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Figure 1: Overview of the proposed reinforcement learning framework, Shop-R1, designed to simulate
real human behaviors in web-based shopping environments. Given an action history a1...t−1 with
corresponding website observations c1...t−1, the model predicts the next action at and its rationale rt
based on the history and the latest website observation ct. The generated responses are evaluated
from four perspectives: format correctness, self-certainty of the rationale, action type accuracy, and
sub-action (attribute and value) accuracy.

Abstract

Large Language Models (LLMs) have recently demonstrated strong potential in
generating ‘believable human-like’ behavior in web environments. Prior work
has explored augmenting training data with LLM-synthesized rationales and ap-
plying supervised fine-tuning (SFT) to enhance reasoning ability, which in turn
can improve downstream action prediction. However, the performance of such
approaches remains inherently bounded by the reasoning capabilities of the model
used to generate the rationales. In this paper, we introduce Shop-R1, a novel
reinforcement learning (RL) framework aimed at enhancing the reasoning ability
of LLMs for simulation of real human behavior in online shopping environments.
Specifically, Shop-R1 decomposes the human behavior simulation task into two
stages: rationale generation and action prediction, each guided by distinct reward
signals. For rationale generation, we leverage internal model signals (e.g., logit
distributions) to guide the reasoning process in a self-supervised manner. For action
prediction, we propose a hierarchical reward structure with difficulty-aware scaling
to prevent reward hacking and enable fine-grained reward assignment. This design
evaluates both high-level action types and the correctness of fine-grained sub-action
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details (attributes and values), rewarding outputs proportionally to their difficulty.
Experimental results show that our method achieves a relative improvement of over
65% compared to the baseline.

1 Introduction

Large Language Models (LLMs) have shown remarkable performance in planning, reasoning, and
decision-making tasks [1–11]. Recently, researchers have begun leveraging LLMs to simulate human
behaviors in web-based environments, aiming to generate realistic, user-like action sequences on
digital services [12–14]. This capability has promising applications across domains such as e-
commerce [15, 16], education [17], and social computing [18]. Despite these advances, current LLM
agents often fall short in producing behaviors that align with real humans. The most straightforward
baseline is zero-shot prompting [19], where models are given textual instructions to imitate certain
user types and output action sequences in a predefined format. While simple to implement, this
method lacks the personalization and adaptability needed for high-fidelity behavior modeling [20].
To improve behavioral accuracy and reasoning coherence, recent work such as Lu et al. [20] has
introduced synthetic training data augmentation. Specifically, they use Claude 3.5 Sonnet [21]
to generate rationales to create ⟨context, action, rationale⟩ triplets. These triplets are then used
to perform supervised fine-tuning (SFT), enabling the model to learn both the actions and their
underlying rationales. However, this approach faces the key limitations: the quality and diversity of
rationales are ultimately constrained by the LLM used during data generation.

Since RL offers a flexible and effective training paradigm, particularly suited for settings with
sparse and delayed feedback, and allows for fine-grained control over behavioral outputs [22–26],
we utilize RL for the simulation of human shopping behavior, compared to previous work that
focuses primarily on task completion [27, 28]. In this work, we propose Shop-R1, a novel RL
framework designed to enhance LLMs for simulation of human online shopping behaviors. As
shown in Fig. 1, Shop-R1 decomposes the human behavior simulation task into two stages: (1)
rationale generation and (2) action prediction, with tailored reward signals for each component. For
the reward design, we begin by introducing a binary format reward that encourages the model to
produce responses in a parse-friendly structure, thereby facilitating reliable downstream evaluation
and reward computation. Specifically, the model receives a non-zero reward only when its output
conforms to the expected format; otherwise, it is penalized with zero reward. For rationale generation,
acquiring ground-truth rationales is inherently difficult. Although efforts like OPeRA [29] attempt to
collect self-reported rationales from real users, such annotations may omit implicit or unconscious
decision factors. To address this, we incorporate a self-certainty reward [30, 31], quantified via
the average Kullback–Leibler (KL) divergence [32] between the model’s output distribution and a
uniform distribution. This signal captures the model’s confidence in its generated rationales, providing
a supervision-free alternative to ground-truth rationales. For action prediction, we go beyond binary
reward signals by introducing a hierarchical reward scheme that accounts for both action type and sub-
action correctness. This design allows the agent to receive partial credit for plausible but imperfect
behaviors, promoting smoother and more robust learning. Furthermore, to mitigate reward hacking
and reflect the varying difficulty of different actions, we apply a difficulty-aware reward scaling
strategy that adjusts the reward magnitude based on action complexity. Our main contributions are
summarized as follows:

• To the best of our knowledge, we are the first to introduce RL into a simulation-oriented
human behavior modeling task. We reformulate human online shopping behavior simulation
as a two-stage prediction problem, comprising rationale generation and action prediction,
and design distinct RL objectives for each.

