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Figure 1: Overview of the proposed reinforcement learning framework, Shop-R1, designed to simulate
real human behaviors in web-based shopping environments. Given an action history a1...t−1 with
corresponding website observations c1...t−1, the model predicts the next action at and its rationale rt
based on the history and the latest website observation ct. The generated responses are evaluated
from four perspectives: format correctness, self-certainty of the rationale, action type accuracy, and
sub-action (attribute and value) accuracy.

Abstract

Large Language Models (LLMs) have recently demonstrated strong potential in2

generating ‘believable human-like’ behavior in web environments. Prior work3

has explored augmenting training data with LLM-synthesized rationales and ap-4

plying supervised fine-tuning (SFT) to enhance reasoning ability, which in turn5

can improve downstream action prediction. However, the performance of such6

approaches remains inherently bounded by the reasoning capabilities of the model7

used to generate the rationales. In this paper, we introduce Shop-R1, a novel8

reinforcement learning (RL) framework aimed at enhancing the reasoning ability9

of LLMs for simulation of real human behavior in online shopping environments.10

Specifically, Shop-R1 decomposes the human behavior simulation task into two11

stages: rationale generation and action prediction, each guided by distinct reward12

signals. For rationale generation, we leverage internal model signals (e.g., logit13

distributions) to guide the reasoning process in a self-supervised manner. For action14

prediction, we propose a hierarchical reward structure with difficulty-aware scaling15

to prevent reward hacking and enable fine-grained reward assignment. This design16

evaluates both high-level action types and the correctness of fine-grained sub-action17

details (attributes and values), rewarding outputs proportionally to their difficulty.18
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Experimental results show that our method achieves a relative improvement of over19

65% compared to the baseline. 120

1 Introduction21

Large Language Models (LLMs) have shown remarkable performance in planning, reasoning, and22

decision-making tasks [1–11]. Recently, researchers have begun leveraging LLMs to simulate human23

behaviors in web-based environments, aiming to generate realistic, user-like action sequences on24

digital services [12–14]. This capability has promising applications across domains such as e-25

commerce [15, 16], education [17], and social computing [18]. Despite these advances, current LLM26

agents often fall short in producing behaviors that align with real humans. The most straightforward27

baseline is zero-shot prompting [19], where models are given textual instructions to imitate certain28

user types and output action sequences in a predefined format. While simple to implement, this29

method lacks the personalization and adaptability needed for high-fidelity behavior modeling [20].30

To improve behavioral accuracy and reasoning coherence, recent work such as Lu et al. [20] has31

introduced synthetic training data augmentation. Specifically, they use Claude 3.5 Sonnet [21]32

to generate rationales to create ⟨context, action, rationale⟩ triplets. These triplets are then used33

to perform supervised fine-tuning (SFT), enabling the model to learn both the actions and their34

underlying rationales. However, this approach faces the key limitations: the quality and diversity of35

rationales are ultimately constrained by the LLM used during data generation.36

Since RL offers a flexible and effective training paradigm, particularly suited for settings with37

sparse and delayed feedback, and allows for fine-grained control over behavioral outputs [22–26],38

we utilize RL for the simulation of human shopping behavior, compared to previous work that39

focuses primarily on task completion [27, 28]. In this work, we propose Shop-R1, a novel RL40

framework designed to enhance LLMs for simulation of human online shopping behaviors. As41

shown in Fig. 1, Shop-R1 decomposes the human behavior simulation task into two stages: (1)42

rationale generation and (2) action prediction, with tailored reward signals for each component. For43

the reward design, we begin by introducing a binary format reward that encourages the model to44

produce responses in a parse-friendly structure, thereby facilitating reliable downstream evaluation45

and reward computation. Specifically, the model receives a non-zero reward only when its output46

conforms to the expected format; otherwise, it is penalized with zero reward. For rationale generation,47

acquiring ground-truth rationales is inherently difficult. Although efforts like OPeRA [29] attempt to48

collect self-reported rationales from real users, such annotations may omit implicit or unconscious49

decision factors. To address this, we incorporate a self-certainty reward [30, 31], quantified via50

the average Kullback–Leibler (KL) divergence [32] between the model’s output distribution and a51

uniform distribution. This signal captures the model’s confidence in its generated rationales, providing52

a supervision-free alternative to ground-truth rationales. For action prediction, we go beyond binary53

reward signals by introducing a hierarchical reward scheme that accounts for both action type and sub-54

