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Abstract

Misinformation spreads rapidly on social me-
dia, confusing the truth and targeting poten-
tially vulnerable people. To effectively miti-
gate the negative impact of misinformation, it
must first be accurately detected before apply-
ing a mitigation strategy, such as X’s commu-
nity notes, which is currently a manual pro-
cess. This study takes a knowledge-based
approach to misinformation detection, mod-
elling the problem similarly to one of natural
language inference. The EffiARA annotation
framework is introduced, aiming to utilise inter-
and intra-annotator agreement to understand
the reliability of each annotator and influence
the training of large language models for clas-
sification based on annotator reliability. In as-
sessing the EffiARA annotation framework, the
Russo-Ukrainian Conflict Knowledge-Based
Misinformation Classification Dataset (RUC-
MCD) was developed and made publicly avail-
able. This study finds that sample weighting
using annotator reliability performs the best,
utilising both inter- and intra-annotator agree-
ment and soft-label training. The highest classi-
fication performance achieved using Llama-3.2-
1B was a macro-F1 of 0.757 and 0.740 using
TwHIN-BERT-large.

1 Introduction

Knowledge-based misinformation detection (or
fact-checking) is the task of identifying misinfor-
mation based on a given piece of knowledge. The
knowledge may be either verified misinformation
(Jiang et al., 2021) or true information (Thorne
et al., 2018; Wadden et al., 2020).

Datasets (Jiang et al., 2021; Martín et al., 2022;
Thorne et al., 2018) have been introduced to fa-
cilitate knowledge-based misinformation detection
model training and they are often annotated sim-
ilarly to Natural Language Inference (NLI) tasks.
When the knowledge is verified misinformation,
claims can be categorised as misinformation if they

are entailed by the knowledge, a debunk if they
contradict the knowledge, or as other if the claim is
neutral to the provided knowledge. These datasets
often exhibit high levels of annotator disagreement.
This high disagreement is mainly due to the high
complexity of the task, which introduces subjectiv-
ity during annotation.

Figure 1: An example of label disagreement. Without in-
dicating that “mosques remained open” during COVID
is the misinformation, not “churches were forced to
close”, subjectivity is introduced. The annotator may
label the statement as “misinformation” if they thought
churches closing was misinformation or “other” if they
identify that the statement does not discuss mosques
staying open.

For the example presented in Figure 1, the
known misinformation, “During the COVID lock-
down, mosques remained open, but churches were
forced to close”, poses a challenge when la-
belling the statement “During the COVID lock-
down, churches were forced to close” as misinfor-
mation or not. Without knowing that “mosques
remained open” is the misinformation, it becomes
difficult to make a definitive judgment. If annota-
tion guidelines require annotators to assign a label,
personal interpretations of the task may lead to
disagreement.

In many cases, disagreements are resolved by
a majority vote, introducing a “gold” label for
each data point. However, such disagreements also
contain valuable information and previous stud-
ies (Branson et al., 2010; Wu et al., 2023; Busso



et al., 2008; Fayek et al., 2016; Zhang et al., 2019)
suggest that incorporating human disagreement or
uncertainty could lead to better model performance.

That said, these approaches often assume that
annotators are reliable and that disagreements are
not due to annotator mistakes. This assumption
does not always hold true, especially when non-
expert annotators are involved. Our experiments
also demonstrate that without accounting for anno-
tator errors, incorporating human uncertainty can
actually degrade model performance.

In this work, we introduce the Efficient Annota-
tor Reliability Assessment (EffiARA) framework,
designed to evaluate the reliability of individual
annotators relative to the group average. Annotator
reliability serves as a proxy for estimating the er-
ror rate of each annotator and is incorporated into
a weighted cross-entropy loss function. This ap-
proach allows us to adjust the importance of sam-
ples based on annotator reliability, increasing or
decreasing the weight of samples accordingly, im-
proving model training.

To apply this annotation framework, we
also introduce the Russo-Ukrainian Conflict
Knowledge-Based Misinformation Classification
Dataset (RUC-MCD), containing debunked misin-
formation from EUvsDisinfo 1 and related social
media posts from X 2 with manually annotated
misinformation labels.

