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ABSTRACT

Neural Radiance Fields (NeRF) is a method for 3D scene modeling that employs
fully-connected networks to learn 3D geometric information and synthesizes high-
quality novel views. However, NeRF exhibits vulnerability when confronted with
distractors in the training images, such as the presence of moving objects like
pedestrians or different weather conditions within specific views. Given the diffi-
culty of data curation in NeRF compared to other domains, training a robust model
that maintains 3D consistency is an important and timely challenge. Previous ap-
proaches have attempted to differentiate distractors by using loss values, but there
is a fundamental limitation that hard-to-learn pixels like high-frequency details
also show high loss values. In this paper, we propose a noise pruning framework
via influence functions to effectively filter out noisy pixels, ultimately enhancing
the robustness of NeRF. Furthermore, we improve the precision of detection by in-
corporating segmentation techniques to refine pixel-level predictions. Our method
demonstrates superior performance on benchmark datasets, including synthetic
and natural scenes, showcasing its effectiveness across various environments and
proficiency in dataset pruning.

1 INTRODUCTION

Recent advances in deep learning have exhibited remarkable capabilities across various domains,
including natural language processing (Devlin et al., 2018; Vaswani et al., 2017; Brown et al., 2020;
Liu et al., 2019) and computer vision (Simonyan & Zisserman, 2014; He et al., 2016; Redmon et al.,
2016). They also have notably excelled in 2D image processing and, as widely known, found diverse
applications. This surge in deep learning’s success has fueled a demand for extending its capabilities
into the realm of 3D vision technology, which is pivotal in applications like virtual reality (Sherman
& Craig, 2003; Anthes et al., 2016; Wohlgenannt et al., 2020), autonomous driving (Bojarski et al.,
2016; Kiran et al., 2021; Sun et al., 2020), and healthcare (Ronneberger et al., 2015; Hatamizadeh
et al., 2021; Balakrishnan et al., 2019).

In response to this growing demand, extensive research is underway on techniques based on point
clouds (Qi et al., 2017a;b; Zhao et al., 2021), voxels (Qi et al., 2016; Choy et al., 2019), and poly-
gons (Su et al., 2015; Kokkinos et al., 2012) to enable the learning of 3D objects or scenes. However,
most of these methods suffer from reliance on 3D supervision, which is a costly task and often elu-
sive requirement in typical scenarios. To address the limitations associated with the need for 3D
supervision, a novel approach known as the Neural Radiance field (NeRF) (Mildenhall et al., 2021)
has been proposed. NeRF is an advanced 3D scene representation method that leverages fully con-
nected networks to model both the appearance and geometry of objects and scenes from a partial
set of 2D images. It takes 3D spatial coordinates and viewing directions as inputs and generates
RGB color and volume density as outputs. By tracing camera rays through the scene and utilizing
the RGB and density information of points along those rays, it is capable of rendering scenes. As a
result, NeRF takes advantage of 2D supervision to synthesize high-quality novel views, offering a
promising pathway to bridging the gap between 2D and 3D vision capabilities.

Nevertheless, NeRF does have a limitation—it necessitates well-curated 2D images devoid of noisy
artifacts to learn proper 3D consistency during training. If individual 2D images of ground truth
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offer conflicting guidance to the model due to distracting factors like the presence of a pedestrian
walking through a specific view, the integrity of 3D consistency may easily deteriorate.

A straightforward solution is a careful dataset curation to prevent the inclusion of such noise. How-
ever, considering the inherent difficulty of dataset construction in NeRF domain, additional burdens
to ensure the devoid of real-world factors, such as moving objects, weather shifts, fluctuating lighting
conditions, and varying capture times, are challenging. Due to these factors, NeRF has a relatively
limited number of benchmark datasets compared to other computer vision tasks like point cloud
processing and 2D vision.

