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ABSTRACT

Learning vortex enhancement in SPH benefits most from what is sampled. We use
angular-speed-invariant importance sampling with the Kinematic Vorticity Num-
ber (KVN) to target vortex cores across resolutions and flow speeds. Particles se-
lected by KVN are pooled into a lightweight global token via attention. Models are
trained with velocity correction targets obtained by applying a Biot–Savart map-
ping to the vorticity loss field. Compared with uniform and vorticity-based sam-
pling, KVN-based sampling improves vortex coherence and advances the emer-
gence of secondary vortices across scenes and particle counts. The gains persist
under coarse and fine discretizations and scale smoothly with particle count, in-
dicating robustness to resolution changes. Ablations further show that injecting
KVN-based information also benefits alternative encoder variants, suggesting that
angular-speed-invariant sampling is a simple, transferable lever for learning vortex
enhancement in SPH.

1 INTRODUCTION

Simulating visually rich flows remains a central goal in computer graphics. Smoothed Particle
Hydrodynamics (SPH) is a widely used Lagrangian formulation in which fluids are discretized as
particles that move with the velocity field (Wang et al. (2024)). Despite avoiding explicit advection,
frequent kernel summations and coarse discretization introduce numerical dissipation that smooths
high-frequency structures such as vortices (Koschier et al. (2019)). Classical remedies inject rota-
tion using vorticity-based forces (Fedkiw et al. (2001)) or micro-rotations (Bender et al. (2019)).
Learning-based enhancement has emerged as an alternative (Jain et al. (2024)). A central question
in these pipelines is which particles to sample or attend to. In practice, many works use vorticity
magnitude as the importance signal (Rioux-Lavoie et al. (2022)). However, vorticity scales with
angular speed (Bridson (2015)), which biases models toward already fast-spinning structures and
overlooks nascent, low-speed vortices (Ye et al. (2025)).

We address this limitation with an angular-speed-invariant importance signal based on the Kine-
matic Vorticity Number (KVN), a dimensionless measure of how closely local deformation resem-
bles rigid-body rotation, independent of rotation rate (Schielicke et al. (2016)). High KVN particles
are sampled and pooled via attention into a lightweight global token that targets vortex cores across
resolutions and flow speeds. Models are trained with velocity-correction targets obtained by ap-
plying the Biot–Savart operator to the vorticity loss, providing a physics-based supervision signal.
We evaluate sampling strategies across scenes and particle counts. Compared with uniform and
vorticity-based sampling, KVN-based sampling improves vortex coherence and advances the emer-
gence of secondary vortices under multiple spatial discretizations.

Our contributions are summarized as: (i) an angular-speed-invariant importance signal for learning
vortex enhancement in SPH instantiated with KVN; (ii) a systematic study showing cross-resolution
robustness and a clear sample-budget accuracy curve; and (iii) evidence that KVN-based information
improves alternative encoder configurations under equal capacity and training.
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2 RELATED WORK

Learning Models for Fluid Simulations. Learning high-fidelity fluid details has been approached
for many years. One stream performs data-driven super-resolution or multi-resolution training (Bai
et al. (2021; 2020); Chu & Thuerey (2017)). Recent work focuses on understanding fluid structure
to forecast future states by employing Convolutional Neural Networks (CNN) (Xiao et al. (2020)),
Graph Neural Networks (GNN) (Sanchez-Gonzalez et al. (2020); Toshev et al. (2024)), transformers
(Shao et al. (2022)), or in hybrid forms (Janny et al. (2023); Xu & Li (2024)). Several models target
specific phenomena such as splashes (Um et al. (2018)) and vortices (Xiong et al. (2023); Deng
et al. (2023a)), or pursue implicit/reduced dynamics (Tao et al. (2024)). In parallel, some work
brings Physics-Informed Neural Networks (PINNs) to fluid field fitting (Lee et al. (2025); Chen et al.
(2025)), integrates differentiable solvers into backward propagation (Um et al. (2020); Tathawadekar
et al. (2023)), and also combines with advanced numerical approaches such as flow maps (Deng
et al. (2023b)) or the Monte Carlo PDE solvers (Jain et al. (2024)). In Lagrangian settings, the
typical task is to learn particle-wise mappings along continuous time sequences (Ummenhofer et al.
(2020); Zhang et al. (2020)). Ma et al. further track adaptively sampled key particles to guide
predictions (Ma et al. (2024)). A critical design choice in learning-based vortex enhancement is
the importance sampling strategy for selecting informative particles. Our work demonstrates that
angular-speed-invariant sampling using the KVN outperforms vorticity-based importance measures.

