
Under review as submission to TMLR

Sparse-to-Sparse Training of Diffusion Models

Anonymous authors
Paper under double-blind review

Abstract

Diffusion models (DMs) are a powerful type of generative models that have achieved state-of-
the-art results in various image synthesis tasks and have shown potential in other domains,
such as natural language processing and temporal data modeling. Despite their stable
training dynamics and ability to produce diverse high-quality samples, DMs are notorious
for requiring significant computational resources, both in the training and inference stages.
Previous work has focused mostly on increasing the efficiency of model inference. This paper
introduces, for the first time, the paradigm of sparse-to-sparse training to DMs, with the aim
of improving both training and inference efficiency. We focus on unconditional generation
and train sparse DMs from scratch (Latent Diffusion and ChiroDiff) on six datasets using
three different methods (Static-DM, RigL-DM, and MagRan-DM) to study the effect of
sparsity in model performance. Our experiments show that sparse DMs are able to match
and often outperform their Dense counterparts, while substantially reducing the number
of trainable parameters and FLOPs. We also identify safe and effective values to perform
sparse-to-sparse training of DMs.

1 Introduction

Diffusion models (DMs) are a class of deep generative models that exhibit extraordinary performance to
produce diverse and high-quality data. DMs currently dominate the generative field in computer vision,
having been applied to a wide range of tasks such as (un)conditional image generation (Ho et al., 2020b;
Rombach et al., 2021; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Nichol et al., 2022; Blattmann
et al., 2022; Das et al., 2023), image super-resolution (Saharia et al., 2021; Chung et al., 2022), and image
inpainting (Nichol et al., 2022; Chung et al., 2022; Saharia et al., 2022), among others. DMs have also shown
incredible potential in other domains, including speech generation (Liu et al., 2023a), text generation (Li
et al., 2022; Gong et al., 2023), and time-series prediction and imputation (Rasul et al., 2021; Tashiro et al.,
2021).

Despite these advantages, DMs are notorious for their slow training, demanding significant computational
resources and resulting in a considerable carbon footprint (Strubell et al., 2020). Due to the extensive number
of diffusion timesteps required to produce a single sample (e.g., Rombach et al. (2021) mentioned up to 500
steps), DMs also suffer from slow sampling speed (Song et al., 2021). Even though progress has been made
in improving inference speed, DMs are still considerably slower than other generative approaches such as
GANs and VAEs (Rombach et al., 2021). This inefficiency impacts not only end users, but also the research
community, by hindering further developments due to the lengthy process of model training and evaluation.

Reducing the computational costs and memory requirements of DMs is a critical challenge for the broad
implementation and adoption of these models, and an active field of research. Much of the existent literature
has addressed this challenge through improvements to the inference stage (Song et al., 2021; Nichol &
Dhariwal, 2021; Fang et al., 2023; Shang et al., 2023; Li et al., 2023; Salimans & Ho, 2022; Meng et al.,
2023). Efforts have also been made in the direction of training efficiency, exploring different architectures
and training strategies (Wang et al., 2023; Ding et al., 2023; Rombach et al., 2021; Phung et al., 2022), but
training DMs is still an extensive and costly process.

In the last few years, sparse-to-sparse training has emerged as a promising approach to significantly reduce the
computational cost of deep learning models, by training sparse networks from scratch (Mocanu et al., 2018;

1

Under review as submission to TMLR

Bellec et al., 2018; Dettmers & Zettlemoyer, 2019; Evci et al., 2020; Zhang et al., 2024b). Interestingly, sparse
neural networks have been shown to match, or even outperform, their Dense counterparts in classification
tasks (Mocanu et al., 2018; Liu et al., 2021a), generative modeling using GANs (Liu et al., 2023b), and
Reinforcement Learning (Sokar et al., 2022), all while requiring less memory and reducing the number of
floating-point operations (FLOPs). We should note that, currently, most sparse neural networks require
roughly the same amount of time to train as their dense counterparts, since today’s hardware is optimized
for dense matrix operations. However, growing interest in sparse models is reshaping the landscape; see
Appendix A for a discussion in this regard.

We propose to lower the computational cost of DMs by incorporating, for the first time, the paradigm
of sparse-to-sparse training for unconditional generation. As such, we introduce three different methods,
Static-DM (static strategy), RigL-DM, and MagRan-DM (both dynamic strategies), that can be easily
integrated with existing DMs. Since our goal is to study the effect of these techniques on the performance of
DMs, we experiment using two state-of-the-art DMs in two domains: Latent Diffusion (Rombach et al., 2021)
for image generation (continuous, pixel-level data) and ChiroDiff (Das et al., 2023) for sketch generation
(discrete, spatiotemporal sequence data). In sum, we make the following contributions:

• We introduce sparse-to-sparse training to DMs, with both static and dynamic strategies. We consider
various sparsity levels, two state-of-the-art models (Latent Diffusion and ChiroDiff), and six datasets
in total.

• Our experiments show great promise of sparse-to-sparse training for DMs, as we were able to train
a sparse DM for each model/dataset case with comparable performance to their respective Dense
counterpart, while significantly reducing the parameters count and FLOPs. In most cases, at least
one sparse DM outperformed its Dense version.

• We identify safe and effective values to perform sparse-to-sparse training of DMs. Higher performance
is achieved using dynamic sparse training with 25–50% sparsity levels. For models with higher
sparsity ratio, a conservative prune and regrowth ratio of 0.05 provides better results.

2 Background and Related Work

2.1 Diffusion Models

DMs (Sohl-Dickstein et al., 2015; Ho et al., 2020a; Song et al., 2020) are probabilistic models designed to
learn a data distribution q(x) through two processes: a forward noising process and a reverse denoising
process. The forward process is defined as a Markov Chain of length T in which Gaussian noise is added at
each timestep t, producing a sequence of increasingly noisier samples:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

q(x1:T |x0) =
T∏

t=1
q(xt|xt−1) (2)

where x0 is the original data point, xt is the data point at timestep t, and βt is the pre-defined amount of
noise added at timestep t.

The reverse denoising process q(xt−1|xt), attempts to recover the original data, but it is intractable as
it depends on the entire data distribution q(x). As such, we need to parameterize a neural network pθ

to approximate it. This network pθ can be optimized by training with the simplified objective, L =
Et∼[1,T],x0,ϵ∼N (0,1)||ϵ− ϵθ(xt, t)||2, where xT is a noisy version of input x at the final timestep T , and ϵθ the
prediction of the neural network pθ.

2.2 Efficiency in Diffusion Models

Increasing the efficiency of DMs has been primarily addressed through accelerating the sampling process, by
reducing the number of diffusion steps through faster sampling (Song et al., 2021; Karras et al., 2022) and

2

Under review as submission to TMLR

model distillation (Salimans & Ho, 2022; Meng et al., 2023; Yin et al., 2024). As for training acceleration,
some works have proposed shifting the diffusion process to the latent space (Rombach et al., 2021; Vahdat
et al., 2021). Interestingly, Phung et al. (2022) used discrete wavelet transforms to decompose images into
sub-bands, employing these sub-bands to perform the diffusion more efficiently.

Previous studies have also presented refinements to the training process of DMs. For example, Wang et al.
(2023) introduced a plug-and-play training strategy that utilizes patches instead of the full images, to improve
training speed. Hang et al. (2024) proposed treating DMs as a multitask learning problem and introduced
a weighting strategy to balance the different timesteps, achieving a significant improvement in training
convergence speed.