Another approach aims to pursue a robust model capable of withstanding such challenges. NeRF-
W (Martin-Brualla et al., 2021) has ventured into enabling training on unstructured image collection
from the internet by incorporating the concept of uncertainty to distinguish static from transient
objects, but they exhibit performance limitations. Similarly, some studies leverage the time axis
to separate static and dynamic components within a scene (Wu et al., 2022; Li et al., 2021; Gao
et al., 2021). Though effective, they pose a significant challenge as the training images must be
arranged chronologically, like a video. In addition, semantic segmentation models can be utilized to
preemptively identify and exclude undesirable objects within training views (Tancik et al., 2022).
While this approach effectively handles pre-trained object classes, such as pedestrians and vehicles,
it performs less reliably when dealing with unfamiliar objects.

More recently, RobustNeRF (Sabour et al., 2023) introduced a framework that generates masks
for identifying outlier objects based on pixel losses and integrates them as weights in iteratively
reweighted least squares(IRLS). Nevertheless, due to its reliance on pixel losses, inherent limitations
arise when attempting to discern the high-frequency details of inliers, which are difficult to learn,
from outliers based on the loss magnitude. Additionally, the proposed masking technique is based
on the assumption that outliers occupy large and connected regions of an image. This assumption
can result in notable performance degradation when dealing with other types of noise rather than
large objects.

Given this context, training a robust model despite the presence of noisy training data is a highly sig-
nificant yet challenging task. To address this issue, we propose an effective noise pruning framework
that leverages influence functions, a mathematical technique for quantifying the impact of individual
data points on the model’s predictions. Inspired by the idea that noisy pixels, including moving ob-
jects or weather-related changes, can be viewed as mislabeled data points, we identify and exclude
pixels that disrupt 3D consistency across other views by calculating sample-wise influence scores.

Our framework excels in synthesizing high-quality novel views from noisy datasets while simultane-
ously refining the dataset by removing noise pixels using influence scores. Furthermore, we improve
the precision of the influence function by incorporating segmentation techniques to refine pixel-level
noise candidates. Considering the inherent challenges in dataset curation within the NeRF domain,
we believe that our framework unlocks the potential of constructing large-scale datasets comprising
diverse scenes by effectively pruning the noisy pixels.

Our contributions are summarized as follows:

• We first pioneer the integration of influence functions into NeRF, effectively excluding
distractors that disrupt the 3D consistency. Also, we demonstrate the improved performance
of novel view synthesis on noisy datasets.

• We incorporate panoptic segmentation techniques into our framework to enhance the preci-
sion of pixel-level noise candidates results from influence functions. We employ SAM (Kir-
illov et al., 2023), which has recently showcased remarkable zero-shot performance. Our
framework can be seamlessly combined with any segmentation model capable of partition-
ing the scene into small regions.

• We first propose dataset pruning in NeRF, removing distracting pixels from noisy datasets.
This process enables easier data construction, bringing out the potential of constructing
large-scale datasets for NeRF, similar to those in 2D vision.
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2 PRELIMINARIES

2.1 NEURAL RADIANCE FIELD

Neural Radiance Field (NeRF) (Mildenhall et al., 2021) represents a 3D scene as a continuous
function fθ, implemented as a multi-layer perceptron (MLP) network. It estimates RGB color c
and volume density σ from 3D coordinates x = (x, y, z) and 2D viewing direction d = (θ, ϕ) as
{c, σ} = fθ(x,d). In pursuit of 3D-consistent geometry, volume density σ depends solely on the
coordinates x in order to remain constant regardless of changes in viewing direction d. In contrast,
RGB color c additionally incorporates viewing direction d to represent non-Lambertian surfaces.

Given a camera ray r(t) = o+td, the corresponding pixel color Ĉ(r) is approximated by integrating
the radiance within the interval from the camera’s near plane tn to the far plane tf :

Ĉ(r) =

∫ tf

tn

T (t)σ(r(t))c
(
r(t),d

)
dt, where T (t) = exp

(
−

∫ t

tn

σ(r(s)
)
ds (1)

where o and T (t) denote the camera center and the accumulated transmittance, respectively.