Point Cloud Encoding. Point-cloud networks are a natural fit for Lagrangian fluids. Early work
focuses on local set-abstraction and neighborhood operators with shared MLPs and symmetric pool-
ing (Charles et al. (2017)). This architecture is upgraded by hierarchical sampling and grouping
(Qi et al. (2017)) and dynamic or kernelized neighborhoods (Wang et al. (2019); Wu et al. (2019);
Thomas et al. (2019); Xu et al. (2021)). Attention and pretraining are also introduced to represent
global context with full or hierarchical transformers (Zhao et al. (2021); Wu et al. (2022); Lai et al.
(2022); Lee et al. (2019)). Meanwhile, masked point pretraining and strong baselines further ad-
vance performance (Yu et al. (2022); Pang et al. (2022); Qian et al. (2022); Wang et al. (2025)).
Representative point selection sometimes decouples grouping radii from feature learning (Dovrat
et al. (2019); Kool et al. (2020)). Symmetric Fourier-basis continuous convolutions demonstrate
strong accuracy and generalization on SPH fluids (Winchenbach & Thuerey (2024)). Our approach
combines continuous convolutions for local encoding with physics-guided importance sampling for
global context extraction.

3 PRELIMINARIES

SPH Simulation Pipeline. SPH simulates incompressible fluids by tracking discrete particles that
evolve under forces such as pressure, viscosity, and external fields. The particle positions x and
velocities u are updated via the Lagrangian form of the Navier–Stokes equation. At each simulation
step, key operations include: (i) computing densities and pressure forces via kernel-weighted sum-
mations over neighbors; (ii) solving incompressibility; and (iii) updating particle positions and ve-
locities. However, due to frequent local averaging and coarse discretization (Koschier et al. (2019)),
SPH tends to dissipate high-frequency structures like vortices.

Velocity Correction for Vortices in SPH. To characterize the decay of rotational features, we adopt
a formulation of vorticity loss δω, defined as the discrepancy between the evolved vorticity and the
intermediate velocity field:

δω = ωn+1 −∇× ū, (1)

where ū refers to the velocity after applying non-pressure forces and ω = ∇×u denotes the vortic-
ity. As shown in prior work (Zhang et al. (2015)), compensating for this vorticity loss using veloc-
ity corrections derived from the Biot–Savart law can effectively reinforce rotational features. This
quantity captures dissipated vortex structures not restored by standard SPH operations. Following
Ye et al. (2025), we convert the vorticity loss δω into a velocity correction δu using a Biot–Savart
convolution:

δui =
v

|S|
∑
j∈S

∇G(xi − xj)× δωj

Pj
, (2)
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Figure 1: Our method combines local continuous convolutions with KVN-based global tokenization
to enhance vortical structures in SPH fluids. The local encoder processes fluid and solid particles
through fixed-radius continuous convolutions, capturing detailed neighborhood interactions. KVN-
based importance sampling selects representative particles (red) from the fluid domain, which are
then aggregated into a global token via pooled multi-head attention. The decoder fuses global con-
text with local embeddings through a two-stage conditional architecture, predicting velocity correc-
tions δûn that enhance vortical flow while preserving physical consistency.

where S is a sample set, Pj is the sampling probability, v is the volume of a vortex particle, and G
is the Green’s function. This velocity correction serves as the supervision target for training. The
process computing the supervision target is detailed in Appendix. B.

4 LEARNING FRAMEWORK WITH ANGULAR-SPEED-INVARIANT SAMPLING

We present a learning framework that addresses the fundamental challenge of capturing vortical
dynamics through angular-speed-invariant importance sampling. Our approach combines KVN-
based global tokenization with local continuous convolutions to enhance vortical structures in SPH
simulations. Figure 1 illustrates the overall architecture, which consists of three main components:
a local encoder for high-fidelity neighborhood aggregation, a global encoder for physics-guided
context modeling using the Kinematic Vorticity Number (KVN), and a decoder that fuses local and
global information to predict velocity corrections.

