
Under review as submission to TMLR

Effect of Random Learning Rate: Theoretical Analysis of SGD
Dynamics in Non-Convex Optimization via Stationary Distri-
bution

Anonymous authors
Paper under double-blind review

Abstract

We consider a variant of the stochastic gradient descent (SGD) with a random learning rate and
reveal its convergence properties. SGD is a widely used stochastic optimization algorithm in machine
learning, especially deep learning. Numerous studies reveal the convergence properties of SGD and
its simplified variants. Among these, the analysis of convergence using a stationary distribution of
updated parameters provides generalizable results. However, to obtain a stationary distribution, the
update direction of the parameters must not degenerate, which limits the applicable variants of SGD.
In this study, we consider a novel SGD variant, Poisson SGD, which has degenerated parameter
update directions and instead utilizes a random learning rate. Consequently, we demonstrate that
a distribution of a parameter updated by Poisson SGD converges to a stationary distribution under
weak assumptions on a loss function. Based on this, we further show that Poisson SGD finds global
minima in non-convex optimization problems and also evaluate the generalization error using this
method. As a proof technique, we approximate the distribution by Poisson SGD with that of the
bouncy particle sampler (BPS) and derive its stationary distribution, using the theoretical advance
of the piece-wise deterministic Markov process (PDMP).

1 Introduction

Stochastic gradient descent (SGD) stands out as a widely employed optimization algorithm in machine learning. It
falls under the category of stochastic optimization, where parameters are updated with randomness from the mini-batch
sampling. SGD is valued for two main reasons in optimization: (i) it is memory-efficient and requires only low
computational resources by updating parameters from a fraction of the training data at each iteration (Bottou, 1991),
and (ii) models optimized with SGD have less generalization error than those optimized by other algorithms such as
gradient descent (GD) for neural networks (Wu et al., 2020; Zhu et al., 2019). Owing to these advantages, SGD has
been one of the standard methods for training deep learning models (Hoffer et al., 2017; Keskar et al., 2016; Zhu et al.,
2019).

To understand the properties of SGD, the characteristics of parameters updated by SGD or its variants have been
actively studied. As for the usual SGD, Garrigos & Gower (2023) surveyed the results about the convergence rate of
SGD in convex and non-convex settings. It also mentions the global convergence property of SGD under the strong
convexity setting. Li et al. (2017); Jastrzebski et al. (2017) clarified that the parameter updating process of SGD can
be approximated by a stochastic differential equation. Zhu et al. (2019); Nguyen et al. (2019) discussed the relation
between the random noise of SGD and the escape efficiency from the sharp minima of the loss function. One example
of a variant of SGD is stochastic gradient Langevin dynamics (SGLD), which is an extension of SGD that adds Gaussian
noise to the update formula of SGD. Raginsky et al. (2017) analyzed the dynamics of stochastic gradient Langevin
dynamics (SGLD) as a variant of SGD and proved the parameters optimized by SGLD converge to the global minima
of the generalization error. As another example, Jastrzebski et al. (2017); He et al. (2019); Mandt et al. (2017) analyzed
the dynamics of SGD with a constant learning rate under the assumptions that the noise of SGD on the gradient induced
by the mini-batch sampling is isotropic, and derived the probability distribution of the parameters obtained by SGD.
Latz (2021) analyze SGD both in the case of the constant learning rate and of the decreasing learning rate.
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Among the methods analyzing the properties of SGD, one of the most general approaches is to study a stationary
distribution of parameters updated by SGD and its variants. The stationary distribution is a distribution that remains
unchanged when the parameter is updated by one step. It is useful in theoretical analysis, because (i) it can analyze the
global dynamics of the optimization algorithm, and (ii) it can be applied to a wide range of loss functions regardless
of its shape. For these reasons, we can use it to investigate the optimization of complex loss functions such as those
used for training deep neural networks. For example, (Dieuleveut et al., 2020) studied the stationary distribution of
the parameter optimized by SGD when the loss function is strongly convex, and (Raginsky et al., 2017) studied the
stationary distribution of SGLD when the loss function is non-convex.

Despite the above advantages, there are not many SGD variants to which stationary distribution analysis can be applied.
This is because, to use the analysis by a stationary distribution, it is required that the direction of parameter updates by
an algorithm does not degenerate; in other words, there must be no directions that are not being explored. Examples of
such variants are (i) SGLD (Welling & Teh, 2011; Dalalyan, 2017; Durmus & Moulines, 2016), which adds a Gaussian
noise to the parameter update of SGD and (ii) Gaussian SGD (Jastrzebski et al., 2017; He et al., 2019; Mandt et al.,
2017), which assumes that the noise of SGD on the gradient induced by the mini-batch sampling is non-degenerate
Gaussian. In contrast, the parameter update of SGD degenerates in many practical cases, such as deep learning (Zhu
et al., 2019; Nguyen et al., 2019; Simsekli et al., 2019). We remark that we focus on the degeneracy of the update
direction of SGD, not on the distribution of it since there is no clear agreement that gradient noise follows a particular
distribution (the mathematical definition of degeneracy is in Remark 2). Hence, there is a gap between the variants of
SGD considered in the theoretical analysis and the empirical facts about SGD. This gap fosters the following question:

Do parameters optimized by a variant of SGD have a stationary distribution
even if the update direction degenerates - and if so, what is the form of it?

1.1 Our Contribution

We theoretically prove that a variant of SGD has a stationary distribution even if the update direction degenerates.
Specifically, we develop a novel SGD variant with a random learning rate, which follows the Poisson process depending
on a mini-batch gradient. We call the variant Poisson SGD, and prove that the distribution of a parameter updated
by Poisson SGD converges to a stationary distribution. As a result, we provide a positive answer to the question
posed above: even with a degenerated parameter update, it is possible to construct a variant of SGD that reaches a
stationary distribution by using a random learning rate. We note that our learning rate has a role of efficiently exploring
parameters, which differs from conventional methods with adaptive step size such as Adam.

Our specific contributions are as follows. We consider the empirical risk minimization problem and prove the following
results under weak assumptions on the loss function such as absolute continuity: (i) the distribution of the parameters
updated by Poisson SGD converges to a stationary distribution, and (ii) an output of Poisson SGD converges to the
global minima of the empirical risk, applying the stationary distribution while controlling the inverse-temperature
parameter. Furthermore, we evaluate the generalization error of the updated parameter for prediction with unseen data
by studying an expectation of the risk function in terms of the obtained stationary distribution.

On the technical side, we utilize an algorithm called the Bouncy Particle Sampler (BPS) to demonstrate the convergence
to the stationary distribution by Poisson SGD. BPS is a piecewise deterministic Markov process (PDMP) that achieves
ergodicity using stochastically occurring jumps (Davis, 1984; 1993). In our proof, we show that the distribution
of parameters updated by Poisson SGD can be well approximated by that of BPS, and we concretely construct the
stationary distribution using the theory of BPS.

1.2 Related Work

There are many works which investigate the stationary distribution of SGD or its variants. Dieuleveut et al. (2020);
Chen et al. (2022) derived the stationary distribution of the parameters obtained by SGD when the loss function is
strongly-convex, through the theories about Markov processes. The parameters obtained through the SGLD algorithm
are theoretically proven to converge to the Gibbs distribution and generalize well (Raginsky et al., 2017). He et al. (2019)
and Mandt et al. (2017) assumed the noise of SGD is Gaussian whose covariance matrix is constant and approximate the
process of optimization through SGD by Ornstein-Uhlenbeck process and derive its stationary distribution. Gradient
Langevin dynamics (GLD), which is a full-batch version of SGLD, can also be seen as a variant of SGD which assumes
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that the noise of SGD is Gaussian with a covariance matrix of constant multiples of the identity matrix. Like SGLD,
it converges to a stationary distribution even in non-convex scenarios (Dalalyan, 2017; Durmus & Moulines, 2016).

In terms of a random learning rate, there are several empirical studies. Musso (2020) investigated the dynamics of SGD
with a random learning rate by analyzing the stochastic differential equation and its Fokker-Planck equation. Blier
et al. (2019) showed experimentally that SGD with random learning rates performs well in optimizing deep neural
networks. We remark that these studies and ours have several major differences. The first difference is in the design
of a learning rate. Our method considers Poisson processes, whereas existing methods consider uniform distributions
and heterogeneous learning rates for each subneural network. The second difference is the objective of the study. We
aim to evaluate global convergence, while existing studies aim at interpretability, speed of convergence, etc., and have
very different motivations.

As for BPS, (Deligiannidis et al., 2019; Durmus et al., 2020) proved that the parameters updated by continuous-time
BPS converge to a stationary distribution and derived the concrete form of the stationary distribution and its convergence
rate. (Sherlock & Thiery, 2022) clarified the relation between discrete-time BPS and continuous-time BPS.

1.3 Notation

For a natural number 𝑎 ∈ N, we define [𝑎] := {1, 2, ..., 𝑎}. For a real 𝑧 ∈ R, ⌊𝑧⌋ denotes the largest integer which is
no more than 𝑧. 𝐼𝑑 is a 𝑑-dimensional identity matrix. ⟨𝑎, 𝑏⟩ means the inner product in Euclid space, i.e., sum of the
product of each component. ∥ · ∥1 and ∥ · ∥ mean the vector norms which represent 1-norm and 2-norm respectively.
S𝑑−1 is a unit sphere in R𝑑 . For probability measures 𝑃, 𝑃′ on R𝑑 and 𝑝 ∈ [1,∞], the 𝑝−Wasserstein distance
is defined as W𝑝 (𝑃, 𝑃′) := inf 𝜋∈Π (𝑃,𝑃′ ) (

∫
R𝑑

∥𝑧 − 𝑧′∥ 𝑝𝑝𝑑𝜋(𝑧, 𝑧′))1/𝑝 , where Π(𝑃, 𝑃′) is a set of coupling measure
between 𝑃 and 𝑃′. ∥𝑃 − 𝑃′∥TV denotes the total variation of 𝑃 − 𝑃′. Γ : R → R denotes the gamma function, i.e.,
Γ(𝑧) =

∫ ∞
0 𝑡𝑧−1𝑒−𝑡𝑑𝑡. B : R×R→ R denotes the beta function, i.e., B(𝑥, 𝑦) =

∫ 1
0 𝑡𝑥−1 (1− 𝑡)𝑦−1𝑑𝑡. For a compact set

Θ, we denote diam(Θ) = sup𝜃1 , 𝜃2∈Θ ∥𝜃1 − 𝜃2∥. For a random variable 𝑋 ∈ X, E𝑋 [𝑋] denotes the expected value with
regard to 𝑋 , i.e.,

∫
X 𝑥𝑑𝜇𝑋 (𝑑𝑥), where 𝜇𝑋 is the probability measure of 𝑋 . 1[·] denotes an indicator function, which

takes 1 if the condition in the bracket is satisfied, and 0 otherwise. We denote 𝑎+ = max{0, 𝑎}.

2 Preliminary

2.1 Problem Setup: Empirical Risk Minimization

We consider the following stochastic optimization problem. Let Z be a compact sample space, and consider a
probability measure 𝑃∗ on Z. Suppose that we observe 𝑛 samples z = {𝑧1, ..., 𝑧𝑛} ⊂ Z, that are independently and
identically generated from the measure 𝑃∗. Using the samples, we consider an empirical risk with a loss function.
Let Θ ⊂ R𝑑 be a compact parameter space, and define 𝑊 := diam(Θ). With a (potentially non-convex) loss function
ℓ : Z × Θ → R, we consider the following empirical risk with the samples:

𝐿z (𝜃) =
1
𝑛

𝑛∑︁
𝑖=1

ℓ(𝑧𝑖; 𝜃), 𝜃 ∈ Θ. (1)

Our goal is to find a global minimum of the empirical risk 𝐿z (·), which is defined as a parameter 𝜃∗ ∈ Θ which satisfies

𝐿z (𝜃∗) = min
𝜃 ′∈Θ

𝐿z (𝜃′). (2)

In this study, we consider a torus as the parameter space Θ in order to skip the argument of constraining parameter
updates to a compact set. If we consider another compact parameter space such as a hypercube, a projection onto the
space needs to be added. We also mention that the boundedness of parameter spaces is an accepted setting in previous
studies on SGD, e.g. Ljung (1977); Kushner & Yin (2003); Bonnabel (2013); Tripuraneni et al. (2018); Lan (2020);
Boumal (2023).
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2.2 Gradient Descent Algorithm and Variants

To find the global minimum 𝜃∗ as defined in (2), we often use the optimization algorithm called stochastic gradient
descent (SGD) with momentum.

2.2.1 General Form of Stochastic Gradient Descent

We give a formal definition of SGD with a momentum term associated with empirical risk 𝐿z (𝜃) in (1). Let 𝐾 ∈ N be
the number of iterations. The SGD with momentum generates a sequence of Θ-valued random parameters 𝜃1, ..., 𝜃𝐾
and R𝑑-valued random vectors 𝑣1, ..., 𝑣𝐾 , by the following procedure.