Then, NeRF is optimized using a photometric loss with the ground truth pixel colors C(r) as follows:

L :=
∑
r∈R

∥∥C(r)− Ĉ(r)
∥∥2
2

(2)

where R is the set of rays. It is important to mention that NeRF typically assumes a well-curated
training dataset: thus, the presence of noise in the training dataset significantly degrades perfor-
mance. More specifically, if individual ground truth pixel colors provide conflicting guidance to the
model due to the existence of distractors, it becomes challenging to learn consistent geometry across
the views (Martin-Brualla et al., 2021; Sabour et al., 2023).

2.2 INFLUENCE FUNCTIONS

Influence function is a mathematical technique originating from classical robust statistics to measure
the impact of individual data points in the trainset on a model’s predictions (Hampel, 1974; Koh
& Liang, 2017). Leave-one-out (LOO) retraining is a straightforward approach to estimating the
influence of a data point by excluding it from the trainset, retraining the model, and then assessing
the change in the model’s prediction. However, conducting LOO retraining for every data point is
computationally intractable. To mitigate the prohibitive cost, influence functions are proposed as
approximate versions of LOO.

In empirical risk minimization (ERM), we minimize the finite-sum objective for a training dataset
D := {zi : (xi, yi)}Ni=1 as

θ∗ := argmin
θ

L(D, θ) (3)

where θ is the network parameter and L is the sum of sample-wise loss over the dataset: L(D, θ) =
1
N

∑N
i=1 ℓ(zi, θ). Here, the estimated impact of a data point zi on another sample zj using LOO

retraining is defined as

ILOO(zi, zj) := ℓ(zj , θ
∗
−zi)− ℓ(zj , θ

∗) (4)

where θ∗−z is retrained parameter without z. To mitigate prohibitive computational costs, influence
functions are proposed as approximated versions of LOO retraining (Koh & Liang, 2017) as

Iϵ(zi, zj) := ℓ(zj , θ
∗
−zi,ϵ)− ℓ(zj , θ

∗). (5)

where ϵ is the up-weighting parameter on zi, and the corresponding up-weighted loss of z is defined
as

θ∗−zi,ϵ = argmin
θ

(
L(D, θ) + ϵ · ℓ(zi, θ)

)
.

Then, Influence Function is represented as

I(zi, zj) :=
dIϵ(zi, zj)

dϵ

∣∣∣∣
ϵ=0

= ∇θℓ(zj , θ
∗)⊤H−1∇θℓ(zi, θ

∗)
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Figure 1: Overview of our framework. In the Vanilla approach, certain regions become blurry due to the
presence of distractors. We employ influence function to detect distractors. We obtain panoptic masks usin
SAM and perform mask selection based on the influence scores to clearly segment distractors. Finally, through
pixel pruning, we generate a clear image. This approach enables us to train a noise-filtered NeRF model.

where H := ∇2
θL(T, θ∗) ∈ RP×P is the Hessian of the loss function with respect to the parameter

θ∗.

In typical scenarios, zj is assigned to the validation set when it is feasible. However, in a situation
where this is not possible, zj is equated with zi itself. This enables us to compute self-influence,
which signifies how well the model, trained on the remaining data points in the absence of zi, can
predict on zi. A higher score indicates more difficult to predict, implying that the data point deviates
from the majority of the trainset.

2.3 SEGMENTATION

Image segmentation is a crucial part of visual understanding, which involves dividing images into
distinct parts or objects. Among various segmentation tasks, panoptic segmentation (Kirillov et al.,
2019) stands out as it unifies both semantic and instance segmentation (Long et al., 2015; He et al.,
2017). Panoptic segmentation assigns a unique label to each pixel in an image I , providing compre-
hensive information about the object’s category c and its individual instance i, as

S(I) =
{
Mc,i | ∪c,i Mc,i = I,Mc,i ∩Mc′ ,i′ = ∅ ∀i ̸= i

′
}

(6)

where S is a segmentation model, and M is segmentation mask.

