by turning the process into an optimization problem. Their results show better fair-
ness gain performance in the downstream task. Optimal Fair Classifier (Zhao & Gordon, 2022)
gives a lower bound in the classification settings to characterize the balance between accuracy and
fairness. FFVAE (Creager et al., 2019) learns fair representation by disentangling the fair latent
space for multiple sensitive attributes. Different adversarial approaches have been taken over the
years to learn fair representations, i.e. NRL (Feng et al., 2019) learns the fair representation using
a generator and a critic with the help of a min-max game they have designed. A fair contrastive
learning approach has been proposed to create fair representation for datasets where sensitive at-
tributes are not present (Chai & Wang, 2022). Besides creating fair representation, focuses have
also been drawn into the fair generative models category. Various generative models such as VAEs,
GANs, and Diffusion-based approaches have been proposed with different fairness constraints to
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generate fair synthetic data in different modalities (tabular, image, texts). FairGAN (Li et al., 2022)
learns exposure-based fairness by taking negative feedback while training. TabFairGAN (Rajabi &
Garibay, 2022) generates tabular fair data by using a fairness constraint during the training process;
Decaf (Van Breugel et al., 2021) also uses GANs to generate fair synthetic samples by using causal
inference. FLDGMs (Ramachandranpillai et al., 2023) uses both GANs and diffusion architecture
to generate fair latent space and reconstruct fair synthetic samples from them.

Another fair representation or model learning approach is to transfer the knowledge from one model
to another, i.e., using Knowledge distillation. However, most of the work on knowledge distillation
relies on data labels and intermediate output from the teacher model. Recently, Graph Neural Net-
works (GNNs) have been used to distil fair representation (Dong et al., 2023; Zhu et al., 2024) that
require data labels.

3 PRELIMINARIES

In this section, we discuss the necessary background to follow the paper. First, we formulate the
problem description followed by the definition of data fairness. Then, we discuss the background of
knowledge distillation and generative models.

3.1 PROBLEM DEFINITION

Given a dataset tuple ({xi, yi, si})Bi=1 ∼ D, where x ∈ X represents non-sensitive attributes, y ∈ Y
is target variable and s ∈ S is sensitive attribute, we need to create fair generative model H by
distilling fair representation (z) in a data-free distillation environment.

3.2 DATA FAIRNESS

Data fairness can be measured from different viewpoints, i.e., a model can be fair if it shows equal
performance for all the demographics. Over the years, different approaches have been shown to
create a fair model that satisfies group or individual fairness. This work focuses on creating a
generative model that provides group fairness. To achieve this, a model should follow definitions 1
and 2.
Definition 1 (Demographic Parity (DP), Barocas & Selbst (2016)). A binary prediction model f :

X → Ŷ , Ŷ = {0, 1} will achieve Demographic Parity (DP), iff

P [f(X) = 1 | S = 0] = P [f(X) = 1 | S = 1]

here, S is the sensitive attribute and {0, 1} are representing different groups.
Definition 2 (Equalized Odds (EO), Barocas & Selbst (2016)). A binary prediction model f : X →
Ŷ , Ŷ = {0, 1} will achieve Equalized Odds (EO), iff

P [f(X) = 1 | Y = 1,S = 0] = P [f(X) = 1 | Y = 1,S = 1]

here, S is the sensitive attribute and {0, 1} are representing different groups.

3.3 KNOWLEDGE DISTILLATION AND GENERATIVE MODELS

Knowledge distillation works by taking a learned model and transfer the knowledge to a smaller ar-
chitecture (smaller in layers and/or number of neurons) (Hinton et al., 2015). In the earliest distilla-
tion work (Hinton et al., 2015), the student model learned by taking the output label from the teacher
model and the outcome of the student model using a supervised manner, also called response-based
distillation. Most of the knowledge distillation work follows this approach (Li et al., 2023; Huang
et al., 2022). However, it becomes challenging when we want to distil some distribution as they
do not have any labels. Recently, Sikder et al. (2024a) used a combination of distillation loss and
data-utility loss to distil the representation space without a label; however, that model requires train-
ing data to distil the latent space. Thus, distilling the model trained on private data will be difficult,
especially since the data is inaccessible.

