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Abstract

We consider the problem of online finetuning the parameters of a language model
at test time, also known as dynamic evaluation. While it is generally known
that this approach improves the overall predictive performance, especially when
considering distributional shift between training and evaluation data, we here
emphasize the perspective that online adaptation turns parameters into temporally
changing states and provides a form of context-length extension with memory
in weights, more in line with the concept of memory in neuroscience. We pay
particular attention to the speed of adaptation (in terms of sample efficiency),
sensitivity to the overall distributional drift, and the computational overhead for
performing gradient computations and parameter updates. Our empirical study
provides insights on when online adaptation is particularly interesting. We highlight
that with online adaptation the conceptual distinction between in-context learning
and finetuning blurs: both are methods to condition the model on previously
observed tokens.

1 Introduction

Transformer-based language models can be conceptualized as systems with two distinct memory
components: One is given by the model’s parameters, and learning (through gradient descent)
can be seen as encoding information from the training set into this memory. The other one is the
context, which roughly correspond to the persistent hidden states in recurrent neural networks. For
transformers, context is a non-parametric form of memory: the tokens within the attention window.
LLMs rely heavily on context to condition the model towards desired behaviour. However, the
prompt is a precious resource, and for transformers the cost of inference grows with the size of
the attention window. This becomes more problematic in multimodal systems, where images or
short videos can easily exhaust the context tokens we can afford to use. With dynamic evaluation
[KKMR18, KKMR19], the idea of updating model parameters at test time, model parameters become
part of the temporal, changing state of the model. Parameters can capture longer-term information
that exceed the length of the context window and are also suited to adapt to distributional changes
that exceed the in-context adaptability of the model. Online learning therefore can be seen as one
particular type of memory, particularly suited to changes like style or topic, which appear to the model
as a distribution shift in the observations. We here investigate various trade-offs when online-adapting
transformer-based LLMs with gradient descent on long text sequences.

∗equal contribution

Workshop on Distribution Shifts, 37th Conference on Neural Information Processing Systems (NeurIPS 2023).



2 Methods for SGD online adaptation

In this section, we describe the methods that we put in place to make our study possible. These
methods have two main goals: (i) learn from a sequence of tokens longer than the model context,
and (ii) efficiently update the model parameters and reduce the memory and/or compute footprint of
online adaptation. The challenge is that transformer implementations operate on a limited, typically
fixed number of tokens each time they are invoked. To operate on longer sequences they have to be
broken into sub-sequences, and the model implementation operates on such a sub-sequence at a time.
We experiment with two strategies:

Overlapping. Considering a transformer implementation that processes 1000 tokens at a time:
Choosing an overlap of 500, we invoke the model on tokens [0, 1000), [500, 1500), [1000, 2000),
etc. Each token is encoded twice, once as a new token and once as context for later tokens. For the
purpose of computing the test-set log-losses, only the first encounter is recorded. For gradient steps
however we let all tokens supplied during model invocation contribute to the loss and thus to the
gradient computation. By adjusting the overlap we can adjust the computational cost but also the
number of gradient steps performed on each token.

Transformer-XL style. In [DYY+19] and [KKMR19] the authors use a form of streaming or KV
caching: instead of attending only to tokens that are computed during the current forwards pass, the
model can also attend to previously computed keys and values. As a result, each token is processed
exactly once, and serves as a prediction target in exactly one gradient step.

Empirically we observe that Transformer-XL-style adaptation performs as well as overlapping
adaptation and requires significantly fewer computational resources; see Appendix C. We therefore
focus on Transformer-XL-style adaptation.

Compared to static evaluation, online adaptation requires additional computational resources for
the backward pass and, typically, additional memory for the optimizer state. We investigate two
approaches to mitigate these costs:

Reducing the Update Frequency. In order to vary the computational cost of online learning, and
to construct Pareto fronts that highlight the compute vs. performance trade-offs, we update the
parameters only every nth forward step. While this approach leads to a suboptimal performance, we
show in our experiments that it can strike interesting trade-offs.

Online LoRA adaptation. Reducing the memory footprint of finetuning LLMs has recently been
an active research direction. A successful approach proposed in [HSW+21] consists of adding low-
rank matrices to the transformer layers, and only adapting the parameters of these matrices during
finetuning. This greatly reduces the number of parameters that need to be adapted, and therefore the
memory requirements for downstream adaptation with negligible additional computational cost.