Let 𝜃0 ∈ Θ be an arbitrary parameter for the initialization, 𝑣0 ∈ R𝑑 as an initial velocity vector, and 𝑚 ∈ [𝑛] be a
number of sub-samples, i.e., the batch size. Suppose that we observe the 𝑛 samples 𝑧 := {𝑧1, ..., 𝑧𝑛}, i.e., the full-batch.
For 𝑘 = 1, ..., 𝐾 , we uniformly sample 𝑚 integers 𝐼 (𝑘 ) = {𝑖1, 𝑖2, ..., 𝑖𝑚} from [𝑛], which is called mini-batch sampling
with the batch-size 𝑚. We define an associated mini-batch risk as

�̂�
(𝑘 )
z (𝜃) :=

1
𝑚

∑︁
𝑖∈𝐼 (𝑘)

ℓ(𝑧𝑖; 𝜃). (3)

Then, with initial values 𝜃0 ∈ Θ and 𝑣0 ∈ R𝑑 , the SGD with momentum generates the parameter and the velocity
vector by the following recursive formula for 𝑘 = 1, ..., 𝐾:

𝜃𝑘 = 𝜃𝑘−1 + 𝜂𝑘𝑣𝑘−1, and

𝑣𝑘 = 𝑣𝑘−1 − 𝛼𝑘∇�̂� (𝑘 )
z (𝜃𝑘), (4)

where 𝜂𝑘 > 0 is a learning rate and 𝛼𝑘 ∈ R is a momentum coefficient. This form is generic and can be identical to
other forms of SGD with momentum (Qian, 1999; Sutskever et al., 2013) by adjusting the parameters 𝜂 and 𝛼.
Remark 1 (Gradient Noise). For the sake of technical discussions below, we define a notion of gradient noise
𝜉
(𝑚,𝑛)
𝑘

(𝜃) := ∇�̂� (𝑘 )
z (𝜃) − ∇𝐿z (𝜃) for 𝑘 = 1, ..., 𝑁 and 𝜃 ∈ Θ, which is caused by sub-sampling of the SGD. If one

assumes that 𝜉 (𝑚,𝑛)
𝑘

(𝜃) follows a centered Gaussian distribution with an identity covariance, the SGD corresponds to
the gradient Langevin dynamics (GLD). However, it is empirically observed that the covariance matrix of the gradient
noise often degenerates (Zhu et al., 2019; Cheng et al., 2020; HaoChen et al., 2021). In addition, there is still much
discussion on a distribution that gradient noise follows, e.g. Simsekli et al. (2019) and Battash et al. (2024) reports
the non-Gaussianity of the gradient noise in empirical studies. Due to these situations, we do not consider a full-rank
covariance matrix nor a particular distribution of the gradient noise.

Remark 2 (Degeneracy of the gradient noise). We briefly explain the degeneracy of the gradient noise. Since the
covariance matrix of the gradient noise with the batch-size 𝑚 is written as

1
𝑚

𝑚∑︁
𝑖=1

(∇ℓ(𝑧𝑖; 𝜃) − ∇𝐿z (𝜃)) (∇ℓ(𝑧𝑖; 𝜃) − ∇𝐿z (𝜃))⊤,

where each term in the sum is a rank-1 matrix, the rank of a total covariance matrix is no greater than 𝑚. Hence, in the
over-parameterized models like neural networks, the matrix becomes rank-deficient, which we refer to as degeneracy
of the noise.

3 Our SGD Variant: Poisson SGD

In this section, we introduce our algorithm, Poisson SGD, which is a variant of SGD with a random learning rate 𝜂 and
momentum coefficient 𝛼. We design our method so that the parameter can search the whole parameter space owing to
the design.

We describe the random learning rate. In preparation, we define the following exponential distribution function with a
function 𝑓 : Θ → R𝑑 and parameters 𝜃 ∈ Θ, 𝑣 ∈ S𝑑−1:

𝐸 ( 𝑓 (·), 𝜃, 𝑣) := exp
(
−

∫ 𝑡

0
{max{⟨ 𝑓 (𝜃 + 𝑟𝑣), 𝑣⟩, 0} + 𝐶𝑃}𝑑𝑟

)
,
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Algorithm 1 Poisson SGD
1: Initialize (𝜃0, 𝑣0) as ∥𝑣0∥ = 1.
2: for 𝑘 = 1, 2, ..., 𝐾 do
3: Sample 𝐼 (𝑘 ) ⊂ [𝑛] and obtain ∇�̂� (𝑘 )

z (𝜃𝑘) as (3).
4: Sample 𝜂𝑘 as (5).
5: Obtain 𝜃𝑘 as 𝜃𝑘 = 𝜃𝑘−1 + 𝜂𝑘𝑣𝑘−1.
6: Obtain 𝑣𝑘 as 𝑣𝑘 = 𝑣𝑘−1 − 𝛼𝑘∇�̂� (𝑘 )

z (𝜃𝑘) with 𝛼𝑘 as (6).
7: end for
8: Return (𝜃𝐾 , 𝑣𝐾 ).

where 𝐶𝑃 > 0 is some constant. Then, for each update 𝑘 = 1, ..., 𝐾 , we design the random learning rate 𝜂𝑘 following
the exponential distribution:

𝑃(𝜂𝑘 ≥ 𝑡) = 𝐸 (𝛽∇�̂� (𝑘 )
z (·), 𝜃𝑘−1, 𝑣𝑘−1), (5)

where 𝛽 > 0 is the hyper-parameter of Poisson SGD, called an inverse temperature parameter.

Second, we select the momentum coefficient 𝛼𝑘 for each 𝑘 = 1, ..., 𝐾 as

𝛼𝑘 = 2
⟨∇�̂� (𝑘 )

z (𝜃𝑘), 𝑣𝑘−1⟩
∥∇�̂� (𝑘 )

z (𝜃𝑘)∥2
+ 𝐶𝛼, (6)

where 𝐶𝛼 ≥ 0 is the hyper-parameter. While 𝐶𝛼 has the function of enhancing the effect of the gradient for practical
use, we set 𝐶𝛼 = 0 in the theoretical analysis of this paper (in experiments in Section 7, we set 𝐶𝛼 > 0). This setup
keeps the length of the velocity vector constant as ∥𝑣𝑘 ∥ = 1 for every 𝑘 (See Proposition 7 in Appendix), and only uses
its angle to update the parameters. We update the parameter by changing 𝜂𝑘 and 𝛼𝑘 in every iteration. The pseudo-code
of Poisson SGD is shown in Algorithm 1.

The algorithm is designed to effectively explore large regions of the parameter space Θ. Specifically, the update
direction is determined by the velocity vector 𝑣𝑘 normalised by 𝛼𝑘 as (6), and the size of the update is randomly set by
the random learning rate 𝜂𝑘 as (5). When the gradient ∇�̂� (𝑘 )

z (·) is small, the learning rate 𝜂𝑘 is chosen to be large, thus
the updated parameter tends to escape local minima or saddle points. Figure 1 illustrates that Poisson GD, which we
refer to as the full-batch version of Poisson SGD explores a wider parameter space and discovers the global minimum
owing to the random learning rate, while the parameters updated by GD converge to the local minimum. Here, we set
the learning rate of GD as 𝜂 = 0.02 and the hyper-parameter of Poisson GD as 𝐶𝑃 = 100 and 𝛽 = 10000.
Remark 3 (Moments of Poisson SGD). We claim that even if the learning rate is random, the actual updates are
not too large, by studying its moments. That is, if 𝐶𝑃 is sufficiently large, there is little chance of sampling a
large learning rate 𝜂, since the first and second moments of 𝜂𝑘 are given as E[𝜂𝑘] ≤

∫ ∞
0 exp(−𝐶𝑃𝑡)𝑑𝑡 = 1

𝐶𝑃
and

E[𝜂2
𝑘
] − E[𝜂𝑘]2 ≤

∫ ∞
0 2𝑠 exp(−𝐶𝑃𝑠)𝑑𝑠 − 1

𝐶2
𝑃

= 1
𝐶2
𝑃

. By this property, we can avoid the case in which 𝜂𝑘 diverges. In
addition, even if a large 𝜂𝑘 is sampled, the parameter does not exit from the parameter space since we consider a torus
as the parameter space.

4 Convergence Theory for Poisson SGD

We provide theoretical results on the convergence of Poisson SGD (Algorithm 1). Our main interest is a distribution
of the generated parameter 𝜃𝐾 by Poisson SGD associated with the empirical risk minimization problem (2).

4.1 Stationary Distribution of Poisson SGD

In this section, we show that the parameter 𝜃𝐾 by the Poisson SGD follows a stationary distribution. Formally, we
define the stationary distribution of the Markov process. In preparation, we utilize the notion of transition probability
𝑄(𝜃, 𝑑𝑤) from a distribution 𝑝0 (𝜃) to another 𝑝1 (𝜃) on Θ, that is, 𝑝1 (𝑤) =

∫
Θ
𝑄(𝜃, 𝑑𝑤)𝑝0 (𝑑𝜃) holds.
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Figure 1: The comparison of the trajectories of GD (with a fixed learning rate) and Poisson GD (with the random
learning rate) in optimizing the function 𝑧 = 𝑥4 − 4𝑥3 − 36𝑥2 + 𝑦2. Poisson GD represents replacing the mini-batch
loss �̂�z by the full-batch loss 𝐿z in Poisson SGD, where we set 𝐿z (𝑥, 𝑦) = 𝑥4 − 4𝑥3 − 36𝑥2 + 𝑦2. The point (−3, 0)
represents a local minimum and the point (6, 0) is identified as the global minimum. A green point indicates the initial
position, a black line represents the trajectory of GD, and a red line represents the trajectory of Poisson GD.

Definition 1. Let 𝑄(𝜃, 𝑑𝑤) be the transition probability of a Markov process in Θ. If the following equation holds, we
call the probability distribution 𝜋(𝜃) stationary distribution of the Markov process:

𝜋(𝑑𝑤) =
∫
Θ

𝑄(𝜃, 𝑑𝑤)𝜋(𝑑𝜃).

A stationary distribution is an useful notion to represent a limit of the parameter distribution, and it enables us
to analyze where the parameter converges by algorithms. For example, see the theoretical framework to analyze
stochastic optimization algorithms by (Raginsky et al., 2017).

4.1.1 Assumption

We provide several principal assumptions. First, we consider the basis assumptions on the loss function ℓ(·; ·). The
following conditions are fairly general for the analysis of stochastic optimization algorithms, e.g. Bertazzi et al. (2022).
Assumption 1 (Loss function). The loss function ℓ : Z × Θ → R≥0 satisfies the following conditions:

• ℓ(𝑧; 𝜃) is absolutely continuous and differentiable with respect to 𝜃 ∈ Θ for every 𝑧 ∈ Z.
• ∇𝜃ℓ(𝑧; 𝜃) is continuous in 𝜃 and 𝑧 for all 𝜃 ∈ Θ and 𝑧 ∈ Z.

The first condition is satisfied by a large class of models, such as linear regression model, or deep neural networks
whose activation function is ReLU or sigmoid function. From the second condition, we define an upper bound
𝑀ℓ := max𝜃∈Θ,𝑧∈Z ∥∇𝜃ℓ(𝑧; 𝜃)∥ since Θ and Z are compact.

4.1.2 Statement of Convergence

Let 𝜇z,𝐾 be a distribution of the output 𝜃𝐾 from the Poisson SGD in Algorithm 1 with the given dataset z. We discuss
the convergence of 𝜇z,𝐾 as 𝐾 increases.

In preparation, we define a probability measure on Θ for arbitrary 𝛽, 𝜀 > 0, whose density is written as follows:

𝜇
(𝛽,𝜀)
z (𝑑𝜃) ∝

(
𝛽𝑀ℓ +

1
𝜀
+ 𝑎𝑑𝛽∥∇𝐿z (𝜃)∥

)
exp(−𝛽𝐿z (𝜃))𝑑𝜃, (7)
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where 𝑎𝑑 := Γ(𝑑/2)/(
√
𝜋Γ(𝑑/2 + 1/2)). The probability measure (7) is concentrated around the global minima

of 𝐿z (𝜃), since the dominant exponential term exp(−𝛽𝐿z (𝜃)) in (7) increases in 𝐿z (𝜃). In addition, as the inverse
temperature parameter 𝛽 increases, the measure 𝜇 (𝛽,𝜀)z concentrates more around the global minimum.