• We introduce Shop-R1, a reinforcement-learning framework with a hybrid reward design. It
integrates a self-certainty signal for rationale generation with a hierarchical reward scheme
for action prediction. To ensure stable learning and prevent reward hacking, we further
introduce a format reward and a difficulty-aware reward scaling mechanism.

• Experiments show that our proposed training pipeline achieves an exact match accuracy
of 27.72%, outperforming supervised fine-tuning (16.76%) by over 65%, demonstrating
the strong effectiveness of our approach in simulation-oriented human shopping behavior
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modeling. We further conduct a comprehensive ablation study to evaluate the contribution
of each component in our design.

2 Related Work

LLM for human behavior simulation. Large Language Models (LLMs) have emerged as powerful
tools to simulate human behaviors in diverse real-world settings. Recent advances have led to the
development of agent systems capable of generating plausible user actions based on static personas
and interaction histories, enabling the modeling of behavior in contexts such as social science [33, 34],
recommender systems [35], and user experience research [36]. These systems typically condition
on user profiles (e.g., preferences, demographics) and session histories (e.g., clickstreams, task
sequences) to predict the next likely user action, allowing for personalized and context-aware simula-
tions. Beyond behavior prediction, recent efforts have enriched these simulations by incorporating
explicit reasoning processes. Methods like ReAct [1] and reflection-based models [37, 38] prompt
LLMs to produce intermediate thought traces before action generation, enhancing interpretability and
decision quality. Systems such as WebAgent [39] and UX-Agent [36] further decompose tasks into
sub-goals using dedicated reasoning models, yielding improved control in complex environments
like web interfaces. A parallel line of research explores agent-based LLM frameworks that simulate
multi-agent interactions in dynamic environments [40–42]. These systems often adopt modular
roles (e.g., planners, executors) and collaborative reasoning [43, 44], offering insights into emergent
social behaviors and teamwork dynamics. Despite recent advances, there remains a significant gap
in exploring how RL can be leveraged to further enhance the simulation of human behavior using
LLMs, particularly in the context of web-based shopping environments.

Reward design for RL. Reward design plays a central role in the effectiveness and generalization of
RL algorithms, particularly in the context of aligning LLMs with desired behaviors. The prominent
paradigm is Reinforcement Learning from Human Feedback (RLHF), which has been widely adopted
to fine-tune LLMs using reward models trained on human preference data [45]. While RLHF has
demonstrated strong alignment capabilities, it is often bottlenecked by the high cost and limited
scalability of collecting reliable human annotations [46]. Moreover, reward models themselves can
introduce alignment biases and inaccuracies, especially when trained on limited or noisy preference
comparisons [47]. To alleviate these limitations, Direct Preference Optimization (DPO) [23] proposes
a more efficient alternative that directly optimizes model parameters against human preference
signals without an explicit reward model. Though computationally lighter, DPO and its variants
still depend on the availability and quality of human-generated or approximated preference data,
which can be inconsistent across tasks and domains. A complementary direction has emerged
through Reinforcement Learning with Verifiable Rewards (RLVR), particularly suited for domains
with deterministic correctness criteria such as code generation and mathematical reasoning [48, 49].
RLVR frameworks employ rule-based verifiers to automatically compute reward signals based on
strict correctness (e.g., exact string matching or functional equivalence) bypassing the need for human
feedback. This shift toward automated objective reward functions has enabled the training of highly
capable models such as DeepSeek-R1 [48] and inspired new policy optimization methods such as
GRPO [50] and its recent extensions [51, 52]. Despite these advances, reward design remains a
fundamental challenge in RL for human behaviors. RLHF offers flexibility for modeling subjective
tasks, but often suffers from scalability and reliability issues [53–56]. In contrast, RLVR provides
high precision by relying on clearly defined evaluation criteria, but is limited to tasks where such
criteria exist [49, 57, 58]. To address the unique challenges of simulating human online shopping
behavior, we propose a hybrid reward framework specifically tailored to this domain.

