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ABSTRACT

We study deceptive fairness attacks on graphs to answer the following question:
How can we achieve poisoning attacks on a graph learning model to exacerbate
the bias deceptively? We answer this question via a bi-level optimization problem
and propose a meta learning-based framework named FATE. FATE is broadly
applicable with respect to various fairness definitions and graph learning models,
as well as arbitrary choices of manipulation operations. We further instantiate
FATE to attack statistical parity or individual fairness on graph neural networks.
We conduct extensive experimental evaluations on real-world datasets in the task
of semi-supervised node classification. The experimental results demonstrate that
FATE could amplify the bias of graph neural networks with or without fairness
consideration while maintaining the utility on the downstream task. We hope this
paper provides insights into the adversarial robustness of fair graph learning and
can shed light on designing robust and fair graph learning in future studies.

1 INTRODUCTION

Algorithmic fairness on graphs has received much research attention (Bose & Hamilton, 2019; Dai &
Wang, 2021; Kang et al., 2020; Li et al., 2021; Kang et al., 2022). Despite its substantial progress,
existing studies mostly assume the benevolence of input graphs and aim to ensure that the bias would
not be perpetuated or amplified in the learning process. However, malicious activities in the real
world are commonplace. For example, consider a financial fraud detection system which utilizes
a transaction network to classify whether a bank account is fraudulent or not (Zhang et al., 2017;
Wang et al., 2019). An adversary may manipulate the transaction network (e.g., malicious banker
with access to the demographic and transaction data), so that the graph-based fraud detection model
would exhibit unfair classification results with respect to people of different demographic groups.
Consequently, a biased fraud detection model may infringe civil liberty to certain financial activities
and impact the well-being of an individual negatively (Bureau, 2022). It would also make the graph
learning model fail to provide the same quality of service to individual(s) of certain demographic
groups, causing the financial institutions to lose business in the communities of the corresponding
demographic groups. Thus, it is critical to understand how resilient a graph learning model is with
respect to adversarial attacks on fairness, which we term as fairness attacks.

Fairness attack has not been well studied, and sporadic literature often follows two strategies. The
first strategy is adversarial data point injection, which is often designed for tabular data rather than
graphs (Solans et al., 2021; Mehrabi et al., 2021; Chhabra et al., 2021; Van et al., 2022). However, in
addition to only inject adversarial node(s), it is crucial to connect the injected adversarial node(s)
to nodes in the original graph, which requires non-trivial modifications to existing methods, to
effectively attack graph learning models. Another strategy is adversarial edge injection, which to date
only attacks the group fairness of graph neural networks (Hussain et al., 2022). It is thus crucial to
study how to attack different fairness definitions for a variety of graph learning models.

To achieve this goal, we study deceptive fairness attacks on graphs. We formulate it as a bi-level
optimization, where the lower-level problem optimizes a task-specific loss function to maintain
the performance of the downstream learning task and enforces budgeted perturbations to make the
fairness attacks deceptive, and the upper-level problem leverages the supervision to modify the input
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graph and maximize the bias function corresponding to a user-defined fairness definition. To solve the
bi-level optimization problem, we propose a meta learning-based solver (FATE), whose key idea is to
compute the meta-gradient of the upper-level bias function with respect to the input graph to guide
the fairness attacks. Compared with existing works, our proposed FATE framework has two major
advantages. First, it is capable of attacking any fairness definition on any graph learning model, as
long as the corresponding bias function and the task-specific loss function are differentiable. Second,
it is equipped with the ability for either continuous or discretized poisoning attacks on the graph
topology. We also briefly discuss its ability for poisoning attacks on node features in a later section.

The major contributions of this paper are: (A) Problem definition. We study the problem of deceptive
fairness attacks on graphs. Based on the definition, we formulate it as a bi-level optimization problem,
whose key idea is to maximize a bias function in the upper level while minimizing a task-specific
loss function for a graph learning task in the lower level; (B) Attacking framework. We propose
an end-to-end attacking framework named FATE. It learns a perturbed graph topology via meta
learning, such that the bias with respect to the learning results trained with the perturbed graph will
be amplified; (C) Empirical evaluation. We conduct experiments on three benchmark datasets to
demonstrate the efficacy of our proposed FATE framework in amplifying the bias while being the most
deceptive method (i.e., achieving the highest micro F1 score) on semi-supervised node classification.

2 PRELIMINARIES AND PROBLEM DEFINITION

A – Notations. We use bold upper-case, bold lower-case, and calligraphic letters for matrix, vector,
and set, respectively (e.g., A, x, G). T denotes matrix/vector transpose (e.g., xT is the transpose of
x). Matrix/vector indexing is similar to NumPy in Python, e.g., A [i, j] is the entry of A at the i-th
row and j-th column; A [i, :] and A [:, j] are the i-th row and j-th column of A, respectively.

B – Algorithmic fairness. The general principle of algorithmic fairness is to ensure the learning
results would not favor one side or another.1 Among several fairness definitions that follow this
principle, group fairness (Feldman et al., 2015; Hardt et al., 2016) and individual fairness (Dwork
et al., 2012) are the most widely studied ones. Group fairness splits the entire population into multiple
demographic groups by a sensitive attribute (e.g., gender) and ensure the parity of a statistical
property among learning results of those groups. For example, statistical parity, a classic group
fairness definition, guarantees the statistical independence between the learning results (e.g., predicted
labels) and the sensitive attribute (Feldman et al., 2015). Individual fairness suggests that similar
individuals should be treated similarly. It is often formulated as a Lipschitz inequality such that
distance between the learning results of two data points should be no larger than the difference
between these two data points (Dwork et al., 2012). More details are provided in Appendix H.

C – Problem definition. Existing work (Hussain et al., 2022) for fairness attacks on graphs randomly
injects adversarial edges so that the disparity between the learning results of two different demographic
groups would be amplified. However, it suffers from three major limitations. (1) First, it only attacks
statistical parity while overlooking other fairness definitions (e.g., individual fairness (Dwork et al.,
2012)). (2) Second, it only considers adversarial edge injection, excluding other manipulations
like edge deletion or reweighting. Hence, it is essential to investigate the possibility to attack other
fairness definitions on real-world graphs with an arbitrary choice of manipulation operations. (3)
Third, it does not consider the utility of graph learning models when attacking fairness, resulting in
performance degradation in the downstream tasks. However, an institution that applies the graph
learning models are often utility-maximizing (Liu et al., 2018; Baumann et al., 2022). Thus, a
performance degradation in the utility would make the fairness attacks not deceptive from the
perspective of a utility-maximizing institution.

In this paper, we seek to overcome the aforementioned limitations. To be specific, given an input
graph, an optimization-based graph learning model, and a user-defined fairness definition, we aim to
learn a modified graph such that a bias function of the corresponding fairness definition would be
maximized for effective fairness attacks, while minimizing the task-specific loss function with respect
to the graph learning model for deceptive fairness attacks.

Formally, we define the problem of deceptive fairness attacks on graphs. We are given (1) an
undirected graph G = {A,X}, (2) a task-specific loss function l (G,Y,Θvic, θvic), where Y is the
graph learning model output, Θvic is the set of learnable variables of the victim model targeted for

1https://www.merriam-webster.com/dictionary/fairness
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attacking, and θvic is the set of hyperparameters of the victim model, (3) a bias function b (Y,Θ∗,F),
where Θ∗

vic = argminΘvic l (G,Y,Θvic, θvic), and F is the matrix that contains auxiliary fairness-
related information (e.g., sensitive attribute values of all nodes in G for group fairness, pairwise node
similarity matrix for individual fairness), and (4) an integer budget B. And our goal is to learn a
poisoned graph G̃ =

{
Ã, X̃

}
, such that (1) d

(
G, G̃

)
≤ B, where d

(
G, G̃

)
is the distance between

the input graph G and poisoned graph G̃ (e.g., the total weight of perturbed edges
∥∥∥A− Ã

∥∥∥
1,1

=∥∥∥vec(A− Ã
)∥∥∥

1
), (2) the bias function b (Y,Θ∗

vic,F) is maximized for effectiveness, and (3) the

task-specific loss function l
(
G̃,Y,Θvic, θvic

)
is minimized for deceptiveness.

3 METHODOLOGY

In this section, we first formulate the problem of deceptive fairness attacks on graphs as a bi-level
optimization problem, followed by a generic meta learning-based solver named FATE.

3.1 PROBLEM FORMULATION

Given an input graph G = {A,X} with adjacency matrix A and node feature matrix X, an attacker
aims to learn a poisoned graph G̃ =

{
Ã, X̃

}
, such that the graph learning model will be maximally

biased when trained on G̃. In this work, we consider the following settings for the attacker.

The goal of the attacker. The attacker aims to amplify the bias of the graph learning results output
by a victim graph learning model. And the bias to be amplified is a choice made by the attacker based
on which fairness definition the attacker aims to attack.

The knowledge of the attacker. Following similar settings in (Hussain et al., 2022), we assume
the attacker has access to the adjacency matrix, the feature matrix of the input graph, and the
sensitive attribute of all nodes in the graph. For a (semi-)supervised learning problem, we assume
that the ground-truth labels of the training nodes are also available to the attacker. For example,
for a graph-based financial fraud detection problem, the malicious banker may have access to the
demographic information (i.e., sensitive attribute) of the account holders and also know whether some
bank accounts are fraudulent or not, which are the ground-truth labels for training nodes. Similar
to (Zügner et al., 2018; Zügner & Günnemann, 2019; Hussain et al., 2022), the attacker has no
knowledge about the parameters Θvic and θvic of the victim model. Instead, the attacker will perform
a gray-box attack by attacking a surrogate graph learning model with learnable parameters Θsur and
hyperparameters θsur.

The capabilitiy of the attacker. The attacker is able to perturb up to B edges/features in the graph
(i.e., the entry-wise matrix norms

∥∥∥A− Ã
∥∥∥
1,1
≤ B and/or

∥∥∥X− X̃
∥∥∥
1,1
≤ B).

Based on that, we formulate our problem as a bi-level optimization problem as follows.

G̃ = argmax
G

b (Y,Θ∗
sur,F) s.t. Θ∗

sur = argmin
Θsur

l (G,Y,Θsur, θsur) , d
(
G, G̃

)
≤ B (1)

where the lower-level problem learns an optimal surrogate graph learning model Θ∗
sur by minimizing

l (G,Y,Θsur, θsur), the upper-level problem finds a poisoned graph G̃ that could maximize a bias
function b (Y,Θ∗

sur,F) for the victim graph learning model and the distance between the input graph,
and the poisoned graph d

(
G, G̃

)
is constrained to satisfy the setting about the budgeted attack. Note

that Eq. 1 is applicable to attack any fairness definition on any graph learning model, as long as the
bias function b (Y,Θ∗

sur,F) and the loss function l (G,Y,Θsur, θsur) are differentiable.

A – Lower-level optimization problem. A wide spectrum of graph learning models are essen-
tially solving an optimization problem. For example, graph convolutional network (GCN) (Kipf &
Welling, 2017) learns the node representation by aggregating information from its neighborhood
and performing nonlinear transformation with model parameters and an activation function. The
lower-level optimization problem for an L-layer GCN aims to learn the set of model parameters
Θ∗ = {W(i)|i = 1, . . . , L}, where W(i) is the weight matrix in the i-th layer, that could minimize a
task-specific loss function (e.g., cross-entropy for node classification). For more examples of graph
learning models from the optimization perspective, please refers to Appendix A.
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B – Upper-level optimization problem. To attack the fairness aspect of a graph learning model, we
aim to maximize a differentiable bias function b (Y,Θ∗

sur,F) with respect to a user-defined fairness
definition in the upper-level optimization problem. For example, for statistical parity (Feldman et al.,
2015), the fairness-related auxiliary information matrix F can be defined as the one-hot demographic
membership matrix, where F[i, j] = 1 if and only if node i belongs to j-th demographic group.
Then the statistical parity is equivalent to the statistical independence between the learning results Y
and F. Based on that, existing studies propose several differentiable measurements of the statistical
dependence between Y and F as the bias function. For example, Bose et al. (Bose & Hamilton,
2019) use mutual information I(Y;F) as the bias function; Prost et al. (Prost et al., 2019) define the
bias function as the Maximum Mean Discrepancy MMD (Y0,Y1) between the learning results of two
different demographic groups Y0 and Y1.

3.2 THE FATE FRAMEWORK

To solve Eq. 1, we propose a generic attacking framework named FATE (Deceptive Fairness Attacks
on Graphs via Meta Learning) to learn the poisoned graph. The key idea is to view Eq. 1 as a meta
learning problem, which aims to find suitable hyperparameter settings for a learning task (Bengio,
2000), and treat the graph G as a hyperparameter. With that, we learn the poisoned graph G̃ using the
meta-gradient of the bias function b (Y,Θ∗

sur,F) with respect to G. In the following, we introduce
two key parts of FATE, including meta-gradient computation and graph poisoning with meta-gradient.

A – Meta-gradient computation. The key term to learn the poisoned graph is the meta-gradient
of the bias function with respect to the graph G. Before computing the meta-gradient, we assume
that the lower-level optimization problem converges in T epochs. Thus, we first pre-train the
lower-level optimization problem by T epochs to obtain the optimal model Θ∗

sur = Θ
(T )
sur before

computing the meta-gradient. The training of the lower-level optimization problem can also be
viewed as a dynamic system with Θ

(t+1)
sur = opt(t+1)

(
G,Θ(t)

sur , θsur,Y
)
, ∀t ∈ {1, . . . , T}, where

Θ
(1)
sur refers to Θsur at initialization, and opt(t+1)(·) is an optimizer that minimizes the lower-level

loss function l
(
G,Y,Θ

(t)
sur , θ

)
at (t+1)-th epoch. From the perspective of the dynamical system, by

applying the chain rule and unrolling the training of lower-level problem , the meta-gradient∇Gb can
be written as ∇Gb = ∇Gb

(
Y,Θ

(T )
sur ,F

)
+

∑T−2
t=0 AtBt+1 . . . BT−1∇θ(T )b

(
Y,Θ

(T )
sur ,F

)
, where

At = ∇GΘ
(t+1)
sur and Bt = ∇Θ

(t)
sur
Θ

(t+1)
sur . However, it is computationally expensive in both time and

space to compute the meta-gradient. To further speed up the computation, we adopt a first-order
approximation of the meta-gradient (Finn et al., 2017) and simplify the meta-gradient as

∇Gb ≈ ∇Θ
(T )
sur

b
(
Y,Θ(T )

sur ,F
)
· ∇GΘ

(T )
sur (2)

Since the input graph is undirected, the derivative of the symmetric adjacency matrix A can be
computed as follows by applying the chain rule of a symmetric matrix (Kang et al., 2020).