3 Experimental Setup

To investigate the online adaptability of transformers we use the books from Project-Gutenberg (the
PG-19 dataset [RPJ+19]) as a source for long and consistent text sequences. The starting point for all
experiments is a transformer pretrained on the C4 dataset [RSR+20]. We experiment with different
model-sizes, between 150M and 1B parameters; Appendix B contains the experimental details. The
pretrained models are then finetuned on books from the PG-19 training set because the content and
style of text in the C4 dataset, which consists mostly of internet-scraped data, and PG-19, which
contains 28′602 books2 from before 1919, is significantly different (see Figure 9 and Appendix A).
The finetuned models are then tested against the sequence of 100 books from the PG-19 test set. For
the test sequence we record the (cumulative) log-losses for all tokens. We concatenate the 100 books
from the PG-19 test set, in the order they are stored, to form a fixed sequence of 11.8M tokens.

Figure 1 visualizes typical results: We compare static evaluation vs. dynamic evaluation vs. dynamic
evaluation where the model is reset to the finetuned model at each book boundary. The static model
accumulates in total 26.73 M nats log-loss on the test sequence (2.26 nats/token), while the dynamic
models accumulate 26.38 M and 26.20 M nats respectively (corresponding to 2.23 and 2.20 nat/token).
The regret plots show the cumulative log-loss relative to the static comparator: a flat curve indicates

2PG-19 training set size
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Figure 1: Left: Cumulative log-loss for dynamic evaluation relative to static evaluation (regret). The
starting point is always a model that has been finetuned on the PG-19 training set. Right: Detailed
view of the regret for the first 5 books. Vertical green lines indicate the beginning of new books.

that a model has on average the same per-token log-loss as the comparator around the position, while
positive and negative slopes indicate a locally higher or lower log-loss repspectively. It often takes
the online adapting model some thousand tokens to show a clear advantage over the static model,
and just after book boundaries, a continuously adapted model often underperforms compared to the
pretrained (static or dynamic) model. This may not be surprising as the continuously learning model
has specialized to the previous books, but also suggests that more advanced adaptation methods
should be able to close this gap.

3.1 Online Learning - An analysis of compute vs. performance

In order to understand the impact of online learning and its interaction with in-context learning, we
conduct a large exploration varying:

• The number of samples used for finetuning: This allows us to control the distribution
shift that the model is faced with – the more the model is finetuned on the training set of
PG-19, the more it is in-distribution with respect to the test sequence.

• The model context size: We hypothesize that online learning can have similar benefits as
larger context windows. We therefore compare online adapted models with short context
windows to in-context learning in models with longer context windows.

• The model size: We are interested in understanding how our observations generalize across
different scales.

In Figure 2, we first look at a single model size (1B parameters) and compare the Pareto fronts
corresponding to two context sizes (512 and 2048) as we vary the number of samples the model
is finetuned on. We observe that when the model is directly updated online on the PG-19 test set
without prior finetuning, the models with a smaller context exhibit a better compute to performance
trade-off than the models with a larger context (left panel). As the amount of finetuning increases, this
advantage is reduced (middle panel) and even inverted (right panel). These observations generalize
to other model sizes (figures in the appendix). These results suggest that the models favor memory
in weights when faced with a large distribution shift between the pretraining and online adaptation
data. When the models are more in-distribution with respect to the online data, the results suggest
that at a fixed budget, it is better to use a model with a larger context window. Online adaptation
however unsurprisingly always improves the performance of the models. Moreover, models with
shorter context and online adaptation can achieve a competitive performance to the models with
longer context. While this can be more expensive in terms of FLOPs, it comes at a lower memory
requirement.

Figure 3 gathers the results obtained with different model sizes (150M , 400M and 1B parameters).
For this figure, we show only models that are updated at every step (corresponding to an update
frequency of 1 in Figure 2). We observe that when we increase the amount of finetuning, the number
of the static models that appear on the Pareto front increases. We however similarly observe that
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Figure 2: Performance vs. compute (FLOPs) for static and dynamic evaluation. Models with
1 billion parameters, varying the context size and the number of finetuning samples (books). The
Pareto front is constructed by varying the update frequency.
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Figure 3: Performance vs. compute (FLOPs) for static and dynamic evaluation. Varying model
and context sizes, and the number of finetuning samples. The models are updated with every new
observation.

online adaptation always improves the performance, smaller models with online adaptation can
achieve a competitive and sometimes better performance than larger models.

Finally, Figure 9 in Appendix B showcases how the static and dynamic model performance scale with
the amount of finetuning and the model size. The figure shows that while finetuning reduces the gap
between static and online evaluation, this gap does not disappear, but rather becomes constant once
the model adapts to the change in distribution. Similarly, increasing model size, while also improving
overall performance, does not replace the benefit of online learning; see Appendix B.