3 Methodology

In this section, we first formulate the problem of human behavior simulation in the context of
web-based shopping. We then present the design of our proposed RL framework, Shop-R1, tailored
specifically for simulating human behavior in this setting.

Problem statement. In the context of web shopping, a user session is composed of a sequence of
multi-step actions a1...t...N , typically initiated with a search query and concluded by either a product
purchase or a termination action (e.g., closing the browser). Following the setup of [20], the action
space comprises three primary action types: ‘type_and_submit’, ‘click’, and ‘terminate’. More details
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about the action space can be found in App. A. Each action at is paired with a corresponding rationale
rt, which captures the user’s underlying motivation or rationale at that time step. The model also
receives contextual information, i.e., the observation space, representing the current state of the web
environment. This context is encoded as a simplified HTML structure, as introduced in Lu et al. [13],
which preserves essential layout and content elements while discarding non-informative components
such as scripts and styles. The task of human online shopping behavior simulation is formally defined
as learning a function f that predicts the next rationale and action, given the cumulative context and
action history:

f(c1...t, a1...t−1, r1...t−1) = rt, at, (1)

where f denotes the model trained to simulate user behavior by generating the next-step rationale rt
and action at conditioned on prior context c1...t, past actions a1...t−1, and prior rationales r1...t−1.
These rationales are generated using LLMs and serve as supervision signals during the supervised
fine-tuning stage for a cold start. Need to note that no generated rationales are used during the
subsequent RL stage.

Cold start with SFT. Following the approach of Guo et al. [48], we initialize the behavior simulation
model f through supervised fine-tuning (SFT) on annotated trajectories, where each rationale is
generated by Claude 3.5 Sonnet [21] via Amazon Bedrock, without leveraging any user profile
information. This SFT phase acts as a cold start for subsequent RL, grounding the model in realistic
rationale and action patterns. During this phase, the model is trained to jointly generate rationales
and corresponding actions. The training objective is to maximize the likelihood of the ground truth
rationale-action pairs, conditioned on the the input query qt = c1...t, a1...t−1, r1...t−1:

Lsft = −
N∑
t=1

log p(rt, at | qt), (2)

This supervised initialization plays a crucial role in helping the model internalize the structural
dependencies among context, rationale, and action early in the training pipeline. By grounding the
model in these patterns upfront, we significantly enhance both the stability and sample efficiency
of subsequent RL stages. More importantly, it provides an explicit signal for what constitutes a
high-quality long-text output, such as correctly naming a clicked button or specifying a meaningful
search query. These capabilities that are otherwise difficult to acquire solely through RL, especially
given the sparse and delayed reward structure.

Shop-R1. To better guide policy optimization in the human behavior simulation setting, we de-
compose each step into two sub-tasks: rationale generation and action prediction. Each sub-task
is assigned a tailored reward to improve alignment and interpretability. To ensure the ease and
correctness of parsing predicted rationales and actions from model outputs, we introduce a binary
format reward, which encourages the model to produce responses in a structured JSON format. This
format adheres to a dictionary schema with two keys: rationale and action. For rationale generation,
we employ a self-certainty score [30, 31], which quantifies the model’s confidence in its generated
rationale. Specifically, we compute the KL divergence between the model’s predictive distribution
over the vocabulary and a uniform distribution, averaged over the entire output sequence:

s(rt | qt) =
1

N |V |

N∑
j=1

|V |∑
i=1

pij log

(
pij
Ui

)
, (3)

where N is the number of tokens in the generated rationale rt, pij is the predicted probability of token
i at position j, and Ui =