∇Ab← ∇Ab+ (∇Ab)
T − diag (∇Ab) (3)

For the feature matrix X, its derivative equals to the partial derivative since X is often asymmetric.

B – Graph poisoning with meta-gradient. After computing the meta-gradient of the bias function
∇Gb, we aim to poison the input graph guided by∇Gb. We introduce two poisoning strategies: (1)
continuous poisoning and (2) discretized poisoning.

Continuous poisoning attack. The continuous poisoning attack is straightforward by reweighting
edges in the graph. We first compute the meta-gradient of the bias function∇Ab, then use it to poison
the input graph in a gradient descent-based updating rule as follows.

A← A− η∇Ab (4)
where η is a learning rate to control the magnitude of the poisoning attack. Suppose we attack the
topology for k attacking steps with budgets δ1, . . . , δk and

∑k
i=1 δi = B. In the i-th attacking step,

the learning rate should satisfy η ≤ δi
∥∇A∥1,1

to ensure that constraint on the budgeted attack

Discretized poisoning attack. The discretized poisoning attack aims to select a set of edges to be
added/deleted. It is guided by a poisoning preference matrix defined as follows.

∇A = (1− 2A) ◦ ∇Ab (5)
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where 1 is an all-one matrix with the same dimension as A and ◦ denotes the Hadamard product.
A large positive ∇A [i, j] indicates strong preference in adding an edge if nodes i and j are not
connected (i.e., positive∇Ab [i, j], positive (1− 2A) [i, j]) or deleting an edge if nodes i and j are
connected (i.e., negative ∇Ab [i, j], negative (1− 2A) [i, j]). Then, one strategy to find the set of
edges Eattack to be added/deleted can be greedy selection.

Eattack = topk (∇A, δi) (6)

where topk (∇A, δi) selects δi entries with highest preference score in ∇A in the i-th attacking step.
Note that, if we only want to add edges without any deletion, all negative entries in∇Ab should be
zeroed out before computing Eq. 5. Likewise, if edges are only expected to be deleted, all positive
entries should be zeroed out.

Remarks. Poisoning node feature matrix X follows the same steps as poisoning adjacency matrix A
without applying Eq. 3. And we briefly discuss an alternative edge selection strategy for discretized
poisoning attacks via sampling in Appendix G.

C – Overall framework. FATE generally works as follows. (1) We first pre-train the surrogate graph
learning model and get the corresponding learning model Θ(T )

sur as well as the learning results Y(T ).
(2) Then we compute the meta gradient of the bias function using Eqs. 2 and 3. (3) Finally, we
perform the discretized poisoning attack (Eqs. 5 and 6) or continuous poisoning attack (Eq. 4). A
detailed pseudo-code of FATE is provided in Appendix B.

D – Limitations. Since FATE leverages the meta-gradient to poison the input graph, it requires the
bias function b

(
Y,Θ

(T )
sur ,F

)
to be differentiable in order to calculate the meta-gradient ∇Gb. In

Sections 4 and 5, we present two carefully chosen bias functions for FATE. And we leave it for future
work on exploring the ability of FATE in attacking other fairness definitions. Moreover, though the
meta-gradient can be efficiently computed via auto-differentiation in modern deep learning packages
(e.g., PyTorch2, TensorFlow3), it requires O(n2) space complexity when attacking fairness via edge
flipping. It is still a challenging open problem on how to efficiently compute the meta-gradient in
terms of space. One possible remedy might be a low-rank approximation on the perturbation matrix
formed by Eattack. Since the difference between the benign graph and poisoned graph are often small
and budgeted (d

(
G, G̃

)
≤ B), it is likely that the edge manipulations may be around a few set of

nodes, which makes the perturbation matrix to be an (approximately) low-rank matrix.

4 INSTANTIATION #1: STATISTICAL PARITY ON GRAPH NEURAL NETWORKS

Here, we instantiate FATE framework by attacking statistical parity on graph neural networks in a
binary node classification problem with a binary sensitive attribute. We briefly discuss how to choose
(A) the surrogate graph learning model used by the attacker, (B) the task-specific loss function in the
lower-level optimization problem and (C) the bias function in the upper-level optimization problem.

A – Surrogate graph learning model. We assume that the surrogate model is a 2-layer linear
GCN (Wu et al., 2019) with different hidden dimensions and model parameters at initialization.

B – Lower-level loss function. We consider a semi-supervised node classification task for
the graph neural network to be attacked. Thus, the lower-level loss function is chosen as
the cross entropy between the ground-truth label and the predicted label: l (G,Y,Θsur, θsur) =

1
|Vtrain|

∑
i∈Vtrain

∑c
j=1 yi,j ln ŷi,j , where Vtrain is the set of training nodes with ground-truth labels with

|Vtrain| being its cardinality, c is the number of classes, yi,j is a binary indicator of whether node i
belongs to class j and ŷi,j is the prediction probability of node i belonging to class j.

C – Upper-level bias function. We aim to attack statistical parity in the upper-level problem,
which asks the predicted label ỹ to follow P [ỹ = 1] = P [ỹ = 1|s = 1]. Then the bias function
is defined as b (Y,Θ∗

sur,S) = |P [ỹ = 1] − P [ỹ = 1|s = 1] |. Suppose p (ŷi,1) is the probability
density function (PDF) of ŷi,1 for any node i and p (ŷi,1|s = 1) is the PDF of ŷi,1 for any node i
belong to the demographic group with sensitive attribute value s = 1. We observe that P [ŷ = 1]
and P [ŷ = 1|s = 1] are equivalent to the complementary cumulative distribution functions (CDF)

2https://pytorch.org/
3https://www.tensorflow.org/
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of p
(
ŷi,1 > 1

2

)
and p

(
ŷi,1 > 1

2 |s = 1
)
, respectively. For differentiable estimation of P [ỹ = 1] and

P [ỹ = 1|s = 1], we use kernel density estimation (KDE) for p
(
ŷi,1 > 1

2

)
and p

(
ŷi,1 > 1

2 |s = 1
)
.

Definition 1 (Kernel density estimation (Chen, 2017)) Given a set of n IID samples {x1, . . . , xn}
drawn from a distribution with an unknown probability density function (PDF) f , the kernel density
estimation of f at point τ is defined as follows.

f̃ (τ) =
1

na

n∑
i=1

fk

(
τ − xi

a

)
(7)

where f̃ is the estimated PDF, fk is the kernel function and a is a non-negative bandwidth.

Moreover, we assume the kernel function in KDE is the Gaussian kernel fk (x) = 1√
2π

e−x2/2. How-
ever, computing the complementary CDF of a Gaussian distribution is non-trivial. Following (Cho
et al., 2020), we leverage a tractable approximation of the Gaussian Q-function as follows.

Q(τ) = Fk (τ) =

∫ ∞

τ

fk(x)dx ≈ e−ατ2−βτ−γ (8)

where fk (x) =
1√
2π

e−x2/2 is a Gaussian distribution with zero mean, α = 0.4920, β = 0.2887,
γ = 1.1893 (López-Benítez & Casadevall, 2011). How to estimate P [ŷ = 1] is as follows.

• For any node i, get its prediction probability ŷi,1 with respect to class 1;
• Estimate the complementary CDF P [ỹ = 1] using a Gaussian KDE with bandwidth a by

P [ỹ = 1] = 1
n

∑n
i=1 exp

(
−α

(
0.5−ŷi,1

a

)2

− β
(

0.5−ŷi,1

a

)
− γ

)
, where α = 0.4920, β =

0.2887, γ = 1.1893 and exp(x) = ex.

Note that P [ỹ = 1|s = 1] can be estimated with a similar procedure with minor modifications. The
only modifications needed are: (1) get the prediction probability of nodes with s = 1 and (2) compute
the CDF using the Gaussian Q-function over nodes with s = 1 rather than all nodes in the graph.

5 INSTANTIATION #2: INDIVIDUAL FAIRNESS ON GRAPH NEURAL
NETWORKS

We provide another instantiation of FATE framework by attacking individual fairness on graph neural
networks. Here, we consider the same surrogate graph learning model (i.e., 2-layer linear GCN) and
the same lower-level loss function (i.e., cross entropy) as described in Section 4. To attack individual
fairness, we define the upper-level bias function following the principles in (Kang et al., 2020): the
fairness-related auxiliary information matrix F is defined as the oracle symmetric pairwise node
similarity matrix S (i.e., F = S), where S [i, j] measures the similarity between node i and node j.
And the overall individual bias is defined as Tr

(
YTLSY

)
, where LS is the Laplacian matrix of S.

Assuming that Y is the output of an optimization-based graph learning model, Y can be viewed as a
function with respect to the input graph G, which makes Tr

(
YTLSY

)
differentiable with respect to

G. Thus, the bias function b (·) can be naturally defined as the overall individual bias of the input
graph G, i.e., b (Y,Θ∗

sur,S) = Tr
(
YTLSY

)
.

6 EXPERIMENTS

6.1 ATTACKING STATISTICAL PARITY ON GRAPH NEURAL NETWORKS

Settings. We compare FATE with 3 baseline methods: Random, DICE-S, and FA-GNN. Specifically,
Random is a heuristic approach that randomly injects edges to the input graph. DICE-S is a variant of
DICE (Waniek et al., 2018). It randomly deletes edges between nodes from different demographic
groups and injects edges between nodes from the same demographic groups. FA-GNN (Hussain
et al., 2022) attacks the fairness of a graph neural network by adversarially injecting edges that
connect nodes in consideration of both their class labels and sensitive attribute values. We evaluate
all methods under the same setting as in Section 4. That is, the fairness definition to be attacked
is statistical parity; the downstream task is binary semi-supervised node classification with binary
sensitive attributes. The experiments are conducted on 3 real-world datasets, i.e., Pokec-n, Pokec-z,
and Bail. Similar to existing works, we use the 50%/25%/25% splits for training/validation/test sets.
For all methods, the victim models are set to GCN (Kipf & Welling, 2017). For each dataset, we use
a fixed random seed to learn the poisoned graph corresponding to each baseline method. Then we
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Table 1: Attacking statistical parity on GCN under different perturbation rates (Ptb.). FATE poisons
the graph via both edge flipping (FATE-flip) and edge addition (FATE-add) while all other baselines
poison the graph via edge addition. Higher is better (↑) for micro F1 score (Micro F1) and ∆SP (bias).
Bold font indicates the most deceptive fairness attack, i.e., increasing ∆SP and highest micro F1.
Underlined cell indicates the failure of fairness attack, i.e., decreasing ∆SP after attack.

Dataset Ptb. Random DICE-S FA-GNN FATE-flip FATE-add
Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑)

Pokec-n

0.00 67.5± 0.3 7.1± 0.4 67.5± 0.3 7.1± 0.4 67.5± 0.3 7.1± 0.4 67.5± 0.3 7.1± 0.4 67.5± 0.3 7.1± 0.4
0.05 68.0± 0.3 6.2± 0.8 67.6± 0.3 7.1± 0.8 67.8± 0.1 3.3± 0.4 67.9± 0.4 9.3± 1.2 67.9± 0.4 9.3± 1.2
0.10 66.8± 0.8 7.3± 0.7 67.9± 0.3 7.2± 0.5 66.0± 0.2 11.5± 0.6 68.2± 0.6 9.8± 1.5 68.2± 0.6 9.8± 1.5
0.15 66.7± 0.4 8.1± 0.4 67.4± 0.3 7.9± 0.5 66.0± 0.4 15.6± 3.0 68.0± 0.3 11.5± 1.0 68.0± 0.3 11.5± 1.0
0.20 66.3± 0.7 8.6± 1.8 66.1± 0.6 7.1± 1.2 65.8± 0.1 18.4± 0.7 68.2± 0.5 12.0± 1.8 68.2± 0.5 12.0± 1.8
0.25 66.2± 0.6 8.5± 0.8 65.9± 0.4 6.5± 1.4 66.6± 0.2 23.3± 0.5 68.3± 0.4 12.1± 2.1 68.3± 0.4 12.1± 2.1

Pokec-z

0.00 68.4± 0.4 6.6± 0.9 68.4± 0.4 6.6± 0.9 68.4± 0.4 6.6± 0.9 68.4± 0.4 6.6± 0.9 68.4± 0.4 6.6± 0.9
0.05 68.8± 0.4 6.4± 0.6 68.8± 0.3 5.7± 1.1 68.1± 0.3 2.2± 0.4 68.7± 0.4 6.7± 1.4 68.7± 0.4 6.7± 1.4
0.10 68.7± 0.3 8.0± 0.6 67.7± 0.3 6.5± 0.8 67.7± 0.4 13.5± 0.9 68.7± 0.6 7.5± 0.7 68.7± 0.6 7.5± 0.7
0.15 67.9± 0.3 9.1± 0.8 67.8± 0.6 4.8± 0.6 66.6± 0.4 16.9± 2.6 69.0± 0.8 8.5± 1.1 69.0± 0.8 8.5± 1.1
0.20 68.5± 0.4 9.3± 1.0 67.0± 0.5 5.9± 0.7 66.1± 0.2 25.4± 1.3 68.5± 0.6 8.8± 1.1 68.5± 0.6 8.8± 1.1
0.25 68.3± 0.5 7.3± 0.5 67.4± 0.6 5.8± 0.7 65.5± 0.6 22.3± 2.8 68.5± 1.1 8.6± 2.5 68.5± 1.1 8.6± 2.5

Bail

0.00 93.1± 0.2 8.0± 0.2 93.1± 0.2 8.0± 0.2 93.1± 0.2 8.0± 0.2 93.1± 0.2 8.0± 0.2 93.1± 0.2 8.0± 0.2
0.05 92.7± 0.2 8.1± 0.0 92.3± 0.2 8.4± 0.2 91.7± 0.1 10.0± 0.4 92.6± 0.1 8.6± 0.1 92.5± 0.1 8.6± 0.1
0.10 92.2± 0.2 7.8± 0.2 92.2± 0.2 8.5± 0.3 90.5± 0.0 10.3± 0.4 92.4± 0.1 8.9± 0.1 92.4± 0.1 8.6± 0.1
0.15 91.9± 0.2 7.8± 0.1 92.1± 0.1 8.9± 0.1 90.0± 0.2 8.4± 0.2 92.2± 0.2 9.1± 0.1 92.3± 0.1 9.1± 0.1
0.20 91.6± 0.2 7.8± 0.1 91.8± 0.1 9.1± 0.2 89.7± 0.1 7.4± 0.4 92.2± 0.2 9.3± 0.1 92.3± 0.1 9.3± 0.2
0.25 91.4± 0.1 8.3± 0.1 91.6± 0.2 9.3± 0.1 89.8± 0.2 5.2± 0.2 92.1± 0.1 9.1± 0.2 92.1± 0.1 9.1± 0.3

train the victim model 5 times with different random seeds. For a fair comparison, we only attack the
adjacency matrix. Please refer to Appendix C for detailed experimental settings.