4 Conclusion

In this paper, we offered a new perspective of online adaptation of LLMs (a.k.a. dynamic evaluation).
Through extensive experiments, we show that when a model is faced with a significant distribution
shift, online learning with a smaller context window and/or a smaller model can lead to a better
compute-performance Pareto front, which suggests a superiority of the memory in weights over the
memory in activations associated with in-context learning. This advantage is reduced and eventually
disappears when the model is finetuned to the target distribution before the online adaptation phase.
We however observe (as is classically the case with dynamic evaluation) that online learning always
improves the performance. Moreover, for models that are in-distribution, online learning with a
smaller context (and therefore smaller memory requirements) can close the gap with in-context
learning with a larger context. It is also worth noting that the best results observed with online
adaptation employ a simple strategy to avoid that the models overfit to data in the local context by
resetting the weights to their value at the start of the online adaptation phase.
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This study opens up many interesting research avenues, such as improving the efficiency of online
learning (in terms of memory or compute), automatic detection of reset points, and a better under-
standing of the difference between what the weight memory and the activation memory capture. In
particular, it is to be expected that weight memory would be better suited to store the style or topic
of a discussion, which are perceived by the model as a distribution change. Context and retrieval is
better at capturing details, leading to a separation of concerns similar to how memory of biological
systems is categorized into different types in cognitive sciences or neuroscience.
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Supplementary Material

A Adaptation dataset choice

In order to test the role of online adaptation as a context extension mechanism, the criteria we used to
select a downstream dataset are the following:

• Sequence lengths: Our hypothesis is that online learning extends the context beyond the
window with which the transformer is trained. In order to test this, we need a dataset that
has a large number of entries that exceed our models’ context length. Figure 4 shows the
length distribution in PG-19 and in 10 million samples of C4. PG-19 contains 28′602 books.
We observe that over 99% of the PG-19 dataset exceeds the largest context that we use in
our experiments, compared to only 3% for C4.

• Token distribution: Our study considers online learning when the model is faced with
different levels of distribution shift. We therefore chose a pretraining and an online dataset
that have different distributions. Figure 5 shows the token distribution for C4 and PG-19,
confirming that they are good candidates for our study. In our experiments, to vary the
distribution shift, the pretrained model on C4 is first finetuned on a subset of PG-19 (of size
0, 1′000 and 10′000) before going through the phase of online adaptation.

Figure 4: Comparing sequence length distribution between PG-19 and C4 datasets. For C4, this
histogram corresponds to a subset of 10 million samples. The vertical dashed lines show the context
length used in our experiments.

B Experimental Details

We use standard transformer architectures [VSP+17] with pre-layer normalization [XYH+20], GeLU
activation functions and relative positional encoding. The context size (attention-window) is 2048
tokens by default, however we additionally trained models with 512 attention size for ablation studies.
We use a sentence piece tokenizer [KR18] with a vocabulary of 32k entries. The table details the
architecture choices the for the three model sizes under consideration:
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Figure 5: Comparing token distribution between PG-19 and C4 datasets. For C4, this histogram
represents a subset of 10 million samples.

model size num blocks backbone width num heads key/value size

150M 12 896 16 64
400M 12 1536 12 128

1B 24 2048 16 128

Pretraining. Training on C4 is performed with AdamW [LH17] with linear learning rate warm-up
over 10k steps and successive cosine learning rate decay:

model size training steps batch size max LR weight decay

150M 12k 128 2e-4 0.1
400M 30k 128 2e-4 0.1

1B 48k 256 2e-4 0.1

Finetuning. We finetune the C4 pretrained model on books from the PG-19 training set to align it
with the general distribution of text found in PG-19. By varying the size of the finetuning dataset
we can adjust the model to be more or less in-distribution with respect to the evaluation data. We
use AdamW [LH17] for finetuning and maintain a separate validation set for early stopping and
hyperparameter tuning. We use linear-warmup and cosine decay learning rate schedule as during
pretraining, however we stop early as soon as the validation performance degrades. We sweep over
[1e-4, 2e-4, 3e-4] as maximum learning rates and configure cosine learning rate decay to complete
after 2 epochs. Stopping early and avoiding overfitting during the finetuning phase is crucial to obtain
good performance during evaluation. Note that finetuning, just like pretraining, is performed by i.i.d.
sampling text segments from their respective training corpus.

Evaluation. During the dynamic evaluation phase we again use AdamW and sweep over the
learning rates [1e-6, 3e-6, 1e-5, 3e-5] without any learning-rate schedule. We always report and plot
the results for the best performing learning-rate. For Transformer-XL style updating we experimented
with different increment-sizes ∈ {32, 64, 128, 256, 512} (the number of new tokens processed in each
forward pass) and observed that the results are not very sensitive to this choice (see Figure 6). If not
mentioned otherwise, we choose 128 for computational convenience. Note that each token can attend
to the full 2048 previously computed keys and values.
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C Overlapping vs. Online + KV-Caching

Figure 6 shows the results when using Transformer-XL style online adaptation with varying increment
lengths relative to overlapping online learning with 50% (= 1024 tokens) overlap. We observe that
the differences are minuscule. We thus focus on Transformer-XL style online learning because it has
the computational advantage of encoding every token only once.
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Figure 6: Regret plot of Transformer-XL style online learning with varying increment-size relative
to Overlapping online learning with 0.5 overlap. We observe that Transformer-XL style online
learning generally leads to 20k to 70k fewer accumulated loss. However, 70k nats over 11.8M
tokens corresponds to only about 0.006 nat/token uplift – a minuscule improvement compared to the
differences plotted in Figures 1 to 11.

