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ABSTRACT

Although recent works have demonstrated that Large Language Models (LLMs)
are starting to excel at following human instructions, their strategic thinking, plan-
ning, and long-term decision-making skills remain unclear. To rigorously evaluate
these capabilities, we propose leveraging strategic gaming environments as they
provide well-defined, structured benchmarks with clear success criteria. Specifi-
cally, we adopt multiple popular reasoning-oriented autonomous agents and ana-
lyze their performances over two popular strategic gaming environments: Tic-Tac-
Toe (one of the most popular complete information gaming) and Texas Hold’em
Poker (one of the most popular incomplete information games). To our surprise,
we find that even one of the most advanced LLMs, ChatGPT, is largely ineffective
in these two gaming scenarios. An even more surprising finding is that state-of-
the-art reasoning methods, e.g., Chain-of-Thought, ReAct, etc., do not help much.
For instance, in the naive 3×3 Tic-Tac-Toe environment, nearly all agents only
perform slightly better than the random agent, i.e., the agent that randomly se-
lects an action at each step. To understand this failure mode in more depth, we
carry out a detailed demographic analysis. Our analysis uncovers two potential
reasons behind this weakness: 1) autonomous agents lack gaming intents, i.e.,
they cannot “think ahead” to defend against opponents’ future moves; 2) LLMs
suffer from severe hallucinations and factual errors, e.g., even advanced reason-
ing agents fail to recognize immediate win/lose situations. With these insights,
we take the first step to propose a simple yet effective Think Ahead Language-
powered Gaming Agent (TALAGA). TALAGA recursively thinks ahead of the op-
ponent’s move, evaluates current gaming situations, and adjusts action selection
with reward signal backtrack. We further empower TALAGA with additional fea-
tures to alleviate hallucinations and factual errors, such as uncertainty estimation.
Experimental results demonstrate that TALAGA significantly outperforms existing
reasoning autonomous agents. A broader implication of our exploration is that
games can serve as stress tests for LLMs, pushing them to their limits and un-
covering vulnerabilities or weaknesses. We hope that this paper sheds new light
on the limitations of current autonomous reasoning agents, which, in turn, would
help with model improvements and achieve greater robustness.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) have witnessed remarkable advancements in nat-
ural language inference and generation. Models such as ChatGPT have astounded us with their
proficiency in unraveling the intricate nuances of human language. However, beneath their impres-
sive linguistic capabilities lies a critical question that has piqued the curiosity of researchers and
practitioners alike: “what lies beyond language comprehension for LLMs?”

While LLM’s language-related feats have been well-documented and celebrated, their ability for
higher-level reasoning and strategic planning remains relatively uncharted territory. Some recent
works have devised approaches to improve the reasoning and planning capabilities of LLMs. For
instance, Chain-of-Thought (CoT) Wei et al. (2022), Tree-of-Thought (ToT) Yao et al. (2023), and
Graph-of-Thought (GoT) Besta et al. (2023) propose to reason in step-by-step-like manners. On the
other hand, methods such as ReAct Yao et al. (2022) and Reflexion Shinn et al. (2023) prompt
LLMs to “reason before acting” and “self-reflection” to accumulate insights and experiences that
are used to improve behavior for the next trial. These reasoning approaches are shown to improve

1



Under review as a conference paper at ICLR 2024

performance on a range of benchmarks such as math word problems, symbolic reasoning, and even
solitary games like Game of 24 and Mini Crosswords. However, as we steer the course of AI
development towards more comprehensive assessments of cognitive prowess Sumers et al. (2023), it
becomes increasingly apparent that these benchmarks, while valuable, possess inherent limitations.
They often evaluate LLMs in isolation, without considering the dynamic and strategic interactions
that frequently occur in real-world scenarios.

This paper responds to the imperative need for a more holistic evaluation framework by introducing a
novel gaming benchmark that incorporates strategic opponents. Specifically, we propose to use two
popular strategic gaming environments—Tic-Tac-Toe and Texas Hold’em Poker—as they provide
well-defined, structured benchmarks with clear success criteria. In this context, the agent generates
well-formatted gaming path during the gaming process. In this way, we are able to analyze LLMs’
selection and probe their errors. Furthermore, our benchmarks also allow to use diverse opponents
that could expose intricate hallucinations Ji et al. (2023) in LLM reasoning.

