
Under review as a conference paper at ICLR 2024

YOU ONLY LOOK AT SCREENS:
MULTIMODAL CHAIN-OF-ACTION AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Autonomous user interface (UI) agents aim to facilitate task automation by inter-
acting with the user interface without manual intervention. Recent studies have
investigated eliciting the capabilities of large language models (LLMs) for effective
engagement in diverse environments. To align with the input-output requirement of
LLMs, existing approaches are developed under a sandbox setting where they rely
on external tools and application-specific APIs to parse the environment into textual
elements and interpret the predicted actions. Consequently, those approaches often
grapple with inference inefficiency and error propagation risks. To mitigate the
challenges, we introduce Auto-UI, a multimodal solution that directly interacts with
the interface, bypassing the need for environment parsing or reliance on application-
dependent APIs. Moreover, we propose a chain-of-action technique—leveraging a
series of intermediate previous action histories and future action plans—to help the
agent decide what action to execute. We evaluate our approach on a new device-
control benchmark AITW with 30K unique instructions, spanning multi-step tasks
such as application operation, web searching, and web shopping. Experimental
results show that Auto-UI achieves state-of-the-art performance with an action type
prediction accuracy of 90% and an overall action success rate of 74%. Code is
publicly available at Anonymous.

1 INTRODUCTION

Building intelligent autonomous agents that are capable of task planning, decision making, and
action execution in a particular environment is a long-standing goal of artificial intelligence (AI)
(Searle, 1969; Wooldridge & Jennings, 1995; Maes, 1995; Hendler, 1999). The advent of large
language models (LLMs) (Brown et al., 2020; Chowdhery et al., 2022; OpenAI, 2023) has flourished
promising opportunities for developing autonomous agents to assist users in completing tasks in
distinct environments such as operation systems, specific applications, and web browsers (Adept,
2022; Rawles et al., 2023; Liu et al., 2023; Zhou et al., 2023; Wang et al., 2023c).

Recent studies have explored prompt engineering (Richards, 2023; Nakajima, 2023; Reworkd,
2023; Sumers et al., 2023; Liu et al., 2023) and fine-tuning techniques (Rawles et al., 2023; Wen
et al., 2023; Sun et al., 2022) to elicit the capability of language models to execute actions in
interactive environments. However, there are at least two major challenges that have limited real-
world applications of autonomous agents.

First, existing approaches commonly rely on external tools such as optical character recognition
(OCR) and icon detectors (Zhang et al., 2021; Sunkara et al., 2022) to parse the environment into
textual elements (e.g., HTML layouts) as inputs to a language model (Figure 1(a)) (Rawles et al.,
2023; Wen et al., 2023). On the one hand, the parsed elements generate lengthy inputs, thus leading
to inference inefficiency. Since computational latency is a key measure in deployment, using lengthy
inputs would increase inference cost and may even exceed the input length limit of the language
model. On the other hand, parsing the visual environment into textual elements may also be prone to
error propagation or information loss because parsing mistakes are inevitable using external tools.

Second, most existing approaches are under the sand-box setting that requires accessing internal
APIs to interact with the environment (Zhou et al., 2023; Gur et al., 2023), e.g., using a JavaScript
element selection on a webpage or a Python interpreter to execute actions. However in practice, the
API interface is often inaccessible in third-party applications (Apps).

1



Under review as a conference paper at ICLR 2024

Screen Parsing:
OCR,

Icon Detection,
HTML Conversion

Language Model

Application-specific
API Calls

<img id=0 class=ICON_H
OME alt="Home Icon"></i
mg>
<img id=1 class=ICON_AR
ROW_UPWARD alt="Arro
w_Upward Icon"></img>
<p id=2 class="text" alt="l
owes.com/search?searchT"
>lowes.com/search?search
T</p>

… …

<img id=48 class=ICON_N
AV_BAR_CIRCLE alt="Nav
_Bar Circle"></img >
<img id=49 class=ICON_N
AV_BAR_RECT alt="NAV_
Bar Rect"></img >

click [29]

(JavaScript)

Planning

Action

Memory

Action Prediction

Goal: Look up the best rated coffee maker on Lowe’s

Multimodal
Agent

action_type: 

[DUAL_POINT],

touch_point: 

[0.5595, 0.6261], 

lift_point:

[0.5595, 0.6261]
typed_text: ””

Goal: Look up the best rated coffee maker on Lowe’s

(a) Sandbox Paradigm (b) First Principles Thinking Paradigm

Figure 1: Comparison of two autonomous agent paradigms. The sandbox paradigm depends on the
intermediate transformation between environments and agents, i.e., needing access to intermediate
environment parsing or interval application-dependent APIs. In contrast, our first principles thinking
paradigm allows direct interactions on the screen without intermediate transformation. Details of the
action types and action points are presented in Section 3.3.