We show our results on the convergence of the stationary distribution. The discrepancy is measured by the Wasserstein
distance W1 (·, ·). We remark that this theorem is the integration of Theorem 3 and Theorem 4 appearing later in
Section 5. Recall that we defined𝑊 := diam(Θ).
Theorem 1 (Stationary distribution of Poisson SGD). Fix arbitrary 𝛽, 𝜀 > 0. Suppose Assumption 1 holds. We set the
hyper-parameter of Poisson SGD as 𝐶𝑃 = 1/𝜀. Then, for any 𝐾 ∈ N, the distribution 𝜇z,𝐾 satisfies

W1 (𝜇z,𝐾 , 𝜇
(𝛽,𝜀)
z ) ≤ 4

√
𝑑𝐾𝜀 +𝑊 · 𝜅(𝛽, 𝜀, 𝑑)𝐾 , (8)

where 0 < 𝜅(𝛽, 𝜀, 𝑑) < 1 is a constant.

Moreover, if 𝜅(𝛽, 𝜀, 𝑑) satisfies lim𝐾→∞ 𝜅(𝛽, 𝛿/𝐾, 𝑑)𝐾 = 0 with some 𝛿 > 0, there exists a sequence 𝜀 = 𝜀𝐾 ↘ 0 as
𝐾 → ∞ such that W1 (𝜇z,𝐾 , 𝜇

(𝛽,𝜀)
z ) = 𝑜(1) as 𝐾 → ∞ holds.

This theorem shows that the parameter distribution 𝜇z,𝐾 by Poisson SGD converges to the stationary distribution 𝜇 (𝛽,𝜀)z
owing to the random learning rate (5). This is contrast to ordinary SGD, which is not shown to converge to a stationary
distribution. Further, Poisson SGD does not make any assumptions on the gradient noise 𝜉 (𝑛,𝑚)

𝑘
in Remark 1, unlike

SGLD, which converges to a stationary distribution by introducing Gaussianity in the gradient noise.

The right-hand side in (8) shows an approximation-complexity trade-off of Poisson SGD described as follows. In
preparation, we will introduce a certain stochastic process to achieve the stationary distribution 𝜇 (𝛽,𝜀)z (detail is in
Section 5). The first term of (8) describes an approximation error of Poisson SGD to the stochastic process. The second
term of (8) denotes a convergence error of the stochastic process to the stationary distribution 𝜇 (𝛽,𝜀)z , which reflects
the complexity of the stochastic process. 𝜀 is a parameter for the stochastic process and controls the balance between
the approximation error and the complexity error.

We further discuss the additional assumption lim𝐾→∞ 𝜅(𝛽, 𝛿/𝐾, 𝑑)𝐾 = 0. This condition is related to the convergence
rate of the approximated stochastic process of Poisson SGD. Although the explicit form of 𝜅(𝛽, 𝛿/𝐾, 𝑑) is not clarified
in our case, there is a common example having its explicit form. One example is SGLD: Raginsky et al. (2017) shows
that a form of 𝜅(𝛽, 𝛿/𝐾, 𝑑) can be calculated, because SGLD is reduced to the Langevin process.
Remark 4 (Form of 𝜅(𝛽, 𝜀, 𝑑)). We discuss a form of 𝜅(𝛽, 𝜀, 𝑑) of other related algorithms, although we could not
achieve the explicit form of 𝜅(𝛽, 𝜀, 𝑑) of Poisson SGD. In the case of Langevin dynamics with the setting of Raginsky
et al. (2017), 𝜅(𝛽, 𝜀, 𝑑) is Ω(𝑐𝐿𝑆𝑘𝜂/𝛽(𝛽 + 𝑑)), where 𝑐𝐿𝑆 is the logarithmic Sobolev constant. On the other hand,
explicitly deriving 𝜅(𝛽, 𝜀, 𝑑) for a class of PDMP is a challenging task as described in Deligiannidis et al. (2019);
Durmus et al. (2020), as well as that of Poisson-SGD.

Remark 5 (Comparison with SGLD). We discuss the difference between Poisson SGD and SGLD, which is another
method achieving a stationary distribution. First, while SGLD adds a Gaussian noise to the update formula of SGD,
Poisson SGD does not have an additive noise. The second difference is the form of the stationary distribution. A
stationary distribution of SGLD is the Gibbs distribution, and that of Poisson SGD has the different form (7). This
difference is derived from the random learning rate of Poisson SGD.

Remark 6 (Relation to flat minima). From Theorem 1, we can state the property of Poisson SGD being easier to go
to the flat minima than the sharp minima. We consider the probability of existence around a flat minimum 𝜃1 ∈ Θ and
a sharp minimum 𝜃2 ∈ 𝜃, when we find that, due to the shape of the distribution, a measure of an 𝜖-neighborhood of
𝜃1 is greater than that within an 𝜖-neighborhood of 𝜃2. Hence, we can claim that Poisson SGD also tends to favor flat
minima.

4.2 Global Convergence

We discuss the global convergence statement, that is, the empirical risk 𝐿z (𝜃𝐾 ) with Poisson SGD is minimized with
high probability. We consider the additional assumption for the loss function ℓ:
Assumption 2. With some 𝑐1 > 0, sup𝑧∈Z ∥∇ℓ(𝑧; 𝜃1) − ∇ℓ(𝑧; 𝜃2)∥ ≤ 𝑐1∥𝜃1 − 𝜃2∥ holds for every 𝜃1 ≠ 𝜃2 ∈ Θ.
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Then, we obtain the following global convergence theorem. We define 𝐵 := sup𝑧∈Z ∥∇ℓ(𝑧; 0)∥ by following Assump-
tion 1.
Theorem 2 (Global convergence of Poisson SGD on empirical risk). Fix arbitrary 𝛽, 𝜀 > 0. Consider Poisson SGD
in which 𝐶𝑃 = 1/𝜀. Let the upper bound of W1 (𝜇z,𝐾 , 𝜇

(𝛽,𝜀)
z ) obtained in Theorem 1 be 𝑑𝐾 (𝛽, 𝜀, 𝑑). Also, suppose

that Assumption 1 and 2 hold. Then, it holds that

E𝜃𝐾∼𝜇z,𝐾 [𝐿z (𝜃𝐾 )] − min
𝜃∈Θ

𝐿z (𝜃)

≤(𝑐1𝑊 + 𝐵)
√︁
𝑊𝑑𝐾 (𝛽, 𝜀, 𝑑) +

1
𝛽

(
𝑑

2
log

𝑒𝑊2𝑐1𝛽

𝑑
+ log

(
1 + 𝑎𝑑 (𝑐1𝑊 + 𝐵)

𝑀ℓ

))
. (9)

Theorem 2 states that we can make E[𝐿z (𝜃𝐾 )] be arbitrarily close to min𝜃∈Θ 𝐿z (𝜃) by selecting large 𝛽, provided that
we can make 𝑑𝐾 (𝛽, 𝜀, 𝑑) arbitrarily small by the choice of 𝜀 and 𝐾 in spite of 𝛽. Intuitively, Poisson SGD achieves
global convergence by appropriately adjusting the learning rate and momentum coefficient based on the shape of the
loss function at the current location. Poisson SGD achieves the global convergence by the similar approach of global
convergence of SGLD by Raginsky et al. (2017).

The right-hand side of (9) is divided into two terms. The first term expresses the distance between the parameter and
its stationary distribution. The second represents the degree of concentration of the stationary distribution 𝜇 (𝛽,𝜀)z on
the global optima. The higher the inverse temperature 𝛽, the more the term decreases.

5 Proof Outline

5.1 Overview

We give an overview of a proof of Theorem 1. In preparation, we present several key concepts: (i) the property of
the piece-wise deterministic Markov process (PDMP) (Davis, 1984; 1993), and (ii) the ergodicity of bouncy particle
sampler (BPS) (Peters & de With, 2012). The PDMP is a class of Markov processes that behave deterministically for
some period and jumps randomly, which easily converges to a stationary distribution. BPS is a stochastic algorithm in
the class of the PDMP.

We show the statement by the following steps:

(I) We show that the distribution of the parameter by Poisson SGD is sufficiently close to that of a parameter by
BPS. We show this claim by using the approximation theory on PDMP (Theorem 3).

(II) We derive a stationary distribution and the ergodicity of BPS, following previous researches (Theorem 4).

5.2 Design of BPS

We introduce BPS, which is one of the most popular algorithms in PDMPs, and actively studied in terms of MCMC
algorithm (Deligiannidis et al., 2019; Bouchard-Côté et al., 2018). BPS generates a sequence of parameters {�̂�𝑘}𝐾𝑘=1 ⊂ Θ

and velocity vectors {�̂�𝑘}𝐾𝑘=1 ⊂ R𝑑 in its recursive manner, as shown in Algorithm 2. Let (�̂�0, �̂�0) be the initialization.
For the 𝑘-th iteration, BPS generates a learning rate 𝜂𝑘 from an exponential distribution whose intensity depends on
the previous pair (�̂�𝑘−1, �̂�𝑘−1) and the positive constants Λref and 𝐶𝐵. After obtaining the parameter �̂�𝑘 , we consider
the stochastic update of the velocity vector. That is, with the probability

𝑝𝑘 :=
𝛽⟨∇𝐿z (�̂�𝑘), �̂�𝑘−1⟩+ + 𝐶𝐵

𝛽⟨∇𝐿z (�̂�𝑘), �̂�𝑘−1⟩+ + Λref + 𝐶𝐵
, (10)

we update the velocity vector with the gradient of the full-batch loss ∇𝐿z, otherwise with the sample from the uniform
distribution on S𝑑−1. The former update is called reflection, and the latter is refreshment. We remark that ∥�̂�𝑘 ∥ is
constant for 𝑘 = 1, 2, ..., 𝐾 in the same way as Poisson SGD (See Proposition 7 in Appendix).

5.3 Connect Poisson SGD and BPS

We show that the output distribution of Poisson SGD and that of BPS are sufficiently close as in the following statement:

8
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Algorithm 2 Bouncy Particle Sampler

1: Initialize (�̂�0, �̂�0) as ∥�̂�0∥ = 1.
2: for 𝑘 = 1, 2, ..., 𝐾 do
3: Sample 𝜂𝑘 as 𝜂𝑘 ∼ 𝑃(𝜂𝑘 ≥ 𝑡) = exp

(
−

∫ 𝑡
0 {𝛽⟨∇𝐿z (�̂�𝑘−1 + 𝑟�̂�𝑘−1), �̂�𝑘−1⟩+ + Λref + 𝐶𝐵}𝑑𝑟

)
4: Update �̂�𝑘 as �̂�𝑘 = �̂�𝑘−1 + 𝜂𝑘 �̂�𝑘−1
5: With probability 𝑝𝑘 as (10), update �̂�𝑘 as

�̂�𝑘 = �̂�𝑘−1 − 2
⟨∇𝐿z (�̂�𝑘), �̂�𝑘−1⟩
∥∇𝐿z (�̂�𝑘)∥2

∇𝐿z (�̂�𝑘)

Otherwise, update �̂�𝑘 as
�̂�𝑘 ∼ Unif (S𝑑−1)

6: end for
7: Return (�̂�𝐾 , �̂�𝐾 )

Theorem 3 (Distance between Poisson SGD and BPS). Fix arbitrary 𝛽, 𝜀 > 0. As for Poisson SGD, we set 𝐶𝑃 = 1/𝜀.
As for BPS, we set Λref and 𝐶𝐵 as Λref + 𝐶𝐵 = 𝛽𝑀ℓ + 1/𝜀. Let the distribution of the obtained parameter by Poisson
SGD and BPS be 𝜇z,𝐾 and 𝜇z,𝐾 respectively. We set the same initial value between Poisson SGD and BPS. Then, the
following holds:

W1 (𝜇z,𝐾 , 𝜇z,𝐾 ) ≤ 4
√
𝑑𝐾𝜀.

For proving this theorem, we calculate the distance between Poisson SGD and BPS by a one-step update. Then, we
simply accumulate this error for 𝐾 times. In this discussion, we mainly use the property that if learning rate 𝜂𝑘 and 𝜂𝑘
are small, the difference of 𝑣𝑘 and �̂�𝑘 is also made to be small. This type of discussion is also used in Raginsky et al.
(2017).

5.4 The Stationary Distribution and Ergodicity of BPS

In this section, we investigate the stationary distribution and ergodicity of BPS. First, we define the term ergodicity.
Definition 2 (Ergodicity). We consider the discrete-time Markov process. If the process converges to a unique
stationary distribution, we call the process has the ergodicity. Especially, if the ergodic process converges to its
stationary distribution by the exponential rate about the number of iteration 𝑘 , the process is called exponentially
ergodic.

Without ergodicity, the stochastic process may converge to more than one stationary distribution, or not converge to
any stationary distribution due to stacking to a saddle point in the parameter space. So we have to prove this property
when we try to analyze the stationary distribution of a stochastic process.