SAM (Kirillov et al., 2023), a recent foundational segmentation model, achieve impressive zero-shot
performance by utilizing an extensive segmentation dataset and generating finely detailed masks due
to a high masks-per-image ratio.

3 METHOD

In this section, we introduce an effective noise pruning framework leveraging influence functions
to identify noisy pixels, approximating leave-one-out (LOO) retraining to alleviate the prohibitive
costs. First, we clarify the rationale behind opting for influence functions instead of loss-based ap-
proaches, with a particular focus on their relevance within the NeRF domain. Additionally, we in-
corporate a segmentation model into our framework to improve detection precision. Lastly, we delve
into the importance of dataset pruning in NeRF and its potential for constructing large-scale datasets.
The framework is visualized in Figure 3.
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Figure 2: Natural scenes. (Left) Examples of training frames in Statue. (Right) Pixel losses of the
corresponding frame, with brighter indicating higher loss. Some regions on the distractor exhibit
high loss values due to the hard-to-learn object that lies beyond the distractor.

Detection via Influence Function. In the training phase of NeRF, similar to other deep learning
tasks, we minimize the finite-sum objective function for the pixels in the training dataset, as defined
in equation 2. Throughout this procedure, the model learns to ensure 3D consistency across the
ground truth 2D views captured from diverse directions within a single 3D scene. Therefore, even
if typical pixels are omitted from the training dataset, the model can still predict them well by
leveraging information from other data points. In contrast, in the case of noisy pixels, excluding
them results in a notable decline in the model’s performance for those pixels due to their inconsistent
3D geometry with the major stream of trainset.

In this context, pixel loss is commonly employed to differentiate them (Sabour et al., 2023); how-
ever, given that both distractors and high-frequency details can often yield high loss values, this
poses a challenge for accurate differentiation. Furthermore, there may be underlying other factors
contributing to the high loss values for distractors. We observed that it is a common phenomenon
that when distractors exist only in specific views, relative 3D regions are recognized as empty spaces
for most views. Therefore, as shown in Figure 2, even if ground truth distracting pixels exhibit high
loss values, it could be due to the hard-to-learn object beyond the distractors.

Under these circumstances, it is not far-fetched to explore alternative approaches. Motivated by the
concept that pixels associated with distractors can be considered mislabeled data points, we employ
influence functions on the pre-trained model to identify pixels that deviate from the overall dataset
consistency. We calculate the self-influence score I(r, r) per sample for r ∈ R as in equation 6 and
consider the top-ranked pixels group Gtop as noise pixel candidates.

Refinement using Segmentation Model. While influence functions demonstrate noteworthy per-
formance, we incorporate the segmentation method into our framework to further improve prediction
accuracy. Specifically, we integrate panoptic segmentation to refine outputs from influence functions.
It is important to note that segmentation need not be pre-trained on specific classes of objects; its
capability to partition the scene into small parts is sufficient. To this end, we leverage SAM (Kirillov
et al., 2023), which has recently shown impressive zero-shot performance in panoptic segmentation
tasks. Specifically, we first utilize SAM to generate distinct masks for each individual parts of a
scene {Mc,i}. Next, as mentioned earlier, we compute self-influence for each pixel and select the
top-rank Gtop group based on the magnitude of self-influence. Not only that, now we also choose
the bottom-rank Gbottom group with the smallest self-influences. To determine whether to exclude
each part segment, we asses how many pixels within the segment belong to either Gtop or Gbottom