Generative models are used to learn data distribution and generate synthetic data that is not identical
to the original data but follows the same distributions. Over the years, different kinds of generative
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Algorithm 1 Learning Fair Representation
Input: Biased D, penalty β
Output: Fair Encoder Eϕ and fair decoder Dθ
Initialize: Eϕ and Dθ randomly

1: for each batch (xi, si)
B
i=1 ∼ D do

2: Sample z ∼ Eϕ(xi, si)
3: Sample x′ = Dθ(z, si)
4: LKL ←

∑B
i=1 DKL(qϕ(z | xi, si) || p(z))

5: Lre ←
∑B
i=1 log(pθ(xi | z, si))

6: Lfinal ← LKL − Lre + β ∗ V2
ϕ(z, s); here, V2

ϕ(z, s) is from Equation 1
7: Update Eϕ and Dθ using gradient descent w.r.t. Lfinal
8: end for

models have been proposed, i.e., Variational Autoencoder (VAE) (Kingma, 2013) tries to compress
the data into latent space and reconstruct data, and Generative Adversarial Networks (GANs) (Good-
fellow et al., 2020) comprised two architectures, Generator and Discriminator. These two architec-
tures compete with each other, and after the training, the generator learns to generate high-quality
synthetic samples. Diffusion models (Ho et al., 2020) learn the distribution by destroying the data
by adding noise over time and then using a neural network architecture to de-noise the data. Though
these approaches are beneficial and show promising outcomes, training these generative models is
challenging as they do not always converge. Also, they are known for proning into mode-collapse
problems.

4 FAIR GENERATIVE MODELS USING DATA-FREE DISTILLATION

This section presents our approach for generating a data-free, fair, generative model. The gener-
ation of fair synthetic samples involves training a fair teacher model that takes biased dataset D
and produces a fair representation, then distilling the fair representation using a student architecture
(smaller architecture and not using the training data in the distillation process, thus data-free dis-
tillation) and finally reconstruct synthetic fair samples from the distilled fair-representation. While
training the fair teacher model, we use the distance correlation minimization technique (Liu et al.,
2022) to weaken the connection between the sensitive and non-sensitive attributes. We break down
the entire distillation and synthetic sample generation process into three stages:

1. We first train a VAE that produces fair representation and acts as the teacher model for the
distillation process. We take the biased data and minimize the relationship between the
sensitive and non-sensitive features, so for any downstreaming task, the output will be free
from the influence of sensitive features.

2. We use a student model (smaller architecture than the teacher model) to distil the fair rep-
resentation. In this process, the student model does not have access to the training data; it
takes noise as input, so this process is data-free.

3. Finally, we reconstruct high-fidelity fair synthetic samples using the distilled fair represen-
tation from the student model and the trained decoder of VAE from stage 1.

4.1 FAIR REPRESENTATION LEARNING

The first stage of our fair generative model is to learn a fair representation from biased data, D.
We train a Variational Autoencoder (VAE) for this task and use the encoder (Eϕ) to get the fair
representation. The encoder creates representation z = Eϕ(x, s), here (x, s) ∈ D, x ∈ X repre-
sents non-sensitive attributes and s ∈ S represents sensitive attributes. Then the decoder recon-
struct samples, x′ = Dθ(z, s). For learning the fair representation, along with the reconstruction
loss and KL-divergence loss of VAE, distance correlation minimization loss V2

ϕ(z, s) and penalty
β ∈ {0, 1, 2, ..., 9} is used, which is stated in Equation 1 (Liu et al., 2022). Steps of learning fair
representation can be found in Algorithm 1.
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Algorithm 2 Data-free distillation of Fair Representation
Input: Biased dataset D, Trained Fair Encoder Eϕ
Output: Distilled model E ′ψ
Initialize: E ′ψ randomly

1: for each batch (xi, si)
B
i=1 ∼ D do

2: Sample z ∼ Eϕ(xi, si)
3: Sample z′ ∼ E ′ψ(n), where n ∼ N (0, 1)

4: Ldistillation ←
∑k
j=1 L(zj , z′j) +

∑k
j=1 DKL(q(z

′
j) || p(z′j))

5: Update E ′ψ using gradient descent w.r.t. Ldistillation

6: end for

V2
ϕ(z, s) =

∫
z∈Z

∫
s∈S
| pϕ(z, s)− pϕ(z)p(s) |2 dz ds. (1)

4.2 DATA-FREE FAIR LATENT SPACE DISTILLATION AND SYNTHETIC DATA GENERATION

In this step, we take the trained fair encoder, Eϕ from step 1 and distil the knowledge of fair repre-
sentation (z) to another architecture, E ′ψ (we use less number of hidden features than used in Eϕ) by
first creating the latent fair representation, z = Eϕ(x, s), where, x, s ∈ D. The main contribution of
this work is to while distilling the latent space, z, to the model E ′ψ , we do not use any training data,
(x, s). We feed Gaussian noise, n ∼ N (0, 1) to the distilled model, and it produce some representa-
tion z′ = E ′ψ(n). We use a combination of distillation loss between the distilled representation (z′)
and fair representation (z) and KL-divergence loss on the output of the distilled model (Sikder et al.,
2024a). The overall loss function is stated in Equation 2.