Now, we show our result about BPS.
Theorem 4 (Stationary Distribution of BPS). Suppose that Assumption 1 holds. Set the parameter of BPS, Λref and
𝐶𝐵 as in Theorem 3. Then, the distribution 𝜇z,𝐾 of the obtained parameters �̂�𝐾 by BPS satisfies the following:

∥𝜇z,𝐾 − 𝜇 (𝛽,𝜀)z ∥TV ≤ 𝜅(𝛽, 𝜀, 𝑑)𝐾 ,

where 𝜅(𝛽, 𝜀, 𝑑) is a positive constant less than 1.

In the proof of this theorem, we use the discussion in Deligiannidis et al. (2019) which showed that continuous-time
BPS converges to the unique stationary distribution 𝜋(𝜃) ∝ exp(−𝑈 (𝜃)) by the exponential rate in TV distance.

6 Generalization Error Analysis

We define an expected risk of 𝜃 ∈ Θ, also known as the generalization error

𝐿 (𝜃) := E𝑧∼𝑃∗ [ℓ(𝑧; 𝜃)],

9
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which measures a prediction performance with unseen data. We calculate the generalization error of the parameter
obtained by the Poisson SGD, using the discussion in Raginsky et al. (2017).

Now, we give our results. We define 𝐴 := sup𝑧∈Z |ℓ(𝑧; 0) | by following Assumption 1.
Theorem 5 (Generalization Error of Poisson SGD). Suppose that Assumption 1 and 2 hold. Let 𝜃𝐾 be the parameter
obtained by Poisson SGD with 𝐶𝑃 = 1/𝜀. Then, we obtain the following bound:

Ez∼𝑃𝑛∗ [E𝜃𝐾∼𝜇z,𝐾 [𝐿 (𝜃𝐾 )]] − min
𝜃∈Θ

𝐿 (𝜃)

≤(𝑐1𝑊 + 𝐵)
(√︁
𝑊𝑑𝐾 (𝛽, 𝜀, 𝑑) + 2𝑊

((
𝐶𝑑 + 𝛽𝐶

𝑛

) 1
2

+
(
𝐶𝑑 + 𝛽𝐶

𝑛

) 1
4
))

+ 1
𝛽

(
𝑑

2
log

𝑒𝑊2𝑐1𝛽

𝑑
+ log

(
1 + 𝑎𝑑 (𝑐1𝑊 + 𝐵)

𝑀ℓ

))
,

where 𝑑𝐾 (𝛽, 𝜀, 𝑑) is the upper bound of the Wasserstein distance in Theorem 1, 𝐶𝑑 = 4𝑎𝑑 (𝑐1𝑊 + 𝐵)/𝑀ℓ , and
𝐶 = 𝑐1𝑊

2 + 2𝐵𝑊 + 2𝐴.

Theorem 5 states that the expected value of the generalization error of Poisson SGD can be arbitrarily close to its global
optima in 𝜃 ∈ Θ, by selecting small 𝜀, large 𝐾 , large 𝛽, and large 𝑛, provided that 𝑑𝐾 (𝛽, 𝜀, 𝑑) can be arbitrarily small
only by the choice of 𝜀 and 𝐾 .

We further discuss a way of improve an order of the generalization bound in Theorem 5. While our bound has the
order 𝑂 ((1/𝑛)1/4), we can obtain an order 𝑂 (1/𝑛) by using the dissipativity condition of the loss function, which is
used in Raginsky et al. (2017) for SGLD. The dissipativity condition allows us to derive log-Sobolev inequality for
𝐿z (𝜃), which leads the improved sample complexity. We state this fact in the following proposition.
Proposition 6. Suppose that the same condition and setting as Theorem 5 hold. In addition, we assume that the Gibbs
distribution 𝜈 (𝛽)z ∝ exp(−𝛽𝐿z (𝜃)) satisfies the log-Sobolev inequality for any dataset z = {𝑧1, ..., 𝑧𝑛}, that is,

E[ 𝑓 (𝜃)2 log 𝑓 (𝜃)2] − E[ 𝑓 (𝜃)2] logE[ 𝑓 (𝜃)2] ≤ 𝑐 (𝛽)LS E[∥∇ 𝑓 (𝜃)∥
2]

holds for all smooth functions 𝑓 and any data z = {𝑧1, ..., 𝑧𝑛}, where 𝜃 ∼ 𝜈
(𝛽)
z and 𝑐 (𝛽)LS < ∞ is a constant. Then, the

following holds:

Ez∼𝑃𝑛∗ [E𝜃𝐾∼𝜇z,𝐾 [𝐿 (𝜃𝐾 )]] − min
𝜃∈Θ

𝐿 (𝜃)

≤(𝑐1𝑊 + 𝐵)
(√︁
𝑊𝑑𝐾 (𝛽, 𝜀, 𝑑) +

2𝑐 (𝛽)LS 𝛽𝑀ℓ

𝑛

)
+𝑊

√︃
2𝑐 (𝛽)LS log (1 + 𝑎𝑑𝛽𝜀𝑀ℓ) +

𝑑

2𝛽
log

(
𝑒𝑊2𝑐1𝛽

𝑑

)
.

7 Experiments

We give several experimental result to validate our theoretical claim. Specifically, we show that Poisson SGD can learn
parameters in a practical situation. Note that our aim is not to develop an effective method with high generalisation
performance, but to develop a method that can evaluate the global convergence.

7.1 MNIST Dataset

We conducted experiments with the MNIST dataset (Deng, 2012). We consider a 4-layer fully connected neural
network with 200 units of hidden layers are all 200 and the sigmoid activation function. We compare the performance
of Poisson SGD with SGD, SGD with Momentum, SGLD. We set the batch size as 256, the learning rate of the SGD,
the SGD with momentum and SGLD as 0.01, and the momentum coefficient as 0.9. We choose the hyper-parameter
of Poisson SGD as 𝐶𝑃 = 100, 𝐶𝛼 = 100, and 𝛽 = 10000. We also use 𝛽 = 10000 for SGLD. We use 60000 images for
training and 10000 images for validation.

Figure 2 shows the result. The vertical line shows the misclassification ratio (%) and the horizontal line shows the
number of epochs. We can see that Poisson SGD achieves sufficiently low errors, suggesting that it achieves a good
minimum. In addition, Poisson SGD converges faster than other methods.
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Figure 2: The comparison of the train error rate and valid error rate when optimized by Poisson SGD, SGD, SGD with
momentum, and SGLD for 4-Layer DNN on MNIST.

7.2 CIFAR-10 Dataset

We conducted experiments with the CIFAR-10 dataset (Krizhevsky et al., 2009). We trained a convolutional neural
network of 3 layers with the ReLU activation function, a 3 × 3 kernel, and the dropout rate 0.25. We compare the
performance of Poisson SGD with SGD, SGD with Momentum, SGLD. We set the batch size as 256, the learning rate of
SGD, SGD with momentum and SGLD as 0.01, and the momentum coefficient as 0.9. We choose the hyper-parameter
of Poisson SGD as 𝐶𝑃 = 100, 𝐶𝛼 = 1, and 𝛽 = 10000. We also use 𝛽 = 10000 for SGLD. We use 45000 data for
training and 5000 data for validation.

Figure 3 shows the result. The vertical line shows the misclassification ratio (%) and the horizontal line shows the
number of epochs. Although Poisson SGD is not the best method, it achieves sufficiently low errors, suggesting that it
achieves a good minimum. In addition, it also achieves good accuracy comparable to that of SGD.

Figure 3: The comparison of the train error rate and valid error rate when optimized by Poisson SGD, SGD, SGD with
momentum, and SGLD for CNN on Cifar-10.

8 Conclusion

We developed a new variant of SGD, Poisson SGD, whose search direction degenerates and derived its stationary
distribution by incorporating a modification on the learning rate. The parameters trained by Poisson SGD are close
enough to the global minima to take advantage of convergence to the stationary distribution. The generalization error
is also evaluated. We believe that our work leads to the analysis of the actual SGD dynamics, not variants of it in the
future.
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A Supportive Information

We verify that the velocity vector is normalized by the choice of the momentum coefficient for Poisson SGD and BPS.
Proposition 7. Consider the update (4) for 𝑣𝑘 with its momentum coefficient (6). Then, for ∀𝑘 ∈ {1, 2, ..., 𝐾}, we have
∥𝑣𝑘 ∥ = 1. Further, for �̂�𝑘 defined in Algorithm 2, we obtain ∥�̂�𝑘 ∥ = 1 for every 𝑘 = 1, ..., 𝐾 .

Proof. We first consider 𝑣𝑘 with the Poisson SGD case. Simply, we have

∥𝑣𝑘 ∥ =
𝑣𝑘−1 − 2

⟨∇�̂� (𝑘 )
z (𝜃𝑘), 𝑣𝑘−1⟩

∥∇�̂� (𝑘 )
z (𝜃𝑘)∥2

∇�̂� (𝑘 )
z (𝜃𝑘)


=


(
𝐼𝑑 − 2

∇�̂� (𝑘 )
z (𝜃𝑘)∇�̂� (𝑘 )

z (𝜃𝑘)⊤

∥∇�̂� (𝑘 )
z (𝜃𝑘)∥2

)
𝑣𝑘−1


=

√√√
𝑣⊤
𝑘−1

(
𝐼𝑑 − 2

∇�̂� (𝑘 )
z (𝜃𝑘)∇�̂� (𝑘 )

z (𝜃𝑘)⊤

∥∇�̂� (𝑘 )
z (𝜃𝑘)∥2

)2

𝑣𝑘−1

=∥𝑣𝑘−1∥.

Since we set ∥𝑣0∥ = 1 for initialization, the statement holds.

For �̂�𝑘 with the BPS case, the reflection does not change the norm of �̂�𝑘 in the same way, and the refreshment also
keeps ∥�̂�𝑘 ∥ = 1, which completes the proof. □

B Proof of Theorem 1

Proof. By Theorem 3 and 4, we can bound the approximation error

W1 (𝜇z,𝐾 , 𝜇z,𝐾 ) ≤ 4
√
𝑑𝐾𝜀,

and the convergence error of BPS as

∥𝜇z,𝐾 − 𝜇 (𝛽,𝜀)z ∥TV ≤ 𝜅(𝛽, 𝜀, 𝑑)𝐾 .

From Theorem 4 in Gibbs & Su (2002) (explicit form is Theorem 13 in Appendix H), we can bound the Wasserstein
distance by the total variation, then obtain

W1 (𝜇z,𝐾 , 𝜇
(𝛽,𝜀)
z ) ≤ 𝑊 ∥𝜇z,𝐾 − 𝜇 (𝛽,𝜀)z ∥TV ≤ 𝑊𝜅(𝛽, 𝜀, 𝑑)𝐾 .

The triangle inequality completes the proof. □
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C Proof of Theorem 3

Proof. From the definition of Wasserstein distance,

W1 (𝜇z,𝑘 , 𝜇z,𝑘) = inf
𝜋∈Π (𝜇z,𝑘 ,𝜇z,𝑘 )

E𝜋 [∥𝜃𝑘 − �̂�𝑘 ∥1]

holds, so we study the distance between 𝜃𝑘 and �̂�𝑘 in terms of the norm ∥·∥1. Since ∥𝑣𝑘 ∥ = ∥𝑣𝑘−1∥ = ∥�̂�𝑘 ∥ = ∥�̂�𝑘−1∥ = 1
holds by Proposition 7, we have

E𝜋 [∥𝜃𝑘 − �̂�𝑘 ∥1] =E𝜋 [∥𝜃𝑘−1 + 𝜂𝑘𝑣𝑘−1 − (�̂�𝑘−1 + 𝜂𝑘 �̂�𝑘−1)∥1]
≤E𝜋 [∥𝜃𝑘−1 − �̂�𝑘−1∥1] + E𝜋 [∥(𝜂𝑘 − 𝜂𝑘)�̂�𝑘−1 + 𝜂𝑘 (�̂�𝑘−1 − 𝑣𝑘−1)∥1]
≤E𝜋 [∥𝜃𝑘−1 − �̂�𝑘−1∥1] + E𝜋 [∥(𝜂𝑘 − 𝜂𝑘)�̂�𝑘−1∥1] + E𝜋 [∥𝜂𝑘 (�̂�𝑘−1 − 𝑣𝑘−1)∥1]
≤E𝜋 [∥𝜃𝑘−1 − �̂�𝑘−1∥1] +

√
𝑑E𝜋 [|𝜂𝑘 − 𝜂𝑘 |] + 2

√
𝑑E𝜋 [𝜂𝑘], (11)

where we use ∥ · ∥1 ≤
√
𝑑∥ · ∥ in the last inequality.