4.1 LOCAL ENCODER

The local encoder captures fine-grained fluid dynamics through Continuous Convolutions (CConv)
over particle neighborhoods (Ummenhofer et al. (2020)). We employ fixed radius continuous con-
volutions to preserve the physical continuity inherent in fluid systems. For each particle pi, we
construct feature vectors that incorporate both kinematic and vortical properties rFi = [1,ui, δωi],
where ui is the velocity, δωi is the vorticity loss. The leading 1 serves as a constant feature channel
that provides a reference magnitude for the continuous convolution operations. The local encoder
processes both fluid and solid particles within a fixed radius of each queried particle. Solid parti-
cles are represented with a simplified feature vector rS = [1], as they primarily provide boundary
context. The encoder consists of multiple layers. Continuous convolutions aggregate features from
fluid and solid neighbors by

h
(l+1)
i = CConvfluid({rFj }j∈NF

i
) + CConvsolid({rSk }k∈NS

i
) + Dense(h(l)

i ), (3)

3
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(a) Ω 16 rad/s (b) Ω 4 rad/s (c) Ω 16 rad/s (d) Ω 4 rad/s

20 s-10 20
Vorticity Magnitude Kinematic Vorticity Number κ

Figure 2: Vorticity inherently scales with angular speed Ω, resulting in less attention to low-angular-
speed nascent vortices. The angular-speed-invariant KVN provides equal measurement of vortices
with various angular speeds.

where h
(l)
i denotes local embeddings after the lth encoding layer, NF

i and N S
i refer to the fluid

and solid neighbors of particle pi, respectively. Dense layers subsequently transform particle repre-
sentations within the same spatial location. The continuous convolution employs a Poly6 window
function to ensure smooth spatial weighting as

w(xi,xj) = max(0, (1− ∥xi − xj∥2

r2max

)3), (4)

where rmax denotes the maximum radius for searching neighbors. This design allows the local en-
coder to capture detailed fluid-solid interactions while maintaining computational efficiency through
fixed-radius neighborhoods.

4.2 KVN-BASED SAMPLING AND GLOBAL CONTEXT EXTRACTION

Effective importance sampling for vortex enhancement requires identifying rotational structures
based on their geometric properties rather than instantaneous speeds. While vorticity magnitude
is commonly used to locate vortex-rich regions, it inherently scales with angular speed, thus favor-
ing fast-rotating vortices and overlooking nascent structures as shown in Fig. 2(a) and (b).

We instead adopt the Kinematic Vorticity Number (KVN), a dimensionless and angular-speed-
invariant metric (see Fig. 2(c) and (d)) defined as

κ =
||ω||
2||S||

, where S =
1

2
(∇u+∇u⊤), (5)

where S denotes the strain tensor. High κ values indicate rigid-body-like rotational regions, making
KVN more suitable for identifying vortex cores irrespective of rotation speed. This angular-speed
invariance enables our method to identify nascent low-speed vortices that vorticity-based approaches
consistently miss. We apply the difference form of SPH to compute the velocity gradient as

∇ui =
∑

j∈NF
i

mj

ρj
(uj − ui)⊗∇W (xi − xj), (6)

where a⊗b = abT , mj and ρj denote particle mass and density, and W refers to the SPH smooth-
ing kernel. The global encoder abstracts scene-level vortical context through KVN-guided particle
sampling followed by pooled multi-head attention (PMA) aggregation. Our approach employs a
dynamic sampling strategy that continuously updates the sample set S based on evolving KVN dis-
tributions. Unlike static sampling schemes, this mechanism adapts to temporal changes in vortical
structures by incorporating acceptance and rejection probabilities derived from particle importance.
For each fluid particle pi, we define an acceptance probability αi and a rejection probability βi based
on its KVN value as

αi = 1− 1

[κi + 1]a
, βi = e−bκi , (7)

4
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where a > 0 and b > 0 are hyperparameters controlling sample generation and removal rates
respectively. The acceptance probability increases monotonically with KVN, ensuring that particles
exhibiting rigid-body-like rotation have higher chances of being selected. Conversely, the rejection
probability decreases with KVN, allowing high-importance particles to remain in the sample set
longer. At each time step, a uniform random number ξ ∈ [0, 1] is generated for each particle.
For particles not currently in S, inclusion occurs when ξ < αi. Conversely, existing samples are
removed when ξ < βi. This probabilistic mechanism ensures that high-KVN regions maintain dense
sampling while allowing for natural sample turnover as vortical structures evolve.