In summary, this study provides the following
contributions:

• A novel knowledge-based misinformation-
detection dataset on the topic of the Russo-
Ukrainian conflict.

• A novel annotation framework for assessing
annotator reliability and maximising the num-
ber of data points per annotation.

• A novel approach to weighting cross-entropy
loss based on annotator reliability derived
from inter- and intra-annotator agreement.

• Baseline results on the dataset, using hard-
and soft-label learning, confidence calibration
(Wu et al., 2023), and annotator reliability
weighted learning with TwHin-BERT-large
(Zhang et al., 2023) and Llama-3.2-1B (Dubey
et al., 2024).

• Open-sourced annotation framework3, exper-

1https://euvsdisinfo.eu/
2https://x.com/
3https://github.com/MiniEggz/EffiARA

imental code and dataset4 made available on
GitHub.

2 Related Works

Knowledge-based misinformation detection in-
volves classifying content as misinformation based
on knowledge from a trusted source.

There are two main approaches to utilising such
knowledge. The first approach involves storing
knowledge in a knowledge graph (Pan et al., 2018)
and applying graph neural networks (GNNs) to de-
tect misinformation. The second approach keeps
the knowledge in its natural language form and uses
information retrieval techniques to find relevant
knowledge (Jiang et al., 2021; Martín et al., 2022;
Thorne et al., 2018). Once the relevant knowl-
edge is retrieved, a classifier is applied to deter-
mine whether the claim aligns with the retrieved
knowledge, contradicts it, or neither (Jiang et al.,
2021; Martín et al., 2022; Hossain et al., 2020;
Thorne et al., 2018), thereby classifying the claim
as misinformation or not.

Several datasets have been introduced to sup-
port classifier training and verification. Emergent
Stance Classification (Ferreira and Vlachos, 2016)
was one of the earliest datasets, where claims were
labelled based on the stance of news articles as
“for” (supporting the claim), “against” (refuting the
claim), or “observing” (neutral, without a clear
stance). The Fake News Challenge 5 extended this
idea by introducing an additional label, “unrelated”,
for articles that did not pertain to the claim.

The PHEME dataset (Zubiaga et al., 2016; Der-
czynski et al., 2017) focuses on social media ru-
mours, classifying claims as “Support”, “Deny”,
“Query”, or “Comment” based on the provided con-
tent.

The FEVER dataset (Thorne et al., 2018)
branded the task as a fact-checking task and
adapted the Natural Language Inference (NLI) la-
bels to classify text as “Support”, “Refuted”, or
“Not enough info” based on the knowledge pro-
vided.

Following that, domain-specific datasets have
also emerged, such as SCIFACT (Wadden et al.,
2020), which focuses on verifying scientific claims;
CovidLies (Hossain et al., 2020) and JIANG
COVID (Jiang et al., 2021) focus on the COVID
domain.

4https://github.com/MiniEggz/ruc-misinfo
5http://www.fakenewschallenge.org/

https://euvsdisinfo.eu/
https://x.com/
https://github.com/MiniEggz/EffiARA
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These datasets often employ multiple annota-
tors to measure inter-annotator agreement; most
datasets report relatively high levels of human dis-
agreement. According to the kappa metric reported
in previous studies, the metric varies from 0.75
(SCIFACT (Wadden et al., 2020) Cohen’s kappa)
to 0.68 ((Thorne et al., 2018) Fleiss’ kappa). The
SCIFACT dataset, focusing on the scientific do-
main, achieved higher agreement, partly due to the
use of domain expert annotators, whereas datasets
covering broader topics often suffer from lower
agreement due to the complexity and subjectivity
of the task.