Main results. For FATE, we conduct fairness attacks via both edge flipping (FATE-flip) and edge
addition (FATE-add). For all other baseline methods, edges are only added. The effectiveness
of fairness attacks on GCN are presented in Table 1. From the table, we have the following key
observations: (A) FATE-flip and FATE-add are the only methods that consistently succeed in fairness
attacks, while all other baseline methods might fail in some cases (indicated by the underlined
∆SP) because of the decrease in ∆SP. Though DICE-S consistently succeeds in fairness attacks
on Pokec-n and Bail, its utility is worse than FATE-flip and FATE-add, making it less deceptive.
(B) FATE-flip and FATE-add not only amplify ∆SP consistently, but also achieve the best micro F1
score on node classification, which makes FATE-flip and FATE-add more deceptive than all baseline
methods. Notably, FATE-flip and FATE-add are able to even increase micro F1 score on all datasets,
while other baseline methods attack the graph neural networks at the expense of utility (micro F1
score). (C) Though FA-GNN could make the model more biased in some cases, it cannot guarantee
consistent success in fairness attacks on all three datasets as shown by the underlined ∆SP in both
tables. All in all, our proposed FATE framework consistently succeeds in fairness attacks while being
the most deceptive (i.e., highest micro F1 score).

Effect of the perturbation rate. From Table 1, first, ∆SP tends to increase when the perturbation
rate increases, which demonstrates the effectiveness of FATE-flip and FATE-add for attacking fairness.
Though in some cases ∆SP might have a marginal decrease, FATE-flip and FATE-add still successfully
attack the fairness compared with GCN trained on the benign graph by being larger to the ∆SP when
perturbation rate (Ptb.) is 0. Second, FATE-flip and FATE-add are deceptive, meaning that the micro
F1 scores is close to or even higher than the micro F1 scores on the benign graph compared with the
corresponding metrics trained on the poisoned graphs. In summary, across different perturbation
rates, FATE-flip and FATE-add are both effective, i.e., amplifying more bias with higher perturbation
rate, and deceptive, i.e., achieving similar or even higher micro F1 score.

(a) (b)
Figure 1: Attacking statistical parity with FATE-flip. (a) Ratios of flipped edges that connect two nodes
with same/different label or sensitive attribute (sens. attr.). (b) SL (abbreviation for same label) refers
to the ratios of flipped edges whose two endpoints are both from the same class. SSA (abbreviation
for same sensitive attribute) refers to the ratios of manipulated edges whose two endpoints are both
from the same demographic group. Majority/minority classes are determined by splitting the training
nodes based on their class labels. The protected group is the demographic group with fewer nodes.
Analysis on the manipulated edges. Here, we aim to characterize the properties of edges that are
flipped by FATE (i.e., FATE-flip) in attacking statistical parity with perturbation rate 25%. The reason
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Table 2: Attacking individual fairness on GCN under different perturbation rates (Ptb.). FATE poisons
the graph via both edge flipping (FATE-flip) and edge addition (FATE-add) while all other baselines
poison the graph via edge addition. Higher is better (↑) for micro F1 score (Micro F1) and InFoRM
bias (Bias). Bold font indicates the most deceptive fairness attack, i.e., increasing bias and highest
micro F1. Underlined cell indicates the failure of fairness attack, i.e., decreasing bias after attack.

Dataset Ptb. Random DICE-S FA-GNN FATE-flip FATE-add
Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑)

Pokec-n

0.00 67.5± 0.3 0.9± 0.2 67.5± 0.3 0.9± 0.2 67.5± 0.3 0.9± 0.2 67.5± 0.3 0.9± 0.2 67.5± 0.3 0.9± 0.2
0.05 67.6± 0.3 1.6± 0.3 68.1± 0.2 2.0± 0.6 67.8± 0.5 1.9± 0.2 67.8± 0.3 1.2± 0.4 67.6± 0.3 1.5± 0.6
0.10 67.2± 0.5 1.4± 0.3 66.9± 1.0 1.3± 0.3 67.4± 0.4 1.2± 0.2 67.9± 0.4 1.3± 0.3 67.7± 0.4 1.6± 0.4
0.15 67.2± 0.3 1.2± 0.4 67.4± 0.3 1.3± 0.2 66.1± 0.3 1.5± 0.3 67.8± 0.4 1.2± 0.2 67.6± 0.2 1.1± 0.3
0.20 66.6± 0.3 1.1± 0.2 67.3± 0.3 1.5± 0.5 65.7± 0.6 1.5± 0.3 67.3± 0.4 1.1± 0.3 68.2± 1.0 1.7± 0.8
0.25 66.7± 0.3 1.3± 0.4 66.6± 0.5 1.3± 0.1 65.2± 0.5 1.3± 0.4 67.8± 0.8 1.4± 0.7 67.9± 0.9 1.4± 0.7

Pokec-z

0.00 68.4± 0.4 2.6± 0.7 68.4± 0.4 2.6± 0.7 68.4± 0.4 2.6± 0.7 68.4± 0.4 2.6± 0.7 68.4± 0.4 2.6± 0.7
0.05 69.0± 0.4 3.4± 0.5 68.9± 0.5 3.3± 0.9 68.1± 0.4 2.9± 0.3 68.7± 0.5 2.9± 0.5 68.7± 0.4 3.1± 1.0
0.10 68.7± 0.1 2.4± 0.5 69.1± 0.2 3.3± 0.8 68.2± 0.5 1.7± 0.5 69.0± 0.6 2.9± 0.6 69.0± 0.5 3.0± 0.6
0.15 67.9± 0.3 2.8± 0.3 68.1± 0.2 3.6± 0.4 67.0± 0.5 1.3± 0.2 68.6± 0.5 2.9± 0.6 69.0± 0.7 2.7± 0.4
0.20 67.9± 0.3 2.2± 0.6 67.8± 0.3 2.7± 0.6 66.1± 0.1 1.6± 0.5 68.8± 0.4 3.0± 0.4 69.2± 0.4 2.9± 0.3
0.25 67.6± 0.3 1.9± 0.3 68.4± 0.4 2.6± 0.7 65.1± 0.3 1.9± 0.6 69.1± 0.3 2.9± 0.7 69.3± 0.3 2.7± 0.6

Bail

0.00 93.1± 0.2 7.2± 0.6 93.1± 0.2 7.2± 0.6 93.1± 0.2 7.2± 0.6 93.1± 0.2 7.2± 0.6 93.1± 0.2 7.2± 0.6
0.05 92.1± 0.3 8.0± 1.9 92.3± 0.2 9.1± 2.7 91.2± 0.2 5.6± 0.7 93.0± 0.3 7.8± 1.0 92.9± 0.2 7.7± 1.0
0.10 91.6± 0.1 7.3± 1.2 92.2± 0.2 8.0± 1.8 90.3± 0.1 5.1± 0.4 93.0± 0.1 8.0± 0.7 92.9± 0.2 7.9± 0.8
0.15 91.3± 0.1 6.5± 0.9 92.1± 0.2 7.7± 0.4 89.8± 0.1 5.2± 0.1 93.1± 0.1 8.2± 0.6 93.0± 0.2 7.8± 0.8
0.20 91.2± 0.2 6.6± 0.6 91.8± 0.1 7.1± 1.2 89.3± 0.1 5.3± 0.4 93.1± 0.1 7.9± 0.6 93.1± 0.1 8.2± 0.6
0.25 90.9± 0.1 6.8± 0.8 91.5± 0.1 6.3± 0.9 88.9± 0.1 5.4± 0.3 92.9± 0.1 7.6± 0.5 93.0± 0.2 7.8± 0.7

to only analyze FATE-flip is that the majority of edges manipulated by FATE-flip on all datasets is by
addition (i.e., flipping from non-existing to existing). Figure 1b suggests that, if two endpoints of
a manipulated edge share the same class label or sensitive attribute value, these two endpoints are
most likely from the minority class and protected group. Thus, FATE would significantly increase the
number of edges that are incident to nodes in the minority class and/or protected group.

More experimental results. Due to the space limitation, we defer more experimental results on
attacking statistical parity on graph neural networks in Appendix D. More specifically, we present
the performance evaluation under Macro F1 and AUC, as well as the effectiveness of FATE with
FairGNN (Dai & Wang, 2021) for statistical parity as the victim model.
6.2 ATTACKING INDIVIDUAL FAIRNESS ON GRAPH NEURAL NETWORKS

Settings. To showcase the ability of FATE on attacking the individual fairness (Section 5), we
further compare FATE with the same set of baseline methods (Random, DICE-S, FA-GNN) on the
same set of datasets (Pokec-n, Pokec-z, Bail). We follow the settings as in Section 5. We use the
50%/25%/25% splits for train/validation/test sets with GCN being the victim model. For each dataset,
we use a fixed random seed to learn the poisoned graph corresponding to each baseline method.
Then we train the victim model 5 times with different random seeds. And each entry in the oracle
pairwise node similarity matrix is computed by the cosine similarity of the corresponding rows in
the adjacency matrix. That is, S[i, j] = cos (A [i, :] , A [j, :]), where cos () is the function to compute
cosine similarity. For a fair comparison, we only attack the adjacency matrix in all experiments.
Please refer to Appendix C for detailed experimental settings.

Main results. We test FATE with both edge flipping (FATE-flip) and edge addition (FATE-add),
while all other baseline methods only add edges. From Table 2, we have two key observations.
(A) FATE-flip and FATE-add are effective: they are the only methods that could consistently attack
individual fairness whereas all other baseline methods mostly fail to attack individual fairness. (B)
FATE-flip and FATE-add are deceptive: they achieve comparable or even better utility on all datasets
compared with the utility on the benign graph. Hence, FATE framework is able to achieve effective
and deceptive attacks to exacerbate individual bias.

Effect of the perturbation rate. From Table 2, we obtain similar observations as in Section 6.1 for
Bail dataset. While for Pokec-n and Pokec-z, the correlation between the perturbation rate (Ptb.) and
the individual bias is weaker. One possible reason is that: for Pokec-n and Pokec-z, the discrepancy
between the oracle pairwise node similarity matrix and the benign graph is larger. Since the individual
bias is computed using the oracle pairwise node similarity matrix rather than the benign/poisoned
adjacency matrix, a higher perturbation rate to poison the adjacency matrix may have less impact on
the computation of individual bias.

Analysis on the manipulated edges. Since the majority of edges manipulated by FATE-flip is through
addition, we only analyze FATE-flip here with perturbation rate 25%. From Figure 2, we can find
out that FATE tends to manipulate edges from the same class (especially from the minority class). In
this way, FATE would find edges that could increase individual bias and improve the utility of the
minority class in order to make the fairness attack deceptive.
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(a) (b)
Figure 2: Attacking individual fairness with FATE-flip. (a) Ratios of flipped edges that connect two
nodes with same/different label. (b) Ratios of flipped edges whose two endpoints are both from the
majority/minority class. Majority/minority classes are formed by splitting the training nodes based
on their class labels.

More experimental results. Due to the space limitation, we defer more experimental results on
attacking individual fairness on graph neural networks in Appendix E. More specifically, we present
the performance evaluation under Macro F1 and AUC, as well as the effectiveness of FATE with
InFoRM-GNN (Kang et al., 2020), which mitigates individual bias, as the victim model.

7 RELATED WORK

Algorithmic fairness on graphs aims to obtain debiased graph learning results such that a pre-defined
fairness measure can be satisfied with respect to the nodes/edges in the graph. Several definitions
of the fairness have been studied so far. Group fairness in graph embedding can be ensured via
several strategies, including adversarial learning (Bose & Hamilton, 2019; Dai & Wang, 2021), biased
random walk (Rahman et al., 2019; Khajehnejad et al., 2022), bias-free graph generation (Wang
et al., 2022), and dropout (Spinelli et al., 2021). Individual fairness on graphs can be ensured via
Lipschitz regularization (Kang et al., 2020) and learning-to-rank (Dong et al., 2021). Other than the
aforementioned two fairness definitions, several other fairness definitions are studied in the context
of graph learning, including counterfactual fairness (Agarwal et al., 2021; Ma et al., 2021), degree
fairness (Tang et al., 2020; Kang et al., 2022; Liu et al., 2023b), dyadic fairness (Masrour et al.,
2020; Li et al., 2021), and max-min fairness (Rahmattalabi et al., 2019; Tsang et al., 2019). For a
comprehensive review of related works, please refer to recent surveys (Zhang et al., 2022; Choudhary
et al., 2022; Dong et al., 2022) and tutorials (Kang & Tong, 2021; 2022). It should be noted that our
work aims to attack fairness rather than ensuring fairness as in the aforementioned literature.