The sampled particles are processed by the local encoder to obtain feature embeddings {h(L)
l }l∈S ,

where h
(L)
l denotes the final layer output from the local encoder for particle pl. These local embed-

dings are concatenated with positional information to form enhanced representations zl = [h
(L)
l ;xl]

for each sampled particle. The embeddings are then aggregated into a global token g using pooled
multi-head attention as

g = MHA(q, {zl}l∈S , {zl}l∈S), (8)

where MHA(·) denotes multi-head attention and q is a learnable query vector that extracts the most
relevant global information from the sampled particle set. Pre- and post-layer normalization ensures
stable training and prevents gradient degradation during the attention pooling process.

4.3 DECODER WITH GLOBAL-LOCAL FUSION

The decoder integrates global vortical context with local particle embeddings to predict velocity
corrections. The architecture employs a two-stage design with gated fusion mechanisms that balance
global scene understanding with local particle dynamics. The first stage establishes global context
by conditioning on both the global token g and query particle positions xi as

f
(1)
i = C1(Wposxi + γg ·WgLN(g),g), (9)

where Wpos and Wg are learnable linear transformation matrices, LN(·) denotes layer normaliza-
tion, γg is a learnable gating parameter initialized to a small value to ensure stable training and
prevent the global token from overwhelming local spatial information during early training stages,
and C1(·,g) represents a sequence of conditional residual blocks that use the global token to mod-
ulate intermediate representations. The second stage performs the fusion between the global and
local embeddings as

f
(fused)
i = C2(GELU(Wfuse([γgf

(1)
i ; γlh

(L)
i ])),g), (10)

where h(L)
i denotes the final layer output from the local encoder for particle pi, Wfuse is a learnable

linear transformation that processes the concatenated features, and C2(·,g) represents additional
conditional residual blocks for refinement.The learnable gates γg and γl are trained to optimally
balance the contributions from global context and local neighborhoods across the entire dataset.
The conditional residual blocks further refine the fused representation. These blocks maintain the
global conditioning throughout the refinement process, ensuring that scene-level vortical patterns
continue to inform the local predictions. The final velocity correction incorporates both the refined
fused representation and a direct skip connection from local features by

δûi = Woutf
(fused)
i + γskip ·Wskiph

(L)
i , (11)

where Wout and Wskip are learnable output projection matrices. This residual design preserves
local fluid dynamics while providing stable gradient flow, ensuring that fine-grained vortical details
captured by the local encoder are maintained throughout the global-local fusion process.

5 EXPERIMENTS

We train the network end-to-end using a particle-wise mean squared error loss as

L =
1

N

N∑
i=1

∥δûi − δui∥22, (12)

5
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Figure 3: Lid driven cavity comparison across different particle resolutions and sampling methods.
All learning-based methods use 5,000 samples and are trained on 14k particle DIMC simulations. (a)
Inference on 14k particles: DFSPH shows no vortical structures, while uniform sampling produces
a central vortex. Our KVN-based sampling generates secondary vortices earlier than vorticity-based
sampling. (b) Inference on 45k particles: DFSPH exhibits weak vortical flows due to improved
discretization. Vorticity-based sampling also shows delayed emergence of secondary vortices, while
our KVN-based approach produces coherent vortical structures at both particle resolutions, demon-
strating capability in identifying and reinforcing nascent low-angular-speed vortices.

where the target velocity corrections δui are computed using the Monte Carlo Biot-Savart law as
described in Section 3. The loss is averaged per particle to ensure that optimization focuses on
achieving accurate per-particle corrections.

Implementation Details. Our network architecture employs local encoder layers with hidden di-
mensions of [32, 64] and uses 8-head multi-head attention for global token aggregation. We opti-
mize using AdamW with an initial learning rate of 10−3 and weight decay of 10−5, employing linear
warmup followed by linear decay scheduling. Training is conducted with mixed precision (bfloat16)
to improve computational efficiency. The decoder uses conditional residual blocks with layer-wise
scaling for stable gradient flow, while learnable gating parameters balance global and local feature
contributions during training.