These challenges have motivated more advanced techniques that are capable of first principles
thinking (Aristotle; Irwin, 1989)—allowing direct interactions on the screen without needing access
to intermediate environment parsing or interval application-dependent APIs (Figure 1(b)). To address
the challenges, we introduce Auto-UI, a multimodal approach that directly interacts with the interface.
To improve the agent’s action prediction capability, we propose a novel chain-of-action technique,
where a chain of action is a series of intermediate previous action histories and future action plans
that lead to action prediction.

We evaluate Auto-UI on a new device-control benchmark AITW (Rawles et al., 2023) with 30K
unique instructions, spanning multi-step tasks of application operation, web searching, and web
shopping. Experimental results show that Auto-UI achieves state-of-the-art performance with an
action type prediction accuracy of 90% and an action success rate of 74%.

In summary, our work makes the following technical contributions:

(i) We introduce Auto-UI, a multimodal agent for autonomous UI control that can directly interact
with the screens, thus circumventing the constraints of environment parsing and application-specific
API access.

(ii) We propose a chain-of-action technique that leverages the previously executed actions and future
action plans to help the agent decide what action to execute at each step.

(iii) Auto-UI achieves state-of-the-art performance with an action type prediction accuracy of 90%
and an action success rate of 74%. Notably, Auto-UI can infer an action as fast as within less than
one second.

2 RELATED WORK

Our work falls into the field of language agents. This section will first review the recent progress
in building language agents and then discuss the approaches to conduct user interface control with
language agents.

2.1 LANGUAGE AGENTS

Language agents refer to those agents that can follow user instructions and interact with environments
to complete tasks. Such agents expand the landscape of language models to compete in specific
fields, including application operation, web searching, and web shopping. There are two popular

2



Under review as a conference paper at ICLR 2024

types of language agents, autonomous agents and communicative agents. Autonomous agents aim to
assist humans to achieve specific goals in the real world. Typical examples of autonomous agents are
AutoGPT (Richards, 2023), BabyAGI (Nakajima, 2023), and AgentGPT (Reworkd, 2023). In contrast,
communicative agents are personalized and socialized agents (Park et al., 2023; Wang et al., 2023b;
Zhu et al., 2023; Hong et al., 2023) with human behaviors that can communicate and collaborate
with each other. They are often deployed in immersive environments. Inspired by the potential
in real-world applications, this work focuses on autonomous agents, especially those working in
mobile devices. We aim to assist users by completing multi-step tasks (e.g., manipulating Apps,
web shopping, and question answering) without any manual intervention. Given a user instruction
in natural language, the agent is required to interpret the instruction and execute actions by directly
controlling its user interface. Due to the requirement in real-world applications, the agent is expected
to be both effective and efficient.

2.2 UI CONTROL WITH NATURAL LANGUAGE

Recently, LLMs have shown promise in building autonomous UI agents with abilities of instruction
following (Sanh et al., 2021; Taori et al., 2023b; Chiang et al., 2023) and chain-of-thought (CoT)
prompting (Nye et al., 2022; Wei et al., 2022). Especially, CoT prompting (Wei et al., 2022; Kojima
et al., 2022; Zhang et al., 2023a) elicit LLMs’ capacities of step-by-step planning, decision making,
and action execution. Those capacities have been shown to be effective in UI control tasks (Rawles
et al., 2023). However, the task environments are graphical user interfaces (GUIs), instead of natural
language that LLMs can directly process. Therefore, the GUI states and actions are required to be
converted to textual formats to conform to the input and output formats of LLMs. For example, it
is feasible to parse the UI screens by icon recognition and OCR (Zhang et al., 2021; Sunkara et al.,
2022) and organize the parsed elements into HTML layouts. As a compromise, existing approaches
are restricted in a sandbox setting where they rely on external tools (Rawles et al., 2023; Wen et al.,
2023) and application-specific APIs (Zhou et al., 2023; Gur et al., 2023) for environment parsing
and action interpretation; thus, commonly suffer from inference inefficiency and error propagation.
Although there are studies that have considered multimodal architecture to process inputs in different
modalities (Sun et al., 2022), however, those studies still rely on fine-grained environment parsing to
ensure competitive performance. In contrast, this work is established upon first principles thinking,
which directly reads the UI without additional environment parsing and provides the action (e.g.,
action type, gesture coordinate, and typed text) that can be executed without needing any extra APIs.