From the perspective of network compression, prior works have explored techniques such as structural
pruning (Fang et al., 2023), post-training quantization (Shang et al., 2023; Li et al., 2023), knowledge
distillation (Yang et al., 2023), and the lottery ticket hypothesis (Frankle & Carbin, 2019; Jiang et al.,
2023). Very recently, Wang et al. (2024) proposed the incorporation of sparse masks into pre-trained DMs
before fine-tuning, and achieved a 50% reduction in multiply-accumulate operations (MACs) with only a
slight average decrease of image quality (as measured by the FID score). Although these techniques work in
increasing efficiency, they still require pre-training of full DMs. Our work proposes training sparse DMs from
scratch, which has the potential to both accelerate training and inference, and reduce the memory footprint.

2.3 Sparse-to-Sparse Training

Nowadays most computational models are what is referred to as Dense networks, comprising a stack of layers
containing multiple neurons, each connected to all neurons in the following layer. Sparse-to-sparse training
techniques aim to train sparse neural networks from scratch, thus reducing the number of parameters and
computations. If we define the connectivity graph of a Dense neural network as G(V, E), where V represents
the set of neurons (vertices), and E the set of connections between them (edges), a sparse version of that
neural network would be defined as G(V ′, E ′), with V ′ and E ′ being a subset of the neurons and connections
of the Dense network. Sparse networks can be obtained using structured methods, where V ̸= V ′, and
unstructured methods, where V = V ′. Overall, sparse-to-sparse training techniques can be divided into static
sparse training (SST) and dynamic sparse training (DST).

Static Sparse Training. In SST methods, the connectivity pattern between neurons is set at initialization,
and remains fixed during training. This concept was first introduced by Mocanu et al. (2016), who proposed a
non-uniform scale-free topology for Restricted Boltzmann machines, with the sparse models achieving better
results than their Dense counterparts. Later, Liu et al. (2022) investigated the efficacy of random pruning at
initialization, and found that, using appropriate layer-wise sparsity ratios, a randomly pruned subnetwork
of WideResNet-50 can outperform a dense WideResNet-50 on ImageNet. Many other criteria have been
proposed to set layer-wise sparsity ratios before training, by trying to identify important connections using
information such as connection sensitivity, as in SNIP (Lee et al., 2019), gradient flow (Wang et al., 2020), as
in GraSP. Very recently, two new initialization criteria have been proposed that utilize concepts from network
science theory: Bipartite Scale-Free and Bipartite Small-World (Zhang et al., 2024a;b).

Dynamic Sparse Training. In DST methods, the network is initialized with a connectivity pattern and
dynamically explores different connections throughout training (Mocanu et al., 2018; Bellec et al., 2018).
This was first proposed by Mocanu et al. (2018) through Sparse Evolutionary Training (SET), an algorithm
that adjusts the connections using a prune-and-grow scheme every N training steps. In SET, weights are
dropped based on their magnitude (ensuring an equal amount of positive and negative weights) and regrown
randomly. RigL (Evci et al., 2020) proposes an alternative method that prunes the weights based on the
absolute magnitude, and regrows them based on the gradients by calculating the dense gradients only at the
update step. Although further pruning methods have been proposed (Lee et al., 2019; Yuan et al., 2021), a
study by Nowak et al. (2023) found only minor differences between the tested criteria. The contrast was
higher in lower density patterns, with magnitude pruning giving the best performance. Other growing criteria
have been proposed based on randomness (Mostafa & Wang, 2019) and momentum (Dettmers & Zettlemoyer,
2019).

3

Under review as submission to TMLR

Recently, Zhang et al. (2024b) proposed Epitopological Sparse Meta-deep Learning (ESML), a brain-inspired,
gradient-free method, which aims to shift the focus from the weights to the network topology, and uses
concepts from network theory. By leveraging ESML, the authors train a sparse network that using just
1% of the connections, is able to surpass dense networks, as well as other DST methods, in several image
classification tasks.

DST has also been applied to the field of generative modelling: Liu et al. (2023b) proposed STU-GAN,
comprised of a generator with high sparsity and a denser discriminator. STU-GAN was able to outperform a
dense BigGAN on CIFAR-10 with a 80% sparse generator and 70% sparse discriminator.

3 Methodology

Our study aims to understand the effect of sparse-to-sparse training techniques on DMs. We focus on
unstructured sparsity due to its ability to maintain high performance even at very high levels of sparsity (Evci
et al., 2020). Thus, our experiments cannot rely on current hardware to accelerate sparse computations; for
example, NVIDIA A100 and Ampere cards only support 2:4 structured sparsity, which requires to enforce a
fixed sparsity level of 50%. In the following sections, we present three methods of introducing sparsity in
DMs: one SST technique, Static-DM, and two DST techniques, MagRan-DM and RigL-DM.

3.1 Static Sparse Training: Static-DM

Static-DM is a sparse DM trained from scratch, with fixed connectivity between neurons. The pseudocode
for Static-DM is shown in Algorithm 1. The training process closely resembles that of a dense DM, with the
addition of a sparse initialization step. In this step, the graph underlying the neural network is sparsified by
setting a fraction of the neuron connections to zero.

Algorithm 1 Static-DM
1: Input: Dataset D, Network fθ, Number of Epochs N , Diffusion steps Td, Sparsity ratio S
2: θ ← sparse initialization using S
3: for i = 1 to N do
4: x0 ∼ D
5: t ∼ U({1, 2, . . . , Td})
6: ϵ ∼ N (0, I)
7: θi = AdamW(▽θ, LDIF(fθ(x0, t), ϵ))
8: end for

Following the findings of Liu et al. (2022), we randomly prune the connections at initialization using the
Erdõs–Rényi (ER) (Mocanu et al., 2018) strategy to allocate the non-zero weights to non-convolutional
layers. With this strategy, larger layers get assigned higher sparsity than smaller layers. The sparsity of each
layer scales with sl ∝ 1− nl+nl−1

nl·nl−1 , where nl and nl−1 represent the number of neurons in layer l and l − 1
respectively.

For convolutional layers, we use a modification of ER, ERK (Evci et al., 2020), which takes into account the
size of the kernels, sl ∝ 1− nl+nl−1+wl+hl

nl·nl−1·wl·hl , where nl and nl−1 represent the number of neurons in layer l and
l − 1 respectively, and wl and hl the width and height of the corresponding convolutional kernel.

3.2 Dynamic Sparse Training: MagRan-DM and RigL-DM

The key aspect of DST algorithms lies with the process of pruning and regrowing weights. We opted to test
the two most common regrowth methods, random growth and gradient growth, combined with the magnitude
pruning criteria. Magnitude pruning is a simple criteria, that has been shown to perform well in high sparsity
regimes for supervised classification, as well as in other generative models (Nowak et al., 2023; Liu et al.,
2023b)

4

Under review as submission to TMLR

RigL, proposed by Evci et al. (2020), combines gradient growth and magnitude pruning, thus the name of
our model RigL-DM. The combination of random growth and magnitude pruning closely resembles the SET
algorithm (Mocanu et al., 2018), and has been studied before for other types of models (Nowak et al., 2023),
although it has never been named. For simplicity, we refer to this method as MagRan-DM.

Algorithm 2 RigL-DM and MagRan-DM
1: Input: Dataset D, Network fθ, Number of Epochs N , Diffusion steps Td, Sparsity ratio S, exploration

frequency ∆Te, Pruning rate p, Sparse method method
2: θ ← sparse initialization using S
3: for i = 1 to N do
4: x0 ∼ D
5: t ∼ U ({1, 2, . . . , Td})
6: ϵ ∼ N (0, I)
7: θi = AdamW(▽θ, LDIF(fθ(x0, t), ϵ))
8: if i mod ∆Te then
9: θip

= TopMag(|θi|, 1− p) // Magnitude pruning
10: if method is RigL-DM then
11: θig

= TopGrad(|▽θLDIF|, p) // Gradient growth
12: else if method is MagRan-DM then
13: θig = Random(p) // Random growth
14: end if
15: θi ← update activated weights using θig

and θip

16: end if
17: end for

The full pseudocode for the training process of MagRan-DM and RigL-DM can be found in Algorithm 2. At
the start of the training process, the network is sparsely initialized using the same strategy as described for
Static-DM. After every ∆Te training iterations, a cycle of connection pruning and growth is performed. First,
we drop (i.e. set to zero) a fraction of the activated weights with the lowest magnitude from the network,
determined using TopMag(|θi|, 1− p), which returns the indices of the top 1− p of weights by magnitude.
After pruning, we regrow new weights in the same proportion in order to maintain the sparsity level. For
RigL-DM, the connections to regrow are given by TopGrad(|▽θLDIF |, p), that returns the indices of the top
p of weights with highest magnitude gradients. For MagRan-DM the regrowth is determined by Random(p),
which outputs the indices of random p of connections.