Through these benchmarks, we endeavor to provide a more nuanced understanding of LLM reason-
ing capabilities, addressing the pressing question of whether these models can navigate complex,
interactive situations and outwit strategic opponents–an essential aspect of their potential applica-
tions in various real-world domains. To achieve this, we carry out a detailed performance analysis
using one advanced LLMs, such as ChatGPT , and evaluate the performance of several state-of-the-
art reasoning schemes against diverse opponents.

To our surprise, we found that most of these reasoning methods are largely ineffective in our strategic
gaming scenarios. For instance, in the naive 3×3 Tic-Tac-Toe environment, nearly all state-of-the-
art reasoning methods only perform slightly better than the random opponent, i.e., the agent that
randomly selects an action at each step. With detailed demographic analysis, we conclude the main
reasons behind this failure model as two-fold: ➊ Autonomous agents lack gaming intent, i.e., they
cannot think ahead to defend the future moves from their opponents; ➋ LLMs suffer from severe
hallucinations Duan et al. (2023); Manakul et al. (2023) and factual errors Bian et al. (2023);
Karpinska & Iyyer (2023); Gekhman et al. (2023), e.g., LLMs cannot recognize immediate win
situations (whether two/three symbols are in a row for Tic-Tac-Toe), which makes them lose even
with reasonable planning or thoughts.

To overcome these limitations, we propose a simple yet effective Think Ahead Language-powered
Gaming Agent (TALAGA). TALAGA uses a recursive prompting mechanism that automatically ana-
lyzes the opponents’ potential future moves/actions and assigns reward signals for these situations.
Then, the reward signal is backtracked to the current action and eventually dictates the action selec-
tion of TALAGA. To alleviate hallucinations and factual errors, we integrate uncertainty estimation
in our framework so that TALAGA can carry out calibrated reasoning. Under comprehensive gaming
settings, TALAGA significantly outperforms state-of-the-art reasoning approaches. Our key contri-
butions are summarized as follows:

• Strategic Gaming Benchmarks: We propose to use strategic gaming benchmarks for a
comprehensive assessment of reasoning capabilities of LLMs.

• Unraveling Failure Mode of LLM Reasoning: We found that most of the state-of-the-art
reasoning methods are largely ineffective in our strategic gaming scenarios.

• Insights Into the Failure Mode: We identified the reasons behind this failure model –
unable to think ahead and severe hallucinations.

• An Improved Reasoning Strategy: To fix these issues, we propose a novel reasoning
method referred to as TALAGA. Experimental results demonstrate that our method signifi-
cantly outperforms existing reasoning approaches.

2 RELATED WORKS

Reasoning and Planning with LLMs. Recently, LLMs have demonstrated reasoning and planning
abilities by breaking down intricate questions into sequential intermediate steps, known as Chain-of-
Thought (CoT) Wei et al. (2022), prior to generating the final response. Building upon this concept,
Self-Consistency Wang et al. (2022) samples multiple chains and selects the best answer via majority
voting, ToT Yao et al. (2023) models the LLM reasoning process as a tree structure, GoT Besta et al.
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Agent v.s. Agent Random MinMax Prompt CoT CoT-SC ToT ReAct Avg. Win Rate
Random - 4.50% 40.00% 36.50% 37.50% 33.50% 37.50% 31.58%

MinMax 86.00% - 92.00% 83.50% 85.00% 81.50% 76.00% 84.00%

Prompt 54.50% 5.00% - 24.00% 20.00% 24.00% 24.50% 25.33%

CoT 54.00% 4.50% 43.50% - 36.00% 42.50% 39.00% 36.58%

CoT-SC 52.50% 7.00% 38.00% 36.00% - 31.50% 36.00% 33.50%

ToT 55.00% 8.00% 52.00% 30.00% 29.00% - 48.00% 37.00%

ReAct 54.00% 6.00% 38.50% 39.00% 33.50% 38.50% - 34.92%

Avg. Loss Rate 59.33% 5.83% 50.67% 41.50% 40.17% 41.92% 43.50% -

Table 1: Benchmark existing reasoning agents over the Tic-Tac-Toe environment. Note that the
game result can be draw, so the sum of the Win Rate of a pair of two agents is not 100%. It is shown
that existing autonomous reasoning agents are largely ineffective for the simple 3×3 Tic-Tac-Toe
gaming task. Only ToT and CoT outperform Random agent with moderate margins and all other
agents are just slightly better or even worse than Random.
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(a) The results of Random agent against other agents.
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(b) The results of Prompt agents against other agents and ReAct v.s. ToT in the last column.