We first evaluate the second term of (11). There exists a coupling 𝜋 such that

E𝜋 [|𝜂𝑘 − 𝜂𝑘 |] = W1 (𝑃𝜂𝑘 , 𝑃𝜂𝑘 )

holds, where 𝑃𝜂𝑘 and 𝑃𝜂𝑘 denote the distribution of 𝜂𝑘 and 𝜂𝑘 respectively. We use such a coupling as 𝜋. In evaluating
W1 (𝑃𝜂𝑘 , 𝑃𝜂𝑘 ), we consider the following analysis. 𝜂𝑘 and 𝜂𝑘 are 1-dimensional and their cumulative distribution
function is written as

𝐹1 (𝑡) = 1 − exp
(
−

∫ 𝑡

0
(𝛽⟨∇�̂� (𝑘 )

z (𝜃 + 𝑟𝑣), 𝑣⟩+ + 𝐶𝑃)𝑑𝑟
)
,

𝐹2 (𝑡) = 1 − exp
(
−

∫ 𝑡

0
(𝛽⟨∇𝐿z (𝜃 + 𝑟𝑣), 𝑣⟩+ + 𝐶𝐵 + Λref)𝑑𝑟

)
,

respectively, and we also have

𝛽⟨∇�̂� (𝑘 )
z (𝜃 + 𝑟𝑣), 𝑣⟩+ + 𝐶𝑃 ≥ 𝐶𝑃 ,

𝛽⟨∇𝐿z (𝜃 + 𝑟𝑣), 𝑣⟩+ + 𝐶𝐵 + Λref ≥ 𝐶𝐵 + Λref , and

| (𝛽⟨∇�̂� (𝑘 )
z (𝜃 + 𝑟𝑣), 𝑣⟩+ + 𝐶𝑃) − (𝛽⟨∇𝐿z (𝜃 + 𝑟𝑣), 𝑣⟩+ + 𝐶𝐵 + Λref) |

≤ max{| − 𝛽𝑀ℓ + 𝐶𝑃 − (𝐶𝐵 + Λref) |, |𝛽𝑀ℓ + 𝐶𝑃 − (𝐶𝐵 + Λref) |}.

Hence, we can use Lemma 8 and obtain

W1 (𝑃𝜂𝑘 , 𝑃𝜂𝑘 ) ≤
max{| − 𝛽𝑀ℓ + 𝐶𝑃 − (𝐶𝐵 + Λref) |, |𝛽𝑀ℓ + 𝐶𝑃 − (𝐶𝐵 + Λref) |}

𝐶𝑃 (𝐶𝐵 + Λref)
. (12)

Next, we evaluate the third term of (11). We have

E[𝜂𝑘] =
∫ ∞

0
𝑃(𝜂𝑘 ≥ 𝑡)𝑑𝑡

=

∫ ∞

0
exp

(
−

∫ 𝑡

0
{𝛽⟨∇�̂� (𝑘 )

z (𝜃𝑘−1 + 𝑟𝑣𝑘−1), 𝑣𝑘−1⟩+ + 𝐶𝑃}𝑑𝑟
)
𝑑𝑡

≤
∫ ∞

0
exp (−𝐶𝑃𝑡) 𝑑𝑡

=
1
𝐶𝑃

. (13)

Substituting (12) and (13) into (11), we have

E𝜋 [∥𝜃𝑘 − �̂�𝑘 ∥1] ≤E𝜋 [∥𝜃𝑘−1 − �̂�𝑘−1∥1] (14)
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+
√
𝑑max{| − 𝛽𝑀ℓ + 𝐶𝑃 − (𝐶𝐵 + Λref) |, |𝛽𝑀ℓ + 𝐶𝑃 − (𝐶𝐵 + Λref) |}

𝐶𝑃 (𝐶𝐵 + Λref)
+ 2

√
𝑑

𝐶𝑃
.

Since we take 𝐶𝑃 in Poisson SGD as 𝐶𝑃 = 1/𝜀 and 𝐶𝐵 and Λref in BPS as 𝐶𝐵 +Λref = 𝛽𝑀ℓ + 1/𝜀, (14) can be written
as

E𝜋 [∥𝜃𝑘 − �̂�𝑘 ∥1] ≤E𝜋 [∥𝜃𝑘−1 − �̂�𝑘−1∥1] + 4
√
𝑑𝜀.

Hence, solving this recursive inequality with 𝜃0 = �̂�0, we have

E𝜋 [∥𝜃𝐾 − �̂�𝐾 ∥1] ≤ 4
√
𝑑𝐾𝜀,

which is the desired conclusion. □

Lemma 8. Let 𝑎1 and 𝑎2 be R-valued random variables whose cumulative distribution functions are

𝐹1 (𝑡) = 1 − exp
(
−

∫ 𝑡

0
𝑓1 (𝑟)𝑑𝑟

)
, and 𝐹2 (𝑡) = 1 − exp

(
−

∫ 𝑡

0
𝑓2 (𝑟)𝑑𝑟

)
,

respectively, where 𝑓1, 𝑓2 : R → R are continuous functions. Let the distributions of 𝑎1 and 𝑎2 be 𝑃1 and 𝑃2
respectively. Suppose that there exists 𝑀,𝑚1, 𝑚2 > 0 such that | 𝑓2 (𝑡) − 𝑓1 (𝑡) | ≤ 𝑀 , 𝑚1 ≤ 𝑓1 (𝑡), and 𝑚2 ≤ 𝑓2 (𝑡) hold
for ∀𝑡 ∈ R. Then, the Wasserstein distance between 𝑃1 and 𝑃2 satisfies

W1 (𝑃1, 𝑃2) ≤
𝑀

𝑚1𝑚2
.

Proof. Since 𝑎1 and 𝑎2 are 1-dimensional, we have

W1 (𝑃1, 𝑃2) =
∫ 1

0

��𝐹−1
1 (𝑞) − 𝐹−1

2 (𝑞)
�� 𝑑𝑞.

We introduce several notation 𝛿(𝑟) = 𝑓2 (𝑟) − 𝑓1 (𝑟), 𝑡 = 𝐹−1
1 (𝑞), and 𝑡′ = 𝐹−1

2 (𝑞), then∫ 𝑡

0
𝑓1 (𝑟)𝑑𝑟 = log

1
1 − 𝑞∫ 𝑡 ′

0
( 𝑓1 (𝑟) + 𝛿(𝑟))𝑑𝑟 = log

1
1 − 𝑞

holds. So, we obtain ∫ 𝑡

𝑡 ′
𝑓1 (𝑟)𝑑𝑟 =

∫ 𝑡 ′

0
𝛿(𝑟)𝑑𝑟.

Hence, we have ����∫ 𝑡

𝑡 ′
𝑓1 (𝑟)𝑑𝑟

���� = ∫ max{𝑡 ,𝑡 ′ }

min{𝑡 ,𝑡 ′ }
𝑓1 (𝑟)𝑑𝑟 ≤ 𝑀𝑡′.

In addition,
∫ max{𝑡 ,𝑡 ′ }

min{𝑡 ,𝑡 ′ } 𝑓1 (𝑟)𝑑𝑟 ≥ 𝑚1 |𝑡 − 𝑡′ | holds, so we have

|𝑡 − 𝑡′ | ≤ 𝑀𝑡′

𝑚1
.

We have the upper bound of 𝑡′ as

log
1

1 − 𝑞 =

∫ 𝑡 ′

0
𝑓2 (𝑟)𝑑𝑟 ≥ 𝑚2𝑡

′,
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so we have

|𝑡 − 𝑡′ | ≤ 𝑀

𝑚1𝑚2
log

1
1 − 𝑞 .

Since
∫ 1

0 | log(1 − 𝑞) |𝑑𝑞 = 1 holds, we obtain∫ 1

0

��𝐹−1
1 (𝑞) − 𝐹−1

2 (𝑞)
�� 𝑑𝑞 ≤ 𝑀

𝑚1𝑚2
.

□

D Proof of Theorem 4

We prove this theorem by two steps. First, we prove that BPS has 𝜇 (𝛽,𝜀)z as one of its stationary distributions in
section D.1. At this stage, BPS may have other forms of stationary distribution or may not converge to its stationary
distribution. Second, we prove that BPS has a unique stationary distribution and converges to its stationary distribution
at exponential rate, in other words, it has the exponential ergodicity, in section D.2.

D.1 The form of the stationary distribution

In this section, we check that BPS has 𝜇 (𝛽,𝜀)z as a stationary distribution. In the proof, we define 𝜆(𝜃, 𝑣) :=
𝛽⟨∇𝐿z (𝜃), 𝑣⟩+, �̄�(𝜃, 𝑣) := 𝜆(𝜃, 𝑣) + Λref , and 𝑅z (𝜃) := 𝐼𝑑 − 2 ∇𝐿z (𝜃 )∇𝐿z (𝜃 )⊤

∥∇𝐿z (𝜃 ) ∥2 . We remark that 𝑅z is a symmetric matrix
and satisfies 𝑅z (𝜃)2 = 𝐼𝑑 , so it is also an orthogonal matrix.

From the proof of Lemma 1 in the supplementary material of Deligiannidis et al. (2019), we can write the transition
probability 𝑄 of BPS as following for arbitrary measurable sets 𝐴 ⊂ Θ and 𝐵 ⊂ S𝑑−1:

𝑄((𝜃, 𝑣), 𝐴 × 𝐵) =
∫ ∞

0
exp

{
−

∫ 𝑠

0

(
�̄�(𝜃 + 𝑢𝑣, 𝑣) + 𝐶𝐵

)
𝑑𝑢

}
×

(
�̄�(𝜃 + 𝑢𝑣, 𝑣) + 𝐶𝐵

)
𝐾 ((𝜃 + 𝑠𝑣, 𝑣), 𝐴 × 𝐵)𝑑𝑠, (15)

where a transition kernel 𝐾 is expressed as

𝐾 ((𝜃, 𝑣), 𝐴 × 𝐵) =𝜆(𝜃, 𝑣) + 𝐶𝐵
�̄�(𝜃, 𝑣) + 𝐶𝐵

1[𝜃 ∈ 𝐴]1[𝑅z (𝜃)𝑣 ∈ 𝐵] (16)

+ Λref

�̄�(𝜃, 𝑣) + 𝐶𝐵
1[𝜃 ∈ 𝐴]𝜇unif (𝐵),

where 𝜇unif is the uniform probability measure on S𝑑−1.
Lemma 9. Under Assumption 1, a probability measure on Θ × S𝑑−1

𝜇z (𝐴 × 𝐵) ∝
∫
𝐴×𝐵

(
�̄�(𝜃,−𝑣) + 𝐶𝐵

)
exp(−𝛽𝐿z (𝜃))𝑑𝜃𝜇unif (𝑑𝑣)

is the stationary distribution induced from the transition probability 𝑄 as (15).

Proof. Our proof is almost the same as the proof of Lemma 1 in Deligiannidis et al. (2019). Let 𝜋z (𝑑𝜃, 𝑑𝑣) =

exp(−𝛽𝐿z (𝜃))𝑑𝜃𝜇unif (𝑑𝑣).

First, we prove ∫
(�̄�(𝜃, 𝑣) + 𝐶𝐵)𝜋z (𝑑𝜃, 𝑑𝑣)𝐾 ((𝜃, 𝑣), 𝐴 × 𝐵) ∝ 𝜇z (𝐴 × 𝐵). (17)

Substituting (16), the left side of (17) is rewritten as∫
𝜋z (𝑑𝜃, 𝑑𝑣) (𝜆(𝜃, 𝑣) + 𝐶𝐵)1[𝜃 ∈ 𝐴]1[𝑅z (𝜃)𝑣 ∈ 𝐵] +

∫
𝜋z (𝑑𝜃, 𝑑𝑣)Λref1[𝜃 ∈ 𝐴]𝜇unif (𝐵).
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We consider changing the variable as 𝑣′ = 𝑅z (𝜃)𝑣. Since 𝑅z (𝜃)−1 = 𝑅z (𝜃) holds, we get 𝜆(𝜃, 𝑅z (𝜃)−1𝑣′) = 𝜆(𝜃,−𝑣′).
In addition, since |det(𝑅z (𝜃)) | = 1, and 𝜇unif (𝑅z (𝜃)−1𝑑𝑣′) = 𝜇unif (𝑑𝑣′) hold due to the rotational invariance of 𝜇unif ,
we obtain ∫

𝐴×𝐵
𝜋z (𝑑𝜃, 𝑑𝑣′) (𝜆(𝜃,−𝑣′) + 𝐶𝐵) +

∫
𝐴×𝐵

𝜋z (𝑑𝜃, 𝑑𝑣′)Λref ,

which is proportional to the right side of (17) from the definition of 𝜇z.

Second, we prove
∫
𝑄((𝜃, 𝑣), (𝑑𝑦, 𝑑𝑤))𝜇z (𝑑𝜃, 𝑑𝑣) = 𝜇z (𝑑𝑦, 𝑑𝑤). We have∫

𝑄((𝜃, 𝑣), (𝑑𝑦, 𝑑𝑤))𝜇z (𝑑𝜃, 𝑑𝑣)

∝
∫ ∞

0
exp

(
−

∫ 𝑠

0
{�̄�(𝜃 + 𝑢𝑣, 𝑣) + 𝐶𝐵}𝑑𝑢

)
{�̄�(𝜃 + 𝑠𝑣, 𝑣) + 𝐶𝐵}

× 𝐾 ((𝜃 + 𝑠𝑣, 𝑣), (𝑑𝑦, 𝑑𝑤)){�̄�(𝜃,−𝑣) + 𝐶𝐵}𝜋z (𝑑𝜃, 𝑑𝑣)𝑑𝑠.