Adversarial attacks on graphs aim to exacerbate the utility of graph learning models by perturbing
the input graph topology and/or node features. Several approaches have been proposed to attack graph
learning models, including reinforcement learning (Dai et al., 2018), bi-level optimization (Zügner
et al., 2018; Zügner & Günnemann, 2019), projected gradient descent (Sun et al., 2018; Xu et al.,
2019), spectral distance perturbation (Lin et al., 2022), and edge rewiring/flipping (Bojchevski &
Günnemann, 2019; Ma et al., 2021). Other than adversarial attacks that worsen the utility of a graph
learning model, a few efforts have been made to attack the fairness of a machine learning model for
IID tabular data via label flipping (Mehrabi et al., 2021), adversarial data injection (Solans et al.,
2021; Chhabra et al., 2021), adversarial sampling (Van et al., 2022). Different from (Solans et al.,
2021; Mehrabi et al., 2021; Chhabra et al., 2021; Van et al., 2022), we aim to poison the input graph
via structural modifications on the topology rather than injecting adversarial data sample(s). The most
related works to our proposed method are (Hussain et al., 2022) and (Zhang et al., 2023). Hussain et al.
(2022) degrades the group fairness of graph neural networks by randomly injecting edges for nodes
in different demographic groups and with different class labels. In contrast, our proposed method
could attack any fairness definition for any graph learning models via arbitrary edge manipulation
operations in consideration of the utility of the downstream task, as long as the bias function and the
utility loss are differentiable. Zhang et al. (2023) is a concurrent study which utilizes zeroth-order
optimization instead of gradient-based solution as FATE to solve a similar bi-level problem.

8 CONCLUSION

We study deceptive fairness attacks on graphs, whose goal is to amplify the bias while maintaining
or improving the utility on the downstream task. We formally define the problem as a bi-level
optimization problem, where the upper-level optimization problem maximizes the bias function with
respect to a user-defined fairness definition and the lower-level optimization problem minimizes a
task-specific loss function. We then propose a meta learning-based framework named FATE to poison
the input graph using the meta-gradient of the bias function with respect to the input graph. We
instantiate FATE by attacking statistical parity on graph neural networks in a binary node classification
problem with binary sensitive attributes. Empirical evaluation demonstrates that FATE is effective
(amplifying bias) and deceptive (achieving the highest micro F1 score).

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

This work is partially supported by NSF (2134079, 1939725, 2316233, 2238208), DHS
(17STQAC00001-07-00, 17STQAC00001-06-00), and NIFA (2020-67021-32799). The views and
conclusions contained in this document are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of the U.S. Department of
Homeland Security.

ETHICAL STATEMENT

The goal of this paper is to investigate the possibility of making the graph learning results more
biased, in order to raise the awareness of fairness attacks. Meanwhile, our experiments suggest
that existing fair graph neural networks suffer from the fairness attacks, which further highlight
the importance of designing robust and fair techniques to protect the civil rights of marginalized
individuals. We acknowledge that the proposed method FATE, if misused, could impact the integrity
and fairness of graph learning models. When used for commercial purpose, FATE might cause civil
rights violation(s) and could be harmful to individuals from certain demographic groups. To prevent
the negative societal impacts, the code will be publicly released under CC-BY-NC-ND license upon
publication, which prohibits the use of FATE for any commercial purposes, and explicitly highlight in
the released code that any use of the developed techniques should be consulted with the authors for
permission first.

REFERENCES

Chirag Agarwal, Himabindu Lakkaraju, and Marinka Zitnik. Towards a unified framework for fair
and stable graph representation learning. In Uncertainty in Artificial Intelligence, pp. 2114–2124.
PMLR, 2021.

Joachim Baumann, Anikó Hannák, and Christoph Heitz. Enforcing group fairness in algorithmic
decision making: Utility maximization under sufficiency. In 2022 ACM Conference on Fairness,
Accountability, and Transparency, pp. 2315–2326, 2022.

Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural computation, 12(8):
1889–1900, 2000.

Aleksandar Bojchevski and Stephan Günnemann. Adversarial attacks on node embeddings via graph
poisoning. In International Conference on Machine Learning, pp. 695–704. PMLR, 2019.

Avishek Bose and William Hamilton. Compositional fairness constraints for graph embeddings. In
International Conference on Machine Learning, pp. 715–724. PMLR, 2019.

Consumer Financial Protection Bureau. CFPB targets unfair discrimination in con-
sumer finance. https://www.consumerfinance.gov/about-us/newsroom/
cfpb-targets-unfair-discrimination-in-consumer-finance/, 2022. [On-
line; accessed 13-April-2023].

April Chen, Ryan Rossi, Nedim Lipka, Jane Hoffswell, Gromit Chan, Shunan Guo, Eunyee Koh,
Sungchul Kim, and Nesreen K Ahmed. Graph learning with localized neighborhood fairness.
arXiv preprint arXiv:2212.12040, 2022.

Yen-Chi Chen. A tutorial on kernel density estimation and recent advances. Biostatistics & Epidemi-
ology, 1(1):161–187, 2017.

Badr-Eddine Chérief-Abdellatif and Pierre Alquier. Mmd-bayes: Robust bayesian estimation via
maximum mean discrepancy. In Symposium on Advances in Approximate Bayesian Inference, pp.
1–21. PMLR, 2020.

Anshuman Chhabra, Adish Singla, and Prasant Mohapatra. Fairness degrading adversarial attacks
against clustering algorithms. arXiv preprint arXiv:2110.12020, 2021.

10

https://www.consumerfinance.gov/about-us/newsroom/cfpb-targets-unfair-discrimination-in-consumer-finance/
https://www.consumerfinance.gov/about-us/newsroom/cfpb-targets-unfair-discrimination-in-consumer-finance/


Published as a conference paper at ICLR 2024

Jaewoong Cho, Gyeongjo Hwang, and Changho Suh. A fair classifier using kernel density estimation.
Advances in neural information processing systems, 33:15088–15099, 2020.

Manvi Choudhary, Charlotte Laclau, and Christine Largeron. A survey on fairness for machine
learning on graphs. arXiv preprint arXiv:2205.05396, 2022.

Enyan Dai and Suhang Wang. Say no to the discrimination: Learning fair graph neural networks with
limited sensitive attribute information. In Proceedings of the 14th ACM International Conference
on Web Search and Data Mining, pp. 680–688, 2021.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on
graph structured data. In International conference on machine learning, pp. 1115–1124. PMLR,
2018.

Yushun Dong, Jian Kang, Hanghang Tong, and Jundong Li. Individual fairness for graph neural
networks: A ranking based approach. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 300–310, 2021.

Yushun Dong, Jing Ma, Chen Chen, and Jundong Li. Fairness in graph mining: A survey. arXiv
preprint arXiv:2204.09888, 2022.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In Proceedings of the 3rd innovations in theoretical computer science conference, pp.
214–226, 2012.

Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubra-
manian. Certifying and removing disparate impact. In proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, pp. 259–268, 2015.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. Advances
in neural information processing systems, 29, 2016.

Hussain Hussain, Meng Cao, Sandipan Sikdar, Denis Helic, Elisabeth Lex, Markus Strohmaier, and
Roman Kern. Adversarial inter-group link injection degrades the fairness of graph neural networks.
arXiv preprint arXiv:2209.05957, 2022.

Jian Kang and Hanghang Tong. Fair graph mining. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 4849–4852, 2021.

Jian Kang and Hanghang Tong. Algorithmic fairness on graphs: Methods and trends. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4798–4799,
2022.

Jian Kang, Jingrui He, Ross Maciejewski, and Hanghang Tong. Inform: Individual fairness on
graph mining. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 379–389, 2020.

Jian Kang, Yan Zhu, Yinglong Xia, Jiebo Luo, and Hanghang Tong. Rawlsgcn: Towards rawlsian
difference principle on graph convolutional network. In Proceedings of the ACM Web Conference
2022, pp. 1214–1225, 2022.

Ahmad Khajehnejad, Moein Khajehnejad, Mahmoudreza Babaei, Krishna P Gummadi, Adrian
Weller, and Baharan Mirzasoleiman. Crosswalk: Fairness-enhanced node representation learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 11963–11970,
2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Peizhao Li, Yifei Wang, Han Zhao, Pengyu Hong, and Hongfu Liu. On dyadic fairness: Exploring and
mitigating bias in graph connections. In International Conference on Learning Representations,
2021.

11



Published as a conference paper at ICLR 2024

Lu Lin, Ethan Blaser, and Hongning Wang. Graph structural attack by perturbing spectral distance.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 989–998, 2022.

Xiao Lin, Jian Kang, Weilin Cong, and Hanghang Tong. Bemap: Balanced message passing for fair
graph neural network. arXiv preprint arXiv:2306.04107, 2023.

Haoran Liu, Bokun Wang, Jianling Wang, Xiangjue Dong, Tianbao Yang, and James Caverlee. Every-
thing perturbed all at once: Enabling differentiable graph attacks. arXiv preprint arXiv:2308.15614,
2023a.

Lydia T Liu, Sarah Dean, Esther Rolf, Max Simchowitz, and Moritz Hardt. Delayed impact of fair
machine learning. In International Conference on Machine Learning, pp. 3150–3158. PMLR,
2018.

Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. On generalized degree fairness in graph neural
networks. arXiv preprint arXiv:2302.03881, 2023b.

Miguel López-Benítez and Fernando Casadevall. Versatile, accurate, and analytically tractable
approximation for the gaussian q-function. IEEE Transactions on Communications, 59(4):917–
922, 2011.

Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. Graph adversarial attack via
rewiring. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, pp. 1161–1169, 2021.

Farzan Masrour, Tyler Wilson, Heng Yan, Pang-Ning Tan, and Abdol Esfahanian. Bursting the
filter bubble: Fairness-aware network link prediction. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 841–848, 2020.

Ninareh Mehrabi, Muhammad Naveed, Fred Morstatter, and Aram Galstyan. Exacerbating algorith-
mic bias through fairness attacks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 8930–8938, 2021.

Flavien Prost, Hai Qian, Qiuwen Chen, Ed H Chi, Jilin Chen, and Alex Beutel. Toward a better
trade-off between performance and fairness with kernel-based distribution matching. arXiv preprint
arXiv:1910.11779, 2019.

Tahleen Rahman, Bartlomiej Surma, Michael Backes, and Yang Zhang. Fairwalk: Towards fair graph
embedding. In Proceedings of the 28th International Joint Conference on Artificial Intelligence,
pp. 3289–3295, 2019.

Aida Rahmattalabi, Phebe Vayanos, Anthony Fulginiti, Eric Rice, Bryan Wilder, Amulya Yadav, and
Milind Tambe. Exploring algorithmic fairness in robust graph covering problems. Advances in
Neural Information Processing Systems, 32, 2019.

David Solans, Battista Biggio, and Carlos Castillo. Poisoning attacks on algorithmic fairness. In
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD
2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part I, pp. 162–177. Springer, 2021.

Indro Spinelli, Simone Scardapane, Amir Hussain, and Aurelio Uncini. Fairdrop: Biased edge
dropout for enhancing fairness in graph representation learning. IEEE Transactions on Artificial
Intelligence, 3(3):344–354, 2021.

Mingjie Sun, Jian Tang, Huichen Li, Bo Li, Chaowei Xiao, Yao Chen, and Dawn Song. Data
poisoning attack against unsupervised node embedding methods. arXiv preprint arXiv:1810.12881,
2018.

Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu Aggarwal, Prasenjit Mitra,
and Suhang Wang. Investigating and mitigating degree-related biases in graph convolutional
networks. In Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, pp. 1435–1444, 2020.

12



Published as a conference paper at ICLR 2024

Alan Tsang, Bryan Wilder, Eric Rice, Milind Tambe, and Yair Zick. Group-fairness in influence
maximization. In Proceedings of the 28th International Joint Conference on Artificial Intelligence,
pp. 5997–6005, 2019.

Minh-Hao Van, Wei Du, Xintao Wu, and Aidong Lu. Poisoning attacks on fair machine learning. In
International Conference on Database Systems for Advanced Applications, pp. 370–386. Springer,
2022.
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ORGANIZATION OF THE APPENDIX

The supplementary material contains the following information.

• Appendix A provides additional examples of graph learning models from the optimization perspec-
tive.

• Appendix B presents the pseudocode of FATE.
• Appendix C offers the detailed parameter settings regarding the reproducibility of this paper.
• Appendix D provides additional experimental results on using FairGNN (Dai & Wang, 2021) and

evaluating under macro F1 score and AUC score.
• Appendix E provides additional experimental results on using InFoRM-GNN (Kang et al., 2020)

and evaluating under macro F1 score and AUC score.
• Appendix F shows the transferability of using FATE to attack the statistical parity or individual

fairness of the non-convolutional aggregation-based graph attention network with linear GCN as
the surrogate model.

• Appendix G provides further discussions on (1) the relationship between fairness attacks and
the impossibility theorem as well as Metattack (Zügner & Günnemann, 2019), (2) an alternative
perturbation set selection strategy via sampling, (3) the potential of FATE on attacking the fairness
of a specific demographic group, and (4) justification of applying kernel density estimation on
non-IID graph data.

• Appendix H presents more details of statistical parity and individual fairness.

Code can be found at the following repository:

https://github.com/jiank2/FATE.

A GRAPH LEARNING MODELS FROM THE OPTIMIZATION PERSPECTIVE

Here, we discuss four additional non-parameterized graph learning models from the optimization
perspective, including PageRank, spectral clustering, matrix factorization-based completion and
first-order LINE.

Model #1: PageRank. It is one of the most successful random walk based ranking algorithm to
measure node importance. Mathematically, PageRank solves the linear system

r = cPr+ (1− c)e (9)

where c is the damping factor, P is the propagation matrix and e is the teleportation vector. In
PageRank, the propagation matrix P is often defined as the row-normalized adjacency matrix of a
graph G and the teleportation vector is a uniform distribution 1

n1 with 1 being a vector filled with 1.
Equivalently, given a damping factor c and a teleportation vector e, the PageRank vector Y = r can
be learned by minimizing the following loss function

min
r

crT (I−P)r+ (1− c)∥r− e∥22 (10)

where c
(
rT (I−P) r

)
is a smoothness term and (1− c) ∥r− e∥22 is a query-specific term. To attack

the fairness of PageRank with FATE, the attacker could attack a surrogate PageRank with different
choices of damping factor c and/or teleportation vector e.