Figure 1: X-axis: the number of hands, Y-axis: the remaining chips for each player. The per-
formance of reasoning agents in the Texas Holdem Poker environment. The performance of au-
tonomous agents in Texas Holdem Poker gaming. Standard derivations over 10 trials are shown in
shadow areas. Among these agents, Promptworks better than other methods and ReAct is slightly
worse than Random.

(2023) models the information generated by an LLM as an arbitrary graph, where the information
elements as vertices, and dependencies as edges. In an orthogonal direction, RoT Lee & Kim (2023)
encourages LLMs to segment a problem into multiple contexts, enabling context-specific operations.
Kojima et al. (2022) has demonstrated the proficiency of LLMs as zero-shot reasoners by simply
adding ”Let’s think step by step” before each answer. In addition, LLMs have achieved successful
results in planning and action generation Wu et al. (2023); Huang et al. (2022). Driess et al. (2023)
proposes a multimodal language model for embodied reasoning tasks, visual-language tasks, and
language tasks. Beyond that, Liu et al. (2023a) translates such intermediate steps into executable
programming languages to conduct classical planning algorithms.

LLMs as Autonomous Agents. Conventional reinforcement learning based frameworks have ex-
hibited great achievement in Autonomous Agents Silver et al. (2016); Schrittwieser et al. (2020);
Zhao et al. (2022), but require considerable training cost. Recently, Autonomous Agents have
driven zero/few-shot LLMs to achieve complex reasoning and planning tasks through prompt en-
gineering Liu et al. (2023b); Xi et al. (2023); Xiang et al. (2023). Yao et al. (2022); Shinn et al.
(2023) endow agents with the capability to engage in introspection regarding the feedback provided
by LLMs. Zhou et al. (2023) completes tasks with an unprecedented degree of autonomy. Cai et al.
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the opponent’s move

GPT-3.5-turbo thought:
“Your 'O' placements 
don't immediately 
threaten a win on the 
next move”, which is 
incorrect.

the opponent’s move

Factual Error Chain-of-Thought GPT-3.5-turbo’s move

(a) factual error: LLMs failed to recognize immediate win/lose situations.

Hallucination Prompt: Currently, the opponent has finished move Column 2, Row 1, you have
finished moves Column 1, Row 1 and Column 2, Row 2. Assume the opponent 
will take Column 2, Row 3 as the next move, what’s the advantage score for this 
move?

current situation

GPT-3.5-turbo: In this case, the opponent’s next move (Column2, Row3)
completes a vertical line of O’s in the second column. This means the opponent 
will have three O’s in a row vertically, which is a winning combination. Therefore, 
the advantage score for the opponent is 1.

GPT-3.5-turbo thought Column 2, Row 2 is occupied by the opponent’s symbol, but it 
is occupied by the GPT-3.5-turbo itself, which is a hallucination of current situation.

(b) hallucination: LLMs mistake his own chess/symbol for his opponent’s.

Figure 2: Some representative failure patterns of GPT-3.5-turbo in a 3× 3 Tic-Tac-Toe game.

(2023) proposes a closed-loop framework empowering large language models (LLMs) to create and
utilize their own tools for diverse tasks. Lin et al. (2023); Feng et al. (2023) leverage human in-
teraction with LLMs. Furthermore, multi-agent systems are also empowered by LLMs, Shen et al.
(2023) leverages ChatGPT to connect various AI models in Hugging Face to solve AI tasks. Within
the studies in Li et al. (2023); Park et al. (2023), cooperative behaviors emerge autonomously within
a group of agents, exemplifying the spontaneous development of teamwork dynamics. Chen et al.
(2023) can leverage group cooperation to handle more complex scenarios and dynamically adjust
its composition according to the current state. Although existing LLM-based autonomous agents
have demonstrated remarkable success in addressing complex tasks, their applicability to dynamic
gaming scenarios remains limited, thereby motivating the development of our TALAGA framework.

3 BENCHMARK SOTA AUTONOMOUS REASONING AGENTS

In this section, we will introduce our benchmark specifications and conduct comprehensive ex-
periments to analyze the performance of existing reasoning agents over rigorous gaming scenarios
(Tic-Tac-Toe and Texas Hold’em Poker1).