Disagreements are often resolved by a majority
vote and apply the aggregated “gold” label for the
classification. However, research shows the dis-
agreements also contain highly valuable informa-
tion for model training. Retaining the disagreement
as a soft label rather than a single “gold” hard label
can improve the classification performance (Bran-
son et al., 2010; Wu et al., 2023; Busso et al., 2008;
Fayek et al., 2016; Zhang et al., 2019), especially
when the label contains some level of subjectivity
(Khurana et al., 2024; Chou et al., 2024). How-
ever, these approaches assume the disagreement is
due to the annotator’s subjectivity without consid-
ering human error. In this paper, we take human
error into consideration and weight samples based
on inter- and intra-annotator agreement in the soft-
label training process.

3 Problem Definition

Dataset Creation
Create a dataset D containing a set of knowledge-
based claims C and social media post texts T
paired by relevance, forming the samples S
belonging to D. Each sample (equivalent of a data
point), Si, will be single-, double-, or re-annotated
(annotated by one annotator once, annotated by
two different annotators, or annotated by the same
annotator twice), allowing the assessment of the
EffiARA (Efficient Annotator Reliability Assess-
ment) annotation framework and the creation of
a high-agreement subset of D to be treated as
gold-standard. Each label Li for each sample Si

must be a soft label (which may be converted to a
hard label), allowing for the comparison between
soft- and hard-label training.

Assessing Annotator Reliability
The reliability of an annotator AR

i may be

determined through some combination of each
annotator’s agreement with others and themselves
(inter- and intra-annotator agreement). An
annotation framework should be used, such that
AR

i can be calculated and the number of data
points k is maximised.

Classifying Misinformation
Our misinformation classification is to be modelled
in a pairwise fashion similar to natural language
inference, with post text Ti being misinformation
(entailing), a debunk (contradicting), or other
(neutral) relative to a knowledge-based claim Ci (a
known piece of misinformation). A model M will
train to predict the label Li, based on only Ci and
Ti.

4 EffiARA Annotation Framework

The EffiARA (Efficient Annotator Reliability As-
sessment) annotation framework aims to maximise
the number of data points per annotation while
maintaining the ability to assess annotator reliabil-
ity through inter- and intra-annotator agreement.
This annotation framework is well-suited for cases
where there is limited access to annotators or anno-
tations must be completed quickly. It may also be
extended to much larger groups of annotators.

Figure 2: An example of the EffiARA annotation frame-
work with 6 annotators. Values next to each node rep-
resent an annotator’s intra-annotator agreement, and
values on edges represent the pairwise inter-annotator
agreement. Both inter- and intra-annotator agreement
were assessed using Krippendorff’s alpha. Annotator
reliability scores calculated weighting inter- and intra-
annotator agreement equally for annotators 1-6: 0.949,
0.989, 1.026, 1.108, 0.937, 0.992.

Figure 2 shows a graph representing the case of



EffiARA with 6 annotators. Each node represents
an annotator and each edge represents a set of pair-
wise annotations (annotations by two annotators
on a set of shared samples). In the case where
the number of annotators is 5 or larger, each an-
notator is linked to 4 other annotators, allowing
for inter-annotator agreement calculations. Due to
the required 4 links to other annotators, this frame-
work should not be used where the number of an-
notators is less than 5. Each annotator will single-
annotate and double-annotate a number of samples
to increase the number of data points. Each sin-
gle annotation results in a unique sample, whereas
a double annotation results in one unique sample
every two annotations. Single-annotated samples
refer to samples annotated by one annotator only;
double-annotated samples refer to samples anno-
tated by two annotators; re-annotated samples refer
to samples that have been single-annotated and then
re-annotated by the same annotator.

Algorithm 1 EffiARA Sample Distribution to An-
notation Projects.

Let n be the number of annotators
Let t be the time available for each annotator
Let ρ be the rate of annotation per unit time
Let k be the number of overall samples
Let d be the proportion of k that is double-
annotated in the range 0..1
Let r be the proportion of single-annotated sam-
ples to be re-annotated in the range 0..1
Let A be the set of annotators
Let D be the dataset containing k samples

# Calculate overall samples
k = (2d+ (1 + r)(1− d))−1 · ρ · t · n

for i = 1 to n do
# Sampling performed without replacement
# Double-annotated samples
Ai∩A(i+1) mod n ← random_sample(D, dk2n)