1
|V | is the uniform distribution over the vocabulary V . Higher values of s(·)

indicate greater certainty and consistency in the model’s reasoning. For action prediction, we replace
the brittle binary signal with a hierarchical reward scheme that credits both the coarse-grained action
type and its fine-grained sub-actions to stabilize training and discourage degenerate reward hacked
policies. This hierarchical scheme densifies the reward landscape: it expands the set of profitable
trajectories, lifts the agent out of the ‘no-reward’ plateau that typically stalls policy search, and makes
reward hacking uneconomical. Concretely, every action, easy or hard, earns the same coarse-level
reward once its high-level type is correct; only the more complex actions can unlock additional
gains through their long-text sub-components. As a result, naively spamming the trivial ‘terminate’
action no longer yields a competitive payoff, while executing the full (‘click’, ‘type_and_submit’)
sequence becomes the most lucrative strategy. Concretely, a ‘click’ action containing a sub-action,

4



Table 1: Hierarchical reward schedule with Difficulty-Aware Reward Scaling (DARS). A response
earns a format reward of 0.5 if it is in a valid JSON format; otherwise, it gains no format reward. A
valid response can further gain partial credit for (i) the correct action type, (ii) the presence of the
required sub-action attribute, and (iii) any long-text value prediction, whose reward equals the DARS
factor multiplied by its ROUGE-L similarity to the ground truth.

Action Type Type Reward Sub-action Attribute Reward Text-Similarity Value Reward
terminate 0.3 None None

click 0.3 +0.2 (if name ̸= ∅) +DARS × ROUGE-L(name)
type_and_submit 0.3 +0.1 (if name ̸= ∅) +0.1 (if text ̸= ∅) +0.1× ROUGE-L(name) +DARS × ROUGE-L(text)

specifying the button name to be clicked; partial rewards are granted for the correctly predicted
components. Likewise, ‘type_and_submit’ contains sub-action, providing the intended textual content.
In contrast, ‘terminate’ has no sub-actions and is scored only at the action-type level. Prediction
accuracy is measured with task-specific metrics: discrete action types use an exact-match criterion,
whereas free-form sub-actions are evaluated with ROUGE-L. A text-based sub-action, such as a
button label or search query, earns a soft reward proportional to its ROUGE-L similarity to the
ground truth, but only when that similarity exceeds a preset threshold (e.g., 0.75). Because long-text
sub-actions are substantially harder, where modern webpages can expose thousands of candidate
elements, we introduce a difficulty-aware reward scaling (DARS) factor that amplifies rewards for
correctly predicting these components. This prevents reward hacking behaviors in which the agent
repeatedly selects the trivial ‘terminate’ action to secure easy points. The proposed hierarchical
reward scheme is summarized in Tab. 1. Bringing these components together, the objective of
Shop-R1is to maximize the combined reward signal derived from multiple sources, while regularizing
with a KL divergence to a reference policy:

max
πθ

Er,a∼πθ(q) [v(a) + αs(r) +−βKL (πθ(r, a | q) ∥πref(r, a | q))] , (4)

where πref denotes a fixed reference policy, v(at) denotes the reward for action prediction and α and
β are hyperparameters that control the strength of the corresponding regularization terms.

4 Experiments

4.1 Experiment Setups

Datasets and models. Our study is built on a proprietary corpus of 52,137 real-world shopping
sessions collected from a leading global e–commerce service. Each session logs the multi-turn
interaction between a human customer and the website interface. We enrich each recorded action
with a natural language rationale automatically generated by Claude 3.5 Sonnet (see Appendix B
for the prompting details). The provided observation context is formatted as simplified HTML [13],
which retains essential structural elements while filtering out irrelevant content such as scripts, styling
information, and user-specific data. For SFT dataset, we keep each session intact. The model is
asked to produce the assistant response, which contains both the rationales and the structured action
prediction. For RL dataset, we convert a session into a sequence of <context, action> pairs. The
context is the concatenation of (i) all previously observed contexts and (ii) the actions already taken;
the target is the next action only. Because every session begins on the home page, there is always at
least one observed <context, action> pair before the first prediction step, eliminating the open-world
ambiguity of the very first move. To provide the model with slightly richer supervision on the
harder behaviors, the two complex actions (click and type_and_submit) each occur about 10% more
frequently than the simple terminate action. This mild skew prevents the learner from over-fitting to
the trivial case while still maintaining near-uniform coverage, thereby supporting fair and informative
per-class evaluation. All experiments fine-tune the publicly available Qwen-2.5-3B-Instruct
model. The default 3B parameter backbone offers a favourable compute–performance trade-off.