3.1 PRELIMINARY

There are two rigorous gaming tasks in our environment: Tic-Tac-Toc and Texas Hold’em Poker.
For Tic-Tac-Toe, we will utilize the version of 3×3 grid with the winning length as 3. The first-
go player will obtain large advantages in this game: 1) he will have one more chance to place the
symbol; 2) he can choose to take the strategic center position. Therefore, when performing agent-to-
agent experiments, we will execute 200 matches with each agent going first for 100 matches. Then,
we use the average rates of win and loss as the metrics to evaluate performance.

In terms of Texas Hold’em Poker, for simplicity, we only adopt 8 actions in the game, including
FOLD, CHECK, CALL, RAISE 3BB, RAISE HALF POT, RAISE POT, RAISE 2POT, ALL IN,
SMALL BLIND, BIG BLIND. Detailed explanations of these actions can be found in Appendix B.

1https://github.com/dickreuter/neuron_poker
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Initially, each agent will be assigned $200 chips. As the game goes on, the agent can either earn chips
from others or lose their chips, and the game finishes when only one player has chips. Therefore we
will utilize the number of being final winner as the main metric.

Besides, we mainly consider 7 agents (5 LLMs-powered agents and 2 baseline agents) and inves-
tigate their performance over our rigorous gaming environments: ➊ Random: the agent that ran-
domly selects action at each step; ➋ MinMax: the agent that selects action based on conventional
optimization-based minimax gaming strategy (only compatible with Tic-Tac-Toe); ➌ Prompt: the
agent that is directly asked to return answers, without planning or thoughts; ➍ Chain-of-Thought
(CoT): the agent that reasons through thinking step by step; ➎ Self-Consistent CoT (CoT-SC): the
agent that utilizes multiple step-by-step-thinking trajectories (the number of trajectories is set to 3 by
default) during reasoning; ➏ Tree-of-Thought (ToT): the agent that augmented with exploration and
deliberate decision-making, i.e., self-evaluation (the number of generations and votes are set to 3 by
default). ➐ ReAct: the agent that follows reasoning-before-acting policy. We use gpt-3.5-turbo to
drive all the agents.

It is worth noting that some agents are not originally designed for interactive gaming tasks. For
instance, ReAct requires a pre-defined action space for acting. In Appendix C, we provide how
we make them available to our gaming environment for each method in detail.

3.2 EMPIRICAL EVALUATION

We first conduct agent-to-agent Tic-Tac-Toc matches and report their average win rate and average
loss rate. Results are summarized in Table 1. Surprisingly, most advanced reasoning agents work
only slightly better than Random agent. Prompt works even worse than Random. Among these
methods, ToT achieves the highest average win rate (37%) and CoT-SC achieves the lowest loss
rate (40.17%). Based on these results, we can conclude that even though 3×3 Tic-Tac-Toe has very
limited search space and action space, it still remains challenging for LLMs-powered reasoning
agents.

In Figure 1b, we present the performance of reasoning agents when playing Texas Hold’em Poker in
an agent-to-agent manner. We provide the performances of Random v.s. other agents and Prompt
v.s. other agents. We found that Prompt works better than others, even for those with advanced
reasoning skills. ReAct is slightly worse than Random agent.

3.3 ANALYTICAL INSIGHTS

According to the above results, here we provide possible reasons why existing agents are not suitable
for our rigorous gaming scenarios. With careful human examinations, we summarize the following
potential reasons for the limited success of reasoning agents over rigorous gaming tasks:

Lacking Gaming Intent. We found that existing reasoning agents can only reason based on the
current state, rather than think ahead to defend against the opponent’s future moves. We believe it
is because reasoning agents are designed for complex planning or reasoning tasks, such as Game of
24 Yao et al. (2023), ALFWorld Shridhar et al. (2020), where there is no opponent in these situations,
rather than gaming.

Hallucination and Factual Error. We found that a lot of hallucinations and factual errors occur
during reasoning, such as the provided representative examples in Figure 2b.

Apart from these limitations, we also found that reasoning is important for gaming tasks, e.g., meth-
ods like CoT, CoT-SC, ToT all work better than the naive Prompt. However, advanced reasoning
methods do not always work better, e.g., CoT-SC is worse than CoT in both Tic-Tac-Toe and Texas
Hold’em Poker. One of the possible reasons is that multi-step reasoning is more likely to introduce
more hallucinations, which eventually hurt the performance.