If we change 𝜃 as 𝑡 = 𝜃 + 𝑠𝑣, then this integral becomes∫ ∞

0
exp

(
−

∫ 𝑠

0
{�̄�(𝑡 + (𝑢 − 𝑠)𝑣, 𝑣) + 𝐶𝐵}𝑑𝑢

)
{�̄�(𝑡, 𝑣) + 𝐶𝐵}

× 𝐾 ((𝑡, 𝑣), (𝑑𝑦, 𝑑𝑤)){�̄�(𝑡 − 𝑠𝑣,−𝑣) + 𝐶𝐵}𝜋z (𝑑𝜃, 𝑑𝑣)𝑑𝑠.

Since 𝐿z (𝜃) is absolutely continuous,

exp(−𝛽𝐿z (𝑡 − 𝑠𝑣)) = exp
(
−𝛽𝐿z (𝑡) −

∫ 𝑠

0
𝜆(𝑡 − 𝑤𝑣,−𝑣)𝑑𝑤 +

∫ 𝑠

0
𝜆(𝑡 − 𝑤𝑣, 𝑣)𝑑𝑤

)
holds in the same way as Deligiannidis et al. (2019). Substituting it into 𝜋z (𝑑𝑥, 𝑑𝑣) and changing 𝑢 as 𝑢 − 𝑠 = −𝑤,∫ ∞

0
exp

(
−

∫ 𝑠

0
{�̄�(𝑡 − 𝑤𝑣,−𝑣) + 𝐶𝐵}𝑑𝑤

)
{�̄�(𝑡 − 𝑠𝑣,−𝑣) + 𝐶𝐵}𝑑𝑠

×{�̄�(𝑡, 𝑣) + 𝐶𝐵}𝐾 ((𝑡, 𝑣), (𝑑𝑦, 𝑑𝑤))𝜋z (𝑑𝑡, 𝑑𝑣)

holds. The first line can be calculated as
[
− exp

(
−

∫ 𝑠
0 {�̄�(𝑡 − 𝑤𝑣,−𝑣) + 𝐶𝐵}𝑑𝑤

)]∞
0
= 1, so it is equal to∫

{�̄�(𝑡, 𝑣) + 𝐶𝐵}𝐾 ((𝑡, 𝑣), (𝑑𝑦, 𝑑𝑤))𝜋z (𝑑𝑡, 𝑑𝑣).

Using (17), it is proportional to 𝜇z (𝑑𝑦, 𝑑𝑤), which completes the proof. □

By the following proposition, we prove that 𝜇 (𝛽,𝜀)z is one of the stationary distributions of BPS. Recall that we defined
𝑎𝑑 := Γ(𝑑/2)/(

√
𝜋Γ(𝑑/2 + 1/2)).

Proposition 10. The marginal distribution of the stationary distribution expressed in Lemma 9 is written as

𝜇z (𝑑𝜃) ∝ (Λref + 𝐶𝐵 + 𝑎𝑑𝛽∥∇𝐿z (𝜃)∥) exp(−𝛽𝐿z (𝜃))𝑑𝜃.

Hence, if we put Λref and 𝐶𝐵 as Λref + 𝐶𝐵 = 𝛽𝑀ℓ + 1/𝜀, it corresponds to 𝜇 (𝛽,𝜀)z .

Proof. We only need to integrate with 𝑣 the distribution 𝜇z expressed in Lemma 9. We have

𝜇z (𝑑𝜃) ∝
∫
𝑣∈S𝑑−1

(Λref + 𝐶𝐵 + 𝛽⟨∇𝐿z (𝜃),−𝑣⟩+) exp(−𝛽𝐿z (𝜃))𝑑𝜃𝜇unif (𝑑𝑣)

=(Λref + 𝐶𝐵) exp(−𝛽𝐿z (𝜃))𝑑𝜃 + exp(−𝛽𝐿z (𝜃))𝑑𝜃𝛽E𝑣∼𝜇unif [⟨∇𝐿z (𝜃), 𝑣⟩+] .
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We can calculate the expected value in the last term as

E𝑣∼𝜇unif [⟨∇𝐿z (𝜃), 𝑣⟩+] = E𝑣∼𝜇unif [∥∇𝐿z (𝜃)∥(cos 𝜙)+] = ∥∇𝐿z (𝜃)∥E𝑣∼𝜇unif [(cos 𝜙)+],

where 𝜙 ∈ R is a random variable dependent on 𝑣 which satisfies

cos 𝜙 =

〈
∇𝐿z (𝜃)
∥∇𝐿z (𝜃)∥

, 𝑣

〉
. (18)

From the symmetry of the uniform distribution, we can calculate E𝑣∼𝜇unif [(cos 𝜙)+] by replacing ∇𝐿z (𝜃 )
∥∇𝐿z (𝜃 ) ∥ in (18) by

(1, 0, · · · , 0). Hence,

E𝑣∼𝜇unif [(cos 𝜙)+] = E𝑣∼𝜇unif [(𝑣1)+] = E

©«

𝑥1√︃
𝑥2

1 + · · · + 𝑥2
𝑑

ª®®¬+


holds, where 𝑣1 is the first component of 𝑣 and 𝑥𝑖 (𝑖 = 1, ..., 𝑑) is i.i.d. standard Gaussian variables.

For (𝑥1, . . . , 𝑥𝑑) ∼ N (0, 𝐼𝑑), we have

E


√√

𝑥2
1

𝑥2
1 + · · · + 𝑥2

𝑑

 =

∫
R𝑑

√√
𝑧2

1

𝑧2
1 + · · · + 𝑧2

𝑑

1
(2𝜋)𝑑/2 exp

(
−
𝑧2

1 + · · · + 𝑧2
𝑑

2

)
𝑑𝑧1 · · · 𝑑𝑧𝑑

=

∫
[0,∞)2

√︂
𝑟

𝑟 + 𝑠
𝑟−1/2 exp (−𝑟/2)

√
2𝜋

𝑠 (𝑑−1)/2−1 exp (−𝑠/2)
Γ((𝑑 − 1)/2)2(𝑑−1)/2 𝑑𝑟𝑑𝑠

=

∫
[0,1]

𝑡1/2 𝑡
1/2−1 (1 − 𝑡) (𝑑−1)/2−1

B(1/2, (𝑑 − 1)/2) 𝑑𝑡

=
B(1, (𝑑 − 1)/2)

B(1/2, (𝑑 − 1)/2)

=
Γ(1)Γ((𝑑 − 1)/2)Γ(𝑑/2)

Γ(1/2)Γ((𝑑 − 1)/2)Γ(𝑑/2 + 1/2)

=
Γ(𝑑/2)

√
𝜋Γ(𝑑/2 + 1/2)

.

Note that for all 𝑑 ≥ 2,
1√︁
𝑑/2

≤ Γ(𝑑/2)
Γ(𝑑/2 + 1/2) ≤ 1√︁

𝑑/2 − 1/2

holds (e.g., see Qi & Luo (2013)). Therefore, for all 𝑑 ≥ 2, we have

E


©«

𝑥1√︃
𝑥2

1 + · · · + 𝑥2
𝑑

ª®®¬+
 =

Γ(𝑑/2)
2
√
𝜋Γ(𝑑/2 + 1/2)

∈
[

1
√

2𝜋𝑑
,

1√︁
2𝜋(𝑑 − 1)

]
.

□

D.2 The exponential ergodicity of BPS

The next proposition is on the minorization condition of the 2-skeletons of BPS on the restricted domains. In short,
minorization means that the stochastic process can go from any measurable set to any measurable set in the parameter
space, which is a sufficient condition for the exponential ergodicity in the compact parameter space. 2-Skeleton means
2 step of the stochastic process. This proposition completes the proof of Theorem 4.
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Proposition 11. Under Assumption 1, the 2-skeletons of BPS satisfies the minorization condition; that is, for some
𝑐 > 0, for all (𝜃, 𝑣) ∈ Θ × S𝑑−1 and all measurable 𝐸 ⊂ Θ × S𝑑−1, we have

𝑄2 ((𝜃, 𝑣), 𝐸) ≥ 𝑐
∫
Θ

∫
S𝑑−1

1[(𝜃, 𝑣) ∈ 𝐸]𝑑𝜃𝜇unif (𝑑𝑣).

Moreover, BPS is exponentially ergodic in total variation distance.

Proof. We partially follow the proof of Lemma 4 in Deligiannidis et al. (2019).

Let 𝑓 : Θ × S𝑑−1 → [0,∞) be a non-negative and bounded function. We also use the notation 𝑀 ′ =

sup(𝜃,𝑣) ∈Θ×S𝑑−1 (�̄�(𝜃, 𝑣) + 𝐶𝐵) < ∞. By considering the event where the first update of 𝑣 is refreshment from
Unif (S𝑑−1), we see that for any (𝜃0, 𝑣0) ∈ Θ × S𝑑−1,∫

Θ×S𝑑−1
𝑓 (𝜃, 𝑣)𝑄2 ((𝜃0, 𝑣0), (𝑑𝜃, 𝑑𝑣))

=

∫
Θ×S𝑑−1

∫
Θ×S𝑑−1

𝑓 (𝜃, 𝑣)𝑄((𝜃1, 𝑣1), (𝑑𝜃, 𝑑𝑣))𝑄((𝜃0, 𝑣0), (𝑑𝜃1, 𝑑𝑣1))

≥ Λref
𝑀 ′ inf

𝜃1∈Θ

∫
Θ×S𝑑−1

𝑓 (𝜃, 𝑣)𝑄((𝜃1, 𝑣1), (𝑑𝜃, 𝑑𝑣))𝜇unif (𝑑𝑣1)

holds. We also obtain that for 𝑇 ∼ Exp(𝑀 ′), 𝑉1, 𝑉2 ∼i.i.d. Unif (S𝑑−1), we have

inf
𝜃1∈Θ

∫
Θ×S𝑑−1

𝑓 (𝜃, 𝑣)𝑄((𝜃1, 𝑣1), 𝑑𝜃𝑑𝑣)𝜇unif (𝑑𝑣1)

≥ inf
𝜃1∈Θ

Λref
𝑀 ′ E [1[𝜃1 + 𝑇𝑉1 ∈ Θ] 𝑓 (𝜃1 + 𝑇𝑉1, 𝑉2)]

≥ inf
𝜃1∈Θ

Λ2
ref
𝑀 ′

∫
[0,∞)×S𝑑−1

1[𝜃1 + 𝑡𝑣1 ∈ Θ]𝑒−𝑀′𝑡 𝑓 (𝜃1 + 𝑡𝑣1, 𝑣)𝑑𝑡𝜇unif (𝑑𝑣1)𝜇unif (𝑑𝑣)

≥ inf
𝜃1∈Θ

Λ2
ref𝑒

−𝑀′diam(Θ)

𝑀 ′

∫
[0,∞)×S𝑑−1

1[𝜃1 + 𝑡𝑣1 ∈ Θ] 𝑓 (𝜃1 + 𝑡𝑣1, 𝑣)𝑑𝑡𝜇unif (𝑑𝑣1)𝜇unif (𝑑𝑣)

= inf
𝜃1∈Θ

Λ2
ref𝑒

−𝑀′diam(Θ)

𝑀 ′

∫
Θ×S𝑑−1

1[𝜃 ∈ Θ] 𝑓 (𝜃, 𝑣)∥𝜃 − 𝜃1∥1−𝑑𝑑𝜃𝜇unif (𝑑𝑣)

≥
Λ2

ref𝑒
−𝑀′diam(Θ)

𝑀 ′diam(Θ)𝑑−1

∫
Θ×S𝑑−1

𝑓 (𝜃, 𝑣)𝑑𝜃𝜇unif (𝑑𝑣),

where the second last equality uses a change of coordinates. Since 𝑓 is generic, the minorization condition holds.
Harris’s theorem thus gives the exponential ergodicity of BPS. □

E Proof of Theorem 5

Proof. We prove in the same way as the proof of Theorem 2.1 in Raginsky et al. (2017). Let 𝜃𝜇 be a random variable
satisfying 𝜃𝜇 ∼ 𝜇

(𝛽,𝜀)
z , where 𝜇 (𝛽,𝜀)z is defined in (7). We denote 𝜃𝐾 ∼ 𝜇z,𝐾 as the output of Poisson SGD (Algorithm

1). We have

Ez [E𝜃𝐾 [𝐿 (𝜃𝐾 )]] − inf
𝜃∈Θ

𝐿 (𝜃)

= Ez [E𝜃𝐾 [𝐿 (𝜃𝐾 )] − E𝜃𝜇 [𝐿 (𝜃𝜇)]] + {Ez [E𝜃𝜇 [𝐿 (𝜃𝜇)]] − inf
𝜃∈Θ

𝐿 (𝜃)},

and the second term of right-hand side is written as

Ez [E𝜃𝜇 [𝐿 (𝜃𝜇)]] − inf
𝜃∈Θ

𝐿 (𝜃)
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= Ez [E𝜃𝜇 [𝐿 (𝜃𝜇)]] − Ez [E𝜃𝜇 [𝐿z (𝜃𝜇)]] +
(
Ez [E𝜃𝜇 [𝐿z (𝜃𝜇)]] − inf

𝜃∈Θ
𝐿 (𝜃)

)
.