Baselines for comparison. We evaluate our approach against several baseline schemes: (a) Zero-
shot prompting, where the model generates outputs based solely on instruction prompts without
additional training; (b) RL (Binary), where the base model is optimized directly with RL, using only
a sparse binary reward signal; (c) SFT-only, where the model is trained via supervised fine-tuning on
data with LLM-generated rationales; (d) SFT + RL (Binary), which extends SFT with reinforcement
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learning using a binary reward based on exact action match; and (e) Shop-R1, our proposed RL
framework with hybrid reward design for the simulation-oriented human behavior modeling task.

Training setups. Our codebase is built on verl [59], and all experiments were conducted on NVIDIA
A100 GPUs (80 GB). We leveraged Fully Sharded Data Parallelism (FSDP) in PyTorch [60] to
maximize training efficiency. The default policy optimization algorithm is Group Relative Policy
Optimization (GRPO) [50]. Input sequences were padded or truncated to a maximum context length
of 32k tokens, and the default sampling temperature is 0.6. We set the per-device batch size to 1,
yielding a global batch size of 64. For supervised fine-tuning (SFT) we trained for 4 epochs with a
learning rate of 2× 10−5; for reinforcement learning (RL) we trained for 500 steps with a learning
rate of 1× 10−7. By default, we set the DARS factor to 1000, and use α = 0.005 and β = 0.001 to
weight the corresponding reward terms.

Evaluation metrics. We apply an exact match criterion for the accuracy evaluation of predicted user
actions. A prediction is deemed correct only when every relevant component exactly matches the
ground truth. For instance, in the case of ‘click’ actions, both the specific subtype (such as clicking
on a filter, search area, or another UI element) and the selected target must align with the true label.
Similarly, for ‘type_and_submit’ actions, the model should reproduce the similar meaning of input
text. Additionally, We report accuracy and F1 on the coarse-grained action type alone. Comparing
these scores with exact-match accuracy highlights whether residual errors stem from misclassifying
the high-level action type or from mistakes in the fine-grained label (button name or query text).

4.2 Experimental Results

Table 2: Simulation accuracy under different fine-tuning methods
across models of different sizes. There are three complementary
metrics: exact action accuracy (all sub-fields must match the label);
action type accuracy, and action type F1 to disentangle mistakes in
coarse intent classification from those in long-text arguments.

Model Settings Exact Action Action Type
Acc. Acc. F1

Qwen-2.5-3B-Instruct

Zero-shot prompting 0.32% 15.33% 16.15%
RL (Binary) 1.01% 6.17% 9.92%
SFT 16.76% 22.25% 24.52%
SFT + RL (Binary) 16.55% 23.74% 28.07%
Shop-R1 (Ours) 27.72% 36.40% 31.28%

Qwen-2.5-1.5B-Instruct
Zero-shot prompting 0.53% 3.94% 6.16%
SFT 10.86% 23.58% 29.02%
Shop-R1 (Ours) 24.11% 34.54% 29.19%

Qwen-2.5-0.5B-Instruct
Zero-shot prompting 6.76% 12.88% 15.55%
SFT 9.90% 17.72% 21.61%
Shop-R1 (Ours) 27.72% 31.83% 21.20%

Performance comparison
with baselines. Main per-
formance comparison results
are shown in Tab. 2. Firstly,
zero-shot prompting yields
low performance: without
any task-specific adapta-
tion Qwen-2.5-3B-Instruct
achieves only 0.32% exact-
action accuracy, confirming
that long-horizon web be-
havior cannot be recovered
from generic instruction
tuning alone. Second, RL
with sparse binary rewards on
their own still fail to give the
agent meaningful guidance.
When we train the policy
from scratch under this signal, it reaches only 1.01% exact-match action accuracy and 6.17% type
accuracy. Third, a straightforward round of SFT is more effective, boosting performance to 16.76%
exact match accuracy and 22.25% type accuracy. This confirms that dense, teacher-forced trajectories
are crucial for injecting the structural knowledge (context → rationale → action) and illustrating
the shape of the long-text fields (button labels or search queries) that the binary signal alone cannot
convey. Fourth, appending an additional binary-reward RL phase after SFT delivers only mixed
results: exact-match action accuracy actually slips to 16.55%, while type-level F1 rises to 28.07%.
The agent thus learns to guess the coarse intent better, but it still struggles to reproduce the long-text
values that drive the exact-match metric. In other words, the policy becomes better at guessing the
coarse action type, but slightly worse at reproducing the fine-grained, long-text values required
for an exact match. Lacking finer-grained credit assignment, the binary objective cannot push the
model beyond what SFT already achieves and in some respects even pulls it backwards. Training
with this objective is furthermore prone to instability and converges substantially more slowly than
optimization with richer, structured rewards. Our proposed Shop-R1 framework closes most of this
gap. By combining hierarchical rewards, self-certainty signals, format rewards and difficulty-aware
scaling, it delivers 27.72% exact-action accuracy (+65% relative to SFT) and pushes action-type
accuracy and F1 to 36.40% and 31.28%, respectively. The simultaneous rise of both the coarse
(type-level) and fine-grained (exact-match) metrics indicates that Shop-R1 not only identifies the
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correct intent more often, but also reproduces the long-text values (button labels, text queries) with
higher fidelity.