4 TALAGA: THINK AHEAD LANGUAGE-POWERED GAMING AGENT

As mentioned in Section 3.3, existing reasoning agents have limited effectiveness for rigorous gam-
ing tasks suffering from weak gaming intent and serious hallucinations and factual errors. In this
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section, we introduce our TALAGA in detail. Specifically, we first formally describe the language-
powered gaming process. Then we introduce our algorithm of recursively thinking ahead and also
advanced techniques to mitigate hallucinations and factual errors. The structure of TALAGA is pre-
sented in Figure 3, to provide an intuitive understanding.

4.1 FORMULATION OF LLM-POWERED GAMING PROCESS

We formulate the gaming process as a discrete decision-making process among actors, under the
interaction with the gaming environment. We define actors as LLMs-powered agents that take nat-
ural language (or prompts) as inputs and generate corresponding actions as outputs. Without loss
of generality, we assume there are two actors participating in this gaming process. Considering the
t-th step of this process, we denote by st ∈ S the state that the two actors observed, and at, ât ∈ A
the actions sampled by the two actors, where S is the infinite state space and A is the infinite action
space. The state transition kernel from st to st+1 can be formulated as st+1 = T (st, at) where
at ∼ p(at|st, x), p(at) refers to the generative distribution of the backbone LLMs, and x is the nec-
essary instructions, e.g., few-shot prompts, chain-of-thought prompts. In this way, the two-agents
gaming process can be represented as the sequence (s0, a0, s1, â1, s2, · · · , sN), where s0 is the ini-
tial state and sN is one of the terminal states, e.g., a win/draw/loss situation. In this process, the
two actors will alternatively sample actions to achieve new states, aiming to maximize their winning
rates.

We denote external instructions by x, which will be fed into actors to achieve various purposes,
e.g., few-shot prompts, chain-of-thoughts, and instruction following. For simplicity, we do not
distinguish these instructions in this section and omit the explanation of x unless it is necessary. We
provide all the x utilized in this section in Appendix A.

4.2 RECURSIVELY THINK AHEAD

Foresight is one of the significant differentiating factors between top-tier players and average play-
ers, especially in strategy games like chess and card games. It requires the players to calculate
moves ahead, visualize the board’s possible states, and evaluate the consequences of various move
sequences. To simulate this process, we formulate TALAGA as the ensemble of modules, utilizing
multiple individual actors:

• Main Actor M : interacting with the environment, gathering feedback from other actors,
and generating the next action, i.e., at ∼ PM(at|st, x) where st is the current state and x is
the external instructions/feedback.

• Reward Actor MR: working as a signal function to evaluate the reward signals of different
actions, i.e., r ∼ PR(r|st, x).

• Anticipation Actor MO: an imaginary opponent, predicting action ao,t to beat M at state
st, i.e., âo,t ∼ PO(âo,t|st, x).

Here PM, PR and PO are the generative distributions of the backbone LLMs for M,MR and MO,
respectively.

Some conventional optimization based multi-agent gaming frameworks, such as minimax gam-
ing Lan et al. (2020), are standard think-ahead frameworks. In these frameworks, both actors, as-
sumptive to be sufficiently smart, will always sample the actions that maximize their own rewards.
Our recursively-think-ahead mechanism follows this simple and classic protocol. Specifically, at
the beginning of each gaming step t, we first sample n desired actions At = {ã1t , ã2t , · · · , ãnt } ∼
PM (ãt|st, x) from M as the candidacy actions, given current state st. Then, we formulate the
think-ahead process as the pseudo-gaming with MO, as the following sequence:

(st, ãt, st+1, âo,t+1, st+2, ãt+2, · · · , sT), (1)

where ãt ∈ At is a candidacy action at pseudo-gaming step t, âo,t+1 ∼ PO(âo,t|st+1, x) is the
sampled action from imaginary opponent MO, and sT is a terminal state, e.g. achieves win/draw/lose
situation or achieves state st+k where k is the maximum allowed number of think-ahead steps.
Once the terminal state is achieved in pseudo-gaming, the reward agent MR will perform situation
assessment by answering an advantage score, rT, to describe how many advantages the actor M
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Keep recursive until achieve the maximum
allowed number of think-ahead step

Figure 3: The tree representation of TALAGA. Each trajectory is equivalent to a pseudo-gaming
sequence, as described in Eq. (1). TALAGA reasons in a recursive manner.

has at state sT : rsT ∼ Po(rT|sT, T, x), (0 ≤ r ≤ 1). Theoretically, if we traverse all the possible
combinations of candidacy actions and always take k steps to achieve terminal states, there will be a
k-layer decision-making tree constructed with nk leave nodes, which indicates there will be at most
nk terminal states and advantage scores in total.