3.3 Experimental Setup

Note that our goal is not to directly compare performance between models or datasets, but to compare the
performance of Dense and sparse versions of the same models across different datasets, to gain insights into
the impact of sparsity in DM training.

3.3.1 Models and Benchmarks

We test Static-DM, MagRan-DM, and RigL-DM against the Dense baseline, on two different DMs, Latent
Diffusion (Rombach et al., 2021) and ChiroDiff (Das et al., 2023), on the task of unconditional image
generation. Although image generation is the most common application and main direction of current research
in DMs, we seek to offer a more extensive look, and examined DMs for different modalities, with different
backbone architectures. More detailed information about the model architectures and choice of datasets can
be found in Appendix B.

Latent Diffusion. Latent Diffusion is a DM that creates high-quality images while reducing computational
requirements by training in a compressed lower-dimensional latent space. Although we focus on unconditional
generation tasks, Latent Diffusion also allows for conditional generation, by using a general-purpose mechanism
based on cross attention (Vaswani et al., 2017). Latent Diffusion first employs pre-trained autoencoders to

5

Under review as submission to TMLR

(a) Latent Diffusion: Sparsity is applied to the U-Net, leaving the autoencoder parts (E, D) fully
dense.

(b) ChiroDiff : Sparsity is applied throughout the whole network.

Figure 1: Sparsification of Latent Diffusion (1a) and ChiroDiff (1b) models.

obtain a latent representation of the input, and then performs the diffusion process on these representations,
using a U-Net (Ronneberger et al., 2015). Performing the denoising process in the latent space allows to the
model to focus on relevant semantic-wise information about the data. We sparsify only the U-Net model,
as shown in Figure 1a, and utilize off-the shelf autoencoders provided by Rombach et al. (2021), keeping
them dense. We evaluate on the LSUN-Bedrooms (Yu et al., 2015), CelebA-HQ (Karras et al., 2018) and
Imagenette (Howard, 2019) datasets.

ChiroDiff. ChiroDiff is a DM specifically designed to model continuous-time chirographic data, such as
sketches or handwriting, in the form of a sequence of strokes containing both spatial and temporal information.
ChiroDiff can handle sequences of variable length and, as a non-autoregressive model, is able to capture
holistic concepts, leading to higher quality samples. This model employs a Bidirectional GRU encoder as
backbone architecture. The encoder is fed the spatial coordinates, their point-wise velocities, as well as
the entire sequence as context, which provides full context of the sequence during the generation process.
Sparsity is applied to the entire network, as shown in Figure 1b. We evaluate it on KanjiVG, QuickDraw (Ha
& Eck, 2018), and VMNIST (Das et al., 2022). Following the original paper, we use a preprocessed version
of KanjiVG.1 For QuickDraw we use the following categories: crab, cat, and mosquito; and all results are
averaged.

3.3.2 Experimental Details

We train the models on a set of sparsity rates S ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. For DST methods, we set the
exploration frequency ∆Te = 1100 for all Latent Diffusion datasets, and ∆Te = 800 for all ChiroDiff datasets.
The weight prune and regrowth ratio was set to p = 0.5 for all main experiments. These values of ∆Te and p
were based on a small random search experiment.

Due to computing limitations, we use 12500/500 training/validation images for CelebA-HQ and 10598/2500
images for LSUN-Bedrooms. In Appendix C we conduct experiments using a selection of models with the full
CelebA-HQ dataset to demonstrate that using more data does not greatly influence the results. Further, in
Appendix D we perform experiments using the ImageNet-1k dataset which contains over 1M images.

1https://github.com/hardmaru/sketch-rnn-datasets/tree/master/kanji

6

https://github.com/hardmaru/sketch-rnn-datasets/tree/master/kanji

Under review as submission to TMLR

Figure 2: FID score comparisons between Dense, and Static-DM, MagRan-DM and RigL-DM with various
sparsity levels, for Latent Diffusion, with prune and regrowth ratio p = 0.5. Values are averaged over 3 runs.

To be able to compare the performance of different methods and different sparsity levels, we train the models
for a predefined amount of epochs: 150 for Latent Diffusion datasets, and 600 for ChiroDiff datasets. For
a complete description of training details please refer to Appendix B.3. Given the extensive number of
experiments we conducted, we opted for a shorter training regime. For sampling, we use DDIM sampling (Song
et al., 2021) with 100 steps for Latent Diffusion, and 50 steps for ChiroDiff, following the guidance provided
in the original papers.

For our experiments, we performed approximately 620 training runs of Dense, Static-DM, RigL-DM, and
MagRan-DM models, using two high-performance computer (HPC) clusters equipped with NVIDIA Tesla
V100 SXM2 and A100 GPUs. Each DM was trained on only one GPU. All experiments consumed around
6, 900 GPU hours.

3.3.3 Evaluation Metrics

We follow common practice and calculate the FID score (Heusel et al., 2017) to assess the performance of all
models. Refer to Appendix B.4 for more information on FID calculation. To evaluate the computational
savings of the sparse methods, we report the network size (number of parameters) as a proxy for memory
requirement, and the FLOPs, to estimate the computational cost of training and inference. We follow the
method of FLOPs calculation described by Evci et al. (2020).

4 Experimental Results

We analyze the performance of Static-DM, MagRan-DM, and RigL-DM across various sparsity levels, and
compare the results against the original Dense baseline. Later on, in Section 4.3 we present experiments
comparing a selection of DST vs. Dense models across various diffusion timesteps. Examples of the generated
samples can be found in Appendix G.

4.1 Latent Diffusion

The results of the studied sparse methods for Latent Diffusion are shown in Figure 2. For CelebA-HQ, 50%
of the connections can be removed with minimal to no loss in image quality. With a higher sparsity level of
75%, the three methods still perform comparably to the Dense model, especially Static-DM. However, when
the network is very sparse, S = 0.9, all models fail to generate high-quality data.

On LSUN-Bedrooms, a similar overall trend can be observed: performance steadily increases with decrease in
sparsity level until 25%. Interestingly, MagRan-DM with S = 0.1 shows worse performance than the Dense
model, and also a significant decrease compared to MagRan-DM with S = 0.25. While this goes against the
general expectation that more sparsity leads to increasingly worse performance, our intuition is that this
might be related to the balance between regularization and expressivenes of the model. When the sparsity is
low, the regularization benefits are not very strong, and the model might suffer from a loss of expressiveness

7

Under review as submission to TMLR

due to reduction in parameters, thus obtaining worse results. As such, MagRan-DM with S = 0.25 is likely
striking a better balance between these two factors. This behaviour can be observed in all three datasets,
although less pronounced in CelebA-HQ. However, exploring this topic in depth is beyond the scope of this
paper.

Imagenette experiments exhibit the same overall tradeoff between sparsity and performance, with the best
results being found in 10% and 25% sparse models.