Ldistillation(z, z
′) =

k∑
j=1

L(zj , z′j)︸ ︷︷ ︸
distillation loss

+

k∑
j=1

DKL(q(z
′
j) || p(z′j))︸ ︷︷ ︸

KL-loss

(2)

Here, we use L1-loss as L for the distillation loss. Algorithm 2 shows the process of data-free
distillation. After the distillation, we use the distilled model, E ′ψ , and trained decoder,Dθ from stage
1 to reconstruct high-fidelity fair synthetic samples, x̂ = Dθ(E ′ψ(n)), n ∼ N (0, 1).

5 EXPERIMENTS

In this section, we present the experimental analysis of our work. We utilize two tabular and two
image datasets to evaluate how our model performs across various dataset types. We compare the
result of our model with several state-of-the-art fair models, i.e., Decaf (Van Breugel et al., 2021),
TabFairGAN (Rajabi & Garibay, 2022), FairDisco (Liu et al., 2022), FLDGMs (Ramachandran-
pillai et al., 2023) in terms of fairness and utility. We further compare the works with Correlation
Remover (Weerts et al., 2023) and Threshold Optimizer (Hardt et al., 2016), pre and post-processing
techniques, respectively. We use FairX (Sikder et al., 2024b), a fairness benchmarking tool to load
the dataset, train and evaluate the benchmark.

5.1 DATASET PREPROCESSING

We use four benchmarking datasets to train and evaluate our model. “Adult-Income” 1 and “Com-
pas” (Angwin et al., 2016) are two widely used tabular dataset and “CelebA” (Liu et al., 2015) and
“Colored-MNIST” (Jung et al., 2021) are image dataset. “Adult-Income” contains more than 48k
records from US Census data containing personal information. “COMPAS” contains information
about 7k inmates collected from the algorithm called COMPAS used by the US Justice system to

1https://archive.ics.uci.edu/dataset/2/adult
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Figure 1: Generated Samples using Fair4Free, Dataset: CelebA, Sensitive attribute: Smiling

predict the likelihood of an inmate re-offending. “CelebA” contains more than 200k facial images of
celebrities with 40 attributes for each image. “Colored-MNIST” contains 60k English handwritten
digit images with different colors ranging from 0-9. We use {Gender, Race} as sensitive attribute
for the “Adult-Income” and “Compas” datasets. For the “CelebA” dataset, we use Smiling status,
and for the Colored-MNIST, color as sensitive attributes. We follow the same setup of FairDisco
(Liu et al., 2022) for the pre-processing and data split (80-20 ratio) technique. More details about
hyperparameters in our model can be found in the Appendix section A.

5.2 EVALUATION METRICS

We evaluate the performance of the distilled fair representation and fair synthetic samples regarding
fairness, utility and synthetic sample quality (only for the synthetic samples). For both fairness and
utility evaluation, we run a downstreaming task (explained in section 5.3) and evaluate the perfor-
mance of the synthetic samples on Accuracy, F1-Score, Recall (utility metrics) and Demographic
Parity Ratio (DPR) (Weerts et al., 2023), Equalized Odds Ratio (EOR) (Weerts et al., 2023) (fairness
utility). Along with utility and fairness evaluation, we also measure the synthetic data quality of the
fair generative model. We use the Density and Coverage (Alaa et al., 2022) metrics to validate if the
generated samples have the same distribution as the original samples.

Besides empirical evaluation, we also show the quality of synthetic samples and distilled latent
space with visual evaluation. We use PCA (Bryant & Yarnold, 1995) and t-SNE (Van der Maaten &
Hinton, 2008) plots to show how closely the distribution of the distilled latent space and fair latent
space matches. Also, we show the synthetic samples generated for the image dataset.