Once we finish traversing this decision tree and obtain advantage scores for each terminal state, we
will perform reward signal backtrack from state sT to st and select action at, in a minimax manner:

max
at∈A

min
ât+1∈A

(rstPO(ât+1|st+1)PM(at|st)). (2)

With this minimax reward backtrack, we assume that the opponent will always choose the “worst
case“ during the gaming, which makes our agent more robust to the opponents. Once the traceback
happens to the root of the tree, there will be a reward signal for each candidacy action in At. Then,
we simply select the action with the highest rewards as the next action. The key design of recursively
thinking ahead is the imaginary opponent MO that tries to block the winning of M and the minimax
reward signal backtracking.

4.3 MITIGATING HALLUCINATION AND FACTUAL ERRORS

As we mentioned in Section 3.3, LLMs suffer from serious hallucinations and factual errors. Even
in the simplest 3×3 Tic-Tac-Toe situation, LLMs struggle to read the correct spatial information
and recognize/judge the immediate win positions. To mitigate this issue, we adopt two strategies
during out gaming process: majority vote Wang et al. (2022) and perturbation-based uncertainty
estimation Manakul et al. (2023).

For the majority vote, we simply sample multiple generations as options and let LLMs select the
high-frequency option or the mean value if it is a numerical situation. For perturbation-based uncer-
tainty estimation, we first prompt LLMs to perturb the target questions while keeping the semantics
unchanged, then we sample generations based on both original question and perturbed questions and
apply a majority vote over these generations.

It is worth noting that both majority vote and uncertainty estimation are general methods that can be
applied to any prompting process. In our implementation, we only apply the two methods over the
situation assessment procedures, i.e., generating advantage scores with reward actor MR.
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Agent-to-Agent Pair Avg. Win Rate of TALAGA Avg. Win Rate of Others Avg. Draw Rate

TALAGA v.s. ToT 56% (+21%) 35% 9%
TALAGA v.s. CoT-SC 52% (+17%) 35% 13%
TALAGA v.s. ReAct 50% (+13%) 37% 13%
TALAGA v.s. Prompt 60% (+26%) 34% 6%
TALAGA v.s. CoT 59% (+29%) 30% 11%

Table 2: The performances of TALAGA when taking the agents as the opponent, over 100 Tic-Tac-
Toe matches. It is shown that the proposed method significantly outperforms existing agents in
rigorous gaming scenarios.

TALAGA v.s. ToT TALAGA Avg. WR ToT Avg. WR TALAGA Go First ToT Go First

TALAGAWM ToTWM ToTWM TALAGAWM

TALAGA (k = 2, n = 2) 37% 59% 30 17 42 7
TALAGA (k = 2, n = (4/2)) 48% 37% 35 8 29 13
+ hallucination control 56% 35% 39 9 26 17

Table 3: The ablation study of TALAGA, over the Tic-Tac-Toe environments, when against ToT.
WR stands for win rate and WM stands for the number of winning matches. n =(4/2) means only
sample 4 candidacy actions for the first time and the following candidacy actions are 2, as shown
in Section 5.1.

5 EMPIRICAL RESULTS

In this section, we empirically evaluate the performance of TALAGA. We will first introduce the
experimental settings. Then the evaluation in Tic-Tac-Toe and Texas Holdem will be presented
separately. We also conduct detailed ablation studies to factorize the designing of TALAGA and
individually evaluate their effectiveness.

5.1 EXPERIMENTAL SETTINGS.

Running Trials. For the agent-to-agent experiments, we will perform 100 matches per pair for
Tic-Tac-Toe. To mitigate the first-go advantages, each agent will be the first to go in 50 matches. In
terms of Tic-Tac-Toe experiments, we perform 10 trials for each agent-to-agent pair. For each trial,
there are dozens of hands during the gaming.