For all datasets, we successfully trained at least one sparse DM that outperforms the original Dense version.
Table 1 presents the metrics for the best sparse models for each method. In CelebA-HQ, only RigL-DM at
S = 0.25 surpasses Dense performance. In LSUN-Bedrooms, both Static-DM and MagRan-DM were able
to outperform it. In Imagenette, all methods were able to achieve superior performance, albeit at different
sparsity levels. We note that the variance observed in the models is similar when comparing dense and sparse
versions in all cases.

Table 1: Performance and cost of training and testing of Dense and best Static-DM, RigL-DM, and MagRan-
DM versions for Latent Diffusion. Values are averaged over 3 runs. The FLOPs of sparse DMs are normalized
with the FLOPs of their Dense versions. Test FLOPS were calculated for one sample. Sparse models that
outperform the Dense version are marked in bold. The top-performing sparse model is underlined.

Dataset Approach FID ± SD (↓) Params Train FLOPs Test FLOPs

CelebA-HQ

Dense 32.74 ± 3.68 274.1M 9.00e16 1.92e13
Static-DM, S = 0.5 33.19 ± 2.39 0.50× 0.68× 0.68×
RigL-DM, S = 0.25 32.12 ± 3.10 0.75× 0.91× 0.91×
MagRan-DM, S = 0.5 32.83 ± 1.68 0.50× 0.67× 0.67×

Bedrooms

Dense 31.09 ± 12.42 274.1M 7.64e16 1.92e13
Static-DM, S = 0.25 28.79 ± 12.65 0.75× 0.91× 0.91×
RigL-DM, S = 0.10 37.80 ± 13.55 0.90× 0.97× 0.97×
MagRan-DM, S = 0.25 28.20 ± 7.64 0.75× 0.91× 0.91×

Imagenette

Dense 123.42 ± 4.25 274.1M 6.83e16 1.92e13
Static-DM, S = 0.10 119.92 ± 5.94 0.90× 0.97× 0.97×
RigL-DM, S = 0.10 121.59 ± 6.91 0.90× 0.97× 0.97×
MagRan-DM, S = 0.25 117.32 ± 8.52 0.75× 0.91× 0.91×

Memory and computational savings. In Table 1, we can observe that the top-performing sparse DM
on CelebA-HQ, RigL-DM with S = 0.25, is able to outperform Dense performance, while reducing by 25%
the number of parameters and 10% the number of FLOPs. Although Static-DM S = 0.5 and MagRan-DM
S = 0.5 achieve slightly inferior performance, they are able reduce FLOPS and number of parameters more
significantly, by 30% and 50%, respectively. On LSUN-Bedrooms and Imagenette, the top-performing sparse
DM reduces number of FLOPs by 10%, and number of parameters by 25%.

Prune and regrowth rate experiments. In all datasets, Static-DM has better performance than the
dynamic methods in higher sparsity setups, S > 0.5. This is interesting, as it departs from the usual patterns
found in sparse-to-sparse training for supervised learning applications and even other generative models such
as GANs, where DST usually outperforms SST (Mocanu et al., 2018; Liu et al., 2023b). Liu et al. (2021c)
found that, in image classification tasks, DST models consistently achieve better performance over SST with
appropriate parameter exploration, i.e., exploration frequency ∆Te and prune and regrowth ratio p. To
provide insights on the importance of p for DST experiments, we conducted an experiment using a prune
and regrowth rate p ∈ {0.05, 0.1, 0.2, 0.3, 0.5}. The results are provided in Figure 5 in Appendix F. The best
results were obtained with p = 0.05.

Following this experiment, we repeated all experiments for DST methods presented in Figure 2, using p = 0.05,
and show the results in Figure 6 and Appendix F. One particularly interesting finding is that, in high
sparsity regimes, such as S = 0.9 and S = 0.75, DST methods have consistently better performance when

8

Under review as submission to TMLR

p = 0.05, even outperforming Static-DM. However, this performance advantage disappears when using the
more aggressive prune and regrowth rate of p = 0.5. Please refer to Appendix F for a more in-depth analysis.

4.2 ChiroDiff

Figure 3: FID score comparisons between Dense, and Static-DM, MagRan-DM and RigL-DM with various
sparsity levels, for ChiroDiff, with prune and regrowth rate p = 0.5. Values averaged over 3 runs.

Figure 3 shows the FID scores of the studied sparse methods for ChiroDiff. For QuickDraw, we observe
that both Static-DM and RigL-DM exhibit variations around the performance of the Dense model, with
only a subtle tendency to deteriorate as sparsity increases. MagRan-DM consistently matches the FID of
the Dense model, and is able to outperform it at 90% sparsity. These results suggest that this model is
overparameterized, which would explain why it benefits significantly from sparsity, even when removing 90%
of the weights.

On KanjiVG, the impact of sparsity is more pronounced, as all three methods demonstrate a downward
trend in performance as sparsity increases. Dynamic methods have consistently better performance than
Static-DM, and RigL-DM exhibits top performance in all sparsity levels except for S = 0.75.

In VMNIST experiments, there is, again, a pattern of better performance as sparsity decreases. Similarly
to Latent Diffusion experiments, SST has better performance in higher sparsity settings, S > 0.5. In this
dataset, there is a slighter larger gap in performance between the sparse and dense models.

We successfully trained at least one sparse DM from each method that demonstrates a comparable performance
to the Dense counterpart, and show the results on Table 2. RigL-DM was the top-performing method on
QuickDraw, with S = 0.1, and on KanjiVG, with S = 0.25, while in VMNIST, the top method was
MagRan-DM, with S = 0.10. For QuickDraw, the top sparse DM was able to outperform the Dense network.

Memory and computational savings. Table 2 shows that the top-performing sparse DM on KanjiVG
achieves a reduction in the number of parameters and FLOPs of about 30%, while achieving a similar FID
score. On Quickdraw, MagRan-DM with 90% sparsity achieves an considerable reduction of 88%, and even
though it is not the top-performing sparse model, it also outperforms the Dense model. The top sparse model
on VMNIST, provides a reduction in FLOPs of about 89%.

Prune and regrowth rate experiments. Similar to Latent Diffusion, we repeated the DST experiments
using the more conservative prune and regrowth rate of 0.05. The biggest improvement was seen in the
Quickdraw dataset, where DST methods obtained considerably higher performances, as compared with
Figure 3. Akin to the Latent Diffusion results, in higher sparsity regimes DST models mostly obtain better
performance when using p = 0.05. Please refer to Appendix F for a more in-depth analysis.

4.3 Impact of Diffusion Steps

The number of timesteps is an important parameter in DMs, as too few can lead to insufficient denoising,
and low quality images, while too many might increase computational complexity without improving output

9

Under review as submission to TMLR

Table 2: Performance and cost of training and testing of the Dense and best Static-DM, RigL-DM, and
MagRan-DM for ChiroDiff. Values averaged over 3 runs. The FLOPs of sparse DMs are normalized with the
FLOPs of the dense versions, and test FLOPS were calculated for one sample. Sparse models that outperform
the Dense version are marked in bold. The top-performing sparse model is underlined.