action correctness. This design allows the agent to receive partial credit for plausible but imperfect55

behaviors, promoting smoother and more robust learning. Furthermore, to mitigate reward hacking56

and reflect the varying difficulty of different actions, we apply a difficulty-aware reward scaling57

strategy that adjusts the reward magnitude based on action complexity. Our main contributions are58

summarized as follows:59

• To the best of our knowledge, we are the first to introduce RL into a simulation-oriented60

human behavior modeling task. We reformulate human online shopping behavior simulation61

as a two-stage prediction problem, comprising rationale generation and action prediction,62

and design distinct RL objectives for each.63

• We introduce Shop-R1, a reinforcement-learning framework with a hybrid reward design. It64

integrates a self-certainty signal for rationale generation with a hierarchical reward scheme65

for action prediction. To ensure stable learning and prevent reward hacking, we further66

introduce a format reward and a difficulty-aware reward scaling mechanism.67

• Experiments show that our proposed training pipeline achieves an exact match accuracy68

of 27.72%, outperforming supervised fine-tuning (16.76%) by over 65%, demonstrating69

the strong effectiveness of our approach in simulation-oriented human shopping behavior70

1The code and model checkpoints will be released upon paper acceptance.
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modeling. We further conduct a comprehensive ablation study to evaluate the contribution71

of each component in our design.72

2 Related Work73

LLM for human behavior simulation. Large Language Models (LLMs) have emerged as powerful74

tools to simulate human behaviors in diverse real-world settings. Recent advances have led to the75

development of agent systems capable of generating plausible user actions based on static personas76

and interaction histories, enabling the modeling of behavior in contexts such as social science [33, 34],77

recommender systems [35], and user experience research [36]. These systems typically condition78

on user profiles (e.g., preferences, demographics) and session histories (e.g., clickstreams, task79

sequences) to predict the next likely user action, allowing for personalized and context-aware simula-80

tions. Beyond behavior prediction, recent efforts have enriched these simulations by incorporating81

explicit reasoning processes. Methods like ReAct [1] and reflection-based models [37, 38] prompt82

LLMs to produce intermediate thought traces before action generation, enhancing interpretability and83

decision quality. Systems such as WebAgent [39] and UX-Agent [36] further decompose tasks into84

sub-goals using dedicated reasoning models, yielding improved control in complex environments85

like web interfaces. A parallel line of research explores agent-based LLM frameworks that simulate86

multi-agent interactions in dynamic environments [40–42]. These systems often adopt modular87

roles (e.g., planners, executors) and collaborative reasoning [43, 44], offering insights into emergent88

social behaviors and teamwork dynamics. Despite recent advances, there remains a significant gap89

in exploring how RL can be leveraged to further enhance the simulation of human behavior using90

LLMs, particularly in the context of web-based shopping environments.91

Reward design for RL. Reward design plays a central role in the effectiveness and generalization of92

RL algorithms, particularly in the context of aligning LLMs with desired behaviors. The prominent93

paradigm is Reinforcement Learning from Human Feedback (RLHF), which has been widely adopted94

to fine-tune LLMs using reward models trained on human preference data [45]. While RLHF has95

demonstrated strong alignment capabilities, it is often bottlenecked by the high cost and limited96

scalability of collecting reliable human annotations [46]. Moreover, reward models themselves can97

introduce alignment biases and inaccuracies, especially when trained on limited or noisy preference98

comparisons [47]. To alleviate these limitations, Direct Preference Optimization (DPO) [23] proposes99

a more efficient alternative that directly optimizes model parameters against human preference100

signals without an explicit reward model. Though computationally lighter, DPO and its variants101

still depend on the availability and quality of human-generated or approximated preference data,102

which can be inconsistent across tasks and domains. A complementary direction has emerged103

through Reinforcement Learning with Verifiable Rewards (RLVR), particularly suited for domains104

with deterministic correctness criteria such as code generation and mathematical reasoning [48, 49].105

RLVR frameworks employ rule-based verifiers to automatically compute reward signals based on106

strict correctness (e.g., exact string matching or functional equivalence) bypassing the need for human107

feedback. This shift toward automated objective reward functions has enabled the training of highly108

capable models such as DeepSeek-R1 [48] and inspired new policy optimization methods such as109