groups. In other words, the pixel within the segment vote on whether the segment to which they
belong is a distractor or not. Here, pixels that do not belong to either Gtop or Gbottom do not partic-
ipate in the voting. Finally, if the pixels within the segment belong more to Gtop than Gbottom, we
prune the entire segment. The sizes of Gtop and Gbottom are hyperparameters that impact the overall
performance of our framework. In all our experiments, we do not perform separate tuning for them.
Instead, to be as conservative as possible in pruning outliers, we fix Gtop representing outliers as
the only 1% of the entire data points and Gbottom, the clearly identified inlier group, as 30%. In
most cases of our experiments, this refinement process with the segmentation model presents more
accurate and object-centric results.
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Figure 3: Qualitative evaluation. As shown in the red box, RobustNeRF (Middle) fails to preserve the static
components in Yoda scene. However, our approach (Right) can effectively learn intricate details within the
scene without interference from distractors.

Dataset Prunining. Dataset construction in NeRf is known to be challenging due to a multitude
of constraints compared to other domains. Subsequently, there are relatively few publicly available
benchmarks. In this context, our framework offers significant merits by enabling the refinement of
datasets even when they contain some noise. Additionally, being a pruning method, it allows for
the refinement and aggregation of these raw datasets, which leads us to believe in the potential for
large-scale dataset construction, similar to what has been achieved in the 2D vision domain.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We use Mip-NeRF 360 (Barron et al., 2022) without any modifications to its architecture, following
the previous work (Sabour et al., 2023): Proposal MLP with 4 layers and 256 hidden units, NeRF
MLP with 8 layers and 1024 hidden units. The model is trained for 250k iterations with a batch
size of 16,384. We empoloy Adam optimizer (Kingma & Ba, 2014) with hyperparameters β1 =
0.9, β2 = 0.999, and ϵ = 10−6. The initial learning rate is set at 2 × 10−3 and exponentially
decayed to 2 × 10−6. The first 512 iterations are used for warm-up. To enhance training stability,
we utilize Charbonnier loss (Charbonnier et al., 1994) instead of the l2 loss (Krogh & Hertz, 1991).
For evaluation, we report PSNR (Dosselmann & Yang, 2005), MS-SSIM (Wang et al., 2003), and
SSIM (Wang et al., 2004) as performance metrics.

Datasets We employ both synthetic and real-world scenes to ensure the comprehensive evaluation
of our methodology. The synthetic dataset was obtained from D2NeRF (Wu et al., 2022), compris-
ing 5 different scenes: Car, Cars, Bag, Chairs and Pillow. These scenes were generated using the
Kubric dataset generator (Greff et al., 2022). Each scene has a 200-frame video sequence for train-
ing and 100 novel views for validation. Each training frame may contain distractors, whereas the
validation images exclusively contain static components. Moreover, they possess ground truth la-
bels for distractors in each training frame, facilitating a quantitative evaluation of our data pruning
methodology.

For the natural dataset, we utilized publicly accessible benchmark datasets from Robust-
NeRF (Sabour et al., 2023): Statue, Android and BabyYoda. In each of these scenes, distractors are
distributed across extensive and interconnected regions, exhibiting variations in both their positions
and types across frames. A detailed explanation for datasets is suggested in Appendix A.1.

We conducted comprehensive comparisons of our framework with baselines, including MipNeRF
360 (Barron et al., 2022) with l2 loss and Charbonnier loss by following the previous work (Sabour
et al., 2023). Furthermore, we evaluated our method against RobustNeRF, known for its robustness
in scenarios where distractors occupy large and connected regions. While both approaches exclude
distractors during training, there is a difference in the timing of their exclusion. Our method prunes
noisy samples at the beginning of the training phase. However, RobustNeRF takes a gradual refine-
ment approach, excluding distractors progressively as training iterations advance. To comprehen-
sively assess the model’s performance, we further compare the results with the upper bound, which
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Table 1: Quantitative evaluation on the synthetic dataset. please note that ’SI’ represents self-
influence and ’SI+Seg.’ denotes the whole framework combining self-influence with segmentation.
Our data pruning approach results in a PSNR gain of minimum 2.5db to maximum 11dB compared
to baselines.