Dataset Approach FID ± SD (↓) Params Train FLOPs Test FLOPs

QuickDraw

Dense 29.78 ± 0.59 736027 5.12 e14 1.29 e10
Static-DM, S = 0.25 29.39 ± 0.24 0.75× 0.75× 0.75×
RigL-DM, S = 0.10 29.38 ± 0.27 0.89× 0.89× 0.89×
MagRan-DM, S = 0.90 29.45 ± 0.39 0.10× 0.10× 0.10×

KanjiVG

Dense 21.10 ± 0.25 416859 1.80e13 7.35 e9
Static-DM, S = 0.5 22.36 ± 0.87 0.50× 0.51× 0.51×
RigL-DM, S = 0.25 21.14 ± 0.71 0.70× 0.70× 0.70×
MagRan-DM, S = 0.25 21.73 ± 1.18 0.39× 0.39× 0.39×

VMNIST

Dense 44.21 ± 0.62 65019 1.69e12 7.11 e8
Static-DM, S = 0.25 47.29 ± 1.96 0.75× 0.74× 0.74×
RigL-DM, S = 0.10 46.81 ± 1.98 0.90× 0.90× 0.89×
MagRan-DM, S = 0.10 46.00 ±1.71 0.90× 0.89× 0.89×

quality. We explored the relationship between the number of timesteps and model sparsity, aiming to
determine whether a very sparse model (S = 0.75) with an increased number of sampling steps can achieve
performance comparable to that of a dense model, with less sampling steps. We perform experiments using
CelebA-HQ for Latent Diffusion, and KanjiVG for ChiroDiff, the results of which are presented in Figure 4.

Figure 4: FID score comparisons between Dense, and Static-DM, MagRan-DM and RigL-DM with S = 0.75,
using varied diffusion timesteps for Latent Diffusion (CelebA-HQ), and ChiroDiff (KanjiVG). Values averaged
over 3 runs.

In general, the number of sampling steps does not affect when comparing sparse and dense versions within
the same number of timesteps. More experiments are presented in Appendix E. In KanjiVG, no sparse model
is able to match any version of the dense model, and varying the number of timesteps appears to have little
influence on the quality of the output. In CelebA-HQ, when comparing different numbers of timesteps, we
observe that MagRan-DM and Static-DM with both 100 and 150 timesteps are able to outperform the Dense
model using 50 timesteps. As an example, in Static-DM, S = 0.75 with 100 timesteps vs. the dense model
with 50 timesteps, Static-DM offers a theoretical speedup of 0.29× over the dense model’s Training FLOPs,
and 0.57× of the Testing FLOPs, while creating better quality samples.

10

Under review as submission to TMLR

4.4 Limitations and Future Work

Apart from the previously mentioned computational limitations when training on CelebA-HQ and LSUN-
Bedrooms, our findings demonstrate systematic trends that prompt for further investigation. Training for
longer epochs could provide deeper insights into the capabilities of sparse models. Additionally, there is
potential in exploring other pruning strategies and other DST hyperparameters such as ∆Te.

Table 3: Overview of dense vs sparse Latent Diffusion (LD) and ChiroDiff (CD) models. Experiments where
the sparse model outperforms the dense version are marked in grey.

Dense Best Sparse model FLOPs

Model Dataset FID Model (S, p) FID Train & Test

LD CelebA-HQ 32.74 RigL-DM (25%, 0.5) 32.12 0.67×
LD Bedrooms 31.09 MagRan-DM (10%, 0.05) 25.12 0.97×
LD Imagenette 123.42 MagRan-DM (25%, 0.5) 117.32 0.91×

CD QuickDraw 29.78 RigL-DM (25%, 0.05) 23.91 0.75×
CD Kanji-VG 21.10 MagRan-DM (50%, 0.05) 20.32 0.51×
CD VMNIST 44.21 MagRan-DM (10%, 0.5) 46.00 0.89×

5 Conclusion

We have introduced sparse-to-sparse training of DMs. Our experiments show that both SST and DST
methods are able to match and often outperform the dense DMs, as shown in Table 3, while reducing memory
and computational costs. We highlight the importance of choosing the correct method and sparsity level,
depending on the model (and even the dataset) that is being used. Taken together, our findings show the
great potential of sparse-to-sparse training in improving the efficiency of both training and sampling from
DMs.

Open Science: Our code and trained models will be available upon publication.

Broader Impact Statement

Our research into the efficiency of DMs holds promise towards a positive social impact, as it can allow a
reduction in the required amount of computational resources, leading to lower energy consumption and a
smaller carbon footprint. In addition, increased efficiency can democratize access to better generative models,
making them more accessible to not only researchers, but also the general public. While this can foster fast
innovation and progress, it also poses some risks, as generative models can be exploited for nefarious purposes
such as spreading misinformation or manipulating public opinion.

References
Abhinav Agarwalla, Abhay Gupta, Alexandre Marques, Shubhra Pandit, Michael Goin, Eldar Kurtic, Kevin

Leong, Tuan Nguyen, Mahmoud Salem, Dan Alistarh, Sean Lie, and Mark Kurtz. Enabling high-sparsity
foundational llama models with efficient pretraining and deployment. arXiv, abs/2405.03594, 2024.

Zahra Atashgahi, Ghada Sokar, Tim van der Lee, Elena Mocanu, Decebal Constantin Mocanu, Raymond
Veldhuis, and Mykola Pechenizkiy. Quick and robust feature selection: the strength of energy-efficient
sparse training for autoencoders. Machine Learning, 2022.

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training very
sparse deep networks. In Proc. International Conference on Learning Representations (ICLR), 2018.

Andreas Blattmann, Robin Rombach, Kaan Oktay, Jonas Müller, and Björn Ommer. Semi-parametric neural
image synthesis. In Proc. Advances in Neural Information Processing Systems (NeurIPS), 2022.

11

Under review as submission to TMLR

Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Come-closer-diffuse-faster: Accelerating conditional
diffusion models for inverse problems through stochastic contraction. In Proc. IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022.

Selima Curci, Decebal Constantin Mocanu, and Mykola Pechenizkiyi. Truly sparse neural networks at scale.
arXiv, abs/2102.01732, 2022.

Ayan Das, Yongxin Yang, Timothy Hospedales, Tao Xiang, and Yi-Zhe Song. SketchODE: Learning neural
sketch representation in continuous time. In Proc. International Conference on Learning Representations
(ICLR), 2022.

Ayan Das, Yongxin Yang, Timothy Hospedales, Tao Xiang, and Yi-Zhe Song. ChiroDiff: Modelling chirographic
data with diffusion models. In Proc. International Conference on Learning Representations (ICLR), 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2009.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing performance.
arXiv, abs/1907.04840, 2019.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis. In Proc.
Advances in Neural Information Processing Systems (NeurIPS), 2021.

Zheng Ding, Mengqi Zhang, Jiajun Wu, and Zhuowen Tu. Patched denoising diffusion models for high-
resolution image synthesis. arXiv, abs/2308.01316, 2023.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: making
all tickets winners. In Proc. International Conference on Machine Learning (ICML), 2020.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Structural pruning for diffusion models. In Proc. Advances in
Neural Information Processing Systems (NeurIPS), 2023.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In Proc. International Conference on Learning Representations (ICLR), 2019.

Songwei Ge, Vedanuj Goswami, C. Lawrence Zitnick, and Devi Parikh. Creative sketch generation. arXiv,
abs/2011.10039, 2020.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. Diffuseq: Sequence to sequence
text generation with diffusion models. In Proc. International Conference on Learning Representations
(ICLR), 2023.

David Ha and Douglas Eck. A neural representation of sketch drawings. In Proc. International Conference
on Learning Representations (ICLR), 2018.

Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin Geng, and Baining Guo.
Efficient diffusion training via min-snr weighting strategy. arXiv, abs/2303.09556, 2024.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local Nash equilibrium. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), 2017.

Jonathan Ho, Ajay Jain, and P. Abbeel. Denoising diffusion probabilistic models. ArXiv, abs/2006.11239,
2020a.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Proc. Advances in
Neural Information Processing Systems (NeurIPS), 2020b.

Jeremy Howard. Imagenette: A smaller subset of 10 easily classified classes from imagenet, 2019. URL
https://github.com/fastai/imagenette.