3 METHODOLOGY

In this section, we will first introduce the basic concepts for the UI control task and then describe the
design of our proposed Auto-UI framework.

3.1 PROBLEM FORMALIZATION

Given a user instruction (also known as a goal), the agent needs to complete the task with multiple
steps of interactions. The entire process is called an episode, which is composed of a series of screens.
For each step in the episode, the agent will be provided with a screenshot, and the agent is required to
predict the action until the task is complete. Detailed examples can be found in Appendix A.2.

3.2 FRAMEWORK OVERVIEW

Auto-UI is a multimodal agent that decides what action to take given the input screenshot and a
user instruction. To empower the agent’s decision making capability, we introduce a chain-of-action
approach by leveraging a series of intermediate previous action histories and future action plans to
predict actions.

The model architecture of Auto-UI is illustrated in Figure 2. On a high level, Auto-UI consists of
three stages. First, we acquire encoded features from both vision and language inputs. Specifically,
the vision input, i.e., a screenshot, is encoded by a frozen vision encoder. Meanwhile, the language
input, consisting of the goal and a chain of previous action histories—each history contains a tuple
{action type, touch point, lift point, and typed text}, is encoded by a language encoder. Second, the

3



Under review as a conference paper at ICLR 2024

Chain of Previous Action Histories: 
action_type: type, touch_point: [-1.0, -1.0], lift_point: [-1.0, -1.0], typed_text: ”best rated coffee maker”
action_type: dual_point, touch_point: [0.2, 0.5],  lift_point: [0.8, 0.5], typed_text: ””

Action Plan:
[DUAL_POINT, 
STATUS_TASK_COMPLETE]

Language 
Encoder

Image 
Encoder

Self Attention

Decoder

Screen

Projection

Feedforward

Chain of Future Action Plans

Current Action Prediction

Action Decision:
action_type: [DUAL_POINT],
touch_point: [0.5595, 0.6261], 
lift_point: [0.5595, 0.6261], typed_text: “”

Goal: Look up the best rated coffee maker on Lowe’s

Chain of Actions

𝑌!"#$%&

𝑋'%!(

𝑌)(!&

𝑋*$+#%,-

𝑋(!&'.!'/

𝑋+",//&

Action

Figure 2: Model architecture of Auto-UI. A chain of action consists of a chain of previous action
histories Xhistory and a chain of future action plans Yplan in the illustration.

encoded vision and language representations are integrated by a self-attention module. Third, the
fused representation is fed to the decoder to generate a chain of future action plans (i.e., action types
to execute in future steps) followed by action prediction. A chain of action consists of two parts in
the procedure above: a chain of previous action histories on the input side and a chain of future action
plans on the output side. In the following, we describe the entire procedure in detail.

Encoding Suppose that an episode consists of k steps of interactions. Given a screenshot Xscreen ∈
Rh×w×3 with height h and width w at step t ∈ [1, k], we first feed it to a frozen image encoder (e.g.,
BLIP-2 (Li et al., 2023)) and extract vision features Hscreen ∈ R1×ds where ds is the dimension of
the vision features. Additionally, we leverage a language encoder to extract the language features
Hlanguage ∈ Rn×dl of the input goal Xgoal where n is the number of tokens and dl is the dimension of
the language features. If t > 1, there will be a chain-of-action history already executed before step
t. We denote the chain of action histories as Xhistory = [m1, . . . ,mt] where mi contains a tuple of
action type, touch point, lift point, and typed text. Otherwise, if t = 1, Xhistory will be set empty:

Xhistory =

{
[m1, . . . ,mt], if t > 1

<empty>, otherwise
(1)

We concatenate Xgoal and Xhistory as the input to the language encoder: Xlanguage = {Xgoal, Xhistory}.
Then, we obtain the encoded representations of the vision and language inputs as follows:

Hscreen = VisionExtractor(Xscreen), (2)

H
′

screen = WHscreen, (3)
Hlanguage = LanguageEncoder(Xlanguage), (4)

where W is a trainable projection matrix to convert Hscreen into the same dimensionality as Hlanguage.