GRPO [50] and its recent extensions [51, 52]. Despite these advances, reward design remains a110

fundamental challenge in RL for human behaviors. RLHF offers flexibility for modeling subjective111

tasks, but often suffers from scalability and reliability issues [53–56]. In contrast, RLVR provides112

high precision by relying on clearly defined evaluation criteria, but is limited to tasks where such113

criteria exist [49, 57, 58]. To address the unique challenges of simulating human online shopping114

behavior, we propose a hybrid reward framework specifically tailored to this domain.115

3 Methodology116

In this section, we first formulate the problem of human behavior simulation in the context of117

web-based shopping. We then present the design of our proposed RL framework, Shop-R1, tailored118

specifically for simulating human behavior in this setting.119

Problem statement. In the context of web shopping, a user session is composed of a sequence of120

multi-step actions a1...t...N , typically initiated with a search query and concluded by either a product121

purchase or a termination action (e.g., closing the browser). Following the setup of [20], the action122

space comprises three primary action types: ‘type_and_submit’, ‘click’, and ‘terminate’. More details123
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about the action space can be found in App. A. Each action at is paired with a corresponding rationale124

rt, which captures the user’s underlying motivation or rationale at that time step. The model also125

receives contextual information, i.e., the observation space, representing the current state of the web126

environment. This context is encoded as a simplified HTML structure, as introduced in Lu et al. [13],127

which preserves essential layout and content elements while discarding non-informative components128

such as scripts and styles. The task of human online shopping behavior simulation is formally defined129

as learning a function f that predicts the next rationale and action, given the cumulative context and130

action history:131

f(c1...t, a1...t−1, r1...t−1) = rt, at, (1)

where f denotes the model trained to simulate user behavior by generating the next-step rationale rt132

and action at conditioned on prior context c1...t, past actions a1...t−1, and prior rationales r1...t−1.133

These rationales are generated using LLMs and serve as supervision signals during the supervised134

fine-tuning stage for a cold start. Need to note that no generated rationales are used during the135

subsequent RL stage.136

Cold start with SFT. Following the approach of Guo et al. [48], we initialize the behavior simulation137

model f through supervised fine-tuning (SFT) on annotated trajectories, where each rationale is138

generated by Claude 3.5 Sonnet [21] via Amazon Bedrock, without leveraging any user profile139

information. This SFT phase acts as a cold start for subsequent RL, grounding the model in realistic140

rationale and action patterns. During this phase, the model is trained to jointly generate rationales141

and corresponding actions. The training objective is to maximize the likelihood of the ground truth142

rationale-action pairs, conditioned on the the input query qt = c1...t, a1...t−1, r1...t−1:143

Lsft = −
N∑
t=1

log p(rt, at | qt), (2)

This supervised initialization plays a crucial role in helping the model internalize the structural144

dependencies among context, rationale, and action early in the training pipeline. By grounding the145

model in these patterns upfront, we significantly enhance both the stability and sample efficiency146

of subsequent RL stages. More importantly, it provides an explicit signal for what constitutes a147

high-quality long-text output, such as correctly naming a clicked button or specifying a meaningful148

search query. These capabilities that are otherwise difficult to acquire solely through RL, especially149

given the sparse and delayed reward structure.150

Shop-R1. To better guide policy optimization in the human behavior simulation setting, we de-151

compose each step into two sub-tasks: rationale generation and action prediction. Each sub-task152

is assigned a tailored reward to improve alignment and interpretability. To ensure the ease and153

correctness of parsing predicted rationales and actions from model outputs, we introduce a binary154

format reward, which encourages the model to produce responses in a structured JSON format. This155

format adheres to a dictionary schema with two keys: rationale and action. For rationale generation,156

we employ a self-certainty score [30, 31], which quantifies the model’s confidence in its generated157

rationale. Specifically, we compute the KL divergence between the model’s predictive distribution158

over the vocabulary and a uniform distribution, averaged over the entire output sequence:159

s(rt | qt) =
1

N |V |

N∑
j=1

|V |∑
i=1

pij log

(
pij
Ui

)
, (3)

where N is the number of tokens in the generated rationale rt, pij is the predicted probability of token160

i at position j, and Ui =
1

|V | is the uniform distribution over the vocabulary V . Higher values of s(·)161

indicate greater certainty and consistency in the model’s reasoning. For action prediction, we replace162

the brittle binary signal with a hierarchical reward scheme that credits both the coarse-grained action163

type and its fine-grained sub-actions to stabilize training and discourage degenerate reward hacked164