Experimental Setup. We evaluate our angular-speed-invariant importance sampling approach
across multiple SPH scenarios. Training data is generated using Dynamic Importance Monte Carlo
(DIMC) method Ye et al. (2025), which provides high-quality vortex-enhanced SPH simulations
as supervision targets. We use Divergence-Free SPH (DFSPH) Bender & Koschier (2017) as the
baseline representing standard SPH simulation without vortex enhancement. For clarity, we use
”Our Local” to refer to our continuous convolution-based local encoder, and ”CConv” to refer to the
continuous convolution method from Ummenhofer et al. Ummenhofer et al. (2020). To facilitate
controlled comparisons across different aspects of our method, we employ varying configurations.
For sampling strategy comparisons and sample count sensitivity analysis, we simplify the feature
vector to [1, δω] (excluding velocity) and use fixed sample counts rather than dynamic sampling to
ensure controlled comparison conditions. In the Kármán vortex street generalization experiments,
we restore the full feature vector [1,u, δω] and dynamic sampling to demonstrate the complete
method’s transferability. All experiments are conducted with varying particle counts and obstacle
configurations to demonstrate robustness across different scenarios.

Comparison of sampling strategies. To evaluate the robustness of different sampling strategies
across varying spatial discretizations, we conduct a lid driven cavity experiment with two particle
resolutions. We train all learning-based methods using DIMC simulations with 14k particles, where

6
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(a) Vorticity Magnitude (N = 45k) (b) Kinetic Energy (N = 45k)
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Figure 4: Quantitative evaluation of sampling methods on lid driven cavity with 45k particles. (a)
Vorticity magnitude and (b) kinetic energy evolution over time. Both metrics show consistent pat-
terns: KVN-based sampling closely tracks DIMC supervision, vorticity-based sampling plateaus at
low levels, while uniform sampling exhibits late over-amplification for the central vortex.

each method samples 5,000 particles, then test on both 14k and 45k particle configurations while
maintaining the same sample count.

Figure 3 shows streamline results for a 1×1 m box with the top lid driven at 1 m/s. At the coarser
resolution of 14k particles, as shown in Fig. 3(a), DFSPH produces only a single central vortex with
no secondary structures, while learning-based methods generate additional vortices with different
timing patterns. Our KVN-based sampling produces secondary vortices earlier in the simulation
compared to both uniform and vorticity-based approaches, demonstrating superior identification of
nascent rotational structures. When the particle count increases to 45k, similar patterns emerge in
Fig. 3(b): KVN-based sampling produces coherent vortical patterns across both resolutions, while
vorticity-based sampling exhibits delayed vortex formation.

Figure 4 provides quantitative validation through vorticity magnitude and kinetic energy evolution
over time, both exhibiting consistent patterns across sampling strategies. KVN-based sampling
maintains levels that closely track the DIMC supervision for both metrics. Vorticity-based sampling
plateaus at significantly lower values, confirming its limited ability to sustain vortical structures.
Uniform sampling presents an interesting contrast: while it eventually achieves the highest values,
this occurs through excessive amplification in the latter half of the simulation, corresponding to over-
enhancement of the dominant central vortex rather than balanced development of multiple structures.
These results highlight the key advantage of angular-speed-invariant importance sampling. Since
vorticity scales with angular velocity, vorticity-based methods overlook nascent vortices with low
rotational speeds, leading to delayed reinforcement. KVN provides an angular-speed-invariant mea-
sure that equally emphasizes rotational cores regardless of current velocity, enabling identification
and strengthening of small, slowly rotating structures that would otherwise dissipate. The quanti-
tative metrics confirm that effective vortex enhancement requires balanced preservation rather than
simple amplification.

Sample count sensitivity analysis. To investigate sample count sensitivity, we conduct a rotating
panel experiment with 14k particles where a square panel rotates at 1.5π rad/s. Figure 5 compares
DFSPH baseline, DIMC supervision, and our method using sample counts from 500 to 8000. Our
method demonstrates consistent vortex patterns across all sample counts as shown in Fig. 5(c),
with generally stronger vortex reinforcement at higher sample counts. The quantitative analysis
in Fig. 5(d) shows that average vorticity magnitude exhibits an overall upward trend with increasing
sample count, though with some fluctuations. Based on visual comparison of streamline graphs with
the DIMC target, optimal performance occurs at 4000-6000 samples (28.6-42.9% of total particles)
where the vortex patterns most closely resemble the supervision data. At 8000 samples (57.1%
of particles), over-reinforcement becomes evident with excessively strong vortical flows, indicating
an optimal sampling ratio of approximately 30-40%. These results demonstrate that our learning
framework with KVN-based sampling provides robust vortex enhancement across a wide range of
sample densities while revealing clear performance optima.