Interaction We correlate H
′

screen and Hlanguage with a single-head self-attention network (Vaswani
et al., 2017), where the query (Q), key (K), and value (V ) are Hlanguage, H

′

screen, and H
′

screen, respec-
tively. The attention output Hattn

screen ∈ Rn×d is defined as: Hattn
screen = Softmax(QK⊤

√
dk

)V , where dk is
the same as the dimension of Hlanguage because a single head is used.

Then, a gated fusion mechanism is adopted following prior studies (Zhang et al., 2020; Wu et al.,
2021; Zhang et al., 2023b) to fuse Hlanguage and Hattn

screen. We have the fused output Hfuse ∈ Rn×d by:

λ = Sigmoid(WlHlanguage +WvH
attn
vision), (5)

Hfuse = (1− λ) ·Hlanguage + λ ·Hattn
vision, (6)

where Wl and Wv are learnable parameters.

4



Under review as a conference paper at ICLR 2024

Decoding The fused representation Hfuse is fed to a Transformer decoder to generate the target
predictions in a string format. The target predictions consist of a chain of future action plans Yplan
and the current action prediction Yaction separated by specific prompts: {Action Plan: Yplan, Action
Decision: Yaction}. Concretely, Yplan is a chain of action types to execute in future steps: Yplan =
[action_typet, . . . , action_typek]. Yaction contains four components: Yaction = {“action_type”: <ac-
tion_type>, “touch_point”: <touch_point>, “lift_point”: <lift_point>, “typed_text”: <typed_text>}.
These four components will be explained in the following subsection.

3.3 COORDINATE NORMALIZATION

Recall that a target action consists of four components: action type, touch point, lift point, and
typed text. We consider six action types: dual-point gesture, type, go_back, go_home, enter, and
status_complete. A dual-point gesture comprises a touch point and a lift point with [y, x] coordinates.
The gesture actions ensure a flexible action space and can represent clicks and scrolls at arbitrary
locations. For example, a gesture action {“touch_point”: [0.7761, 0.7089], “lift_point”: [0.7761,
0.7089]} means clicking at the coordinate [0.7761, 0.7089], while a gesture action {“touch_point”:
[0.1898, 0.4477], “lift_point”: [0.8242, 0.4077]} means scrolling down. A type action means typing
a text and the text is placed in the <typed_text> field. The other action types, i.e., go_back, go_home,
enter, and status_complete are system actions, whose corresponding <touch_point>, <lift_point>
fields are filled with -1, and the <typed_text> is empty.

We observe that high-precision coordinates are not necessary for representing a click or scroll action.
Therefore, we apply normalized values of the coordinates, which helps accelerate convergence and
mitigate the ambiguity of coordinates. The normalization is applied to click and scroll actions. For
click actions, we keep four decimal places. For scroll actions, we first determine the scroll direction
with the touch point and lift point. Then, we transform the touch and lift points into fixed directional
coordinates as follows: “up”: {[0.8, 0.5], [0.2, 0.5]}, “down”: {[0.2, 0.5], [0.8, 0.5]}, “left”: {[0.5,
0.8], [0.5, 0.2]}, “right”: {[0.5, 0.2], [0.5, 0.8]}, where {[·], [·]} consists of the touch point and lift
point in the first [·] and second [·]. We provide examples of target actions in Appendix A.3.

4 EXPERIMENTS

4.1 DATASET

We use the AITW benchmark dataset (Rawles et al., 2023). AITW is a large-scale benchmark
dataset for UI control, which contains natural language instructions, screenshots, and actions. There
are 715K episodes spanning 30K unique instructions, covering diverse multi-step tasks such as
application operation, web searching, and web shopping, on over 350 Apps and websites. This dataset
covers various device types and operation systems in varying screen resolutions to ensure generality.
There are five subsets in the benchmark dataset, namely, General, Install, GoogleApps, Single, and
WebShopping. The details of the subsets and data statistics are presented in Appendix A.1.