Hyperparameters. There are two main hyperparameters introduced in the think ahead design of
TALAGA: the maximum allowed steps to think ahead k, and the number of candidacy actions n. For
all the Tie-Tac-Toe experiments, we set k to be 2, i.e., at most think ahead 2 steps and we set n to
be 4 for the first candidacy action sampling and reduce it to half for all the following sampling. We
will use n = (4/2) to represent this configuration. In terms of majority vote and perturbation-based
uncertainty estimation, we set the number of votes as 3 and only perturbed question once with 2 new
generations regarding the perturbed question. All the agents are driven by gpt-3.5-turbo, with the
temperature as 0.2.

5.2 TIC-TAC-TOE

We conduct experiments by taking TALAGA against ToT, CoT-SC, ReAct, Prompt, CoT. Results
are summarized in Table 2. It is shown that our TALAGA significantly outperforms existing reason-
ing agents. For instance, TALAGA outperforms the most powerful agent ToT (as ToT achieves the
best performance in Table 1) by 21%, when compared with win rate.

5.3 ABLATION STUDY

We individually investigate the effectiveness of each module in TALAGA. Apart from the average
win rate, we also consider how many matches are won by the first-go agent. Results are presented
in Table 3. For the average win rate, we show that increasing the number of candidacy actions
will substantially increase the average win rate of TALAGA, which indicates the effectiveness of our
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Figure 4: The performances of TALAGA v.s Prompt and ReAct in Texas Hold’em Poker.

Agent-to-Agent Pair Win Rate of TALAGA Win Rate of others

TALAGA v.s. Prompt 53.8% 46.2%
TALAGA v.s. CoT-SC 63.2% 36.8%
TALAGA v.s. ToT 72.1% 27.9%
TALAGA v.s. ReAct 78.0% 22.0%

Table 4: The hands win rate of TALAGA v.s. other baseline agents in Texas Hold’em Poker.

design. In addition, the average win rate will be further boosted by incorporating our hallucination
reduction strategy.

5.4 TEXAS HOLD’EM POKER

Here we present the results under the evaluation of Texas Hold’em Poker. In Table 1, we show that
TALAGA significantly outperforms existing reasoning agents. We also report the win rate of hands,
by counting the total hands among all the trials and how many hands are won by TALAGA. Results
are presented in 4. It is shown that TALAGA consistently outperforms existing reasoning methods in
the hands win rate.

6 CONCLUSION

In this paper, we take the initial exploration of the potential utility of zero-shot LLMs as gaming
agents. Our investigation involves the assessment of the performance exhibited by state-of-the-
art reasoning and planning agents when applied to two gaming scenarios, Tic-Tac-Toe and Texas
Hold’em Poker. Surprisingly, our findings reveal that most of these agents exhibit only marginally
better than random agents. Notably, these existing agents manifest limitations in their capacity to
“think ahead”, and suffer from severe hallucinations and factual errors. Motivated by these obser-
vations, we introduce the Think Ahead Language-powered Gaming Agent (TALAGA), which repre-
sents a pioneering endeavor in harnessing language-powered models for the gaming context. The
proposed TALAGA outperforms ToT by 21%, CoT-SC by 17%, and CoT by 29%, under the evalu-
ation of Tic-Tac-Toe gaming. Empirical results derived from our experiments serve to substantiate
the efficacy of our proposed approach.

Limitations and Ethics Statement. In this pioneering study focused on LLMs in gaming contexts,
our examination is only centered on Chat-GPT, a highly representative LLM. Nevertheless, the per-
formance evaluation of other LLMs such as LLaMA and Vicuna remains uncertain. Additionally,
our investigation encompasses two gaming scenarios: Tic-Tac-Toe and Texas Hold’em Poker, cho-
sen to represent complete and incomplete information systems, respectively. It is worth noting that
numerous other gaming conditions merit exploration. It is imperative to emphasize that our research
is conducted with a strong commitment to ethical principles. We do not intend to design any as-
pects of our experiments that could enable unfair play. Nonetheless, it is important to acknowledge
that further developments in this field may raise concerns regarding potential harm, offensive, or
unethical conduct within future gaming environments.
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APPENDIX

A PROMPTS

Here we provide all the prompts we designed and utilized in this paper:

System Prompt:
You are a helpful assistant that strictly follows the
user’s instructions.