Ai∩A(i+2) mod n ← random_sample(D, dk2n)
# Single-annotated samples
Ai ← random_sample(D, (1−d)k

n )
# Re-annotated samples
AI ← random_sample(Ai, r|Ai|)

end for

Unique Samples & Sample Distribution
Algorithm 1 describes how the number of samples

k can be calculated and distributed to the appropri-
ate annotators. Assuming all annotators have the
same amount of time, we identify 5 variables re-
quired to calculate the number of unique samples:
the number of annotators, the time available for
each annotator, the rate at which the average sam-
ple is annotated, the proportion of re-annotations,
and the proportion of double-annotations. The ratio
of time taken to produce a unique single annotation
(including re-annotations) to a unique double anno-
tation for each user is (1+r)(d−1):2d, reflected in
the equation for k. If a given number of samples is
desired, the equation may be rearranged to find the
desired number of annotators n, or the total time
each annotator is expected to spend annotating t.
Each parameter may be adjusted and the number
of links per annotator is always 4. Future work
may investigate an alternate number of links per
annotator.
Annotator Reliability Calculations
Referring to Figure 2 may help to visualise the
annotator reliability calculation process. Let
{A0, ..., An} be the set of nodes representing all
annotators, where n is the number of annotators; let
Ax ∩Ay be an edge between two annotator nodes
Ax and Ay, representing the set of samples that
have been double-annotated by this pair of annota-
tors; let a be a function calculating the agreement
between the set of double annotations from Ax and
Ay.

A simple method for calculating each annota-
tor’s inter-annotator agreement factor, the function
e(Ai), is the average of the pairwise agreement
values for each edge incident to the node.

e(Ai) =
1

|Links(Ai)|
∑

Aj∈Links(Ai)

a(Ai ∩Aj)

where the function Links gathers all nodes

linked to Ai by an edge.

This function e(Ai) can be expanded to utilise
the annotator’s reliability in the inter-annotator
agreement calculations. For a weighted average,
the function can be written as:

e(Ai) =
1

|Links(Ai)|
∑

Aj∈Links(Ai)

AR
j a(Ai ∩Aj)

where AR
j represents an annotator’s reliability.



The aim of weighting the function is to lower the
impact of “bad annotators” with lower than average
reliability scores and raise the impact of “good an-
notators” with higher than average reliability scores
in the inter-annotator agreement calculation. For
this calculation, the n reliability scores must be
normalised around one; this can be achieved by
dividing each reliability score by the average of
all reliability scores, assuming no negative relia-
bility scores. While this weighted average method
may offer some improvement in calculating inter-
annotator agreement, the method is suboptimal as
disagreement with bad annotators is not sufficiently
rewarded and disagreement with good annotators is
not sufficiently punished. While out of the scope of
this study, this problem may prompt improvements
for future work.

Intra-annotator agreement is defined as the
pairwise agreement with an annotator’s own re-
annotations: a(Ai, AI), where AI denotes the ith

annotator’s re-annotations.
With methods for calculating both inter- and

intra-annotator agreement, the function to calcu-
late annotator reliability can be introduced. This
function r(Ai, α) can be written as:

r(Ai, λ) = λ(a(Ai ∩AI)) + (1− λ)(e(Ai))

where 0 ≤ λ ≤ 1.

This reliability function can either be called once,
or it can be called iteratively until reliability val-
ues converge. For the first call, each annotator’s
reliability is initialised to 1.0. After each iterative
step, reliability values must be normalised to have
a mean value of 1.0 for use in inter-annotator agree-
ment function e.

An implementation of this framework as a
Python package can be found here: https://
github.com/MiniEggz/EffiARA.

5 RUC-MCD Dataset Creation

5.1 Sourcing Data
The knowledge, or known misinformation con-
nected to the Russo-Ukrainian conflict (also known
as claims), was sourced from EUvsDisinfo 6. Each
claim about the Russo-Ukrainian conflict has been
fact-checked and labelled as disinformation. The
social media posts were drawn from a large collec-
tion of X posts collected by our institution, hosted

6https://euvsdisinfo.eu

on an ElasticSearch (Elasticsearch, 2018) endpoint,
enabling simple information retrieval.