Method
Car Cars Bag Chairs Pillow

MS-SSIM ↑ PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑ PSNR ↑ MS-SSIM ↑ PSNR ↑

NeRF-W .814 24.23 .873 24.51 .791 20.65 .681 23.77 .935 28.24

NSFF .806 24.90 .376 10.29 .892 25.62 .284 12.82 .343 4.55

NeuralDiff .952 31.89 .921 25.93 .910 29.02 .722 24.42 .652 20.09

D2NeRF .975 34.27 .953 26.27 .979 34.14 .707 24.63 .979 36.58

mip-NeRF 360 .911 27.58 .920 24.82 .982 41.02 .970 36.00 .912 33.12

Ours (SI) .976 37.37 .945 26.67 .990 42.52 .975 36.64 .943 35.13

Ours (SI+Seg.) .976 37.41 .953 27.16 .988 42.34 .978 37.22 .978 36.86

Clean .992 40.62 .977 27.16 .996 42.72 .989 38.72 .990 37.99

Table 2: Evaluation on noise detection.

Method
Car Cars Bag Chairs Pillow

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Ours (SI Top-g.t.) .83 .81 .85 .83 .76 .74 .78 .76 .72 .69

Ours (SI+Seg.) .95 .83 .96 .86 .66 .70 .98 .72 .88 .78

Table 3: Ablation on sensitivity.

Method
Car

PSNR ↑

Ours (Self-Inf.2) 32.92

Ours (Self-Inf.5) 37.37

Ours (Self-Inf.10) 37.12

are obtained by training Mip-NeRF 360 with clean data, which does not involve any distractors. A
more detailed explanation of baselines is suggested in Appendix A.2.

4.2 RESULTS IN SYNTHETIC SCENES

Upon evaluating our approach in synthetic scenes, our method outperforms baseline methods in both
PSNR and MS-SSIM metrics, as shown in Table 1. In fact, for the Cars and Bag scenes, our method
shows performance close to the oracle. Since baseline models utilize conflicting guidance from the
ground truth, the models could be confused to represent 3D-consistent scenes. However, since our
method ignores distractors right from the beginning of the training phase, individual ground truth
pixel colors do not provide conflicting guidance to the model, allowing it to effectively learn 3D-
consistent geometry. Table 2 illustrates that our method can prune only the parts corresponding to
distractors with high accuracy.

4.3 RESULTS IN NATURAL SCENES

Our method performs on par or even better than baselines, including RobustNeRF, as shown in
Table 4. As depicted in Figure 3, it is evident that RobustNeRF struggles to capture scene details and
static components effectively. In contrast, our approach adeptly excludes distractors while retaining
the integrity of other static components during training.This discrepancy arises from the fact that
RobustNeRF masks out regions where the loss magnitude is high across large, interconnected areas.
This over-smoothing of the mask leads to the exclusion of areas that should not be omitted during
training. Conversely, our method leverages influence functions without making any assumptions
about distractors, allowing us to accurately identify pixels that adversely affect the training process
and effectively detect distractors. Consequently, our framework minimizes the impact of distractors
while preserving other essential details.
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Table 4: Quantitative evaluation on the natural dataset.

Method
Statue Android BabyYoda

SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR

mip-NeRF 360 (L2) .66 19.09 .75 19.37 .75 22.97

mip-NeRF 360 (Ch.) .73 19.64 .66 19.53 .80 25.22

D2NeRF .49 19.09 .57 20.61 .65 17.32

RobustNeRF .74 21.05 .72 22.78 .81 29.95

Ours (Self-Inf.) .70 20.43 .70 21.96 .76 29.21

Ours (Self-Inf. + SAM) .77 21.52 .71 22.45 .83 30.5

MipNeRF360 (Clean) .80 23.57 .71 23.10 .84 32.63

4.4 PERFORMANCE ON DATASET PRUNING

To evaluate the precision of our noisy sample detection, we conducted a comparison between our
predictions and pixel-wise annotations of the Kubric dataset. Table 2 presents our method’s perfor-
mance, which includes SI and SI+Seg. Both configurations exhibit significantly high performance,
with our full framework (SI+Seg.) reaching a maximum accuracy of up to 98%.