Head Prompt:
Tic Tac Toe is a two-player game played on a grid.
Players take turns marking a space with their respective
symbol. The goal is to get multiple of one’s own symbols
in a row, either horizontally, vertically, or diagonally,
before the opponent does. If all nine squares are filled
and no player has three in a row, the game is a draw.
The Tic Tac Toe game is played on a {grid_size} by {grid_size}
grid, with the winning length as {win_len}. Each move is represented
by a string consisting of two parts: the column (C) and the row (R),
in that order. For instance, C1R2 means the movement at the position
of the first column and the second row of the grid. You are
playing this game with the user (opponent).

Direct Prompt (first go):
You are the first to go. The legal positions are {legal_positions}.
Choose one move from these legal positions to set up advantages.

Your output should be of the following format:

Move:
Your move wrapped with <>, e.g., <C1R1>, <C1R2>, <C1R3>

(non first go)
Now, your opponent has finished moves: {opponent_moves}.
You have finished moves: {agent_moves}. The legal positions are
{legal_positions}. Choose one move from these legal positions to
set up advantages.

Your output should be of the following format:

Move:
Your move wrapped with <>, e.g., <C1R1>, <C1R2>, <C1R3>

Chain-of-Thought:
Now, your opponent has finished moves: {opponent_moves}.
You have finished moves: {agent_moves}.

The legal positions are {legal_positions}. First think about your
current situation, then choose one move from legal positions
to set up advantages.

Your output should be of the following format:

Thought:
Your thought.

Move:
Your move wrapped with <>, e.g., <C1R1>, <C1R2>, <C1R3>
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Situation Assessment:
Given this situation, analyze your winning rate and provide a
concrete value (from 0 to 100). Conclude in the last line
"The winning rate is {s}", where s the integer id of the choice.

Reward Assessment:
Assume {side} will take {next_move} as the next move.
What is the advantage score of {side} for this move?
Use a score on a scale of 0 - 100 to represent this score.
Conclude in the last line "The advantage score for {side}
is {{s}}", where s is the score.

B TEXAS HOLDEM POKER

The explanations of Texas Holdem Poker actions:

1. FOLD: You decide not to play the hand and discard your cards.

2. CHECK: Declining the opportunity to bet. It’s like saying ’I’m still in the game, but I don’t
want to bet right now.

3. CALL: Matching the current highest bet to stay in the hand.

4. RAISE 3BB: Raising the bet to three times the big blind amount.

5. RAISE HALF POT: Raising to an amount equal to half the current pot size.

6. RAISE POT: Raising to an amount equal to the current pot size.

7. RAISE 2POT: Raising to an amount equal to twice the current pot size.

8. ALL IN: Betting all your chips.

9. SMALL BLIND: A forced bet that’s typically half the size of the big blind. It rotates
around the table.

10. BIG BLIND: A forced bet that sets the initial pot amount and action. It’s typically twice
the size of the small blind and rotates around the table.

C MAJOR ADAPTIONS TO AUTONOMOUS AGENTS

For CoT, CoT-SC, and Prompt, please refer to A for which prompts are utilized. It is because
prompts are the most important part for these methods.

For ReAct, we follow the prompts from their official codebase and utilize the first-think-then-action
procedures. However, one of the major challenges is that we need to design search spaces for our
tasks. For example, in Yao et al. (2022), the action space defined for the Hotpot QA dataset is
SEARCH[entity], LOOKUP[entity], and FINISH. To do that, we design the following actions for
Tic-Tac-Toe:

(1)Defensive Action, which means to block the potential winning of
your opponent (e.g., block your opponent from forming sequences of 3).
(2)Offensive Action, which means to win the game (e.g., create forks,
control the center, play ahead).

In terms of Texas Hold’em poker, we reuse the action presented in Appendix B.

For ToT, we follow the implementation of the text generation task. Specifically, follow the 2-step
ToT manner, i.e., 1) generate plans; 2) vote for the plan; 3) generate action according to plan; 4)
vote for action. The prompts used in this process are shown as follows:
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FIRST GO Prompt:
You are the first to go. The legal positions are {legal_positions}.
First think about your current situation,
then choose one move from legal positions to set up advantages.

Your output should be of the following format:

Thought:
Your thought.

Move:
My move is <CxRy> (’<’ and ’>’ are mandatory), where x and y are
the index of column and row, respectively.

Vote Prompt:
Conclude in the last line "The best choice is {s}",
where s is the integer id of the choice.
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