5.2 Claim-Post Pairs

With a collection of evidence and X posts, they
were paired in a manner that closely follows the
methodology of Jiang et al. (2021). Evidence was
used as the search term in an information retrieval
task to find the most relevant X posts. For each
claim, the 30 most relevant tweets were returned by
ElasticSearch; these posts were then re-ranked us-
ing ms-marco-TinyBERT-L-2 (HuggingFace, 2024),
with the 10 most relevant posts paired with the
claim added to the dataset as 10 separate samples.
An example of two claim-post pairs can be seen in
Figure 3.

Figure 3: An example of two claim post pairings us-
ing the same piece of knowledge for two social media
posts. One sample is labelled “misinfo” and the other is
labelled “other”.

Due to the large number of fact-checked claims
available, a random sample of 350 was chosen
from the claims originally written in English. Af-
ter claim-post pairings, there were 3,500 samples
available.

5.3 Annotation

The annotations were completed based on annota-
tion guidelines agreed to by all annotators, 6 vol-
unteering final-year integrated Master’s students in
Computer Science studying in the UK. The guide-
lines ask each annotator to read the evidence and
post carefully and choose one of the following three
labels as their primary label: “misinfo”, “debunk”,
or “other”. The annotator is then asked to provide
a score from 1-5 indicating their confidence in the
primary label, as in Wu et al. (2023). If the confi-
dence score is 3 or less, the annotator is asked to
provide a secondary label that they believe could
alternatively be assigned to the sample.

https://github.com/MiniEggz/EffiARA
https://github.com/MiniEggz/EffiARA


Once guidelines had been outlined and agreed
upon, the samples were distributed using the Ef-
fiARA annotation framework. It was calculated
that with n = 6, t = 10 (hours), ρ = 60 (an-
notations per hour), d = 1/3, and r = 1/2 that
k = (2(1/3)+3/2×2/3)−1×60×10×6 = 2160
unique samples. Once distributed, each double-
annotation project contained dk

2n = 80 samples,
each single-annotation project contained (1−d)k

n =
240 samples, and each re-annotation project con-
tained r|Ai| = 120 samples. Initially, single- and
double-annotations were completed; after com-
pleting these annotations, annotators did not an-
notate for two weeks before completing their re-
annotations, allowing for the assessment of intra-
annotator reliability. All annotators were aware
of the annotation process, knowing that samples
would be single-, double-, and re-annotated. Figure
2 shows the annotation graph containing agreement
metrics (Krippendorff’s alpha (Gwet, 2015)) from
the three-class annotation. The average Krippen-
dorff’s alpha across each double-annotation task is
0.581.

The data statistics are reported in Table 1.

Label
Dataset Misinfo Debunk Other Total

High-Agreement 80 29 447 556
Other 360 117 1063 1540
Total 440 146 1510 2096

Table 1: Distribution of hard labels in RUC-MCD, for
both high-agreement and other samples, where “other
samples” contains all single-annotations and all double-
annotations where agreement criteria were not met.

To form a test set for evaluating a fine-tuned
model’s performance on RUC-MCD, we adopt the
approach from Wu et al. (2023), using high annota-
tor agreement as a proxy for label correctness. For
a sample to be included in the high-agreement set,
both annotators must have assigned the same pri-
mary label with a confidence score of 3 or higher.
This high-agreement set is treated as the “gold”
standard.

6 Experiments

In this study, the EffiARA reliability scores with
weighted cross-entropy loss are compared with
baseline classification results obtained by the same
pre-trained language model and confidence calibra-
tion (Wu et al., 2023), using one encoder model
and one decoder model with both soft and hard-
label training; hard-label training was not possible

with the confidence calibration method as it relies
on the use of soft labels. Five-fold cross valida-
tion was conducted for each experimental setting;
for each fold, 4/5 of the high-agreement samples
and all other samples (containing low-agreement
double-annotated samples and all single-annotated
samples) were used as the training set, and the final
1/5 of the high-agreement samples used as the test
set as in Wu et al. (2023).