Letting 𝜃◦ = argmin𝜃∈Θ 𝐿 (𝜃), the second part of the right-hand side in the equation above is

Ez [E𝜃𝜇 [𝐿z (𝜃𝜇)]] − inf
𝜃∈Θ

𝐿 (𝜃) =Ez [E𝜃𝜇 [𝐿z (𝜃𝜇)] − inf
𝜃∈Θ

𝐿z (𝜃)] +
(
Ez

[
inf
𝜃∈Θ

𝐿z (𝜃) − 𝐿z (𝜃◦)
] )

≤Ez [E𝜃𝜇 [𝐿z (𝜃𝜇)] − inf
𝜃∈Θ

𝐿z (𝜃)] .

As a result, we have

Ez [E𝜃𝐾 [𝐿 (𝜃𝐾 )]] − inf
𝜃∈Θ

𝐿 (𝜃) ≤Ez [E𝜃𝐾 [𝐿 (𝜃𝐾 )] − E𝜃𝜇 [𝐿 (𝜃𝜇)]] (19)

+Ez [E𝜃𝜇 [𝐿 (𝜃𝜇)] − E𝜃𝜇 [𝐿z (𝜃𝜇)]] (20)
+Ez [E𝜃𝜇 [𝐿z (𝜃𝜇)] − inf

𝜃∈Θ
𝐿z (𝜃)] . (21)

To evaluate the terms (19), (20), and (21), we prepare the following lemma to calculate the upper bound of the difference
between two expected value by the Wasserstein distance.

Lemma 12. Consider probability measures 𝜇 and 𝜈 onΘ. Suppose that sup𝑧∈Z |ℓ(𝑧; 0) | ≤ 𝐴 and sup𝑧∈Z ∥∇ℓ(𝑧; 0)∥ ≤
𝐵 hold. Then, we obtain ��E𝜃1∼𝜇 [ℓ(𝑧; 𝜃1)] − E𝜃2∼𝜈 [ℓ(𝑧; 𝜃2)]

�� ≤ (𝑐1𝑊 + 𝐵)
√︁
𝑊W1 (𝜇, 𝜈), and (22)��E𝜃1∼𝜇 [𝐿 (𝜃1)] − E𝜃2∼𝜈 [𝐿 (𝜃2)]

�� ≤ (𝑐1𝑊 + 𝐵)
√︁
𝑊W1 (𝜇, 𝜈). (23)

Proof. Under the assumption, Lemma 3.1 in Raginsky et al. (2017) holds. Hence, we have

∥∇ℓ(𝑧; 𝜃)∥ ≤ 𝑐1∥𝜃∥ + 𝐵,∀𝜃 ∈ Θ,∀𝑧 ∈ Z (24)

ℓ(𝑧; 𝜃) ≤ 𝑐1
2
∥𝜃∥2 + 𝐵∥𝜃∥ + 𝐴,∀𝜃 ∈ Θ,∀𝑧 ∈ Z. (25)

Moreover, from Lemma 3.5 in Raginsky et al. (2017), for arbitrary two probability measures 𝜇 and 𝜈, if we let

𝜎2 = max{E𝜃1∼𝜇 [∥𝜃1∥2],E𝜃2∼𝜈 [∥𝜃2∥2]},

then we have ��E𝜃1∼𝜇 [ℓ(𝑧; 𝜃1)] − E𝜃2∼𝜈 [ℓ(𝑧; 𝜃2)]
�� ≤ (𝑐1𝜎 + 𝐵)W2 (𝜇, 𝜈).

Obviously, it also holds that ��E𝜃1∼𝜇 [𝐿 (𝜃1)] − E𝜃2∼𝜈 [𝐿 (𝜃2)]
�� ≤ (𝑐1𝜎 + 𝐵)W2 (𝜇, 𝜈).

Since we have 𝜎 ≤ 𝑊 and W2 (𝜇, 𝜈) = inf 𝜋∈Π (𝜇,𝜈) (
∫
Θ
∥𝑧 − 𝑧′∥2𝑑𝜋(𝑧, 𝑧′))1/2 ≤ inf 𝜋∈Π (𝜇,𝜈) (

∫
Θ
𝑊 ∥𝑧 −

𝑧′∥1𝑑𝜋(𝑧, 𝑧′))1/2 =
√︁
𝑊W1 (𝜇, 𝜈), we obtain the statement. □

We start evaluating each of the terms (19), (20), and (21).

First, we study (19). From (23) in Lemma 12, we have

E𝜃𝐾 [𝐿 (𝜃𝐾 )] − E𝜃𝜇 [𝐿 (𝜃𝜇)] ≤(𝑐1𝑊 + 𝐵)
√︃
𝑊W1 (𝜇z,𝐾 , 𝜇

(𝛽,𝜀)
z )

≤(𝑐1𝑊 + 𝐵)
√︁
𝑊𝑑𝐾 (𝛽, 𝜀, 𝑑). (26)

Second, we evaluate (20) using the same approach as Raginsky et al. (2017). Here, we need to evaluate

E𝜃𝜇 [ℓ(𝑧; 𝜃𝜇)] − E𝜃𝜇′ [ℓ(𝑧; 𝜃𝜇′ )],
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where 𝑧 ∈ Z is an arbitrary sampled data, 𝜃𝜇′ ∼ 𝜇
(𝛽,𝜀)
z′ and 𝜇 (𝛽,𝜀)z′ is the stationary distribution of BPS when one

of the data 𝑧𝑖 is changed to arbitrary 𝑧𝑖 ∈ Z and z′ is a dataset with replacing 𝑧𝑖 to 𝑧𝑖 , and 𝐿z′ be its corresponding
empirical risk. From (22) in Lemma 12, we have

E𝜃𝜇 [ℓ(𝑧; 𝜃𝜇)] − E𝜃𝜇′ [ℓ(𝑧; 𝜃𝜇′ )] ≤(𝑐1𝑊 + 𝐵)W2 (𝜇 (𝛽,𝜀)z , 𝜇
(𝛽,𝜀)
z′ )

≤(𝑐1𝑊 + 𝐵)𝐶𝜇′

√︃
𝐷 (𝜇 (𝛽,𝜀)z | |𝜇 (𝛽,𝜀)z′ ) +

(
𝐷 (𝜇 (𝛽,𝜀)z | |𝜇 (𝛽,𝜀)z′ )

2

) 1
4  ,

where 𝐷 (·| |·) is KL-divergence and

𝐶𝜇′ := 2 inf
𝜆>0

(
1
𝜆

(
3
2
+ log

∫
Θ

𝑒𝜆∥ 𝜃 ∥
2
𝜇
(𝛽,𝜀)
z′ (𝑑𝜃)

)) 1
2

,

which is from Corollary 2.3 in Bolley & Villani (2005) (explicit form is Theorem 14 in Section H). Also, since we
have ∥𝜃∥ ≤ 𝑊 , 𝐶𝜇′ ≤ 2𝑊 holds. We denote the density functions of 𝜇 (𝛽,𝜀)z , 𝜇

(𝛽,𝜀)
z′ as 𝑝z, 𝑝z′ , and the normalization

constants as Λz,Λz′ respectively. Let us calculate 𝐷 (𝜇 (𝛽,𝜀)z | |𝜇 (𝛽,𝜀)z′ ). We have

𝑝z (𝜃)
𝑝z′ (𝜃)

=
Λz′

Λz
· 𝛽𝑀ℓ + 1/𝜀 + 𝑎𝑑𝛽∥∇𝐿z (𝜃)∥
𝛽𝑀ℓ + 1/𝜀 + 𝑎𝑑𝛽∥∇𝐿z′ (𝜃)∥

exp (−𝛽(𝐿z (𝜃) − 𝐿z′ (𝜃))) , (27)

so in order to obtain the upper bound of 𝐷 (𝜇 (𝛽,𝜀)z | |𝜇 (𝛽,𝜀)z′ ), we suppress each of the three terms of the right-hand side
of (27). First, we suppress the second term.

∥∇𝐿z (𝜃)∥ =
∇𝐿z′ (𝜃) +

1
𝑛
(∇ℓ(𝑧𝑖; 𝜃) − ∇ℓ(𝑧𝑖; 𝜃)


≤ ∥∇𝐿z′ (𝜃)∥ +

1
𝑛
∥∇ℓ(𝑧𝑖; 𝜃) − ∇ℓ(𝑧𝑖; 𝜃)∥

≤ ∥∇𝐿z′ (𝜃)∥ +
2
𝑛
(𝑐1∥𝜃∥ + 𝐵) ,

where the last inequality is from (24). Hence,

𝛽𝑀ℓ + 1/𝜀 + 𝑎𝑑𝛽∥∇𝐿z (𝜃)∥
𝛽𝑀ℓ + 1/𝜀 + 𝑎𝑑𝛽∥∇𝐿z′ (𝜃)∥

≤
𝛽𝑀ℓ + 1/𝜀 + 𝑎𝑑𝛽

(
∥∇𝐿z′ (𝜃)∥ + 2

𝑛
(𝑐1∥𝜃∥ + 𝐵)

)
𝛽𝑀ℓ + 1/𝜀 + 𝑎𝑑𝛽∥∇𝐿z′ (𝜃)∥

≤1 + 2𝑎𝑑𝛽(𝑐1𝑊 + 𝐵)
𝑛(𝛽𝑀ℓ + 1/𝜀)

≤1 + 2𝑎𝑑 (𝑐1𝑊 + 𝐵)
𝑛𝑀ℓ

(28)

holds. Second, we suppress the third term. We have

exp (−𝛽(𝐿z (𝜃) − 𝐿z′ (𝜃))) = exp
(
−𝛽

(
1
𝑛
(ℓ(𝑧𝑖; 𝜃) − ℓ(𝑧𝑖; 𝜃))

))
≤ exp

(
𝛽

𝑛

(
𝑐1∥𝜃∥2

2
+ 𝐵∥𝜃∥ + 𝐴

))
≤ exp

(
𝛽

𝑛

(
𝑐1𝑊

2

2
+ 𝐵𝑊 + 𝐴

))
, (29)

where we use (25). Finally, we suppress the first term. Using (28) and (29), we have

Λz′

Λz
=

∫
𝜃∈Θ (𝛽𝑀ℓ + 1/𝜀 + 𝑎𝑑𝛽∥∇𝐿z′ (𝜃)∥) exp (−𝛽𝐿z′ (𝜃)) 𝑑𝜃∫
𝜃∈Θ (𝛽𝑀ℓ + 1/𝜀 + 𝑎𝑑𝛽∥∇𝐿𝑧 (𝜃)∥) exp (−𝛽𝐿𝑧 (𝜃)) 𝑑𝜃
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≤
(
1 + 2𝑎𝑑 (𝑐1𝑊 + 𝐵)

𝑛𝑀ℓ

)
exp

(
𝛽

𝑛

(
𝑐1𝑊

2

2
+ 𝐵𝑊 + 𝐴

))
. (30)

Combining (28), (29) and (30), we have

log
𝑝z (𝜃)
𝑝z′ (𝜃)

≤2 log
(
1 + 2𝑎𝑑 (𝑐1𝑊 + 𝐵)

𝑛𝑀ℓ

)
+ 2𝛽
𝑛

(
𝑐1𝑊

2

2
+ 𝐵𝑊 + 𝐴

)
≤ 1
𝑛

(
4𝑎𝑑 (𝑐1𝑊 + 𝐵)

𝑀ℓ
+ 𝛽(𝑐1𝑊

2 + 2𝐵𝑊 + 2𝐴)
)
,

so
𝐷 (𝜇 (𝛽,𝜀)z | |𝜇 (𝛽,𝜀)z′ ) ≤ 1

𝑛

(
4𝑎𝑑 (𝑐1𝑊 + 𝐵)

𝑀ℓ
+ 𝛽(𝑐1𝑊

2 + 2𝐵𝑊 + 2𝐴)
)

holds. We set 𝐶𝑑 = 4𝑎𝑑 (𝑐1𝑊 + 𝐵)/𝑀ℓ and 𝐶 = 𝑐1𝑊
2 + 2𝐵𝑊 + 2𝐴, then we have

(20) ≤ 2𝑊 (𝑐1𝑊 + 𝐵)
((
𝐶𝑑 + 𝛽𝐶

𝑛

) 1
2

+
(
𝐶𝑑 + 𝛽𝐶

𝑛

) 1
4
)
. (31)

Finally, we evaluate (21). Let us denote

Λz (𝜃) =
Λ

𝛽𝑀ℓ + 1/𝜀 + 𝑎𝑑𝛽∥∇𝐿z (𝜃)∥

Λ =

∫
𝜃∈Θ

(𝛽𝑀ℓ + 1/𝜀 + 𝑎𝑑𝛽∥∇𝐿z (𝜃)∥)𝑒−𝛽𝐿z (𝜃 )𝑑𝜃.