Table 3: Exact action accuracy and action type accuracy for each action type: ‘click’,
‘type_and_submit’, and ‘terminate’, across different models and finetuning methods.

Models Settings Exact Action Acc. Per Action Type Action Type Acc. Per Action Type
click type_and_submit terminate click type_and_submit terminate

Qwen-2.5-3B-Instruct

Zero-shot prompting 0.58% 0.15% 0.00% 38.7% 1.62% 0.00%
SFT 4.93% 3.84% 49.80% 8.55% 15.36% 49.80%
SFT + RL (Binary) 8.12% 3.25% 45.51% 17.25% 13.88% 45.51%
Shop-R1 (Ours) 7.39% 7.53% 81.84% 10.29% 28.66% 81.84%

Qwen-2.5-1.5B-Instruct
Zero-shot prompting 1.01% 0.15% 0.39% 10.00% 0.44% 0.39%
SFT 4.49% 7.83% 23.44% 15.07% 32.35% 23.44%
Shop-R1 (Ours) 3.62% 8.12% 72.85% 6.52% 34.12% 72.85%

Qwen-2.5-0.5B-Instruct
Zero-shot prompting 0.43% 0.15% 24.02% 12.90% 4.43% 24.02%
SFT 3.19% 7.68% 21.88% 5.94% 26.59% 21.88%
Shop-R1 (Ours) 0.72% 3.99% 97.07% 1.01% 17.87% 97.07%

As shown in Tab. 3, we decompose accuracy by action type. Zero-shot prompting shows the classic
“intent–content” split. For example, it can guess that a ‘click’ is needed (38.7% type accuracy) yet
almost never names the exact UI target (0.58 % exact). Even if SFT can boost the performance but the
gain remains uneven, which suggests that teacher forcing alone does not give the model enough credit
assignment signal for predicting high-entropy arguments such as search queries. Appending a sparse
binary RL phase after SFT still fails to boost these harder text-generation cases. Shop-R1 reshapes
those incentives, higher exact match accuracy is achieved, indicating that the model is no longer
satisfied with merely selecting correct type but is learning to identify the correct widget and query text
as well. To be summarized, dense and structured feedback is essential: it overcomes the no-reward
plateau, and makes reward hacking uneconomical.

4.3 Ablation Study And Analysis
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Figure 2: Sampling temperature ablation study.

Model size. Tab. 2 and Tab. 3 reveal a consis-
tent scaling trend. In the zero-shot regime, the
3B backbone already outperforms its 1.5B and
0.5B counterparts by a factor of ×4 ∼ 5 on
coarse action–type accuracy, confirming that
larger models possess stronger out-of-the-box
priors for human behavior simulation at the
setting of website shopping. After SFT, all
sizes gain, yet the improvement is more pro-
nounced for the two smaller backbones than
for the 3B model, suggesting that demonstra-
tion learning compensates for limited capac-
ity. Shop-R1 lifts every backbone to its best
operating point, but the shape of the gains
differs by scale. The 3B variant reaches the
highest overall numbers while distributing its
improvements evenly across the two compli-
cated action types. By contrast, the 0.5B model
achieves a comparable headline exact match
accuracy (27.72%) almost entirely by over-predicting the easiest ‘terminate’ action (97.07% exact)
and largely ignoring the more semantically demanding classes. The 1.5B backbone sits in between,
recovering moderate fidelity on ‘click’ and ‘type_and_submit’ while retaining a strong but not over-
whelming bias toward ‘terminate’. In short, scaling primarily augments the model’s ability to handle
long-text, high-entropy actions; smaller networks can still match aggregate accuracy by exploiting the
high-reward termination branch, but they do so at the cost of behavioral diversity. These findings
underscore that, although Shop-R1 markedly mitigates capacity limitations, genuine mastery of
simulation-oriented web-shopping action prediction tasks continues to benefit from larger backbones.