TwHIN-BERT-large (550M parameters) (Zhang
et al., 2023), chosen for its pre-training on
X/Twitter posts, and Llama-3.2-1B (1.23B param-
eters) (Dubey et al., 2024), from the latest group
of Llama models, were fine-tuned and measured
for classification performance on RUC-MCD. In
our fine-tuning process, we used the CLS (classi-
fication) token (for TwHIN-BERT-large) and the
last token (for Llama-3.2-1B) output from the fi-
nal hidden layer of the models as representations
of the input. These token embeddings were then
passed through an additional feed-forward neural
network for classification. These experiments were
performed using the PyTorch (Paszke et al., 2019)
and HuggingFace (Wolf et al., 2019) libraries. For
both the BERT model and Llama model, training
parameters were largely the same, following that
of Wu et al. (2023). Fine-tuning was performed
for 20 epochs, a batch size of 16 for BERT and 8
for Llama (due to memory capacity), and a linear
decaying learning rate of 2e-5, with 5 warm-up
epochs. Without 5 warm-up epochs, the BERT
models suffered from early convergence, reaching
a suboptimal local minimum. This behaviour may
be investigated in future research. The AdamW op-
timiser and cross-entropy loss, or weighted cross-
entropy loss where EffiARA reliability scores were
used, were chosen. For evaluation, the macro-F1
score and expected calibration error (ECE) were
used as key metrics. In all experiments, the evi-
dence was concatenated with the X post and to-
kenised. In total, experiments took roughly 270
GPU hours using an Nvidia Tesla A100.

Due to label imbalance, we combine the labels
“other” and “debunk”, leaving only “misinfo” and
“other” in our experiment. This study focuses on
the detection of misinformation; the fine-grained
classification of other classes is not essential. All
data was collected using three-label classification,
with the “debunk” and “other” labels only merged
as a data-preprocessing step in our experiments.
Inter- and intra-annotator agreement is calculated
after this step, resulting in marginally different
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Hard

Method F1-Macro ECE
Baseline 0.699 (0.05) 0.151 (0.02)

EffiARA (inter) 0.698 (0.05) 0.144 (0.02)
EffiARA (intra) 0.690 (0.07) 0.152 (0.03)

EffiARA (inter+intra) 0.677 (0.12) 0.119 (0.03)

Soft

Baseline 0.691 (0.07) 0.071 (0.01)
EffiARA (inter) 0.728 (0.04) 0.072 (0.02)
EffiARA (intra) 0.722 (0.07) 0.079 (0.01)

EffiARA (inter+intra) 0.740 (0.06) 0.077 (0.02)
Confidence Calibration 0.627 (0.03) 0.116 (0.01)

L
la

m
a

Hard

Method F1-Macro ECE
Baseline 0.738 (0.02) 0.116 (0.01)

EffiARA (inter) 0.726 (0.04) 0.121 (0.02)
EffiARA (intra) 0.751 (0.05) 0.106 (0.02)

EffiARA (inter+intra) 0.726 (0.07) 0.111 (0.02)

Soft

Baseline 0.730 (0.09) 0.093 (0.02)
EffiARA (inter) 0.724 (0.06) 0.094 (0.01)
EffiARA (intra) 0.732 (0.07) 0.079 (0.01)

EffiARA (inter+intra) 0.756 (0.07) 0.092 (0.01)
Confidence Calibration 0.638 (0.07) 0.124 (0.01)

Table 2: Classification performance and model calibration of BERT and Llama models with hard- and soft-label
training, using EffiARA reliability scores and confidence calibration. For each model and label type training, a
baseline is provided, using unweighted cross-entropy loss and no calibration of confidence. For each model and
label type, bold indicates the highest-performing method and underlined indicates the second-highest-performing
method.

Krippendorff’s alpha metrics, going from 0.578
with three labels to 0.592 with two labels for inter-
annotator agreement and from 0.701 to 0.707 for
intra-annotator agreement.