The computational efficiency comparison reveals a key advantage of learning-based approaches
over physics-based methods. While our model’s inference time remains relatively stable across

7
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(d) Average vorticity magnitude (e) Inference time of our model (f) DIMC computation time

Figure 5: Sample count sensitivity analysis on rotating panel scenario (14k particles, 1.5π rad/s). (a)
DFSPH baseline. (b) DIMC supervision. (c) Our method with sample counts 500-8000, showing
consistent patterns with optimal performance at 4000-6000 samples. (d) Average vorticity magni-
tude increases with sample count. (e) Our model inference time remains stable. (f) DIMC computa-
tion time scales significantly with sample count, indicating scalability advantages of learning-based
approaches.

different sample counts, as demonstrated in Fig. 5(e), DIMC’s computation time scales dramatically
with sample counts, shown in Fig. 5(f), increasing over 3-fold from 500 to 8000 samples. This
suggests that learning-based methods will demonstrate significant computational advantages over
physics-based sampling approaches as simulation scales further increase. This analysis confirms
that our learning framework effectively integrates KVN-based importance sampling to concentrate
computational resources on physically relevant regions while providing scalability advantages over
Monte Carlo methods.

Evaluation on unseen configurations. To assess how well our angular-speed-invariant sampling
transfers to different obstacle arrangements, we train our model on DIMC supervisory data from
a simple sphere scenario and evaluate on Kármán vortex street configurations with varying multi-
obstacle layouts. Figure 6 shows that while these configurations were not seen during training,
our method maintains effective vortex enhancement across all test cases. The DFSPH baseline
Fig. 6(a) produces minimal vortical structures due to numerical dissipation, regardless of obstacle
configuration. The DIMC target Fig. 6(b) demonstrates the desired vortex patterns that should form
behind each obstacle arrangement. Our method Fig. 6(c) successfully reproduces similar vortical
structures across all four unseen configurations, with vortex formation and evolution patterns that
closely match the DIMC targets.

Table 1 provides quantitative analysis of different architectural combinations with established meth-
ods including PointNet++ (Qi et al. (2017)), Point Transformer (Zhao et al. (2021)), and Continuous
Convolutions (CConv) (Ummenhofer et al. (2020)). An interesting observation is that all methods
without KVN Global already achieve reasonably good performance with minimal qualitative differ-
ences, suggesting that the local network input features [1,u, δω] provide saturated representation
for the current vortex enhancement scenario. However, KVN Global consistently extracts additional
performance gains from this saturated baseline across all architectures (PointNet++: +0.9% average
vorticity, Point Transformer: +0.9% average vorticity, CConv: +0.5% average vorticity). The fact
that all methods show positive improvements indicates these gains are systematic rather than due
to experimental noise, demonstrating KVN Global’s effectiveness in enhancing vortical structure
learning even when input features approach their representational limits.

6 CONCLUSION

We introduce angular-speed-invariant importance sampling guided by the Kinematic Vorticity Num-
ber (KVN) to improve learning-based vortex enhancement in SPH fluids. Unlike vorticity magni-
tude, which scales with angular speed and biases models toward fast-spinning structures, KVN

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) DFSPH (c) Ours(b) DIMC

Supervisory data
40 s-1-40

vorticity

Figure 6: Evaluation on unseen obstacle configurations in Kármán vortex street scenarios. Our
model is trained on DIMC supervisory data from a simple sphere scenario (highlighted by dashed
box) but evaluated on four different multi-obstacle configurations. (a) DFSPH baseline shows lim-
ited vortical structures. (b) DIMC target demonstrates rich vortex patterns behind obstacles. (c) Our
angular-speed-invariant sampling approach produces coherent vortex structures across all unseen
configurations, demonstrating effective transfer of rotational quality identification principles.