5.3 DOWNSTREAMING TASK FOR EVALUATION

For the empirical evaluation, we set up a downstreaming task to determine the performance of
the synthetic samples in terms of fairness and data utility. In the setup, we train a random-forest
(Breiman, 2001) model for a supervised task using the features (sensitive (s) and non-sensitive (x)
attributes) and target (y) based on the sensitive attributes, then evaluate in perspective of fairness
and data utility. For example, for the “Adult-Income” dataset, we have {gender, race} as sensitive
attributes. Hence, we train the random forest for each sensitive attribute and measure the fairness
and data utility for respective s.

6 RESULTS AND DISCUSSION

We conduct extensive experiments and compare the performance of our model with six fair models.
In this section, we discuss and analyze the result.

6
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Figure 2: Generated Samples using Fair4Free, Dataset: Colored-MNIST, Sensitive attribute: Colors

Table 2: Fair Synthetic Samples evaluation, Dataset: Adult-Income. Bold indicates the best result.
Synthetic Utility evaluation is only for generative models (TabFairGAN, Decaf, FLDGMs)

Fairness Metrics Data Utility Synthetic Utility
Protected DPR EOR ACC Recall F1- Density Coverage
Attribute Score

TabFairGAN Gender 0.69 ± .01 0.60 ± .01 0.84± .01 0.61 ± .01 0.65 ± .01 0.006 ± .01 0.03± .01
Race 0.026 ± .01 0.00 ± .00 0.84 ± .01 0.77 ± .01 0.67 ± .01 0.01 ± .01 0.02 ± .01

Decaf Gender 0.52 ± .01 0.42 ± .01 0.75 ± .01 0.63 ± .01 0.44 ± .01 0.70 ± .01 0.571 ± .01
Race 0.55 ± .01 0.46 ± .01 0.77 ± .01 0.69 ± .01 0.53 ± .01 0.58 ± .01 0.84 ± .01

FLDGMs (DM) Gender 0.94 ± .01 0.94 ± .01 0.69 ± .01 0.90 ± .01 0.81 ± .01 1.26 ± .01 0.89 ± .01
Race 0.99 ± .01 0.96 ± .01 0.69 ± .01 0.91 ± .01 0.81 ± .01 1.24 ± .01 0.86 ± .01

FairDisco (base-model) Gender 0.98 ± .01 0.85 ± .01 0.78 ± .01 0.92 ± .01 0.86 ± .01 n/a n/a
Race 0.95 ± .01 0.92 ± .01 0.812 ± .01 0.71 ± .01 0.88 ± .01 n/a n/a

Correlation- Gender 0.32 ± .01 0.23 ± .01 0.86 ± .01 0.65 ± .01 0.71 ± .01 n/a n/a
Remover Race 0.29 ± .01 0.20 ± .01 0.86 ± .01 0.80 ± .01 0.71 ± .01 n/a n/a

Threshold Gender 0.95 ± .01 0.35 ± .01 0.86 ± .01 0.66 ± .01 0.65 ± .01 n/a n/a
Optimizer Race 0.69 ± .01 0.25 ± .01 0.87 ± .01 0.66 ± .01 0.71 ± .01 n/a n/a

Original Data Gender 0.32 ± .01 0.22 ± .01 0.88 ± .01 0.80 ± .01 0.72 ± .01 n/a n/a
Race 0.19 ± .01 0.00 ± .00 0.88 ± .01 0.80 ± .01 0.71 ± .01 n/a n/a

Fair4Free (ours) Gender 0.99 ± .01 0.99 ± .01 0.76 ± .01 0.98 ± .01 0.88 ± .01 1.03 ± .01 0.96 ± .01
Race 0.99 ± .01 0.99 ± .01 0.76 ± .01 0.98 ± .01 0.87 ± .01 1.20 ± .01 0.97 ± .01

6.1 EMPIRICAL ANALYSIS FOR TABULAR DATA

We show the performance of our model in the downstreaming task regarding fairness and data utility
for the “Adult-Income” dataset in Table 2 and the “Compas” dataset in Table 3. We use the {gender,
race} as sensitive attributes and record the results for both tables. For the “Adult-Income” dataset,
we predict the income class for an individual given their attributes (both sensitive and non-sensitive)
as downstreaming task. And for the “Compas” dataset, we predict the re-offend probability for an
inmate given their previous records.