6.1 Label weight and Soft Label Generation

The annotator reliability metric aims to capture
how “good” an annotator is, using their inter- and
intra-annotator agreement scores, calculated as de-
scribed in Section 4. These reliability measures
were then used in the weighted cross-entropy loss
function, increasing the importance of correctly
classifying “better” annotators in the model train-
ing process. As well as weighting the loss func-
tion, reliability scores are also used to aggregate
double annotations to create soft labels, using a
weighted average. This study uses Krippendorff’s
alpha (Krippendorff, 1970; Hayes and Krippen-
dorff, 2007; Castro, 2017) as the agreement metric
in all inter- and intra-annotator agreement calcula-
tions.

Three settings were used to calculate annotator
reliability: inter-annotator agreement only, intra-
annotator agreement only, and a 50:50 weighting
of inter- and intra-annotator agreement. The relia-

bility scores can be seen in Table 3.

A1 A2 A3 A4 A5 A6

Inter 1.071 0.962 1.011 0.891 1.119 0.945
Intra 0.960 1.000 0.990 1.157 0.824 1.068
Both 1.011 0.986 1.000 1.038 0.959 1.007

Table 3: Annotator reliability scores for each annotator
in each reliability calculation setting once labels had
been reduced to “misinfo” and “other”.

To generate the soft label, the confidence in the
primary label is converted to a value between 0
and 1. This conversion uses Equation 1, where
n is the number of classes, C is the confidence
in the primary label, and MaxC is the maximum
confidence value. In this study, these values are
n = 2, MaxC = 5, and C ∈ {1, 2, 3, 4, 5}.

P =
1

n
+

n− 1

n
· C − 1

MaxC− 1
(1)

This confidence score is assigned as the proba-
bility that the sample belongs to the class of the
primary label. If the number of classes is greater
than two, if a secondary label has been selected, it
is assigned the probability min(P, 1−P ) to ensure



the secondary label probability is not higher than
that of the primary label. The remaining probability
is distributed evenly amongst the remaining classes.
With binary classification, the primary label is as-
signed probability P and the secondary label 1−P .
To generate the soft label for a double-annotated
sample, a mean of the two annotators’ individual
soft labels is taken, weighted using the annotators’
reliability scores.

This study uses both hard- and soft-label learn-
ing. By first creating the soft label, it can be trans-
formed to a hard label using an argmax function
for use in hard-label training experiments and for
the test set.

6.2 Confidence Calibration

To assess the performance of the EffiARA an-
notator reliability calculations, classification re-
sults were compared to those obtained using the
Bayesian confidence calibration method introduced
by Wu et al. (2023). After confidence calibration,
soft labels are generated as previously described.

7 Results & Discussion

Table 2 presents the classification performance and
model calibration results achieved in this study.

Cross-entropy loss weighted by EffiARA relia-
bility scores offers significant advantages. Treat-
ing vanilla hard-label training as the baseline,
annotator-reliability-based sample weighting of-
fers improvements of up to 0.041 and 0.018 in
macro-F1 score for BERT and Llama respectively,
showing the effectiveness of the method on both
encoder and decoder models. For both Llama
and BERT, the highest performing setting was
annotator-reliability-based sample weighting util-
ising both inter- and intra-annotator agreement to
establish annotator reliability. This method was
more effective when applied to soft-label learning
for both BERT and Llama.

For both BERT and Llama, statistical signifi-
cance was assessed, comparing the highest per-
forming baseline and the highest performing result
using cross-entropy loss weighted by annotator re-
liability scores using paired t-tests (Student, 1908)
due to the approximately normally distributed dif-
ferences in results; the Shapiro-Wilk test (Shapiro
and Wilk, 1965) was used to test whether the data
was normally distributed. For BERT, comparing
the hard-label baseline with the highest perform-
ing method resulted in a P-value of 0.008 < 0.05,

meaning the results were statistically significant.
For Llama, again comparing the hard-label base-
line and the highest performing method, a P-value
of 0.675 > 0.05 was obtained, meaning the results
were not statistically significant, despite offering
some improvement. Further investigation, particu-
larly through the introduction of more datasets, is
required to understand this.