4.2 BASELINES

We adopt three types of baselines for comparisons. The baselines encompass the In-context Learning
(ICL) and fine-tuning paradigms, along with various backbone models of different sizes. This choice
of baselines allows for a comprehensive comparison with our proposed approach.

(i) In-context Learning LLMs. Few-shot PaLM 2, ChatGPT (turbo-3.5) are adopted. Following
previous studies (Rawles et al., 2023; Wang et al., 2023a), we feed the LLM a textual description
of the screen and a user instruction. The textual description of the screen is formatted as an HTML
syntax, providing the information of UI elements derived from OCR detection and icon detection from
external tools (Rawles et al., 2023). The model is required to predict an action among pre-defined
actions. If the action is clicking, the model will be required to provide the index of the clicked UI
element. Alternatively, the model needs to provide the scroll direction if the action is scrolling. In
addition, 5-shot CoT prompting is leveraged to improve the performance (Appendix A.4). In addition,
we report the results of the multimodal GPT-4V by taking the vision image and action history as the
input based on Yan et al. (2023).

5



Under review as a conference paper at ICLR 2024

(ii) Fine-tuned LLMs. We adopt Llama 2 (Touvron et al., 2023) as the baseline and fine-tune it with
LoRA. We feed the model with the user instruction and the screen descriptions in HTML syntax (the
same as adopted for in-context learning LLMs). The model is expected to predict the action in the
same output format as in-context learning LLMs. As fine-tuning an LLM is expensive, we randomly
sample 1% training data to help the LLM adapt to our tasks.

(iii) Specialized UI Agent. We adopted the Behavioural Cloning (BC) agent, which reported the
state-of-the-art performance in Rawles et al. (2023). BC is a Transformer-based architecture that
takes a task instruction, the current screen, and a stacked history of screen observations and actions as
input. The task instruction and OCR-detected texts are encoded by a pre-trained BERT. The icons are
represented by the embeddings for each of the bounding box points. The screen history is modeled
by the {x, y} positions of the touch and lift actions. All the embedded representations are fused to
predict the action by a decoder. There are two BC variants, BC-single and BC-history, depending on
whether the model takes as input the screen-action history.

4.3 EVALUATION MEASURES

We compute the screen-wise action matching score as the main evaluation measure, defined as the
number of correct actions divided by the episode length. A predicted action is considered correct
if the action type and dual-point gesture match the gold ones. As we described in Section 3.3, the
gesture actions can represent the click actions and scroll actions at arbitrary locations. Following
Rawles et al. (2023), a click action is considered correct if its touch point and lift point fall within a
14% screen distance from the gold gestures or occur within the same detected bounding box with the
gold gestures. A scroll action is considered correct if it has the same scroll axis as the gold gesture.

The screen-wise action matching score has been shown to correlate with the task complete score
estimated by human evaluations (Rawles et al., 2023) and is appropriate to measure the action
success rate for user instructions. Besides the overall matching score, we will also compare the click
region accuracy, scroll direction accuracy, action type accuracy, and typed text accuracy for a more
comprehensive reference (Section 5.1).

The evaluation criteria apply to the BC baselines and our Auto-UI. For the LLMs, they can only click
on detected UI elements, rather than clicking at arbitrary locations. Therefore, we consider if the
clicked UI element is matched for click actions instead of comparing dual-point gestures for LLMs.

4.4 IMPLEMENTATION DETAILS

We adopt the encoder-decoder architecture (Raffel et al., 2020) under small (60M), base (200M) and
large (700M) settings in our framework. We apply FLAN-Alpaca to initialize our model weights.1 The
vision features are obtained by the frozen BLIP-2 encoder (Li et al., 2023) (version: blip2_t5_instruct).
We fine-tune the models up to 10 epochs, with a learning rate of 1e-4. The maximum input sequence
length is 512. The batch size is 4. Our experiments are run on 8 NVIDIA Tesla V100 32G GPUs.
Training the large and base models takes 75 and 25 hours, respectively.