12

https://github.com/fastai/imagenette

Under review as submission to TMLR

Chao Jiang, Bo Hui, Bohan Liu, and Da Yan. Successfully applying lottery ticket hypothesis to diffusion
model. arXiv, abs/2310.18823, 2023.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for improved
quality, stability, and variation. In Proc. International Conference on Learning Representations (ICLR),
2018.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. In Proc. Advances in Neural Information Processing Systems (NeurIPS), 2022.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: Single-shot network pruning based on
connection sensitivity. In Proc. International Conference on Learning Representations (ICLR), 2019.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-LM
improves controllable text generation. In Proc. Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Xiuyu Li, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang, and Kurt
Keutzer. Q-diffusion: Quantizing diffusion models. In Proc. IEEE/CVF International Conference on
Computer Vision (ICCV), 2023.

Sean Lie. Cerebras architecture deep dive: First look inside the hw/sw co-design for deep learning: Cerebras
systems. In Proc. IEEE Hot Chips 34 Symposium (HCS), 2022.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and Mark D
Plumbley. AudioLDM: Text-to-audio generation with latent diffusion models. In Proc. International
Conference on Machine Learning (ICML), 2023a.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola
Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Sparse training via boosting pruning
plasticity with neuroregeneration. In Proc. Advances in Neural Information Processing Systems (NeurIPS),
2021a.

Shiwei Liu, Decebal Constantin Mocanu, Amarsagar Reddy Ramapuram Matavalam, Yulong Pei, and Mykola
Pechenizkiy. Sparse evolutionary deep learning with over one million artificial neurons on commodity
hardware. arXiv, abs/1901.09181, 2021b.

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need dense
over-parameterization? in-time over-parameterization in sparse training. arXiv, abs/2102.02887, 2021c.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, Zhangyang Wang, and
Mykola Pechenizkiy. The unreasonable effectiveness of random pruning: Return of the most naive baseline
for sparse training. In Proc. International Conference on Learning Representations (ICLR), 2022.

Shiwei Liu, Yuesong Tian, Tianlong Chen, and Li Shen. Don’t be so dense: Sparse-to-sparse gan training
without sacrificing performance. International Journal of Computer Vision, 2023b.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik P. Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. On distillation of guided diffusion models. In Proc. IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2023.

Decebal Mocanu, Elena Mocanu, Phuong Nguyen, Madeleine Gibescu, and Antonio Liotta. A topological
insight into restricted boltzmann machines. Machine Learning, 2016.

Decebal Mocanu, Elena Mocanu, Peter Stone, Phuong Nguyen, Madeleine Gibescu, and Antonio Liotta.
Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science.
Nature Communications, 2018.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks by
dynamic sparse reparameterization. arXiv, abs/1902.05967, 2019.

13

Under review as submission to TMLR

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In Proc.
International Conference on Machine Learning (ICML), 2021.

Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob Mcgrew,
Ilya Sutskever, and Mark Chen. GLIDE: Towards photorealistic image generation and editing with
text-guided diffusion models. In Proc. International Conference on Machine Learning (ICML), 2022.

Aleksandra Nowak, Bram Grooten, Decebal Constantin Mocanu, and Jacek Tabor. Fantastic weights and
how to find them: Where to prune in dynamic sparse training. In Proc. Advances in Neural Information
Processing Systems (NeurIPS), 2023.

Hao Phung, Quan Dao, and A. Tran. Wavelet diffusion models are fast and scalable image generators. In
Pro. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising diffusion
models for multivariate probabilistic time series forecasting. In Proc. International Conference on Machine
Learning (ICML), 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. arXiv, abs/2112.10752, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In Proc. Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2015.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi. Image
super-resolution via iterative refinement. arXiv, abs/2104.07636, 2021.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet, and
Mohammad Norouzi. Palette: Image-to-image diffusion models. In Proc. ACM SIGGRAPH, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In Proc.
International Conference on Learning Representations (ICLR), 2022.

Yuzhang Shang, Zhihang Yuan, Bin Xie, Bingzhe Wu, and Yan Yan. Post-training quantization on diffusion
models. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. arXiv, abs/1503.03585, 2015.

Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola Pechenizkiy, and Peter Stone. Dynamic
sparse training for deep reinforcement learning. In Proc. International Joint Conference on Artificial
Intelligence (IJCAI), 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Proc. International
Conference on Learning Representations (ICLR), 2021.

Yang Song, Jascha Narain Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. ArXiv, abs/2011.13456,
2020.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for modern deep
learning research. Proc. AAAI Conference on Artificial Intelligence, 2020.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffusion
models for probabilistic time series imputation. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), 2021.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space. In Proc.
Advances in Neural Information Processing Systems (NeurIPS), 2021.

14

Under review as submission to TMLR

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Proc. Advances in Neural Information Processing
Systems (NeurIPS), 2017.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by preserving
gradient flow. In Proc. International Conference on Learning Representations (ICLR), 2020.

Kafeng Wang, Jianfei Chen, He Li, Zhenpeng Mi, and Jun Zhu. Sparsedm: Toward sparse efficient diffusion
models. ArXiv, abs/2404.10445, 2024.

Zhendong Wang, Yifan Jiang, Huangjie Zheng, Peihao Wang, Pengcheng He, Zhangyang Wang, Weizhu Chen,
and Mingyuan Zhou. Patch diffusion: Faster and more data-efficient training of diffusion models. In Proc.
Advances in Neural Information Processing Systems (NeurIPS), 2023.

Xingyi Yang, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Diffusion probabilistic model made slim. In
Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Frédo Durand, William T Freeman, and
Taesung Park. One-step diffusion with distribution matching distillation. In Proc. IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2024.

Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of a large-scale
image dataset using deep learning with humans in the loop. ArXiv, abs/1506.03365, 2015.

Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun Kong, Ning Liu, Yifan Gong, Zheng Zhan,
Chaoyang He, Qing Jin, Siyue Wang, Minghai Qin, Bin Ren, Yanzhi Wang, Sijia Liu, and Xue Lin. Mest:
Accurate and fast memory-economic sparse training framework on the edge. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), 2021.

Yingtao Zhang, Jialin Zhao, Ziheng Liao, Wenjing Wu, Umberto Michieli, and Carlo Vittorio Cannistraci.
Brain-inspired sparse training in mlp and transformers with network science modeling via cannistraci-hebb
soft rule. Preprints, 2024a.

Yingtao Zhang, Jialin Zhao, Wenjing Wu, Alessandro Muscoloni, and Carlo Vittorio Cannistraci. Epitopo-
logical learning and cannistraci-hebb network shape intelligence brain-inspired theory for ultra-sparse
advantage in deep learning. In Proc. International Conference on Learning Representations (ICLR), 2024b.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li.
Learning n:m fine-grained structured sparse neural networks from scratch. ArXiv, abs/2102.04010, 2021.

A Hardware and Software Support

One of the main challenges in sparse neural networks research is that most hardware optimized for deep
learning is designed for dense matrix operations. As a result, most of current research attempts to mimic
sparsity by using a binary mask over weights, which results in sparse networks offering, in practice, no better
training efficiency than dense networks. However, industry is catching up and so it is a matter of time for
hardware to truly leverage sparse operations.

There is a growing trend towards developing hardware that better supports sparse operations. In 2021,
NVIDIA released the A100 GPU, which supports accelerating operations in a 2:4 sparsity pattern. Several
works have already leveraged this feature (Zhou et al., 2021; Wang et al., 2024). In order to use this capability,
the sparse matrices must follow a specific structure: among each group of four contiguous values, two values
must be zero, thereby fixing the sparsity level at 50%. While this structure enables significant acceleration, it
supports only one static sparsity level, and makes it impossible to vary the sparsity ratio between layers.