Table 1: Quantitative ablation study and architectural comparison on Von Kármán vortex street sce-
nario. All baseline methods achieve saturated performance with input features [1,u, δω], yet KVN
Global consistently extracts additional gains across different encoders, demonstrating its effective-
ness even at representational limits.

Method Max ∥ω∥ Avg. ∥ω∥ Avg. Ekin Avg. time (ms)

Ours (KVN global on our local) 13.368 9.839 0.131 31.5
Our local only with KVN feature 13.602 9.620 0.126 24.3
Our local only 13.141 9.348 0.126 26.9

CConv with KVN Global 12.807 9.744 0.130 38.2
CConv 13.574 9.693 0.128 35.7

Point Transformer with KVN Global 14.460 9.811 0.132 127.4
Point Transformer 13.571 9.726 0.130 128.4

PointNet++ with KVN Global 14.432 10.006 0.133 53.3
PointNet++ 12.573 9.918 0.132 51.4

provides a dimensionless measure that equally emphasizes rotational cores regardless of their cur-
rent velocity. This property enables reliable identification and reinforcement of nascent low-speed
vortices that conventional vorticity-based and uniform sampling methods consistently overlook.

Our experimental evaluation across multiple SPH scenarios confirms the effectiveness of this ap-
proach. In lid-driven cavity experiments, KVN-guided sampling produces secondary vortices earlier
than competing methods while maintaining physically consistent energy evolution. Sample count
sensitivity analysis reveals optimal performance at 30-40% of total particles. Moreover, our method
exhibits scalability potential. While Monte Carlo methods like DIMC show dramatic computa-
tional cost increases with sample count (over 3-fold from 500 to 8000 samples), our learning-based
approach maintains stable inference times as sample count increases. The architectural compari-
son experiments validate that KVN-derived global context provides consistent improvements across
different local encoders. Notably, all baseline methods achieve saturated performance with local
features [1,u, δω], yet KVN Global consistently extracts additional gains across architectures. This
systematic enhancement from saturated baselines demonstrates KVN Global’s effectiveness even at
representational limits, where modest improvements carry significant meaning.

9
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A USE OF LLMS

We employed Large Language Models (LLMs) in guidance when implementing baseline methods,
English grammar or style edits, as well as assistance in locating and organizing related literature.
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B CONSTRUCTING THE VELOCITY CORRECTION TARGET

This section describes the construction of velocity correction targets δui used for model supervision.
Our approach follows the standard vorticity-loss methodology in SPH vortex enhancement.

B.1 VORTICITY LOSS FRAMEWORK

We begin with the vorticity transport equation derived from the curl of the Navier-Stokes equations
as

Dω

Dt
= (ω · ∇)u+ ν∇2ω +∇× f , (13)

where ω = ∇× u is the vorticity field.

At each simulation step, we compute the current vorticity ωn and evolve it to obtain ωn+1. Simul-
taneously, we apply non-pressure forces to the velocity field to get intermediate velocity ūn. The
vorticity loss quantifies the dissipated rotational structures by

δωn = ωn+1 −∇× ūn. (14)

B.2 SPH DISCRETIZATION

We discretize differential operators using SPH’s difference formulation. For particle i with neigh-
bors Ni,

(∇× u)i =
∑
j∈Ni

mj

ρj
(uj − ui)×∇W (xi − xj), (15)

∇ui =
∑
j∈Ni

mj

ρj
(uj − ui)⊗∇W (xi − xj), (16)

where W is the SPH kernel function and a⊗ b = abT .

B.3 VELOCITY TARGET GENERATION

To convert vorticity loss into velocity corrections, we need to solve the velocity-vorticity Poisson
equation as

−∇2u = ∇× ω. (17)

Using Green’s function for infinite domains, the Biot-Savart solution is

δui = v
∑
j∈H

∇G(xi − xj)× δωn
j , (18)

where G(r) = 1
2π ln ∥r∥ (2D) or G(r) = 1

4π∥r∥ (3D), v is the vortex particle volume, and H contains
all fluid particles.

For training data generation, we use Monte Carlo estimation with importance sampling as

δui =
v

|S|
∑
j∈S

∇G(xi − xj)× δωn
j

Pj
, (19)

where S is a sampled subset and Pj is the sampling probability of particle j.
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