We develop two kinds of approaches to analyze their generalization abilities, namely Auto-UIseparate,
and Auto-UIunified. Specifically, Auto-UIseparate is trained and evaluated independently on each subset.
Auto-UIunified is a unified model trained on the training sets of each subset and evaluated on each test
set. As the GoogleApps subset is 10-100 times larger than the other subsets, using all the training data
to train a unified model would suffer from the data imbalance issue (Zhang et al., 2022). Therefore,
we only use 10% training data of GoogleApps. At the same time, the overall computation cost can
also be saved by 80%. We use Auto-UIunified as the default model for analysis unless otherwise stated.

4.5 MAIN RESULTS

Table 1 shows the main results. Auto-UIunified achieves the best overall performance compared with
all the baselines. When compared with separate (not unified) models, Auto-UIunified shows general
effectiveness across various task scenarios. The results show that a unified multimodal model out of
first principles thinking can serve as a strong autonomous agent. Compared with previous BC models,
Auto-UIunified has two major advantages. First, Auto-UIunified is a unified model that can be adapted

1https://github.com/declare-lab/flan-alpaca.

6

https://github.com/declare-lab/flan-alpaca


Under review as a conference paper at ICLR 2024

Table 1: Main results (%). Segment 1: specialized agent baselines; Segment 2: in-context learning
LLM baselines; Segment 3: fine-tuned Llama 2 baseline; Segment 4: our Auto-UI results. Prior
published best results are marked with an underline. “Unified” means a general model that can work
across subsets. “w/o Anno.” means no screen description is needed. The PaLM-CoT and BC results
are from Rawles et al. (2023). The GPT-4V result is from Yan et al. (2023). The other results are
based on our own implementations. The overall score is computed as the average accuracy on all the
subsets. The best average result is in bold face.

Model Unified w/o Anno. Overall General Install GoogleApps Single WebShopping

PaLM 2-CoT ✓ ✗ 39.6 - - - -
ChatGPT-CoT ✓ ✗ 7.72 5.93 4.38 10.47 9.39 8.42
GPT-4V ✓ ✗ 52.96 43.01 46.14 49.18 78.29 48.18

Fine-tuned Llama 2 ✗ ✗ 28.40 28.56 35.18 30.99 27.35 19.92

BC-single ✗ ✗ 68.7 - - - -
BC-history ✗ ✗ 73.1 63.7 77.5 75.7 80.3 68.5

Auto-UIseparate ✗ ✓ 74.07 65.94 77.62 76.45 81.39 69.72
Auto-UIunified ✓ ✓ 74.27 68.24 76.89 71.37 84.58 70.26

Table 2: Ablation study of Auto-UI design components. We adopt Auto-UIunified for analysis.
Model Overall General Install GoogleApps Single WebShopping

Auto-UI 74.27 68.24 76.89 71.37 84.58 70.26

w/o chain of actions 68.53 58.99 72.06 67.50 81.25 62.86
w/ previous action history 73.78 67.97 76.66 71.00 83.64 69.62
w/ future action plan 68.81 59.01 72.34 67.95 81.53 63.24

w/o coordinate normalization 70.23 63.79 73.28 66.63 82.11 65.33

to different scenarios without the need to train specific models for each task. Second, Auto-UIunified
does not need additional annotations (screen parsing) and is easy to use. We will provide a more
detailed analysis of the generality of computation efficiency in Section 5.2 and 5.4.

The ablation study in Table 2 verifies that both the chain of actions and coordinate normalization
contribute to the overall performance (+5.74% and 4.04%, respectively). We set the maximum
numbers of the previous actions and future actions to 8 and 4, respectively. The choice is made
according to our analysis on the General subset with Auto-UIseparate (Figure 3). The model under
those setups achieves the optimal performance and both the input and output sequence lengths would
not exceed the model limit.

0 2 4 6 8 10 12
50

55

60

65

70

(a) Previous Actions

A
cc

ur
ac

y

0 2 4 6 8 10 12
50

55

60

65

70

(b) Previous Actions w/ Screens
2 4 6 8 10

52

54

56

58

(c) Future Plans

Figure 3: Performance of Auto-UI with respect to varying numbers of chains of actions.

For the LLMs, using either prompting or fine-tuning techniques does not achieve competitive
performance compared with the other approaches. The most plausible reason is that they learn from
the parsed HTML elements of the screen so that they may suffer from information loss compared
with more informative vision features of the screens. Specifically, we find that ChatGPT is quite
accurate at predicting the action type but fails at lower-level executions (Appendix B.1).