Data Utility Analysis We measure the Accuracy, Recall and F1-score from the downstreaming
task. We observe from Table 2 that our synthetic samples achieve 5% and 8% better performance in
fairness and utility compared to FLDGMs (state-of-the-art model). In Table 3, the performance of
our samples’ Synthetic utility (Coverage) is better than all other methods. We also achieve a balance
of fairness and accuracy scores compared with other models.

Synthetic Quality Analysis Synthetic samples should perform better for both data utility and
synthetic quality. Overall, the performance of the synthetic quality of Fair4Free is better than other
generative models. Such as, for Table 3, though TabFairGAN and Decaf perform better in the utility

7
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Table 3: Fair Synthetic Samples evaluation, Dataset: Compas. Bold indicates the best result. Syn-
thetic Utility evaluation is only for generative models (TabFairGAN, Decaf, FLDGMs)

Fairness Metrics Data Utility Synthetic Utility
Protected DPR EOR ACC Recall F1- Density Coverage
Attribute Score

TabFairGAN Gender 0.52 ± .01 0.42 ± .01 0.68 ± .01 0.63 ± .01 0.66 ± .01 0.016 ± .01 0.014 ± .01
Race 0.50 ± .01 0.49 ± .01 0.69 ± .01 0.59 ± .01 0.64 ± .01 0.014 ± .01 0.011 ± .01

Decaf Gender 0.87 ± .01 0.84 ± .01 0.45 ± .01 0.40 ± .01 0.42 ± .01 0.367 ± .01 0.39 ± .01
Race 0.99 ± .01 0.96 ± .01 0.45 ± .01 0.40 ± .01 0.42 ± .01 0.38 ± .01 0.39 ± .01

FLDGMs (DM) Gender 0.92 ± .01 0.91 ± .01 0.52 ± .01 0.41 ± .01 0.44 ± .01 1.40 ± .01 0.134 ± .01
Race 0.98 ± .01 0.86 ± .01 0.53 ± .01 0.45 ± .01 0.47 ± .01 1.59 ± .01 0.13 ± .01

FairDisco Gender 0.97 ± .01 0.92 ± .01 0.55 ± .01 0.40 ± .01 0.43 ± .01 n/a n/a
Race 0.87 ± .01 0.76 ± .01 0.53 ± .01 0.41 ± .01 0.44 ± .01 n/a n/a

Correlation- Gender 0.43 ± .01 0.33 ± .01 0.64 ± .01 0.64 ± .01 0.59 ± .01 n/a n/a
Remover Race 0.58 ± .01 0.63 ± .01 0.65 ± .01 0.64 ± .01 0.60 ± .01 n/a n/a

Threshold Gender 0.92 ± .01 0.98 ± .01 0.65 ± .01 0.65 ± .01 0.61 ± .01 n/a n/a
Optimizer Race 0.99 ± .01 0.76 ± .01 0.63 ± .01 0.63 ± .01 0.60 ± .01 n/a n/a

Original Data Gender 0.37 ± .01 0.28 ± .01 0.57 ± .01 0.65 ± .01 0.61 ± .01 n/a n/a
Race 0.54 ± .01 0.58 ± .01 0.66 ± .01 0.57 ± .01 0.61 ± .01 n/a n/a

Fair4Free (ours) Gender 0.99 ± .01 0.95 ± .01 0.52 ± .01 0.41 ± .01 0.42 ± .01 1.12 ± .01 0.97 ± .01
Race 0.93 ± .01 0.84 ± .01 0.52 ± .01 0.40 ± .01 0.42 ± .01 1.06 ± .01 0.98 ± .01

Figure 3: PCA and t-SNE plots of the distilled and original fair representation for both Adult-Income
(left) and Compas (right) Dataset. If the orange (distilled) and blue (original) dots overlap, it signifies
their distribution is similar.

metrics, their synthetic utility performance is worse than our scores. We achieve 85% better scores
in the Coverage metrics than the Decaf (Compas dataset) and 12% better performance than the
FLDGMs in the Adult-Income dataset.

6.2 VISUAL ANALYSIS FOR TABULAR AND IMAGE DATA

Besides the empirical quality of our synthetic samples, we also show visual analysis. We show the
synthetic image samples from both CelebA and Colored-MNIST in Figure 1 and 2. We use “Smiling”
as the sensitive attribute for the CelebA and “Colors (Red, Green, Blue)” for the MNIST dataset.