More recently, Cerebras introduced the CS-3 AI accelerator (Lie, 2022), capable of accelerating sparse training
and supporting unstructured sparsity. Using Cerebras’ CS-3 AI to accelerate training, and Neural Magic’s

15

Under review as submission to TMLR

inference server to accelerate inference, Agarwalla et al. (2024) trained an accurate sparse Llama-2 7B model.
Its accelerated training closely matched the theoretical speedup, while achieving 91.8% accuracy recovery of
Llama Evaluation metrics, with 70% sparsity. This significant finding underscores the potential of sparse
training to produce more efficient neural networks in practice, not just in theory.

In parallel, there have also been advancements in creating software implementations that support truly
sparse-to-sparse neural network training, mostly for supervised learning tasks (Liu et al., 2021b; Curci et al.,
2022). In addition, a sparse-to-sparse denoising autoencoder has been developed by Atashgahi et al. (2022),
to perform fast and robust feature selection.

These developments in both hardware and software point towards a future where sparse-to-sparse training
may become the de facto approach for developing neural networks, enabling faster, more memory-efficient,
and energy-efficient deep learning models.

B Experiments setup

B.1 Model Architectures

In Latent Diffusion experiments, the model architecture is the same for LSUN-Bedrooms, CelebA-HQ and
Imagenette datasets. The DM follows the architecture proposed by Rombach et al. (2021). For the autoconder,
we utilize a pre-trained model released by the Latent Diffusion authors on the project’s GitHub,2 with spatial
size 64x64x3, VQ-reg regularization, and downsampling factor f = 4.

In ChiroDiff experiments, we adopt the architecture proposed by Das et al. (2023). The backbone network
is a bidirectional GRU encoder with 3 layers, with 96 hidden units for KanjiVG, and 128 hidden units for
QuickDraw. For VMNIST, the backbone network is a 2-layer bidirectional GRU encoder with 48 hidden
units. We also use the code available on the project’s GitHub repository.3

B.2 Choice of Datasets

We evaluated Latent Diffusion on LSUN-Bedrooms and CelebA-HQ, following their use in the original paper.
Additionally, we included Imagenette, a subset of the popular ImageNet (Deng et al., 2009) dataset. For
ChiroDiff, we used the same datasets evaluated as the original study: QuickDraw, KanjiVG and VMNIST.
While the authors of ChiroDiff analysed seven categories of QuickDraw, namely {cat, crab, mosquito, bus,
fish, yoga, flower}, we opted to reduce the number of categories to {cat, crab, mosquito} given the large
number of experiments involved in our investigation. In Appendix C below we demonstrate that dataset
size does not change the main outcomes. Ultimately, our goal is to compare and contrast sparse and dense
models, independent of dataset size.

B.3 Training Regime

We follow the configurations provided in the GitHub repositories of the original papers and present the main
aspects below. The only alterations made were in the batch size and learning rate. The only exception is
Imagenette, which was not included in the original paper; for this dataset, we applied the same configuration
settings as those used for LSUN-Bedrooms.

Latent Diffusion on LSUN-Bedrooms: We use a batch size of 12, AdamW optimizer with weight decay
1e-2 and static learning rate 2.4e-5. We train for 150 epochs. We use 1000 Denoising steps (T), linear noise
schedule from 0.0015 to 0.0195, and sinusoidal embeddings for the timestep.

Latent Diffusion on CelebA-HQ: We use a batch size of 12, AdamW optimizer with weight decay 1e-2
and static learning rate 2.0e-06. We train for 150 epochs. We use 1000 Denoising steps (T), linear noise
schedule from 0.0015 to 0.0195, and sinusoidal embeddings for the timestep.

2https://github.com/CompVis/latent-diffusion
3https://github.com/dasayan05/chirodiff

16

https://github.com/CompVis/latent-diffusion
https://github.com/dasayan05/chirodiff

Under review as submission to TMLR

Latent Diffusion on Imagenette: We use a batch size of 12, AdamW optimizer with weight decay 1e-2 and
static learning rate 2.4e-5. We train for 150 epochs. We use 1000 Denoising steps (T), linear noise schedule
from 0.0015 to 0.0195, and sinusoidal embeddings for the timestep.

ChiroDiff on QuickDraw: We use a batch size of 128, AdamW optimizer with weight decay 1e-2 and static
learning rate 1e-3. We train for 600 epochs. We use 1000 Denoising steps (T), linear noise schedule from 1e-4
to 2e-2, and random Fourier features for the timestep embedding.

ChiroDiff on KanjiVG: We use a batch size of 128, AdamW optimizer with weight decay 1e-2 and static
learning rate 1e-3. We train for 600 epochs. We use 1000 Denoising steps (T), linear noise schedule from 1e-4
to 2e-2, and random Fourier features for the timestep embedding.

ChiroDiff on VMNIST: We use a batch size of 128, AdamW optimizer with weight decay 1e-2 and static
learning rate 1e-3. We train for 600 epochs. We use 1000 Denoising steps (T), linear noise schedule from 1e-4
to 2e-2, and random Fourier features for the timestep embedding.

Each setup was trained for 5 sparsity values [0.1, 0.25, 0.5, 0.75, 0.9], and we perform 3 runs for each
model/dataset/sparsity combination. For ChiroDiff on QuickDraw, we trained each category {cat, crab,
mosquito} for 3 runs, resulting in a total of 9 runs per sparsity level.

B.4 FID calculation

For Latent Diffusion, FID is calculated using the torch-fidelity Python package, and estimated based on
10k samples and the entire training set, as in the original work. For ChiroDiff, following the original paper,
we plot and save the chirographic sequences as images, and calculate the FID using the inception model
provided by Ge et al. (2020), pre-trained on the QuickDraw dataset, using 10k generated samples and 20k
real samples.

C Experiments using the Full CelebA-HQ Dataset

We conducted experiments using Static-DM, MagRan-DM, and RigL-DM with S = 0.5 on the full CelebA-HQ
dataset, for 150 epochs, and compare the results with the previous models trained on 50% of the dataset. As
shown in Table 4, the FID scores are similar across both datasets for each respective method. This supports
our decision to focus on a subset of the dataset for our main experiments, to save valuable computational
resources. Interestingly, all sparse models are able to outperform their dense version when trained on the full
dataset.

Table 4: Comparison of FID scores for Latent Diffusion on CelebA-HQ using full dataset vs. reduced dataset.
Results are based on the first run. Sparse models that outperform their Dense version are marked in bold.
The top-performing sparse model is underlined.

Methods FID (↓)
Full dataset Reduced dataset

Dense 32.20 29.68
Static-DM, S = 0.50 29.71 29.91
RigL-DM, S = 0.50 30.98 30.82
MagRan-DM, S = 0.50 26.70 30.71

D Experiments using the Full ImageNet-1k Dataset

In this section, we present the results for the most promising sparse DM trained with the ImageNet-1k
dataset, comprising 1000 classes spanning 1, 281, 167 training images, 50, 000 validation images and 100, 000
test images.

17

Under review as submission to TMLR

Table 5: FID score for Latent Diffusion on ImageNet.

Methods FID (↓)
Dense 63.95
MagRan-DM, S = 0.50 77.39

E Experiments using Various Diffusion Timesteps

In Table 6, we report the results of the models listed in Table 1 using 50, 100 and 200 sampling steps. These
experiments confirm that the number of sampling steps typically does not affect whether a sparse model
outperforms a dense model. In other words, a sparse model that performs better than a dense model at 100
timesteps also outperforms it at 50 and 200 timesteps.

For CelebA-HQ, the variation in timesteps does not change the top-performing model, which is consistently
RigL-DM with S = 0.25. However, in LSUN-Bedrooms, the top-performing method varies with different
timesteps.

Table 6: Comparison of FID scores for models listed in Table 1 using various DDIM sampling steps. Results
based on the first run. Sparse models that outperform the Dense version, in the respective sampling steps,
are marked in bold. The top-performing sparse model for each sampling step is underlined.