Sampling temperature. Fig. 2 shows that Shop-R1 is robust to sampling temperature, yet the
three evaluation metrics react in distinct ways that reveal how temperature sampling propagates
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through the decision hierarchy. Action-type accuracy remains almost constant (36%) across the entire
temperature sweep because this metric aggregates all predictions: small mis-classifications in one
direction are largely offset by fixes in another, leaving the overall hit rate unchanged. By contrast,
the F1 score declines steadily (31.28% → 28.36%) as temperature rises; class-averaging penalizes
any asymmetric increase in confusion. Interestingly, a modest boost from the default τ = 0.6 to
τ = 0.7 improves exact-match accuracy to its peak of 28.63%: a trace of stochasticity helps the
generated response escape local maxima and occasionally assemble the full long-text argument that
greedy decoding would miss. When τ > 0.8 the added entropy no longer uncovers new correct
completions; instead it corrupts fine-grained fields faster than it fixes them, so exact-match plateaus
while F1 continues to erode. This pattern is expected since the SFT stage already anchors the model
to dataset-specific behavior, privileging faithful simulation over creativity. Taken together, these
trends indicate that temperatures in the 0.6–0.8 band offer the best trade-off, preserving robust intent
classification, maximizing strict exact-match, and avoiding the metric degradation that emerges once
the sampler becomes overly exploratory.

Table 4: Ablation study on different training component configurations, evaluated by exact match
action accuracy and action type accuracy / F1.

Model Training Scheme Components Exact Action Action Type
SFT Format Reward Rationale Reward Reward Scale Action Reward Acc. Acc. F1

Qwen-2.5-3B-Instruct

✗ ✓ ✓ ✓ hierarchical 4.63% 36.56% 21.92%
✓ ✗ ✓ ✓ hierarchical 2.87% 3.19% 5.04%
✓ ✓ ✗ ✓ hierarchical 26.93% 37.25% 33.74%
✓ ✓ ✓ ✗ hierarchical 27.83% 27.20% 11.70%
✓ ✓ ✓ ✓ binary 27.41% 27.46% 12.11%

✓ ✓ ✓ ✓ hierarchical 27.72% 36.40% 31.28%

Training component. Tab. 4 makes clear that every element of Shop-R1 addresses a different
pathology. Removing the SFT warm-start cripples the agent: despite having all RL signals, exact-
match drops to 4.63%, underscoring that a supervised prior is indispensable for learning the shape
of long-text arguments. Omitting the format reward is even more destructive, where exact accuracy
plunges to 2.87% and type-level metrics fall below 6% since unparseable JSON outputs earn zero
credit, starving the learner of gradient signal. When the self-certainty (rationale) reward is ablated,
coarse intent prediction remains strong but exact-match lags the full system by 0.8%, indicating
that explicit feedback on the generated rationales mainly tightens the long-text portion of an action
rather than its top-level label. Disabling the difficulty-aware reward scaling or reverting to a binary
action reward leads to a different failure mode: the model still attains around 27% exact accuracy, yet
type-level F1 degrades to 11–12%. Inspection shows that, without either scaling or hierarchical credit,
the agent gravitates toward the easy high-reward ‘terminate’ action and rarely ventures into harder
‘click’ or ‘type_and_submit’ cases, which is a classic reward-hacking pattern. The full configuration
combines all signals and delivers the best balance demonstrating that each component is necessary:
SFT injects linguistic priors, the format reward safeguards parsability, the self-certainty term refines
long-text precision, and hierarchical difficulty-scaled rewards prevent degenerate policies while
promoting fine-grained action fidelity.

Table 5: Comparison of model performance when
using either the whole-session context or only the
latest-step context as input.