policies. This hierarchical scheme densifies the reward landscape: it expands the set of profitable165

trajectories, lifts the agent out of the ‘no-reward’ plateau that typically stalls policy search, and makes166

reward hacking uneconomical. Concretely, every action, easy or hard, earns the same coarse-level167

reward once its high-level type is correct; only the more complex actions can unlock additional168

gains through their long-text sub-components. As a result, naively spamming the trivial ‘terminate’169

action no longer yields a competitive payoff, while executing the full (‘click’, ‘type_and_submit’)170

sequence becomes the most lucrative strategy. Concretely, a ‘click’ action containing a sub-action,171
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Table 1: Hierarchical reward schedule with Difficulty-Aware Reward Scaling (DARS). A response
earns a format reward of 0.5 if it is in a valid JSON format; otherwise, it gains no format reward. A
valid response can further gain partial credit for (i) the correct action type, (ii) the presence of the
required sub-action attribute, and (iii) any long-text value prediction, whose reward equals the DARS
factor multiplied by its ROUGE-L similarity to the ground truth.

Action Type Type Reward Sub-action Attribute Reward Text-Similarity Value Reward
terminate 0.3 None None

click 0.3 +0.2 (if name ̸= ∅) +DARS × ROUGE-L(name)
type_and_submit 0.3 +0.1 (if name ̸= ∅) +0.1 (if text ̸= ∅) +0.1× ROUGE-L(name) +DARS × ROUGE-L(text)

specifying the button name to be clicked; partial rewards are granted for the correctly predicted172

components. Likewise, ‘type_and_submit’ contains sub-action, providing the intended textual content.173

In contrast, ‘terminate’ has no sub-actions and is scored only at the action-type level. Prediction174

accuracy is measured with task-specific metrics: discrete action types use an exact-match criterion,175

whereas free-form sub-actions are evaluated with ROUGE-L. A text-based sub-action, such as a176

button label or search query, earns a soft reward proportional to its ROUGE-L similarity to the177

ground truth, but only when that similarity exceeds a preset threshold (e.g., 0.75). Because long-text178

sub-actions are substantially harder, where modern webpages can expose thousands of candidate179

elements, we introduce a difficulty-aware reward scaling (DARS) factor that amplifies rewards for180

correctly predicting these components. This prevents reward hacking behaviors in which the agent181

repeatedly selects the trivial ‘terminate’ action to secure easy points. The proposed hierarchical182

reward scheme is summarized in Tab. 1. Bringing these components together, the objective of183

Shop-R1is to maximize the combined reward signal derived from multiple sources, while regularizing184

with a KL divergence to a reference policy:185

max
πθ

Er,a∼πθ(q) [v(a) + αs(r) +−βKL (πθ(r, a | q) ∥πref(r, a | q))] , (4)

where πref denotes a fixed reference policy, v(at) denotes the reward for action prediction and α and186

β are hyperparameters that control the strength of the corresponding regularization terms.187

4 Experiments188

4.1 Experiment Setups189

Datasets and models. Our study is built on a proprietary corpus of 52,137 real-world shopping190

sessions collected from a leading global e–commerce service. Each session logs the multi-turn191

interaction between a human customer and the website interface. We enrich each recorded action192

with a natural language rationale automatically generated by Claude 3.5 Sonnet (see Appendix B193

for the prompting details). The provided observation context is formatted as simplified HTML [13],194

which retains essential structural elements while filtering out irrelevant content such as scripts, styling195

information, and user-specific data. For SFT dataset, we keep each session intact. The model is196

asked to produce the assistant response, which contains both the rationales and the structured action197

prediction. For RL dataset, we convert a session into a sequence of <context, action> pairs. The198

context is the concatenation of (i) all previously observed contexts and (ii) the actions already taken;199

the target is the next action only. Because every session begins on the home page, there is always at200

least one observed <context, action> pair before the first prediction step, eliminating the open-world201

ambiguity of the very first move. To provide the model with slightly richer supervision on the202

harder behaviors, the two complex actions (click and type_and_submit) each occur about 10% more203

frequently than the simple terminate action. This mild skew prevents the learner from over-fitting to204

the trivial case while still maintaining near-uniform coverage, thereby supporting fair and informative205

per-class evaluation. All experiments fine-tune the publicly available Qwen-2.5-3B-Instruct206

model. The default 3B parameter backbone offers a favourable compute–performance trade-off.207