Dataset FID (↓)
50 steps 100 steps 200 steps

CelebA-HQ

Dense 38.14 29.68 26.47
Static-DM, S = 0.5 38.16 29.91 26.44
RigL-DM, S = 0.25 36.55 28.00 25.25
MagRan-DM, S = 0.5 39.31 30.71 28.02

LSUN-Bedrooms

Dense 20.42 20.14 20.58
Static-DM, S = 0.25 20.01 18.96 19.26
RigL-DM, S = 0.10 19.01 17.96 20.49
MagRan-DM, S = 0.25 20.69 18.23 17.87

F Prune and Regrowth Rate Experiments

To provide insight on the importance of the prune and regrowth rate for DST experiments, we conducted
an experiment using varying values, with the top MagRan-DM and RigL-DM models for the CelebA-HQ
dataset, listed in Table 1. We report the results of the experiments in Figure 5. Although all FID values are
extremely similar, the best performing models for both algorithms use prune and regrowth ratio p = 0.05,
and both outperform the Dense version. This suggests that selecting an optimal ratio can improve model
performance, even if only slightly in these lower-sparsity models tested.

Informed by the results of Figure 5, we conducted experiments for DST methods using the same setup as in
Figure 2 and Figure 3, but using a prune and regrowth rate of p = 0.05. As can be observed in Figure 6
and Table 7, the general trend of diminishing performance when sparsity increases still remains, with the
exception of QuickDraw, in which all DST models had a significant increase in performance.

When looking at very high sparsity regimes, S = 0.90, we observe that most models continue to suffer from
a significant performance drop when compared to their Dense version, except Quickdraw, where the new
prune and regrowth provides a remarkable improvement, and LSUN Bedrooms, where MagRan-DM has an
impressively high performance. However, when S = 0.90 (and to a lower degree S = 0.75) DST methods
using p = 0.05 have consistently better performance than their p = 0.5 counterparts. When comparing the

18

Under review as submission to TMLR

Figure 5: FID scores comparison between Dense and DST models with various prune and regrowth ratios, for
Latent Diffusion on CelebA-HQ.

Figure 6: FID score comparisons between Dense and Sparse versions (Static-DM, MagRan-DM, RigL-DM)
considering various sparsity levels for Latent Diffusion. DST method use a prune and regrowth rate of 0.05.
Values averaged over 3 runs.

Figure 7: FID score comparisons between Dense and Sparse versions (Static-DM, MagRan-DM, RigL-DM)
considering various sparsity levels for ChiroDiff. DST method use a prune and regrowth rate of 0.05. Values
averaged over 3 runs.

DST methods to Static-DM at S = 0.90, in Table 7, we observe that at least one DST method is able to
outperform Static-DM in CelebA-HQ and LSUN-Bedrooms, or closely match it in Imagenette, which did not
happen with p = 0.5. Similarly, for ChiroDiff, in Table 8, almost all DST methods in all three datasets are
able to outperform Static-DM.

All in all, these findings suggest that a prune and regrowth ratio of 0.5 is too aggressive, and that a more
conservative choice of 0.05 is more appropriate for DMs. Previous work has mentioned that DST methods

19

Under review as submission to TMLR

Table 7: Comparison of FID scores for SST (Static-DM) and DST (RigL-DM, MagRan-DM) models, with
S = 0.9 using two different prune and regrowth rates (p = 0.5 and p = 0.05) for Latent Diffusion. DST
models that outperform SST are marked in bold.

Dataset Static-DM RigL-DM MagRan-DM
p = 0.5, p = 0.05 p = 0.5, p = 0.05

CelebA-HQ 52.48 ± 4.88 65.65 ± 4.32, 46.07 ± 11.08 60.77 ± 6.58, 48.39 ± 14.05
Bedrooms 46.18 ± 13.42 71.45 ± 18.84, 58.64 ± 22.88 46.22 ± 10.11, 33.80 ± 3.98
Imagenette 147.47 ± 7.74 168.48 ± 15.15, 148.93 ± 12.03 167.19 ± 8.20, 159.08 ± 14.68

Table 8: Comparison of FID scores for SST (Static-DM) and DST (RigL-DM, MagRan-DM) models, with
S = 0.9 using two different prune and regrowth rates (p = 0.5 and p = 0.05) for ChiroDiff. DST models that
outperform SST are marked in bold.

Dataset Static-DM RigL-DM MagRan-DM
p = 0.5, p = 0.05 p = 0.5, p = 0.05

QuickDraw 30.25 ± 0.43 30.26 ± 0.63, 28.84 ± 0.37 29.45 ± 0.39, 28.60 ± 0.37
KanjiVG 30.75 ± 2.16 28.54 ± 0.74, 29.12 ± 0.57 33.02 ± 3.28, 29.01 ± 1.48
VMNIST 52.35 ± 0.84 54.08 ± 1.57, 52.25 ± 0.20 53.65 ± 0.69, 51.94 ± 1.12

are consistently superior to SST as long as there is appropriate parameter exploration (Liu et al., 2021c), an
observations that aligns with our findings.

G Examples of Generated Samples

Figures 8 to 13 showcase examples of samples generated by Latent Diffusion and ChiroDiff across the evaluated
datasets. Examples are unconditionally sampled from the Dense and the top-performing sparse model in
each case.

20

Under review as submission to TMLR

(a) Dense

(b) Static-DM, S = 0.25

Figure 8: Samples from Latent Diffusion trained on LSUN-Bedrooms. The top row presents samples generated
by Dense models, whereas the bottom row presents samples generated by the top-performing sparse model.

21

Under review as submission to TMLR

(a) Dense

(b) RigL-DM, S = 0.25

Figure 9: Samples from Latent Diffusion trained on CelebA-HQ. The top row presents samples generated by
Dense models, whereas the bottom row presents samples generated by the top-performing sparse model.

22

Under review as submission to TMLR

(a) Dense

(b) MagRan-DM, S = 0.25

Figure 10: Samples from Latent Diffusion trained on Imagenette. The top row presents samples generated by
Dense models, whereas the bottom row presents samples generated by the top-performing sparse model.

23

Under review as submission to TMLR

(a) Dense

(b) RigL-DM, S = 0.10

Figure 11: Samples from ChiroDiff trained on Quickdraw. The top row presents samples generated by Dense
models, whereas the bottom row presents samples generated by the top-performing sparse model.

24

Under review as submission to TMLR

(a) Dense

(b) RigL-DM, S = 0.25

Figure 12: Samples from ChiroDiff trained on Kanji. The top row presents samples generated by Dense
models, whereas the bottom row presents samples generated by the top-performing sparse model.

25

Under review as submission to TMLR

(a) Dense

(b) RigL-DM, S = 0.25

Figure 13: Samples from ChiroDiff trained on VMNIST. The top row presents samples generated by Dense
models, whereas the bottom row presents samples generated by the top-performing sparse model.

26

	Introduction
	Background and Related Work
	Diffusion Models
	Efficiency in Diffusion Models
	Sparse-to-Sparse Training

	Methodology
	Static Sparse Training: Static-DM
	Dynamic Sparse Training: MagRan-DM and RigL-DM
	Experimental Setup
	Models and Benchmarks
	Experimental Details
	Evaluation Metrics

	Experimental Results
	Latent Diffusion
	ChiroDiff
	Impact of Diffusion Steps
	Limitations and Future Work

	Conclusion
	Hardware and Software Support
	Experiments setup
	Model Architectures
	Choice of Datasets
	Training Regime
	FID calculation

	Experiments using the Full CelebA-HQ Dataset
	Experiments using the Full ImageNet-1k Dataset
	Experiments using Various Diffusion Timesteps
	Prune and Regrowth Rate Experiments
	Examples of Generated Samples