Model #2: Spectral clustering. It aims to identify clusters of nodes such that the intra-cluster
connectivity are maximized while inter-cluster connectivity are minimized. To find k clusters of
nodes, spectral clustering finds a soft cluster membership matrix Y = C with orthonormal columns
by minimizing the following loss function

min
C

Tr
(
CTLC

)
(11)

where L is the (normalized) graph Laplacian of the input graph G. It is worth noting that the columns
of learning result C is equivalent to the eigenvectors of L associated with smallest k eigenvalues. To
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attack the fairness of spectral clustering with FATE, the attacker might attack a surrogate spectral
clustering with different number of clusters k.

Model #3: Matrix factorization-based completion. Suppose we have a bipartite graph G with n1

users, n2 items and m interactions between users and items. Matrix factorization-based completion
aims to learn two low-rank matrices an n1 × z matrix U and an n2 × z matrix V such that the
following loss function will be minimized

min
U,V

∥ projΩ
(
R−UVT

)
∥2F + λ1∥U∥2Fλ2 + ∥V∥2F (12)

where A =

(
0n1

R
RT 0n2

)
with 0n1

being an n1 × n1 square matrix filled with 0, Ω =

{(i, j)|(i, j) is observed} is the set of observed interaction between any user i and any item j,
projΩ (Z) [i, j] equals to Z[i, j] if (i, j) ∈ Ω and 0 otherwise, λ1 and λ2 are two hyperparameters
for regularization. To attack the fairness of matrix factorization-based completion with FATE, the
attacker could attack a surrogate model with different number of latent factors z.

Model #4: First-order LINE. It is a skip-gram based node embedding model. The key idea of
first-order LINE is to map each node into a h-dimensional space such that the dot product of the
embeddings of any two connected nodes will be small. To achieve this goal, first-order LINE
essentially optimizes the following loss function

max
H

n∑
i=1

n∑
j=1

A[i, j]
(
log g

(
H[j, :]H[i, :]T

)
+ kEj′∼Pn

[log g
(
−H[j′, :]H[i, :]T

)
]
)

(13)

where H is the embedding matrix with H [i, :] being the h-dimensional embedding of node i,
g(x) = 1/(1 + e−x) is the sigmoid function, k is the number of negative samples and Pn is the
distribution for negative sampling such that the sampling probability for node i is proportional to
its degree degi. For a victim first-order LINE, the attacker could attack a surrogate LINE (1st) with
different dimension h in the embedding space and/or a different number of negative samples g.

Remarks. Note that, for a non-parameterized graph learning model (e.g., PageRank, spectral
clustering, matrix completion, first-order LINE), we have Θ = {Y} which is the set of learning
results. For example, we have Θ = {r} for PageRank, Θ = {C} for spectral clustering, Θ = {U,V}
and Θ = {H} for LINE (1st). For parameterized graph learning models (e.g., GCN), Θ refers to the
set of learnable weights, e.g., Θ = {W(1), . . . ,W(L)} for an L-layer GCN.

B PSEUDOCODE OF FATE

Algorithm 1 summarizes the detailed steps on fairness attack with FATE. To be specific, after
initialization (line 1), we pre-train the surrogate graph learning model (lines 4 – 6) and get the
pre-trained surrogate model Θ(T ) as well as learning results Y(T ) (line 7). After that, we compute the
meta gradient of the bias function (lines 8 – 11) and perform either discretized attack or continuous
attack based on the interest of attacker (i.e., discretized poisoning attack in lines 12 – 15 or continuous
poisoning attack in lines 16 – 18).

C EXPERIMENTAL SETTINGS

In this section, we provide more detailed information about the experimental settings. These include
the hardware and software specifications, dataset descriptions, evaluation metrics as well as detailed
parameter settings. In all experiments, we evaluate our proposed FATE in the task of semi-supervised
node classification to answer the following questions:

Q1. How effective is FATE in exacerbating bias under different perturbation rates?

Q2. How effective is FATE in maintaining node classification accuracy for deceptiveness under
different perturbation rates?

Q3. Can we characterize the properties of edges perturbed by FATE?
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Algorithm 1: FATE

Given :an undirected graph G = {A,X}, the set of training nodes Vtrain, fairness-related
auxiliary information matrix F, total budget B, budget in step i δi, the bias function b,
number of pre-training epochs T ;

Find : the poisoned graph G̃;
1 poisoned graph G̃ ← G, cumulative budget ∆← 0, step counter i← 0;
2 while ∆ < B do
3 ∇G̃b← 0;
4 for t = 1 to T do
5 update Θ

(t)
sur to Θ

(t+1)
sur with a gradient-based optimizer (e.g., Adam);

6 end
7 get Y(T ) and Θ

(T )
sur ;

8 compute meta-gradient ∇Gb← ∇Θ
(T )
sur

b
(
Y,Θ

(T )
sur ,F

)
· ∇GΘ

(T )
sur ;

9 if attack the adjacency matrix then
10 compute the derivative∇Ãb← ∇Ãb+

(
∇Ãb

)T − diag
(
∇Ãb

)
;

11 end
12 if discretized poisoning attack then
13 compute the poisoning preference matrix∇Ã by Eq. equation 5;
14 select the edges to poison in∇Ã with budget δi by Eq. equation 6;
15 update the corresponding entries in G̃;
16 else
17 update G̃ by Eq. equation 4 with budget δi;
18 end
19 ∆← ∆+ δi;
20 i← i+ 1;
21 end
22 return G̃;

C.1 HARDWARE AND SOFTWARE SPECIFICATIONS

All codes are programmed in Python 3.8.13 and PyTorch 1.12.1. All experiments are performed on a
Linux server with 2 Intel Xeon Gold 6240R CPUs and 4 Nvidia Tesla V100 SXM2 GPUs, each of
which has 32 GB memory.

C.2 DATASET DESCRIPTIONS

We use three widely-used benchmark datasets for fair graph learning: Pokec-z, Pokec-n and Bail. For
each dataset, we use a fixed random seed to split the dataset into training, validation and test sets with
the split ratio being 50%, 25%, and 25%, respectively. The statistics of the datasets, including the
number of nodes (# Nodes), the number of edges (# Edges), the number of features (# Features), the
sensitive attribute (Sensitive Attr.) and the label (Label), are summarized in Table 3.

• Pokec-z and Pokec-n are two datasets collected from the Slovakian social network Pokec, each of
which represents a sub-network of a province. Each node in these datasets is a user belonging to
two major regions of the corresponding provinces, and each edge is the friendship relationship
between two users. The sensitive attribute is the user region, and the label is the working field of a
user.

• Bail is a similarity graph of criminal defendants during 1990 – 2009. Each node is a defendant
during this time period. Two nodes are connected if they share similar past criminal records and
demographics. The sensitive attribute is the race of the defendant, and the label is whether the
defendant is on bail or not.
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Table 3: Statistics of the datasets.

Dataset Pokec-z Pokec-n Bail
# Nodes 7, 659 6, 185 18, 876
# Edges 20, 550 15, 321 311, 870

# Features 276 265 17
Sensitive Attr. Region Region Race

Label Working field Working field Bail decision

C.3 EVALUATION METRICS

In our experiments, we aim to evaluate how effective FATE is in (1) attacking the fairness and (2)
maintaining the utility of node classification.

To evaluate the performance of FATE in attacking the group fairness, we evaluate the effectiveness
using ∆SP, which is defined as follows.

∆SP = |P [ŷ = 1 | s = 1]− P [ŷ = 1 | s = 0] | (14)

where s is the sensitive attribute value of a node and ŷ is the ground-truth and predicted class labels of
a node. While to evaluate the performance of FATE in attacking the individual fairness, we evaluate
the effectiveness using the InFoRM bias (Bias) measure (Kang et al., 2020), which is defined as
follows.

Bias =
∑

i∈Vtest

∑
j∈Vtest

S [i, j] ∥Y [i, :]−Y [j, :]∥2F (15)

where Vtest is the set of test nodes and S is the oracle pairwise node similarity matrix. The intuition
of Eq. equation 15 is to measure the squared difference between the learning results of two test nodes,
weighted by their pairwise similarity.

To evaluate the performance of FATE in maintaining the utility, we use micro F1 score (Micro F1),
macro F1 score (Macro F1) and AUC score.

C.4 DETAILED PARAMETER SETTINGS

Poisoning the input graph. During poisoning attacks, we set a fixed random seed to control the
randomness. The random seed used for each dataset in attacking group/individual fairness are
summarized in Table 4.

• Surrogate model training. We run all methods with a perturbation rate from 0.05 to 0.25 with
a step size of 0.05. For FA-GNN (Hussain et al., 2022), we follow its official implementation
and use the same surrogate 2-layer GCN (Kipf & Welling, 2017) with 16 hidden dimensions for
poisoning attack.4. The surrogate GCN in FA-GNN is trained for 500 epochs with a learning rate
1e− 2, weight decay 5e− 4, and dropout rate 0.5. For FATE, we use a 2-layer linear GCN (Wu
et al., 2019) with 16 hidden dimensions for poisoning attacks. And the surrogate linear GCN in
FATE is trained for 500 epochs with a learning rate 1e− 2, weight decay 5e− 4, and dropout rate
0.5.

• Graph topology manipulation. For Random and DICE, we use the implementations provided in
the deeprobust package with the default parameters to add the adversarial edges.5. For FA-GNN,
we add adversarial edges that connect two nodes with different class labels and different sensitive
attributes, which provides the most promising performance as shown in (Hussain et al., 2022).
For FATE, suppose we poison the input graph in p (p > 1) attacking steps. Then the per-iteration
attacking budget in Algorithm 1 is set as δ1 = 1 and δi =

r|E|−1
p−1 , ∀i ∈ {2, . . . , p}, where r is the

perturbation rate and |E| is the number of edges. Detailed choices of p for each dataset in attacking
group/individual fairness are summarized in Table 4.

Training the victim model. We use a fixed list of random seed ([0, 1, 2, 42, 100]) to train each
victim model 5 times and report the mean and standard deviation. Regarding the victim models in

4https://github.com/mengcao327/attack-gnn-fairness
5https://deeprobust.readthedocs.io/
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Table 4: Parameter settings on the random seed for all baseline methods in poisoning attacks (Random
Seed) and the number of steps for poisoning attacks in FATE (Attacking Steps).

Dataset Fairness Definition Attacking Steps Random Seed

Pokec-n Statistical parity 3 25
Individual fairness 3 45

Pokec-z Statistical parity 3 25
Individual fairness 5 15

Bail Statistical parity 3 25
Individual fairness 3 5

group fairness attacks, we train a 2-layer GCN (Kipf & Welling, 2017) for 400 epochs and a 2-layer
FairGNN (Dai & Wang, 2021) for 2000 epochs to evaluate the efficacy of fairness attacks. The hidden
dimension, learning rate, weight decay and dropout rate of GCN and FairGNN are set to 128, 1e− 3,
1e− 5 and 0.5, respectively. The regularization parameters in FairGNN, namely α and β, are set to
100 and 1 for all datasets, respectively. Regarding the victim models in individual fairness attacks,
we train a 2-layer GCN (Kipf & Welling, 2017) and 2-layer InFoRM-GNN (Kang et al., 2020; Dong
et al., 2021) for 400 epochs. The hidden dimension, learning rate, weight decay and dropout rate
of GCN and InFoRM-GNN are set to 128, 1e− 3, 1e− 5 and 0.5, respectively. The regularization
parameter in InFoRM-GNN is set to 0.1 for all datasets.

D ADDITIONAL EXPERIMENTAL RESULTS: ATTACKING STATISTICAL PARITY
ON GRAPH NEURAL NETWORKS

A – FATE with FairGNN as the victim model. Here, we study how robust FairGNN is in fairness
attacks against statistical parity with linear GCN as the surrogate model. Note that FairGNN is a
fairness-aware graph neural network that leverages adversarial learning to ensure statistical parity.

Main results. Similar to Section 6.1, for FATE, we conduct fairness attacks via both edge flipping
(FATE-flip) and edge addition (FATE-add). For all other baseline methods, edges are only added.
From Table 5, we have the following key observations: (1) Even though the surrogate model is
linear GCN without fairness consideration, FairGNN, which ensures statistical parity on graph neural
networks, cannot mitigate the bias caused by fairness attacks and is vulnerable to fairness attack. (2)
FATE-flip and FATE-add are effective and the most deceptive method in fairness attacks. (3) DICE-S,
FATE-flip, and FATE-add are all capable of successful fairness attacks. But FATE-flip and FATE-add
have better utility than DICE-S, making the fairness attacks more deceptive. Both Random and
FA-GNN fail in some cases (indicated by the underlined ∆SP in both tables). In short, even when the
victim model is FairGNN (a fair graph neural network), our proposed FATE framework are effective
in fairness attacks while being the most deceptive (i.e., highest micro F1 score).

Effect of the perturbation rate. From Table 5, we can find out that: (1) ∆SP tends to increase when
the perturbation rate increases, indicating the effectiveness of FATE-flip and FATE-add for attacking
fairness. (2) There is no clear correlation between the perturbation rate and the micro F1 scores of
FATE-flip and FATE-add, meaning that they are deceptive in maintaining the utility. As a consequence,
FATE is effective and deceptive in attacking fairness of FairGNN across different perturbation rates.

B – Performance evaluation under different utility metrics. Here we provide additional evaluation
results of utility using macro F1 score and AUC score. From Tables 6 and 7, we can see that macro F1
scores and AUC scores are less impacted by different perturbation rates. Thus, it provide additional
evidence that FATE can achieve deceptive fairness attacks by achieving comparable or even better
utility on the semi-supervised node classification.
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Table 5: Attacking statistical parity on FairGNN under different perturbation rates (Ptb.). FATE poi-
sons the graph via both edge flipping (FATE-flip) and edge addition (FATE-add) while all other
baselines poison the graph via edge addition. Higher is better (↑) for micro F1 score (Micro F1) and
∆SP (bias). Bold font indicates the most deceptive fairness attack, i.e., increasing ∆SP and highest
micro F1. Underlined cell indicates the failure of fairness attack, i.e., decreasing ∆SP after fairness
attack.