For the tabular dataset, we use the PCA and t-SNE plots to show how closely the distribution matches
the distilled representation and the original fair representation. We observe from Figure 3 that the
distributions closely match each other; this signifies that our data-free distillation method transfers
the knowledge correctly.
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Figure 4: Feature Importance Analysis with the original (left) and synthetic data, Dataset: Compas,
Sensitive Attribute: Sex

6.3 FEATURE IMPORTANCE ANALYSIS

Along with the empirical evaluation and visual evaluation, we also test the feature importance of the
original and synthetic data in downstreaming task. We set up a task, i.e., for the Compas dataset,
given the inmate’s records, to predict how likely the person will re-offend. Figure 4 shows the feature
importance for both original and synthetic data (in this case, we use Gender (sex) as a sensitive
attribute.). We observe that, for the original dataset, gender plays a vital role in reaching the decision,
on the contrary, our synthetic samples do not rely on the sensitive attribute for making a decision.
This also proves the usefulness of our synthetic samples for fair decision-making process.

6.4 DISCUSSION

This work presents Fair4Free, a data-free distillation-based fair generative model. With this ap-
proach, we generate high-fidelity fair synthetic samples with the help of knowledge distillation. We
distil the fair representation from the trained model (teacher model) to another architecture (student
model). During the distillation process, we do not use any training data; thus, the training of the
student model is data-free. This helps when the dataset is unavailable for security and privacy rea-
sons. Also, as we use a small architecture, we reduce the computational cost, and we can deploy the
model into an edge device with better performance than the teacher model. Tables 2 and 3 show that
our model is over-performing the state-of-the-art models in the perspective of data utility, fairness
and synthetic quality. Besides empirical evaluation, Figure 1, 2 shows the synthetic data samples,
and Figure 4 shows the usefulness of fair synthetic samples in decision-making.

Social Impact The Fair Generative model can play a vital role in the decision-making process
because the generated samples do not consider the sensitive attributes while making decisions. This
process helps to reduce bias and discrimination in the real-world scenario, i.e. fair recommendations
in the healthcare system, fair economic recommendation (decision making on loans). Also, the fair
model can help build trust with the user so it can be widely used in society.

Limitations and Future Works In our experiments, we use a single sensitive attribute to train the
generative model, i.e., we use either Gender or Race (for both Adult-Income and Compas datasets).
So, in order to tackle intersectional bias, we need to work on a generative model that handles multiple
sensitive attributes. However, we believe the data-free distillation process we present in this work
can also be used if we have fair representation with multiple sensitive attributes.

7 CONCLUSION

Real-world data is filled with human and/or machine biases, and in the era of AI-powered decision-
making systems, these biased data can cause harm to specific people as these models are trained with

9
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them. Furthermore, some datasets are not available publicly due to proprietary cases or restricted by
data protection laws like GDPR or HIPPA to protect privacy. So, one way to tackle the data limitation
and bias issue is to use a generative model. This work presents Fair4Free, a novel fair generative
model that uses data-free distillation to generate fair synthetic samples. We pre-train a VAE with
the biased data and produce fair representation in the latent space, then use another architecture to
distill the fair representation. The distillation process is completely data-free, and then we use the
distilled fair representation to create fair synthetic samples. Our extensive experiment shows that the
quality of the synthetic samples outperforms state-of-the-art models regarding fairness, utility, and
synthetic quality. As we use a distillation process and smaller architecture for the distilled model,
these models can be deployed in the edge devices. Also, as the synthetic samples are fair towards
demographics, these can help to mitigate the biased data issue.
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A MORE EXPERIMENTAL DETAILS

Hyperparameters To train the benchmarking models, we use FairX (Sikder et al., 2024b), a fair
benchmarking tool. FairX uses the same hyperparameters for the respective benchmarking models,
specified in their original publication. For our generative model, we follow the same architecture of
FairDisco (Liu et al., 2022) for the VAE setup (teacher model) and Table 4 shows the hyperparame-
ters for the distillation model (student model).

Table 4: Hyperparameters for the Distillation Model of Fair4Free (Tabular Dataset)
Parameters

Linear Layer 1 64(noise dim)→ 32

Linear Layer 2 32→ 2× 8(hidden dim)

Batch Size 2048

Epochs 5000

Learning rate 1e− 5

Optimizer Adam

Workstation Setup We train our model and run the benchmark using the same environment that
is equipped with “AMD Ryzen 9 5900x 12-core processor, 128 GB RAM, NVIDIA GeForce RTX
3090 Ti with 24 GB of GPU memory”.
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