Context Settings Exact Action Action Type
Acc. Acc. F1

whole-session 27.72% 36.40% 31.28%
latest-step 14.74% 30.46% 33.48%

Whole-session v.s. latest-step context. Tab. 5
isolates the impact of including the simplified
HTML of each visited page in the action his-
tory. Removing this structural cue slashes exact-
match accuracy from 27.72% to 14.74%, a
nearly 50% relative loss, while coarse action-
type accuracy drops more modestly. The sharp
divergence indicates that, although the model
can still infer which action type of interaction is
likely next from the dialogue trace alone, it struggles to generate the fine-grained arguments, the
precise button label or query string, without access to the page’s detailed context. Interestingly, the
class-balanced F1 score rises slightly, suggesting that the only latest-step context variant compensates
by spreading probability mass more evenly across action types, however, this redistribution does
not translate into correct long-text completions. In short, supplying even a token-efficient, pruned
HTML view is critical for high-fidelity simulation: it grounds the language model in the concrete UI
affordances required for exact replay, and although it imposes a substantial overhead on the context
window, this cost is justified by its necessity for accurate simulation.
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5 Conclusion

In this work, we introduced Shop-R1, a novel reinforcement learning framework tailored for simu-
lating real human behavior in web-based environments using LLMs. By decomposing the task into
two sub-problems, rationale generation and action prediction, and equipping each with carefully
designed, structured reward signals, Shop-R1 addresses key limitations of prior approaches relying
solely on supervised fine-tuning or sparse binary rewards. Our hybrid reward scheme incorporating
self-certainty scoring, hierarchical credit assignment, format regularization, and difficulty-aware
scaling leads to substantial improvements in exact match accuracy and robustness across model
sizes. Extensive experiments demonstrate that Shop-R1 not only surpasses existing baselines by wide
margins, but also mitigates common pathologies such as reward hacking and over-reliance on trivial
actions. These findings highlight the promise of structured RL frameworks in enabling language
agents to perform fine-grained, interpretable, and high-fidelity behavior simulation, paving the way
for more realistic and personalized virtual user modeling in future interactive systems.
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Appendix

A System Prompt

<IMPORTANT>
Your task is to predict the next action and provide rationale for the action based

on the previous actions and context.
You need to pretend that you are a user, browsing amazon.com and searching for a

product to purchase.
The history action (with details described below) and context will be provided to

you.
You need to predict the next action and provide rationale for the action.
</IMPORTANT>

# Action Space
An action is represented in JSON format, and there are three primary types of

actions:
#### 1. ‘type_and_submit‘:
Type text into an input field and immediately submit the form. Equivalent to typing

text into an input and pressing enter key.
{

"type": "type_and_submit",
"name": "input_name",
"text": "search_text"

}

#### 2. ‘click‘:
Click on a button or clickable element identified by ‘name‘.

{
"type": "click",
"name": "clickable_name"

}

#### 3. ‘terminate‘:
When you are unsatisfied with the current search result and you don’t want to buy

anything, use ‘terminate‘ to indicate that you want to close the browser window
and terminate the task.

{
"type": "terminate"

}

# Context
Your context will be an **simplified version** of the raw HTML of the amazon page

you are looking at. Some interactable elements will be added a unique "name"
attribute, which you can use to identify the element to interact with (click or
type_and_submit).

# Rationale
The rationale is a first-person sentence of what you are thinking when you make the

action. It should be a short sentence that explains why you are making the
action.

# Output Format
You need to predict the next action and provide rationale for the action. Your

output should follow a strict JSON form:
{

"rationale": "<rationale>", // rationale goes here, a string
"action": {

// action goes here
"type": "<type>",
...

},
}
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<IMPORTANT>
OUTPUT A SINGLE JSON OBJECT, NOTHING ELSE.
</IMPORTANT>

B Reasoning Synthesize Prompt

You will be given a customer’s shopping journey on one of the largest e-commerce
services globally.

You will be given the context (what the user is looking at), the action (what the
user did), and your job is to predict the user’s rationale for the action.

The rationale should follow

Here is an example:
{example}

For each action in the input, output a rationale.

If the action is "terminate", it means that you didn’t find any desired product and
you decided to leave the website by closing the browser window.
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