Baselines for comparison. We evaluate our approach against several baseline schemes: (a) Zero-208

shot prompting, where the model generates outputs based solely on instruction prompts without209

additional training; (b) RL (Binary), where the base model is optimized directly with RL, using only210

a sparse binary reward signal; (c) SFT-only, where the model is trained via supervised fine-tuning on211

data with LLM-generated rationales; (d) SFT + RL (Binary), which extends SFT with reinforcement212
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learning using a binary reward based on exact action match; and (e) Shop-R1, our proposed RL213

framework with hybrid reward design for the simulation-oriented human behavior modeling task.214

Training setups. Our codebase is built on verl [59], and all experiments were conducted on NVIDIA215

A100 GPUs (80 GB). We leveraged Fully Sharded Data Parallelism (FSDP) in PyTorch [60] to216

maximize training efficiency. The default policy optimization algorithm is Group Relative Policy217

Optimization (GRPO) [50]. Input sequences were padded or truncated to a maximum context length218

of 32k tokens, and the default sampling temperature is 0.6. We set the per-device batch size to 1,219

yielding a global batch size of 64. For supervised fine-tuning (SFT) we trained for 4 epochs with a220

learning rate of 2× 10−5; for reinforcement learning (RL) we trained for 500 steps with a learning221

rate of 1× 10−7. By default, we set the DARS factor to 1000, and use α = 0.005 and β = 0.001 to222

weight the corresponding reward terms.223

Evaluation metrics. We apply an exact match criterion for the accuracy evaluation of predicted user224

actions. A prediction is deemed correct only when every relevant component exactly matches the225

ground truth. For instance, in the case of ‘click’ actions, both the specific subtype (such as clicking226

on a filter, search area, or another UI element) and the selected target must align with the true label.227

Similarly, for ‘type_and_submit’ actions, the model should reproduce the similar meaning of input228

text. Additionally, We report accuracy and F1 on the coarse-grained action type alone. Comparing229

these scores with exact-match accuracy highlights whether residual errors stem from misclassifying230

the high-level action type or from mistakes in the fine-grained label (button name or query text).231

4.2 Experimental Results232

Table 2: Simulation accuracy under different fine-tuning methods
across models of different sizes. There are three complementary
metrics: exact action accuracy (all sub-fields must match the label);
action type accuracy, and action type F1 to disentangle mistakes in
coarse intent classification from those in long-text arguments.

Model Settings Exact Action Action Type
Acc. Acc. F1

Qwen-2.5-3B-Instruct

Zero-shot prompting 0.32% 15.33% 16.15%
RL (Binary) 1.01% 6.17% 9.92%
SFT 16.76% 22.25% 24.52%
SFT + RL (Binary) 16.55% 23.74% 28.07%
Shop-R1 (Ours) 27.72% 36.40% 31.28%

Qwen-2.5-1.5B-Instruct
Zero-shot prompting 0.53% 3.94% 6.16%
SFT 10.86% 23.58% 29.02%
Shop-R1 (Ours) 24.11% 34.54% 29.19%

Qwen-2.5-0.5B-Instruct
Zero-shot prompting 6.76% 12.88% 15.55%
SFT 9.90% 17.72% 21.61%
Shop-R1 (Ours) 27.72% 31.83% 21.20%

Performance comparison233

with baselines. Main per-234

formance comparison results235

are shown in Tab. 2. Firstly,236

zero-shot prompting yields237

low performance: without238

any task-specific adapta-239

tion Qwen-2.5-3B-Instruct240

achieves only 0.32% exact-241

action accuracy, confirming242

that long-horizon web be-243

havior cannot be recovered244

from generic instruction245

tuning alone. Second, RL246

with sparse binary rewards on247

their own still fail to give the248

agent meaningful guidance.249

When we train the policy250

from scratch under this signal, it reaches only 1.01% exact-match action accuracy and 6.17% type251

accuracy. Third, a straightforward round of SFT is more effective, boosting performance to 16.76%252

exact match accuracy and 22.25% type accuracy. This confirms that dense, teacher-forced trajectories253

are crucial for injecting the structural knowledge (context → rationale → action) and illustrating254

the shape of the long-text fields (button labels or search queries) that the binary signal alone cannot255

convey. Fourth, appending an additional binary-reward RL phase after SFT delivers only mixed256

results: exact-match action accuracy actually slips to 16.55%, while type-level F1 rises to 28.07%.257