EffiARA performs well with low-to-moderate-
agreement data. The average inter-annotator
agreement in double-annotated samples within
RUC-MCD with two classes is 0.592, which is
low-to-moderate agreement (Krippendorff, 2019).
With crowdsourcing often containing disagreement
(Dumitrache et al., 2018), it could make EffiARA a
viable approach to mitigate against poor annotators.
Future work may investigate the performance of
EffiARA in expert annotation scenarios and crowd-
sourcing, where the number of annotators is much
higher.

Confidence calibration is ineffective when ap-
plied to pairwise annotations. Bayesian confi-
dence calibration was consistently the worst per-
forming experimental setting in both classification
performance and model calibration. This was ex-
pected as confidence calibration relies on higher
annotator overlap. EffiARA’s pairwise annotation
method is not compatible with confidence cali-
bration, justifying the requirement for another ap-
proach, such as annotator-reliability-based sample
weighting.

Soft- and hard-label training results vary.
While the highest performing models are trained
on soft labels using the annotator-reliability-based
sample weighting, hard-label training performs
better than soft-label training for both BERT and
Llama baselines. Expected calibration error is sig-
nificantly improved through the use of soft labels
though, indicating that the model’s confidence in
its output is more accurate with soft-label training.

8 Conclusion

This study has introduced the EffiARA annotation
framework, shown to increase knowledge-based
classification performance over baseline hard- and
soft-label training for a BERT and Llama model
through annotator-reliability-based sample weight-
ing. The combination of inter- and intra-annotator
agreement was shown to be the highest performing
with a macro-F1 score of 0.756 for Llama-3.2-1B
and 0.740 for TwHIN-BERT-large, outperforming



baselines by 0.018 and 0.041 respectively. While
only 6 annotators were used in this study, this
framework can be expanded to use any number
of annotators, meaning it is applicable to crowd-
sourcing; further studies may investigate this appli-
cation of the EffiARA annotation framework and
annotator-reliability-based sample weighting. The
newly created dataset, RUC-MCD, has also been
made publicly available.

9 Limitations

This preliminary study introducing EffiARA shows
that the annotation framework is a viable approach
to obtaining a large number of data points when
annotator time is scarce while maintaining the abil-
ity to assess inter- and intra-annotator agreement.
There is, however, scope for further investigation
into the framework’s optimisation and effectiveness
in other settings. Avenues of future research may
include testing the effect of different hyperparame-
ters controlling the proportion of re-annotated and
double-annotated data points, the proficiency of the
framework with different numbers of annotators,
and its performance on different datasets and super-
vised learning tasks. Without testing on a number
of datasets, it is unclear how well the EffiARA an-
notation framework will generalise and perform in
other circumstances.

This work relies on fact-checking organisations
to always be a reliable source of truth. Placing so
much trust in one organisation may be dangerous in
some cases but verifying the work of fact-checking
organisations is beyond the scope of this study. For
use in industry, however, it is important that all the
evidence itself is trustworthy. For any organisation
that may want to employ misinformation detection
technologies on their social media platform, it is
likely suitable that the evidence base is maintained
manually.

The detection of misinformation can often be
reliant on temporal information. For example, if
somebody claimed that “Person X did Y” before
that person did action Y, it would be misinforma-
tion. The same statement made a month later, after
Person X did Y, would no longer be misinformation.
Including this temporal dimension in the misinfor-
mation classification task was beyond the scope
of this study but it is an important edge case to
consider, should this technology be used to auto-
matically detect misinformation on social media.

The application of misinformation detection

technology must be carefully considered as the
misidentification of it in public settings may sway
opinions and narratives, causing unintended conse-
quences.

10 Ethics

This study employed six annotators who all signed
consent forms, agreeing to their annotations being
used for this research and acknowledging and ac-
cepting the risk of reading offensive or upsetting
social media posts. Any X post data, potentially
containing personal information, has been omitted
from the publicly available dataset; only the post
ID is stored, enabling users to only use posts that
remain public. This study was approved by the
Ethics Board of the School of Computer Science,
The University of Sheffield.
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