Dataset Ptb. Random DICE-S FA-GNN FATE-flip FATE-add
Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑)

Pokec-n

0.00 68.2± 0.4 6.7± 2.0 68.2± 0.4 6.7± 2.0 68.2± 0.4 6.7± 2.0 68.2± 0.4 6.7± 2.0 68.2± 0.4 6.7± 2.0
0.05 67.4± 0.8 8.2± 2.5 66.9± 0.9 7.4± 1.7 66.7± 1.2 2.8± 1.3 68.4± 0.2 8.9± 1.8 68.4± 0.2 8.9± 1.8
0.10 67.5± 0.5 8.3± 1.5 67.6± 0.3 8.4± 1.2 66.6± 0.5 5.9± 1.3 68.5± 0.4 9.5± 1.4 68.5± 0.4 9.5± 1.4
0.15 65.9± 0.6 10.4± 2.3 67.3± 0.3 9.9± 2.4 64.8± 1.6 9.0± 3.3 68.5± 0.8 10.5± 2.6 68.5± 0.8 10.5± 2.6
0.20 65.4± 0.5 10.0± 1.5 66.5± 0.4 9.0± 2.3 65.2± 0.2 11.6± 2.6 68.3± 0.3 10.7± 2.3 68.3± 0.3 10.7± 2.3
0.25 65.8± 1.1 7.5± 1.9 66.5± 0.8 9.7± 3.0 64.8± 0.8 14.2± 2.3 68.5± 0.3 9.1± 3.6 68.5± 0.3 9.1± 3.6

Pokec-z

0.00 68.7± 0.3 7.0± 0.9 68.7± 0.3 7.0± 0.9 68.7± 0.3 7.0± 0.9 68.7± 0.3 7.0± 0.9 68.7± 0.3 7.0± 0.9
0.05 67.3± 0.6 8.7± 2.8 68.0± 0.7 9.4± 4.1 67.1± 1.0 1.7± 1.3 68.7± 0.4 8.0± 0.9 68.7± 0.4 8.0± 0.9
0.10 67.1± 0.2 8.6± 2.7 68.1± 0.5 8.2± 5.0 65.9± 0.8 6.8± 1.7 68.5± 0.5 9.0± 1.8 68.5± 0.5 9.0± 1.8
0.15 66.8± 0.8 8.9± 2.2 67.6± 0.6 9.6± 3.4 64.9± 0.9 10.0± 1.7 68.7± 0.5 9.5± 2.2 68.7± 0.5 9.5± 2.2
0.20 66.8± 0.7 8.6± 3.0 67.4± 0.7 9.1± 4.9 64.6± 0.8 14.2± 3.1 68.8± 0.2 10.4± 1.6 68.8± 0.2 10.4± 1.6
0.25 66.4± 0.4 7.9± 2.8 67.1± 0.6 8.7± 4.3 64.0± 1.1 14.0± 2.0 68.5± 0.3 10.3± 2.1 68.5± 0.3 10.3± 2.1

Bail

0.00 93.9± 0.1 8.4± 0.2 93.9± 0.1 8.4± 0.2 93.9± 0.1 8.4± 0.2 93.9± 0.1 8.4± 0.2 93.9± 0.1 8.4± 0.2
0.05 90.6± 1.2 8.3± 0.2 90.5± 1.0 8.9± 0.5 89.1± 2.0 10.8± 1.1 93.6± 0.1 9.2± 0.2 93.6± 0.1 9.1± 0.2
0.10 90.1± 2.0 8.5± 0.6 90.1± 1.0 8.6± 0.2 87.3± 2.2 12.2± 1.2 93.4± 0.1 9.3± 0.2 93.4± 0.1 9.3± 0.2
0.15 90.0± 2.0 8.1± 0.5 90.6± 1.7 9.5± 0.6 87.8± 2.0 10.9± 2.1 93.3± 0.1 9.2± 0.3 93.3± 0.1 9.2± 0.3
0.20 89.2± 2.4 8.4± 0.7 90.0± 1.7 9.9± 0.6 86.0± 2.7 11.7± 2.4 93.1± 0.2 9.3± 0.3 93.0± 0.1 9.4± 0.2
0.25 88.8± 2.3 8.2± 0.7 89.9± 1.8 9.6± 0.5 87.0± 1.9 8.5± 2.6 93.0± 0.1 9.2± 0.4 93.0± 0.2 9.3± 0.3

Table 6: Macro F1 score and AUC score of attacking statistical parity on GCN under different
perturbation rates (Ptb.). FATE poisons the graph via both edge flipping (FATE-flip) and edge addition
(FATE-add) while all other baselines poison the graph via edge addition. Higher is better (↑) for
macro F1 score (Macro F1) and AUC score (AUC). Bold font indicates the highest macro F1 score or
AUC score.

Dataset Ptb. Random DICE-S FA-GNN FATE-flip FATE-add
Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑)

Pokec-n

0.00 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5
0.05 65.7± 0.3 70.4± 0.4 65.4± 0.3 70.3± 0.3 64.9± 0.2 70.4± 0.2 66.0± 0.3 70.3± 0.6 66.0± 0.3 70.3± 0.6
0.10 64.6± 0.4 69.6± 0.3 65.7± 0.2 70.2± 0.2 64.1± 0.3 70.0± 0.1 66.1± 0.6 70.4± 0.6 66.1± 0.6 70.4± 0.6
0.15 65.1± 0.4 69.6± 0.1 64.9± 0.3 69.0± 0.3 64.3± 0.6 69.1± 0.5 66.1± 0.2 70.6± 0.6 66.1± 0.2 70.6± 0.6
0.20 64.5± 0.5 69.1± 0.1 64.2± 0.3 68.7± 0.4 63.5± 0.2 68.0± 0.2 66.4± 0.3 70.7± 0.4 66.4± 0.3 70.7± 0.4
0.25 64.5± 0.6 68.8± 0.1 63.7± 0.2 68.8± 0.2 65.0± 0.2 69.5± 0.3 66.3± 0.3 70.6± 0.6 66.3± 0.3 70.6± 0.6

Pokec-z

0.00 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3
0.05 68.5± 0.4 74.5± 0.4 68.7± 0.3 75.4± 0.4 67.9± 0.3 74.5± 0.2 68.6± 0.4 75.2± 0.4 68.6± 0.4 75.2± 0.4
0.10 68.5± 0.3 74.8± 0.3 67.6± 0.2 74.5± 0.3 67.5± 0.5 73.8± 0.3 68.6± 0.6 75.2± 0.3 68.6± 0.6 75.2± 0.3
0.15 67.8± 0.3 74.4± 0.3 67.6± 0.4 74.1± 0.4 66.1± 0.6 72.7± 0.2 68.9± 0.7 75.3± 0.2 68.9± 0.7 75.3± 0.2
0.20 68.2± 0.4 74.5± 0.6 66.8± 0.5 73.6± 0.3 66.1± 0.2 71.9± 0.1 68.4± 0.5 75.1± 0.3 68.4± 0.5 75.1± 0.3
0.25 68.0± 0.4 74.0± 0.4 67.1± 0.7 74.4± 0.3 65.3± 0.6 71.2± 0.3 68.4± 1.1 74.4± 1.4 68.4± 1.1 74.4± 1.4

Bail

0.00 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1
0.05 92.0± 0.2 95.3± 0.2 91.4± 0.3 95.1± 0.4 90.8± 0.1 94.4± 0.2 91.8± 0.1 97.1± 0.1 91.7± 0.1 97.1± 0.2
0.10 91.4± 0.2 94.7± 0.3 91.4± 0.3 94.7± 0.4 89.5± 0.1 93.5± 0.1 91.6± 0.2 96.9± 0.1 91.6± 0.2 96.9± 0.1
0.15 91.1± 0.2 94.2± 0.2 91.2± 0.2 94.5± 0.2 88.7± 0.3 92.5± 0.2 91.4± 0.2 96.9± 0.1 91.5± 0.1 96.9± 0.1
0.20 90.7± 0.2 94.1± 0.1 90.9± 0.2 94.4± 0.3 88.4± 0.1 92.2± 0.1 91.3± 0.2 96.8± 0.1 91.4± 0.2 96.8± 0.1
0.25 90.4± 0.2 93.4± 0.3 90.6± 0.3 94.3± 0.3 88.5± 0.2 92.0± 0.1 91.2± 0.1 96.8± 0.1 91.3± 0.2 96.8± 0.1

Table 7: Macro F1 score and AUC score of attacking statistical parity on FairGNN under different
perturbation rates (Ptb.). FATE poisons the graph via both edge flipping (FATE-flip) and edge addition
(FATE-add) while all other baselines poison the graph via edge addition. Higher is better (↑) for
macro F1 score (Macro F1) and AUC score (AUC). Bold font indicates the highest macro F1 score or
AUC score.

Dataset Ptb. Random DICE-S FA-GNN FATE-flip FATE-add
Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑)

Pokec-n

0.00 65.6± 0.3 70.4± 0.5 65.6± 0.3 70.4± 0.5 65.6± 0.3 70.4± 0.5 65.6± 0.3 70.4± 0.5 65.6± 0.3 70.4± 0.5
0.05 64.3± 0.6 68.3± 1.1 64.5± 0.4 69.5± 0.8 63.6± 0.7 68.2± 0.5 65.8± 0.5 70.7± 0.4 65.8± 0.5 70.7± 0.4
0.10 63.8± 0.2 67.3± 1.1 64.3± 0.7 69.6± 0.4 63.9± 0.4 68.3± 0.2 66.0± 0.7 70.8± 0.5 66.0± 0.7 70.8± 0.5
0.15 63.5± 0.2 67.8± 0.4 64.1± 0.7 68.5± 0.4 63.1± 0.6 67.2± 0.5 65.8± 1.0 70.8± 0.5 65.8± 1.0 70.8± 0.5
0.20 63.1± 0.6 67.8± 1.1 62.4± 1.5 67.5± 1.1 62.3± 0.6 66.7± 0.9 65.7± 0.7 70.4± 0.5 65.7± 0.7 70.4± 0.5
0.25 62.4± 0.3 66.8± 0.8 62.4± 1.6 67.2± 0.9 62.4± 1.4 67.6± 1.3 65.1± 1.2 70.1± 0.5 65.1± 1.2 70.1± 0.5

Pokec-z

0.00 68.4± 0.4 75.1± 0.3 68.4± 0.4 75.1± 0.3 68.4± 0.4 75.1± 0.3 68.4± 0.4 75.1± 0.3 68.4± 0.4 75.1± 0.3
0.05 66.3± 0.9 73.5± 0.9 67.2± 0.7 73.9± 1.5 66.5± 1.4 72.6± 1.4 68.4± 0.4 74.7± 0.9 68.4± 0.4 74.7± 0.9
0.10 66.0± 0.7 72.9± 1.1 67.1± 0.5 73.4± 0.2 65.2± 0.9 71.3± 1.7 68.2± 0.8 75.3± 0.8 68.2± 0.8 75.3± 0.8
0.15 66.0± 0.8 71.8± 2.1 66.5± 0.9 73.4± 0.6 63.4± 1.5 70.0± 1.8 68.3± 0.5 75.2± 0.6 68.3± 0.5 75.2± 0.6
0.20 65.6± 0.9 71.9± 1.4 66.4± 1.0 73.0± 0.8 63.7± 0.9 68.9± 1.6 68.3± 0.3 75.5± 0.3 68.3± 0.3 75.5± 0.3
0.25 65.0± 0.7 71.2± 1.7 66.3± 1.0 73.3± 0.8 62.8± 1.8 69.4± 1.5 68.0± 0.5 75.3± 0.3 68.0± 0.5 75.3± 0.3

Bail

0.00 93.3± 0.2 97.4± 0.1 93.3± 0.2 97.4± 0.1 93.3± 0.2 97.4± 0.1 93.3± 0.2 97.4± 0.1 93.3± 0.2 97.4± 0.1
0.05 89.5± 1.5 92.8± 1.8 89.5± 1.1 92.3± 1.7 87.8± 2.2 91.2± 1.8 93.0± 0.1 97.3± 0.1 93.0± 0.1 97.3± 0.1
0.10 89.1± 2.2 92.7± 2.5 88.8± 1.3 92.3± 1.6 85.6± 2.7 90.5± 1.7 92.7± 0.1 97.1± 0.1 92.7± 0.1 97.1± 0.1
0.15 88.8± 2.2 92.4± 2.5 89.6± 1.9 92.8± 2.2 86.1± 2.4 90.3± 2.2 92.6± 0.1 97.0± 0.1 92.6± 0.1 97.0± 0.1
0.20 87.8± 2.8 91.6± 2.5 88.9± 1.8 92.2± 1.6 84.1± 3.0 89.0± 1.5 92.5± 0.2 97.0± 0.1 92.3± 0.1 97.0± 0.1
0.25 87.5± 2.6 91.5± 2.6 88.7± 2.1 92.5± 2.3 85.1± 2.3 89.6± 1.3 92.3± 0.1 97.0± 0.1 92.3± 0.2 97.0± 0.1
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E ADDITIONAL EXPERIMENTAL RESULTS: ATTACKING INDIVIDUAL
FAIRNESS ON GRAPH NEURAL NETWORKS

A – FATE with InFoRM-GNN as the victim model. InFoRM-GNN is an individually fair graph
neural network that ensures individual fairness through regularizing the individual bias measure
defined in Section 5. Here, we study how robust InFoRM-GNN is in fairness attacks against individual
fairness with linear GCN as the surrogate model.

Main results. We attack individual fairness using FATE via both edge flipping (FATE-flip) and edge
addition (FATE-add), whereas edges are only added for all other baseline methods. From Table 8,
we can see that: (1) for Pokec-n and Pokec-z, FATE-flip and FATE-add are effective: they are the
only methods that could consistently attack individual fairness across different perturbation rates;
FATE-flip and FATE-add are deceptive by achieving comparable or higher micro F1 scores compared
with the micro F1 score on the benign graph (when perturbation rate is 0.00). (2) For Bail, almost
all methods fail the fairness attacks, except for FA-GNN with perturbation rates 0.20 and 0.25. A
possible reason is that the adjacency matrix A of Bail is essentially a similarity graph, which causes
pairwise node similarity matrix S being close to the adjacency matrix A. Even though FATE and other
baseline methods add adversarial edges to attack individual fairness, regularizing the individual bias
defined by S (a) not only helps to ensure individual fairness (b) but also provide useful supervision
signal in learning a representative node representation due to the closeness between S and A. (3)
Compared with the results in Table 2 where GCN is the victim model, InFoRM-GNN is more robust
against fairness attacks against individual fairness due to smaller individual bias in Table 8.