The agent thus learns to guess the coarse intent better, but it still struggles to reproduce the long-text258

values that drive the exact-match metric. In other words, the policy becomes better at guessing the259

coarse action type, but slightly worse at reproducing the fine-grained, long-text values required260

for an exact match. Lacking finer-grained credit assignment, the binary objective cannot push the261

model beyond what SFT already achieves and in some respects even pulls it backwards. Training262

with this objective is furthermore prone to instability and converges substantially more slowly than263

optimization with richer, structured rewards. Our proposed Shop-R1 framework closes most of this264

gap. By combining hierarchical rewards, self-certainty signals, format rewards and difficulty-aware265

scaling, it delivers 27.72% exact-action accuracy (+65% relative to SFT) and pushes action-type266

accuracy and F1 to 36.40% and 31.28%, respectively. The simultaneous rise of both the coarse267

(type-level) and fine-grained (exact-match) metrics indicates that Shop-R1 not only identifies the268
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correct intent more often, but also reproduces the long-text values (button labels, text queries) with269

higher fidelity.270

Table 3: Exact action accuracy and action type accuracy for each action type: ‘click’,
‘type_and_submit’, and ‘terminate’, across different models and finetuning methods.

Models Settings Exact Action Acc. Per Action Type Action Type Acc. Per Action Type
click type_and_submit terminate click type_and_submit terminate

Qwen-2.5-3B-Instruct

Zero-shot prompting 0.58% 0.15% 0.00% 38.7% 1.62% 0.00%
SFT 4.93% 3.84% 49.80% 8.55% 15.36% 49.80%
SFT + RL (Binary) 8.12% 3.25% 45.51% 17.25% 13.88% 45.51%
Shop-R1 (Ours) 7.39% 7.53% 81.84% 10.29% 28.66% 81.84%

Qwen-2.5-1.5B-Instruct
Zero-shot prompting 1.01% 0.15% 0.39% 10.00% 0.44% 0.39%
SFT 4.49% 7.83% 23.44% 15.07% 32.35% 23.44%
Shop-R1 (Ours) 3.62% 8.12% 72.85% 6.52% 34.12% 72.85%

Qwen-2.5-0.5B-Instruct
Zero-shot prompting 0.43% 0.15% 24.02% 12.90% 4.43% 24.02%
SFT 3.19% 7.68% 21.88% 5.94% 26.59% 21.88%
Shop-R1 (Ours) 0.72% 3.99% 97.07% 1.01% 17.87% 97.07%

As shown in Tab. 3, we decompose accuracy by action type. Zero-shot prompting shows the classic271

“intent–content” split. For example, it can guess that a ‘click’ is needed (38.7% type accuracy) yet272

almost never names the exact UI target (0.58 % exact). Even if SFT can boost the performance but the273

gain remains uneven, which suggests that teacher forcing alone does not give the model enough credit274

assignment signal for predicting high-entropy arguments such as search queries. Appending a sparse275

binary RL phase after SFT still fails to boost these harder text-generation cases. Shop-R1 reshapes276

those incentives, higher exact match accuracy is achieved, indicating that the model is no longer277

satisfied with merely selecting correct type but is learning to identify the correct widget and query text278

as well. To be summarized, dense and structured feedback is essential: it overcomes the no-reward279

plateau, and makes reward hacking uneconomical.280

4.3 Ablation Study And Analysis281
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Figure 2: Sampling temperature ablation study.

Model size. Tab. 2 and Tab. 3 reveal a consis-282

tent scaling trend. In the zero-shot regime, the283

3B backbone already outperforms its 1.5B and284

0.5B counterparts by a factor of ×4 ∼ 5 on285

coarse action–type accuracy, confirming that286

larger models possess stronger out-of-the-box287

priors for human behavior simulation at the288

setting of website shopping. After SFT, all289

sizes gain, yet the improvement is more pro-290

nounced for the two smaller backbones than291

for the 3B model, suggesting that demonstra-292

tion learning compensates for limited capac-293

ity. Shop-R1 lifts every backbone to its best294

operating point, but the shape of the gains295

differs by scale. The 3B variant reaches the296

highest overall numbers while distributing its297

improvements evenly across the two compli-298

cated action types. By contrast, the 0.5B model299

achieves a comparable headline exact match300

accuracy (27.72%) almost entirely by over-predicting the easiest ‘terminate’ action (97.07% exact)301

and largely ignoring the more semantically demanding classes. The 1.5B backbone sits in between,302

recovering moderate fidelity on ‘click’ and ‘type_and_submit’ while retaining a strong but not over-303

whelming bias toward ‘terminate’. In short, scaling primarily augments the model’s ability to handle304

long-text, high-entropy actions; smaller networks can still match aggregate accuracy by exploiting the305

high-reward termination branch, but they do so at the cost of behavioral diversity. These findings306

underscore that, although Shop-R1 markedly mitigates capacity limitations, genuine mastery of307

simulation-oriented web-shopping action prediction tasks continues to benefit from larger backbones.308