D Online Learning - An analysis of compute vs. performance - More results.

In Figure 2, we report the performance-compute trade-off we observed with a 1B parameter model
when we vary the context length. In this section, we show results obtained with models of 150M
(Figure 7) and 400M (Figure 8) parameters. We observe similar behavior across all model sizes: The
models with shorter context windows exhibit a competitive or better Pareto front than the models
with longer context when they are adapted online on PG-19 without finetuning. The order of Pareto
fronts is reversed when the models are first finetuned on the training data of PG-19.

Context

Update freq.

dynamic
static

Figure 7: Performance vs. compute (FLOPs). Models with 150 million parameters. Pareto fronts
for each context size and number of finetuning samples constructed by varying the update frequency
and evaluation methods (static vs. dynamic)

In Figure 9, the left panel correspond to the results obtained with a 400M parameters model, and
the right panel is obtained with models finetuned on 10′000 books from the PG-19 training set and
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Figure 8: Performance vs. compute (FLOPs). Models with 400 million parameters. Pareto fronts
for each context size and number of finetuning samples constructed by varying the update frequency
and evaluation methods (static vs. dynamic)

online-adapted with resets at book boundaries. While increasing the amount of finetuning reduces
the gap between the performance obtained by in-context learning only and by online adaptation,
increasing the model sizes does not exhibit any diminishing returns for the range of sizes we explore
(150M to 1B). This figure also highlights that as expected, the gap between the dynamic-but-resetted
models and the continuously adapted models is increasing as the model is finetuned on more data. It
is however notable that the latter is still outperforming the static model, even after finetuning on the
whole training set of PG-19.
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Figure 9: Left: Scaling of the average PG-19 test loss with size of PG-19 i.i.d. finetuning dataset
(400 M model). Right: Average test NLL as a function of the model size (after finetuning on 10k
books)

E Updating only subsets of the parameters

We explore the performance of dynamic evaluation when adapting only subsets of the complete
model. For example, we can train only the top-most transformer block, a block in the middle, or at
the beginning. Figure 10 summarizes the results: We observe that generally adapting transformer
blocks in the middle of the stack is most effective.

F LoRA adaptation

In this section, we show the results that we obtained when applying LoRA [HSW+21] to the MLPs
in the 1B-parameter transformer. This is different from the way this adaptation strategy has been
implemented in [HSW+21] where LoRA is applied to the attention layers. The reason for this choice
is emprirical: We applied adapters to multiple types of layers in the models, and adapting on the
MLPs gave the best performance.
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Figure 10: Adapting only a subset of the transformer blocks: The blue curve shows the average
log-loss when updating a single transformer block at one of the layer indices 1 to 12. The yellow
curve shows the performance when updating two successive blocks at layers 1+2, 3+4, 5+6, . . . .

Figure 11 shows the cumulative log-loss for dynamic evaluation with LoRA relative to full finetuning.
This regret plot shows that LoRA models achieve a lower performance than the fully finetuned model,
but a significantly higher performance than the static model (blue line in the figure). It is worth
noticing however that LoRA comes at a lower computational cost (as shown in Figure 12) and a much
lower memory requirements for trainable parameters (as shown in Figure 13).

Figure 11: Cumulative log-loss for dynamic evaluation with LoRA relative to full finetuning
(regret). Note the steep blue curves for static model evaluation: static evaluation quickly accumulates
dramatically more log-loss than all the dynamic evaluated models.

10



Update Freq.

LoRA Rank

Figure 12: Performance vs. Compute (FLOPs) Models with 1 billion parameters adapted online
with LoRA (rank indicated in the legend) compared to static models and fully finetuned models).

LoRA Rank

Figure 13: Performance vs. size of trainable parameters. Models with 1 billion parameters adapted
online with LoRA (rank indicated in the legend) compared to static models and fully finetuned models
(LoRA rank = 0).

11


	Introduction
	Methods for SGD online adaptation
	Experimental Setup
	Online Learning - An analysis of compute vs. performance

	Conclusion
	Adaptation dataset choice
	Experimental Details
	Overlapping vs. Online + KV-Caching
	Online Learning - An analysis of compute vs. performance - More results.
	Updating only subsets of the parameters
	LoRA adaptation