Effect of the perturbation rate. From Table 8, we can see that FATE can always achieve comparable
or even better micro F1 scores across different perturbation rates. In the meanwhile, the correlation
between the perturbation rate and the individual bias is relatively weak. One possible reason is that
the individual bias is computed using the pairwise node similarity matrix, which is not impacted by
poisoning the adjacency matrix. Though poisoning the adjacency matrix could affect the learning
results, the goal of achieving deceptive fairness attacks (i.e., the lower-level optimization problem
in FATE) may not cause the learning results obtained by training on the benign graph to deviate
much from the learning results obtained by training on the poisoned graph. Consequently, a higher
perturbation rate may have less impact on the computation of individual bias.

Table 8: Attacking individual fairness on InFoRM-GNN under different perturbation rates (Ptb.).
FATE poisons the graph via both edge flipping (FATE-flip) and edge addition (FATE-add) while all
other baselines poison the graph via edge addition. Higher is better (↑) for micro F1 score (Micro F1)
and InFoRM bias (Bias). Bold font indicates the most deceptive fairness attack, i.e., increasing bias
and highest micro F1. Underlined cell indicates the failure of fairness attack, i.e., decreasing bias
after fairness attack.

Dataset Ptb. Random DICE-S FA-GNN FATE-flip FATE-add
Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑)

Pokec-n

0.00 68.0± 0.4 0.5± 0.1 68.0± 0.4 0.5± 0.1 68.0± 0.4 0.5± 0.1 68.0± 0.4 0.5± 0.1 68.0± 0.4 0.5± 0.1
0.05 67.3± 0.5 0.5± 0.0 68.0± 0.4 0.5± 0.1 68.3± 0.2 0.5± 0.0 68.4± 0.4 0.6± 0.1 68.3± 0.4 0.5± 0.1
0.10 67.0± 0.2 0.5± 0.1 67.4± 0.4 0.5± 0.1 67.2± 0.2 0.4± 0.0 68.3± 0.6 0.5± 0.1 68.4± 0.5 0.6± 0.1
0.15 66.7± 0.5 0.5± 0.1 67.7± 0.4 0.4± 0.1 66.1± 0.2 0.4± 0.0 68.3± 0.6 0.6± 0.1 68.1± 0.7 0.6± 0.1
0.20 66.9± 0.3 0.4± 0.1 67.2± 0.2 0.5± 0.1 66.5± 0.2 0.4± 0.0 67.9± 0.8 0.5± 0.1 68.1± 0.7 0.6± 0.1
0.25 66.6± 0.5 0.5± 0.0 66.7± 0.6 0.5± 0.1 65.1± 0.2 0.4± 0.0 68.7± 0.3 0.6± 0.0 68.5± 0.8 0.6± 0.1

Pokec-z

0.00 68.4± 0.5 0.5± 0.0 68.4± 0.5 0.5± 0.0 68.4± 0.5 0.5± 0.0 68.4± 0.5 0.5± 0.0 68.4± 0.5 0.5± 0.0
0.05 68.9± 0.2 0.6± 0.1 68.9± 0.5 0.5± 0.1 68.1± 0.7 0.5± 0.1 68.7± 0.7 0.7± 0.1 68.9± 0.5 0.6± 0.0
0.10 67.9± 0.2 0.6± 0.1 69.0± 0.1 0.6± 0.1 68.0± 0.6 0.5± 0.0 68.9± 0.6 0.6± 0.0 68.8± 0.6 0.6± 0.0
0.15 67.6± 0.3 0.6± 0.1 68.2± 0.5 0.6± 0.1 66.8± 0.3 0.5± 0.1 69.1± 0.5 0.6± 0.0 69.0± 0.7 0.6± 0.1
0.20 67.7± 0.5 0.6± 0.1 68.5± 0.2 0.5± 0.0 66.4± 0.6 0.4± 0.1 69.1± 0.2 0.6± 0.0 69.3± 0.3 0.6± 0.0
0.25 66.8± 0.4 0.5± 0.1 68.5± 0.2 0.5± 0.0 65.3± 0.4 0.4± 0.0 68.9± 0.7 0.6± 0.0 69.4± 0.4 0.6± 0.0

Bail

0.00 92.8± 0.1 1.7± 0.1 92.8± 0.1 1.7± 0.1 92.8± 0.1 1.7± 0.1 92.8± 0.1 1.7± 0.1 92.8± 0.1 1.7± 0.1
0.05 91.9± 0.1 0.4± 0.0 92.1± 0.1 1.7± 0.0 91.3± 0.1 1.5± 0.1 92.8± 0.3 1.7± 0.1 92.7± 0.1 1.6± 0.1
0.10 91.7± 0.1 0.3± 0.0 92.0± 0.1 1.6± 0.1 90.4± 0.2 1.5± 0.1 92.8± 0.1 1.6± 0.0 92.8± 0.1 1.6± 0.0
0.15 91.5± 0.1 0.3± 0.0 91.9± 0.1 1.6± 0.1 90.0± 0.1 1.7± 0.1 92.8± 0.0 1.6± 0.1 92.8± 0.1 1.6± 0.0
0.20 91.5± 0.1 0.3± 0.0 91.8± 0.1 1.7± 0.0 89.1± 0.1 1.7± 0.1 92.8± 0.1 1.6± 0.0 92.7± 0.1 1.5± 0.1
0.25 91.1± 0.2 0.3± 0.0 91.5± 0.1 1.6± 0.0 88.9± 0.1 1.8± 0.1 92.6± 0.1 1.6± 0.1 92.7± 0.0 1.6± 0.1

B – Performance evaluation under different utility metrics. Similar to Appendix D, we provide
additional results on evaluating the utility of FATE in attacking individual fairness with macro F1
score and AUC score. From Tables 9 and 10, we can draw a conclusion that FATE can achieve
comparable or even better macro F1 scores and AUC scores for both GCN and InFoRM-GNN across
different perturbation rates. It further proves the ability of FATE on deceptive fairness attacks in the
task of semi-supervised node classification.
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Table 9: Macro F1 score and AUC score of attacking individual fairness on GCN under different
perturbation rates (Ptb.). FATE poisons the graph via both edge flipping (FATE-flip) and edge addition
(FATE-add) while all other baselines poison the graph via edge addition. Higher is better (↑) for
macro F1 score (Macro F1) and AUC score (AUC). Bold font indicates the highest macro F1 score or
AUC score.

Dataset Ptb. Random DICE-S FA-GNN FATE-flip FATE-add
Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑)

Pokec-n

0.00 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5 65.3± 0.3 69.9± 0.5
0.05 65.2± 0.3 70.1± 0.2 65.7± 0.3 70.2± 0.2 65.6± 0.6 71.1± 0.2 65.7± 0.4 70.1± 0.6 65.5± 0.3 70.2± 0.8
0.10 65.2± 0.3 69.6± 0.5 64.7± 0.5 69.9± 0.2 65.4± 0.6 70.2± 0.3 65.5± 0.3 70.2± 0.7 65.8± 0.5 70.7± 0.6
0.15 65.4± 0.2 69.4± 0.3 64.9± 0.2 70.1± 0.4 64.6± 0.2 69.4± 0.1 65.6± 0.4 70.0± 0.5 65.4± 0.1 69.8± 0.7
0.20 64.9± 0.2 69.6± 0.3 65.1± 0.4 70.2± 0.3 63.7± 0.5 69.0± 0.1 65.2± 0.3 69.7± 0.6 65.6± 0.6 70.2± 0.7
0.25 64.7± 0.1 69.4± 0.2 64.1± 0.1 69.4± 0.2 63.3± 0.5 68.4± 0.3 65.4± 0.6 69.7± 0.7 65.6± 0.8 69.8± 0.8

Pokec-z

0.00 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3 68.2± 0.4 75.1± 0.3
0.05 68.7± 0.4 75.0± 0.4 68.7± 0.6 75.2± 0.4 68.0± 0.4 75.1± 0.5 68.5± 0.5 75.4± 0.2 68.5± 0.3 75.2± 0.4
0.10 68.5± 0.1 75.1± 0.5 68.9± 0.2 75.3± 0.1 67.9± 0.6 74.4± 0.5 68.8± 0.5 75.5± 0.3 68.8± 0.4 75.6± 0.2
0.15 67.5± 0.4 74.4± 0.3 67.9± 0.3 73.8± 0.1 66.8± 0.4 72.6± 0.2 68.4± 0.5 75.5± 0.4 68.8± 0.7 75.6± 0.3
0.20 67.5± 0.4 74.7± 0.4 67.7± 0.3 74.7± 0.2 66.1± 0.1 71.8± 0.2 68.7± 0.5 75.5± 0.3 69.0± 0.4 75.6± 0.3
0.25 67.2± 0.3 74.1± 0.3 68.0± 0.5 74.7± 0.2 64.8± 0.4 70.5± 0.4 68.9± 0.3 75.6± 0.2 69.1± 0.3 75.7± 0.3

Bail

0.00 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1 92.3± 0.2 97.4± 0.1
0.05 91.2± 0.3 94.8± 0.2 91.4± 0.2 95.0± 0.3 90.3± 0.2 94.1± 0.2 92.3± 0.4 97.3± 0.1 92.1± 0.3 97.3± 0.1
0.10 90.6± 0.1 94.2± 0.3 91.3± 0.2 94.9± 0.4 89.1± 0.1 92.9± 0.3 92.3± 0.1 97.3± 0.4 92.2± 0.2 97.3± 0.1
0.15 90.3± 0.1 94.1± 0.2 91.3± 0.3 94.7± 0.3 88.6± 0.2 92.4± 0.3 92.4± 0.1 97.3± 0.0 92.3± 0.2 97.3± 0.1
0.20 90.2± 0.0 93.9± 0.1 90.9± 0.2 94.2± 0.2 87.9± 0.2 91.8± 0.2 92.4± 0.1 97.3± 0.0 92.4± 0.2 97.3± 0.1
0.25 90.9± 0.1 93.5± 0.2 90.5± 0.1 94.1± 0.4 87.6± 0.1 91.6± 0.2 92.2± 0.2 97.2± 0.1 92.2± 0.2 97.3± 0.1

Table 10: Macro F1 score and AUC score of attacking individual fairness on InFoRM-GNN under
different perturbation rates (Ptb.). FATE poisons the graph via both edge flipping (FATE-flip) and edge
addition (FATE-add) while all other baselines poison the graph via edge addition. Higher is better
(↑) for macro F1 score (Macro F1) and AUC score (AUC). Bold font indicates the highest macro F1
score or AUC score.

Dataset Ptb. Random DICE-S FA-GNN FATE-flip FATE-add
Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑) Macro F1 (↑) AUC (↑)

Pokec-n

0.00 65.4± 0.4 70.5± 0.8 65.4± 0.4 70.5± 0.8 65.4± 0.4 70.5± 0.8 65.4± 0.4 70.5± 0.8 65.4± 0.4 70.5± 0.8
0.05 65.1± 0.3 69.9± 0.2 65.7± 0.1 70.3± 0.1 65.6± 0.3 70.8± 0.1 65.9± 0.4 70.7± 0.8 65.8± 0.5 70.5± 0.9
0.10 64.9± 0.2 69.6± 0.5 65.2± 0.4 70.2± 0.2 64.8± 0.4 69.8± 0.3 65.8± 0.5 70.3± 1.0 66.0± 0.4 70.9± 1.1
0.15 64.8± 0.4 69.6± 0.4 65.1± 0.3 70.0± 0.5 64.4± 0.1 69.2± 0.3 65.7± 0.6 70.3± 0.7 65.8± 0.4 70.3± 0.9
0.20 65.1± 0.2 69.5± 0.3 64.9± 0.5 69.9± 0.2 63.4± 0.4 69.0± 0.2 65.5± 0.8 70.2± 0.9 65.6± 0.6 70.5± 0.7
0.25 64.6± 0.3 69.6± 0.2 64.5± 0.3 69.4± 0.2 63.6± 0.3 68.6± 0.2 66.0± 0.5 70.8± 0.3 65.9± 0.5 70.4± 0.8

Pokec-z

0.00 68.3± 0.4 75.2± 0.2 68.3± 0.4 75.2± 0.2 68.3± 0.4 75.2± 0.2 68.3± 0.4 75.2± 0.2 68.3± 0.4 75.2± 0.2
0.05 68.6± 0.2 75.1± 0.3 68.9± 0.4 75.5± 0.2 67.8± 0.6 75.0± 0.3 68.6± 0.7 75.1± 0.6 68.7± 0.4 75.4± 0.3
0.10 67.6± 0.2 74.3± 0.4 68.9± 0.2 75.3± 0.3 67.7± 0.6 73.9± 0.6 68.6± 0.6 75.6± 0.3 68.6± 0.6 75.5± 0.3
0.15 67.2± 0.3 74.1± 0.4 67.9± 0.4 74.4± 0.3 66.7± 0.3 72.3± 0.1 68.9± 0.4 75.4± 0.4 68.9± 0.6 75.4± 0.4
0.20 67.3± 0.6 74.4± 0.4 68.3± 0.1 75.1± 0.3 66.0± 0.5 71.7± 0.2 69.0± 0.2 75.5± 0.2 69.2± 0.4 75.4± 0.4
0.25 66.3± 0.4 73.9± 0.4 68.2± 0.3 74.8± 0.1 65.0± 0.5 70.8± 0.2 68.8± 0.7 75.6± 0.3 69.3± 0.4 75.8± 0.1

Bail

0.00 91.9± 0.1 97.2± 0.0 91.9± 0.1 97.2± 0.0 91.9± 0.1 97.2± 0.0 91.9± 0.1 97.2± 0.0 91.9± 0.1 97.2± 0.0
0.05 91.0± 0.1 94.2± 0.2 91.2± 0.1 95.0± 0.1 90.4± 0.1 94.2± 0.1 92.0± 0.0 97.1± 0.1 91.9± 0.2 97.0± 0.2
0.10 90.7± 0.2 93.9± 0.3 91.1± 0.1 94.7± 0.3 89.4± 0.2 93.3± 0.1 92.0± 0.1 97.0± 0.0 91.9± 0.1 97.0± 0.0
0.15 90.5± 0.1 93.8± 0.3 91.0± 0.2 94.5± 0.3 88.8± 0.2 92.4± 0.1 92.0± 0.1 97.0± 0.0 91.9± 0.2 97.0± 0.1
0.20 90.5± 0.2 93.7± 0.2 90.8± 0.1 94.3± 0.2 87.8± 0.1 91.8± 0.1 92.0± 0.1 96.9± 0.0 91.9± 0.1 96.8± 0.1
0.25 90.1± 0.2 93.4± 0.3 90.6± 0.1 94.0± 0.1 87.4± 0.1 91.4± 0.1 91.8± 0.1 96.8± 0.1 91.9± 0.1 96.9± 0.0
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F TRANFERABILITY OF FAIRNESS ATTACKS BY FATE

For the evaluation results shown in Sections 6.1 and 6.2 as well as Appendices D and E, both
the surrogate model (linear GCN) and the victim models (i.e., GCN, FairGNN, InFoRM-GNN)
are convolutional aggregation-based graph neural networks. In this section, we aim to test the
transferability of FATE by generating poisoned graphs on the convolutional aggregation-based
surrogate model (i.e., linear GCN) and testing on graph attention network (GAT), which is a non-
convolutional aggregation-based graph neural network (Veličković et al., 2018).