Sampling temperature. Fig. 2 shows that Shop-R1 is robust to sampling temperature, yet the309

three evaluation metrics react in distinct ways that reveal how temperature sampling propagates310
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through the decision hierarchy. Action-type accuracy remains almost constant (36%) across the entire311

temperature sweep because this metric aggregates all predictions: small mis-classifications in one312

direction are largely offset by fixes in another, leaving the overall hit rate unchanged. By contrast,313

the F1 score declines steadily (31.28% → 28.36%) as temperature rises; class-averaging penalizes314

any asymmetric increase in confusion. Interestingly, a modest boost from the default τ = 0.6 to315

τ = 0.7 improves exact-match accuracy to its peak of 28.63%: a trace of stochasticity helps the316

generated response escape local maxima and occasionally assemble the full long-text argument that317

greedy decoding would miss. When τ > 0.8 the added entropy no longer uncovers new correct318

completions; instead it corrupts fine-grained fields faster than it fixes them, so exact-match plateaus319

while F1 continues to erode. This pattern is expected since the SFT stage already anchors the model320

to dataset-specific behavior, privileging faithful simulation over creativity. Taken together, these321

trends indicate that temperatures in the 0.6–0.8 band offer the best trade-off, preserving robust intent322

classification, maximizing strict exact-match, and avoiding the metric degradation that emerges once323

the sampler becomes overly exploratory.324

Table 4: Ablation study on different training component configurations, evaluated by exact match
action accuracy and action type accuracy / F1.

Model Training Scheme Components Exact Action Action Type
SFT Format Reward Rationale Reward Reward Scale Action Reward Acc. Acc. F1

Qwen-2.5-3B-Instruct

✗ ✓ ✓ ✓ hierarchical 4.63% 36.56% 21.92%
✓ ✗ ✓ ✓ hierarchical 2.87% 3.19% 5.04%
✓ ✓ ✗ ✓ hierarchical 26.93% 37.25% 33.74%
✓ ✓ ✓ ✗ hierarchical 27.83% 27.20% 11.70%
✓ ✓ ✓ ✓ binary 27.41% 27.46% 12.11%

✓ ✓ ✓ ✓ hierarchical 27.72% 36.40% 31.28%

Training component. Tab. 4 makes clear that every element of Shop-R1 addresses a different325

pathology. Removing the SFT warm-start cripples the agent: despite having all RL signals, exact-326

match drops to 4.63%, underscoring that a supervised prior is indispensable for learning the shape327

of long-text arguments. Omitting the format reward is even more destructive, where exact accuracy328

plunges to 2.87% and type-level metrics fall below 6% since unparseable JSON outputs earn zero329

credit, starving the learner of gradient signal. When the self-certainty (rationale) reward is ablated,330

coarse intent prediction remains strong but exact-match lags the full system by 0.8%, indicating331

that explicit feedback on the generated rationales mainly tightens the long-text portion of an action332

rather than its top-level label. Disabling the difficulty-aware reward scaling or reverting to a binary333

action reward leads to a different failure mode: the model still attains around 27% exact accuracy, yet334

type-level F1 degrades to 11–12%. Inspection shows that, without either scaling or hierarchical credit,335

the agent gravitates toward the easy high-reward ‘terminate’ action and rarely ventures into harder336

‘click’ or ‘type_and_submit’ cases, which is a classic reward-hacking pattern. The full configuration337

combines all signals and delivers the best balance demonstrating that each component is necessary:338

SFT injects linguistic priors, the format reward safeguards parsability, the self-certainty term refines339

long-text precision, and hierarchical difficulty-scaled rewards prevent degenerate policies while340

promoting fine-grained action fidelity.341

Table 5: Comparison of model performance when
using either the whole-session context or only the
latest-step context as input.