Since the distribution of 𝜃𝜇 is

𝜇
(𝛽,𝜀)
z (𝑑𝜃) ∝

(
𝛽𝑀ℓ +

1
𝜀
+ 𝑎𝑑𝛽∥∇𝐿z (𝜃)∥

)
exp(−𝛽𝐿z (𝜃)),

we have

E𝜃𝜇 [𝐿z (𝜃𝜇)] = − 1
𝛽

(
E𝜃𝜇

[
log

𝑒−𝛽𝐿z (𝜃𝜇 )

Λz (𝜃𝜇)

]
+ E𝜃𝜇 [logΛz (𝜃𝜇)]

)
=

1
𝛽

(
E𝜃𝜇 [− log 𝑝z (𝜃𝜇)] − E𝜃𝜇 [logΛz (𝜃𝜇)]

)
.

Since we have E𝜃𝜇 [∥𝜃𝜇 ∥2] ≤ 𝑊2, we can calculate the upper bound of E𝜃𝜇 [− log 𝑝z (𝜃𝜇)] by the differential entropy
of Gaussian distribution in the same way as the discussion of Section 3.5 in Raginsky et al. (2017):

E𝜃𝜇 [− log 𝑝z (𝜃𝜇)] ≤
𝑑

2
log

(
2𝜋𝑒
𝑑
𝑊2

)
.

Using (24), we have

logΛz (𝜃) ≥ log
Λ

𝛽𝑀ℓ + 1/𝜀 + 𝑎𝑑𝛽(𝑐1𝑊 + 𝐵)) .

In addition,

logΛ = log
∫
𝜃∈Θ

(𝛽𝑀ℓ + 1/𝜀 + 𝑎𝑑𝛽∥∇𝐿z (𝜃)∥)𝑒−𝛽𝐿z (𝜃 )𝑑𝜃

≥ log
∫
𝜃∈Θ

(𝛽𝑀ℓ + 1/𝜀)𝑒−𝛽𝐿z (𝜃 )𝑑𝜃

= log(𝛽𝑀ℓ + 1/𝜀) + log
∫
𝜃∈Θ

𝑒−𝛽𝐿z (𝜃 )𝑑𝜃
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≥ log(𝛽𝑀ℓ + 1/𝜀) − 𝛽𝐿∗z +
𝑑

2
log

2𝜋
𝑐1𝛽

holds, where the last inequality is from the equation (3.21) in Raginsky et al. (2017). Here, we denote 𝐿∗z = inf 𝜃∈Θ 𝐿z (𝜃).
Hence, we have

(21) ≤ 1
𝛽

(
𝑑

2
log

(
2𝜋𝑒
𝑑
𝑊2

)
+ log

𝛽𝑀ℓ + 1/𝜀 + 𝑎𝑑𝛽(𝑐1𝑊 + 𝐵)
𝛽𝑀ℓ + 1/𝜀 + 𝛽𝐿∗z −

𝑑

2
log

2𝜋
𝑐1𝛽

)
− 𝐿∗z

≤ 1
𝛽

(
𝑑

2
log

𝑒𝑊2𝑐1𝛽

𝑑
+ log

(
1 + 𝑎𝑑 (𝑐1𝑊 + 𝐵)

𝑀ℓ

))
. (32)

We combine the result (26), (31), and (32), then obtain the statement. □

F Proof of Proposition 6

Proof. Let 𝜃𝜇 and 𝜃𝜈 be the random variable which obey the distributions 𝜇 (𝛽,𝜀)z and 𝜈 (𝛽)z respectively.

In the same way as Theorem 5, we have

E𝑧 [E𝜃𝐾 [𝐿 (𝜃𝐾 )]] − inf
𝜃∈Θ

𝐿 (𝜃) ≤E𝑧 [E𝜃𝐾 [𝐿 (𝜃𝐾 )] − E𝜃𝜇 [𝐿 (𝜃𝜇)]] (33)

+E𝑧 [E𝜃𝜇 [𝐿 (𝜃𝜇)] − E𝜃𝜈 [𝐿 (𝜃𝜈)]] (34)
+E𝑧 [E𝜃𝜈 [𝐿 (𝜃𝜈)] − E𝜃𝜈 [𝐿z (𝜃𝜈)]] (35)
+E𝑧 [E𝜃𝜈 [𝐿z (𝜃𝜈)] − inf

𝜃∈Θ
𝐿z (𝜃)] . (36)

(33) can be evaluated in the same as Theorem 5.

First, we evaluate (34). We have

E𝜃𝜇 [𝐿 (𝜃𝜇)] − E𝜃𝜈 [𝐿 (𝜃𝜈)] ≤ 𝑊W2 (𝜇 (𝛽,𝜀)z , 𝜈
(𝛽)
z )

from the same discussion in the proof of Theorem 5. Since both 𝜃𝜇 and 𝜃𝜈 satisfy the log-Sobolev inequality, we can
use Otto-Villani theorem (Bakry et al., 2014) (explicit form is Theorem 15 in Section H), and

W2 (𝜇 (𝛽,𝜀)z , 𝜈
(𝛽)
z ) ≤

√︃
2𝑐 (𝛽)LS 𝐷 (𝜇 (𝛽,𝜀)z | |𝜈 (𝛽)z )

holds, where 𝐷 denotes the KL-divergence and 𝑐 (𝛽)LS is the log-Sobolev constant of 𝜈 (𝛽)z . We have

𝐷 (𝜇 (𝛽,𝜀)z | |𝜈 (𝛽)z ) =E𝜃∼𝜇
[
log

(𝛽𝑀ℓ + 1/𝜀 + 𝑎𝑑𝛽∥∇𝐿z (𝜃)∥) exp (−𝛽𝐿z (𝜃)) /Λ𝜇
exp (−𝛽𝐿z (𝜃)) /Λ𝜈

]
≤E𝜃∼𝜇

[
log(𝛽𝑀ℓ + 1/𝜀 + 𝑎𝑑𝛽𝑀ℓ)

Λ𝜈

Λ𝜇

]
,

where Λ𝜇 and Λ𝜈 are normalizing constants of the density functions of 𝜇 (𝛽,𝜀)z and 𝜈 (𝛽)z respectively. We have

Λ𝜈

Λ𝜇
=

∫
Θ

exp (−𝛽𝐿z (𝜃)) 𝑑𝜃∫
Θ
(𝛽𝑀ℓ + 1/𝜀 + 𝑎𝑑𝛽∥∇𝐿z (𝜃)∥) exp (−𝛽𝐿z (𝜃)) 𝑑𝜃

≤ 1
𝛽𝑀ℓ + 1/𝜀 ,

hence we have

𝐷 (𝜇 (𝛽,𝜀)z | |𝜈 (𝛽)z ) ≤ log (1 + 𝑎𝑑𝛽𝜀𝑀ℓ) .

As a result, we obtain

E𝜃𝜇 [𝐿 (𝜃𝜇)] − E𝜃𝜈 [𝐿 (𝜃𝜈)] ≤ 𝑊
√︃

2𝑐 (𝛽)LS log (1 + 𝑎𝑑𝛽𝜀𝑀ℓ). (37)
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Second, we evaluate (35). Let 𝜈 (𝛽)z′ be the Gibbs distribution when one of the data 𝑧𝑖 is replaced by 𝑧′
𝑖
. In the same

way as Section 3.6 in Raginsky et al. (2017), we have

W2 (𝜈 (𝛽)z , 𝜈
(𝛽)
z′ ) ≤

2𝑐 (𝛽)LS 𝛽𝑀ℓ

𝑛
.

Hence, we have

E𝜃𝜈 [𝐿 (𝜃𝜈)] − E𝜃𝜈 [𝐿z (𝜃𝜈)] ≤ (𝑐1𝑊 + 𝐵)
2𝑐 (𝛽)LS 𝛽𝑀ℓ

𝑛
. (38)

Finally, we evaluate (36). This term can be evaluated on the same way as Proposition 3.4 in Raginsky et al. (2017) and
we have

E𝜃𝜈 [𝐿z (𝜃𝜈)] − inf
𝜃∈Θ

𝐿z (𝜃) ≤
1
𝛽

(
𝑑

2
log

(
2𝜋𝑒𝑊2

𝑑

)
− 𝑑

2
log

2𝜋
𝑐1𝛽

)
=
𝑑

2𝛽
log

(
𝑒𝑊2𝑐1𝛽

𝑑

)
. (39)

We combine the result (37), (38), and (39), then obtain the statement. □

G Proof of Theorem 2

Proof. Let 𝜃𝐾 , 𝜃𝜇 be the random variables whose distribution is 𝜇 (𝛽,𝜀)z,𝐾 and 𝜇 (𝛽,𝜀)z respectively. Let 𝐿∗z = min𝜃∈Θ 𝐿z (𝜃).
We have

E𝜃𝐾 [𝐿z (𝜃𝐾 )] − 𝐿∗z =(E𝜃𝐾 [𝐿z (𝜃𝐾 )] − E𝜃𝜇 [𝐿z (𝜃𝜇)]) + (E𝜃𝜇 [𝐿z (𝜃𝜇)] − 𝐿∗z).

As the first term of the right-hand side, we can use the Wasserstein distance in the same way as the proof of Theorem
5 as in (26). Hence, we have

E𝜃𝐾 [𝐿z (𝜃𝐾 )] − E𝜃𝜇 [𝐿z (𝜃𝜇)] ≤ (𝑐1𝑊 + 𝐵)
√︁
𝑊𝑑𝐾 (𝛽, 𝜀, 𝑑).

Further, using (32) in the Proof of Theorem 5,

E𝜃𝜇 [𝐿z (𝜃𝜇)] ≤
1
𝛽

(
𝑑

2
log

𝑒𝑊2𝑐1𝛽

𝑑
+ log

(
1 + 𝑎𝑑 (𝑐1𝑊 + 𝐵)

𝑀ℓ

))
+ 𝐿∗z

holds, which completes the proof. □

H Explicit citation of the existing theorems

Theorem 13 (Theorem 4, Gibbs & Su (2002)). On the compact setΩ, the Wasserstein metric 𝑑𝑊 and the total variation
distance 𝑑𝑇𝑉 satisfy the following relation:

𝑑𝑊 ≤ diam(Ω) · 𝑑𝑇𝑉 ,

where diam(Ω) = sup{𝑑 (𝑥, 𝑦) |𝑥, 𝑦 ∈ Ω}.
Theorem 14 (Corollary 2.3, Bolley & Villani (2005)). Let 𝑋 be a measurable space equipped with a measurable
distance 𝑑, let 𝑝 ≥ 1 and let 𝜈 be a probability measure on 𝑋 . Assume that there exist 𝑥0 ∈ 𝑋 and 𝛼 > 0 such that∫
𝑒𝛼𝑑 (𝑥0 ,𝑥 ) 𝑝𝑑𝜈(𝑥) is finite. Then, ∀𝜇 ∈ 𝑃(𝑋),

𝑊𝑝 (𝜇, 𝜈) ≤ 𝐶
[
𝐻 (𝜇 |𝜈)

1
𝑝 +

(
𝐻 (𝜇 |𝜈)

2

) 1
2𝑝

]
,

where

𝐶 = 2 inf
𝑥0∈𝑋,𝛼>0

(
1
𝛼

(
3
2
+ log

∫
𝑒𝛼𝑑 (𝑥0 ,𝑥 ) 𝑝𝑑𝜈(𝑥)

)) 1
𝑝

< ∞.
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Theorem 15 (Theorem 9.6.1, Bakry et al. (2014)). Let 𝜇 be a probability measure on 𝑀 . If 𝜇 satisfies a logarithmic
Sobolev inequality 𝐿𝑆(𝐶) for some constant 𝐶 > 0, then it satisfies following for every probability measure 𝜈 on 𝑀:

W2 (𝜇, 𝜈)2 ≤ 2𝐶 · 𝐷 (𝜈 | |𝜇),

where W2 denotes the Wasserstein-2 distance and 𝐷 denotes the Kullback-Leibler divergence.
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