More specifically, we train a graph attention network (GAT) with 8 attention heads for 400 epochs.
The hidden dimension, learning rate, weight decay and dropout rate of GAT are set to 64, 1e − 3,
1e− 5 and 0.5, respectively.

The results on attacking statistical parity or individual fairness with GAT as the victim model
are shown in Table 11. Even though the surrogate model used by the attacker is a convolutional
aggregation-based linear GCN, from the table, it is clear that FATE can consistently succeed in (1)
effective fairness attack by increasing ∆SP and the individual bias (Bias) and (2) deceptive attack
by offering comparable or even better micro F1 score (Micro F1) when the victim model is not a
convolutional aggregation-based model. Thus, it shows that the adversarial edges flipped/added by
FATE is able to transfer to graph neural networks with different type of aggregation function.

Table 11: Transferability of attacking statical parity and individual fairness with FATE on GAT under
different perturbation rates (Ptb.). FATE poisons the graph via both edge flipping (FATE-flip) and
edge addition (FATE-add). Higher is better (↑) for micro F1 score (Micro F1), ∆SP (bias for statistical
parity), and InFoRM bias (Bias, bias for individual fairness).

Attacking Statistical Parity

Dataset Ptb. Pokec-n Pokec-z Bail
Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑) Micro F1 (↑) ∆SP (↑)

FATE-flip

0.00 63.8± 5.3 4.0± 3.2 68.2± 0.5 8.6± 1.1 89.7± 4.2 7.5± 0.6
0.05 63.9± 5.5 6.4± 5.1 68.3± 0.4 10.5± 1.3 90.1± 3.8 8.1± 0.6
0.10 63.6± 5.3 7.9± 6.7 67.8± 0.4 11.2± 1.7 90.3± 3.2 8.5± 0.6
0.15 63.7± 5.3 7.5± 6.1 68.2± 0.6 11.2± 1.5 90.2± 2.7 8.8± 0.3
0.20 64.1± 5.6 7.7± 6.3 67.8± 0.6 11.1± 0.9 90.0± 2.7 8.7± 0.6
0.25 63.6± 5.2 8.5± 7.0 68.0± 0.4 11.5± 1.2 89.9± 3.0 8.8± 0.5

FATE-add

0.00 63.8± 5.3 4.0± 3.2 68.2± 0.5 8.6± 1.1 89.7± 4.2 7.5± 0.6
0.05 63.9± 5.5 6.4± 5.1 68.3± 0.4 10.5± 1.3 90.2± 3.7 8.1± 0.7
0.10 63.6± 5.3 7.9± 6.7 67.8± 0.4 11.2± 1.7 90.3± 3.2 8.5± 0.6
0.15 63.7± 5.3 7.5± 6.1 68.2± 0.6 11.2± 1.5 90.3± 2.6 8.8± 0.3
0.20 64.1± 5.6 7.7± 6.3 67.8± 0.6 11.1± 0.9 90.1± 2.6 8.8± 0.5
0.25 63.6± 5.2 8.5± 7.0 68.0± 0.4 11.5± 1.2 89.9± 2.9 8.8± 0.5

Attacking Individual Fairness

Dataset Ptb. Pokec-n Pokec-z Bail
Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑) Micro F1 (↑) Bias (↑)

FATE-flip

0.00 63.8± 5.3 0.4± 0.2 68.2± 0.5 0.5± 0.1 89.7± 4.2 2.5± 1.2
0.05 63.6± 5.3 0.5± 0.2 68.2± 0.8 0.6± 0.1 90.0± 4.2 2.7± 1.1
0.10 63.7± 5.3 0.5± 0.2 67.8± 0.5 0.6± 0.1 90.0± 4.0 2.8± 1.3
0.15 63.7± 5.4 0.5± 0.2 68.2± 0.5 0.6± 0.2 90.2± 3.6 2.8± 1.4
0.20 63.5± 5.1 0.5± 0.2 68.5± 0.5 0.6± 0.2 90.2± 3.4 2.8± 1.2
0.25 63.5± 5.1 0.5± 0.2 68.0± 0.6 0.6± 0.1 90.2± 3.1 2.7± 1.2

FATE-add

0.00 63.8± 5.3 0.4± 0.2 68.2± 0.5 0.5± 0.1 89.7± 4.2 2.5± 1.2
0.05 63.9± 5.4 0.5± 0.2 68.2± 0.7 0.6± 0.1 90.0± 4.6 2.7± 1.4
0.10 63.8± 5.4 0.5± 0.2 68.2± 0.5 0.6± 0.2 90.1± 4.0 2.8± 1.2
0.15 63.8± 5.4 0.5± 0.2 68.3± 0.2 0.6± 0.2 90.1± 3.9 2.8± 1.2
0.20 63.7± 5.3 0.5± 0.2 68.4± 0.3 0.6± 0.1 90.3± 3.2 2.8± 1.3
0.25 63.7± 5.3 0.5± 0.2 68.4± 0.3 0.6± 0.1 90.2± 3.1 2.8± 1.2
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G FURTHER DISCUSSIONS ABOUT FATE

A – Relationship between fairness attacks and the impossibility theorem of fairness. The
impossibility theorems show that some fairness definitions may not be satisfied at the same time.6
However, this may not always be regarded as fairness attacks. To our best knowledge, the impossibility
theorems prove that two fairness definitions (e.g., statistical parity and predictive parity) cannot be
fully satisfied at the same time, i.e., biases for two fairness definitions are both zero). However, there
is no formal theoretical guarantees that ensuring one fairness definition will always amplify the bias
of another fairness definition. Such formal guarantees might be nontrivial and beyond the scope of
our paper. As we pointed out in the abstract, the main goal of this paper is to provide insights into the
adversarial robustness of fair graph learning and can shed light for designing robust and fair graph
learning in future studies.

B – Relationship between FATE and Metattack. FATE bears subtle differences with Metat-
tack (Zügner & Günnemann, 2019), which utilizes meta learning for adversarial attacks on utility.
Note that Metattack aims to degrade the utility of a graph neural network by maximizing the task-
specific utility loss (e.g., cross entropy for node classification) in the upper-level optimization problem.
Different from Metattack, FATE aims to attack the fairness instead of utility by setting the upper-level
optimization problem as maximizing a bias function rather than a task-specific utility loss.

C – Alternative edge selection strategy via sampling. Here we introduce an alternative perturbation
set selection strategy that is different from the greedy selection described in Section 3.2. The key
idea is to view each edge in the graph as a Bernoulli random variable (Lin et al., 2022; Liu et al.,
2023a). And the general workflow is as follows. First, we follow Eq. 5 to get a poisoning preference
matrix∇A. Then, we normalize∇A to a probability matrix PA. Finally, for the i-th attacking step,
we can sample δi entries without replacement using PA as the set of edges to be manipulated (i.e.,
added/deleted/flipped).

D – The potential of FATE on attacking a specific demographic group in group fairness. To
attack a specific group, there can be two possible strategies: (1) decreasing the acceptance rate of
the corresponding group and (2) increasing the gap between the group to be attacked and another
demographic group. For (1), following our strategy of modeling acceptance rate as the CDF of
Gaussian KDE, we can set the bias function to be maximize as the negative of acceptance rate, i.e.,
b (Y,Θ∗,F) = −P [ỹ = 1 | s = a], where a is the sensitive attribute value denoting the demographic
group to be attacked. For (2), suppose we want to attack the group with sensitive attribute value.
We can also attack this demographic group by setting the bias function to be b (Y,Θ∗,F) =
P [ỹ = 1 | s = 1]−P [ỹ = 1 | s = 0]. In this way, we can increase the acceptance rate of demographic
group (s = 1) while minimizing the acceptance rate of the group (s = 0).

E – The potential of FATE on attacking the best/worst accuracy group. To attack the best/worst
accuracy group, the general idea is to set the bias function to be the loss of the best/worst group. It is
worth noting that such attack is conceptually similar to adversarial attacks on the utility as shown in
Metattack (Zügner & Günnemann, 2019), but only focusing on a subgroup of nodes determined by
the sensitive attribute rather than the validation set.

F – Justification of applying kernel density estimation on non-IID graph data. To date, it
remains an open problem whether the learned node representations follow IID assumption on the
low-dimensional manifold or not. Empirically from the experimental results, using KDE-based
bias approximation effectively helps maximize the bias for fairness attacks. Meanwhile, relaxing
the IID assumption is a common strategy in computing the distributional discrepancy of node
representations. For example, MMD is a widely used distributional discrepancy measures, whose
accurate approximation also requires IID assumption (Chérief-Abdellatif & Alquier, 2020), and
recent studies (Zhu et al., 2021; 2023) show that we can also adapt it on non-IID data which shows
promising empirical performance.

G – Possible defense strategies against deceptive fairness attacks. FATE demonstrate that it is
possible to achieve deceptive fairness attacks on graph learning models by deliberately perturbing the
input graph. Given its potential negative societal impacts, we discuss few possible defense strategies
against such deceptive fairness attacks. To defend against deceptive fairness attacks for statistical
parity, one possible strategy is to preprocess the input graph by either learning a bias-free graph (e.g.,

6https://machinesgonewrong.com/fairness/
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Wang et al. (2022)) or sampling over the neighborhood (e.g., Spinelli et al. (2021); Chen et al. (2022);
Lin et al. (2023)) to control which node representations to aggregate during message passing. The
reason for such possible design is that Figure 1 reveals the properties of injected edges that are likely
to be incident to nodes in the minority class and/or protected group. Following similar principles, it
is also possible to develop a selective or probabilistic message passing strategy to achieve the same
goal during model optimization. To defend against deceptive fairness attacks for individual fairness,
we can apply similar neighborhood sampling strategy or selective/probabilistic message passing
strategy. Instead, for individual fairness, the neighborhood sampling or selective message passing
would consider the class label rather than the sensitive attribute (i.e., sample edges that connect nodes
in the minority class as shown in Figure 2).

H – How does FATE maintain the performance for deceptiveness? We assume there is a diver-
gence in optimizing the task-specific loss function l (G,Y,Θ, θ) and optimizing the bias function
b (Y,Θ∗,F). Thus, maximizing b (Y,Θ∗,F) may not affect l (G,Y,Θ, θ) too much. Since we are
minimizing the task-specific loss function in the inner loop (i.e., lower-level optimization), it helps
to maintain the performance in the downstream task for deceptive fairness attacks. We think such
assumption is reasonable for the following reason. In fair machine learning, a common strategy is
to solve a regularized optimization problem, where the objective function to be minimized is often
defined as l (G,Y,Θ, θ) + αb (Y,Θ∗,F) with α being the regularization hyperparameter. If there
is no divergence between the optimization of l (G,Y,Θ, θ) and b (Y,Θ∗,F), it would be sufficient
to optimize one of them to obtain fair and high-utility learning results, or it would be impossible to
achieve a good trade-off between fairness and utility if they are completely conflicting with each other.
All in all, we believe that optimizing the task-specific loss function l (G,Y,Θ, θ) in the lower-level
optimization problem could help maintain deceptiveness both intuitively and empirically as shown in
Section 6.1, Section 6.2, Appendix D, and Appendix E.

H MORE DETAILS ON FAIRNESS DEFINITIONS

We discuss more details about statistical parity and individual fairness here.

A – Statistical parity. Mathematically, statistical parity is equivalent to the statistical independence
between the learning results (e.g., predicted labels of a classification algorithm) and the sensitive
attribute. Consider a classification problem with ỹ being the predicted label, s being the sensitive
attribute whose attribute value is in the set S. Statistical parity is defined as follows.

P [ỹ = 1] = P [ỹ = 1|s = a] , ∀a ∈ S (16)

B – Individual fairness. Other than group fairness, individual fairness studies fairness in a finer-
grained individual level. It asks for similar individuals to be treated similarly Dwork et al. (2012).
Such principle is often formulated as a Lipschitz inequality

d1 (Y [i, :] ,Y [j, :]) ≤ ϵd2 (i, j) (17)

where Y is the learning results, ϵ is the Lipschitz constant, the left hand side d1 (Y [i, :] ,Y [j, :])
measures the distance between the learning results Y [i, :] and Y [j, :] of data points i and j, respec-
tively, and d2 (i, j) measures the distance between the two data points. Given a graph G = {A,X}
with adjacency matrix A and node feature matrix X, Kang et al. Kang et al. (2020) further define
d1 as the squared Frobenius distance and assume the existence of an oracle pairwise node similarity
matrix S. Then, the overall individual bias of G is further defined as Tr

(
YTLSY

)
where LS is the

graph Laplacian of similarity matrix S.
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