Context Settings Exact Action Action Type
Acc. Acc. F1

whole-session 27.72% 36.40% 31.28%
latest-step 14.74% 30.46% 33.48%

Whole-session v.s. latest-step context. Tab. 5342

isolates the impact of including the simplified343

HTML of each visited page in the action his-344

tory. Removing this structural cue slashes exact-345

match accuracy from 27.72% to 14.74%, a346

nearly 50% relative loss, while coarse action-347

type accuracy drops more modestly. The sharp348

divergence indicates that, although the model349

can still infer which action type of interaction is350

likely next from the dialogue trace alone, it struggles to generate the fine-grained arguments, the351

precise button label or query string, without access to the page’s detailed context. Interestingly, the352

class-balanced F1 score rises slightly, suggesting that the only latest-step context variant compensates353

by spreading probability mass more evenly across action types, however, this redistribution does354

not translate into correct long-text completions. In short, supplying even a token-efficient, pruned355

HTML view is critical for high-fidelity simulation: it grounds the language model in the concrete UI356

affordances required for exact replay, and although it imposes a substantial overhead on the context357

window, this cost is justified by its necessity for accurate simulation.358
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5 Conclusion359

In this work, we introduced Shop-R1, a novel reinforcement learning framework tailored for simu-360

lating real human behavior in web-based environments using LLMs. By decomposing the task into361

two sub-problems, rationale generation and action prediction, and equipping each with carefully362

designed, structured reward signals, Shop-R1 addresses key limitations of prior approaches relying363

solely on supervised fine-tuning or sparse binary rewards. Our hybrid reward scheme incorporating364

self-certainty scoring, hierarchical credit assignment, format regularization, and difficulty-aware365

scaling leads to substantial improvements in exact match accuracy and robustness across model366

sizes. Extensive experiments demonstrate that Shop-R1 not only surpasses existing baselines by wide367

margins, but also mitigates common pathologies such as reward hacking and over-reliance on trivial368

actions. These findings highlight the promise of structured RL frameworks in enabling language369

agents to perform fine-grained, interpretable, and high-fidelity behavior simulation, paving the way370

for more realistic and personalized virtual user modeling in future interactive systems.371
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Appendix536

A System Prompt537

538
<IMPORTANT>539

Your task is to predict the next action and provide rationale for the action based540

on the previous actions and context.541

You need to pretend that you are a user, browsing amazon.com and searching for a542

product to purchase.543

The history action (with details described below) and context will be provided to544

you.545

You need to predict the next action and provide rationale for the action.546

</IMPORTANT>547

548

# Action Space549

An action is represented in JSON format, and there are three primary types of550

actions:551

#### 1. ‘type_and_submit‘:552

Type text into an input field and immediately submit the form. Equivalent to typing553

text into an input and pressing enter key.554

{555

"type": "type_and_submit",556

"name": "input_name",557

"text": "search_text"558

}559

560

#### 2. ‘click‘:561

Click on a button or clickable element identified by ‘name‘.562

563

{564

"type": "click",565

"name": "clickable_name"566

}567

568

#### 3. ‘terminate‘:569

When you are unsatisfied with the current search result and you don’t want to buy570

anything, use ‘terminate‘ to indicate that you want to close the browser window571

and terminate the task.572

{573

"type": "terminate"574

}575

576

# Context577

Your context will be an **simplified version** of the raw HTML of the amazon page578

you are looking at. Some interactable elements will be added a unique "name"579

attribute, which you can use to identify the element to interact with (click or580

type_and_submit).581

582

# Rationale583

The rationale is a first-person sentence of what you are thinking when you make the584

action. It should be a short sentence that explains why you are making the585

action.586

587

# Output Format588

You need to predict the next action and provide rationale for the action. Your589

output should follow a strict JSON form:590

{591

"rationale": "<rationale>", // rationale goes here, a string592

"action": {593

// action goes here594

"type": "<type>",595

...596

},597

}598
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<IMPORTANT>599

OUTPUT A SINGLE JSON OBJECT, NOTHING ELSE.600

</IMPORTANT>601602

B Reasoning Synthesize Prompt603

604
You will be given a customer’s shopping journey on one of the largest e-commerce605

services globally.606

You will be given the context (what the user is looking at), the action (what the607

user did), and your job is to predict the user’s rationale for the action.608

The rationale should follow609

610

Here is an example:611

{example}612

613

For each action in the input, output a rationale.614

615

If the action is "terminate", it means that you didn’t find any desired product and616

you decided to leave the website by closing the browser window.617618
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