4.5 ABLATION STUDY

To assess the sensitivity of our influence score thresholding, we conducted an ablation study. As
shown in Table 3, finding the appropriate sweet spot without a validation set can be challenging.
Therefore, we incorporated the segmentation method to somewhat alleviate this issue.

5 RELATED WORK

Robust Learning in NeRF Recent work addresses the limitation of NeRF, which previously re-
quired well-curated training data. Thanks to these efforts, NeRF has become robust to various noise
sources, including inaccurate camera poses (Lin et al., 2021; Bian et al., 2023), motion blur (Ma
et al., 2022), and the presence of transient objects (Marı́ et al., 2022; Sabour et al., 2023). Specifi-
cally, several approaches handle situations where the 3D consistency among training images is dis-
rupted. A common approach to enabling NeRF to adapt to appearance variations between views is
to assign learnable codes to each training view (Martin-Brualla et al., 2021; Chen et al., 2022). This
approach has proven to be robust in the presence of appearance variations such as lighting. In cases
where training images contain transient objects, one can use a segmentation model (Tancik et al.,
2022) to mask out transient objects, while another approach jointly trains the uncertainty of each
pixel, with high uncertainty pixels receiving reduced weight in the loss (Marı́ et al., 2022; Martin-
Brualla et al., 2021). RobustNeRF (Sabour et al., 2023) assumes that transient objects occupy large
and connected regions, and employs trimmed least squares to train NeRF. However, these methods
may rely on strong assumptions or introduce artifacts in the results. NeRF designed for dynamic
scenes (Wu et al., 2022; Gao et al., 2021; Li et al., 2021; Xian et al., 2021) can also separate the
static component within the scene. However, this approach requires input data to be provided in a
video-like format for optimal results.

Influence Function Influence Function (Hampel, 1974; Koh & Liang, 2017)) and its approxima-
tions (Pruthi et al., 2020; Schioppa et al., 2022) have been utilized in various deep learning tasks by
estimating the influence of a data point on the model’s prediction. Also, self-influence is often used
when detecting minority samples, such as mislabeled ones, without a validation set (?).

Segmentation Segmentation is an essential component in many visual understanding systems,
which plays a vital role in various applications including medical image analysis (Ronneberger
et al., 2015; Milletari et al., 2016; Çiçek et al., 2016; Hatamizadeh et al., 2022; 2021), autonomous
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vehicles (Siam et al., 2017; Feng et al., 2020; Zendel et al., 2022), and point cloud analysis (Qi
et al., 2017a;b; Zhao et al., 2021) to count a few. Recently, some approaches (Bucher et al., 2019;
Ding et al., 2022; Kirillov et al., 2023; Zou et al., 2023) have examined zero-shot segmentation,
extending segmentation models to handle novel object classes at test time. Among these studies,
SAM (Kirillov et al., 2023) has garnered significant attention for its outstanding zero-shot segmen-
tation performance across various datasets for panoptic segmentation. Additionally, SAM supports
prompt input by the user, enabling interactive segmentation.

6 CONCLUSION

In this paper, we proposed a noise pruning framework leveraging influence functions with
segmentation-based refinement. We first pioneered the integration of influence functions into NeRF,
effectively pruning distractors that disrupt the 3D consistency. Also, we incorporated panoptic seg-
mentation with influence scores that enhance the precision of pixel-level noise candidates. We be-
lieve that our dataset pruning approach brining out the potential of easier data construction in NeRF.
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