7



Under review as a conference paper at ICLR 2024

It is reasonable that Auto-UIunified performs relatively inferior to BC-history on the two App-centered
subsets, Install and GoogleApps, because we only use 10% training data of GoogleApps considering
the data balance and computation overhead. We observe that the performance does not improve
when we use all the training data of GoogleApps, possibly due to the data imbalance issue (Zhang
et al., 2022). In contrast, our separate model Auto-UIseparate can achieve better performance than
BC-history, showing that our approach is better than BC-history under the same training setting. As
we aim to study a simple and unified approach that achieves generally strong performance, we leave
the treatment of the data imbalance issue in future work.

5 ANALYSIS

5.1 CATEGORY ACCURACY

To dive into the capability of Auto-UI, we calculate the click region accuracy, scroll direction accuracy,
action type accuracy, and typed text accuracy. Figure 4 presents the results. We see that Auto-UI
achieves over 90% action type accuracy on average. In contrast, the major challenges lie within the
click region and scroll direction predictions. Although the model is able to predict the right action
most of the time, it tends to click a wrong place or scroll in a wrong direction. The result reveals a
future direction of improving the model’s ability to understand the screen layouts, e.g., using more
advanced vision features.

General Install GoogleApps Single WebShopping
50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Click (67.4%) Scroll (82.0%) Action Type (90.1%) Typed Text (93.1%)

Figure 4: Category accuracy of our Auto-UI. The values in parentheses represent the average category
accuracy on the subsets.

5.2 GENERALIZATION ABILITY

General Install GoogleApps SingleWebShopping

General

Install

GoogleApps

Single

WebShopping

Unified

66 52 39 17 38

45 78 42 16 29

52 48 76 21 34

25 17 18 81 34

52 35 32 30 70

68 77 71 85 70
20

30

40

50

60

70

80

Figure 5: Dataset transfer results of Auto-UI.

As our approach is designed under first princi-
ples thinking and does not rely on pre-defined
internal APIs, it could be easily generalized to
new task domains. To verify the generality, we
evaluate the performance of Auto-UIseparate on
each subset in Figure 5. For example, we train
an Auto-UIseparate model on the training set of
General and then test its performance on the
tests of each subset. We see that our approach is
able to achieve a decent performance though the
domains vary. This result reveals that the model
could capture general knowledge for the UI con-
trol task; thus is applicable to different domains.
In addition, the unified model Auto-UIunified can
serve as a potential choice in real-world applica-
tions owing to more coverage of training data.

8



Under review as a conference paper at ICLR 2024

5.3 COMPREHENSIVE ANALYSIS

Here we present a comprehensive analysis of the choice of pre-trained features and model scale. The
results are summarized in Table 3.

Table 3: Results varying vision features and pre-trained language model weights.
Model Overall General Install GoogleApps Single WebShopping

Auto-UI on CLIP 71.84 66.28 74.40 69.71 81.60 67.23
Auto-UI on BLIP-2 74.27 68.24 76.89 71.37 84.58 70.26

Auto-UI on Vanilla-T5large 72.98 66.61 75.40 70.86 83.47 68.54
Auto-UI on FLAN-T5large 73.36 67.59 76.35 70.71 83.01 69.12
Auto-UI on FLAN-Alpacalarge 74.27 68.24 76.89 71.37 84.58 70.26

Auto-UI on FLAN-Alpacasmall 71.38 65.26 74.90 68.70 81.20 66.83
Auto-UI on FLAN-Alpacabase 72.84 66.97 75.93 70.29 82.56 68.46
Auto-UI on FLAN-Alpacalarge 74.27 68.24 76.89 71.37 84.58 70.26

• Pre-trained Features. There are two kinds of pre-trained features used in this work, the vision
features and language model weights. For vision features, we compare two popular types, CLIP
(Radford et al., 2021) and BLIP-2 (Li et al., 2023). We observe that BLIP-2 achieves relatively
better performance. Therefore, we use BLIP-2 by default in Auto-UI. For pre-trained language
model weights, we compare initializing the model with the vanilla T5 (Raffel et al., 2020), FLAN-T5
(Chung et al., 2022), and FLAN-Alpaca (Taori et al., 2023a) weights under the large size. We see that
FLAN-Alpaca achieves the best performance as it has been optimized with Stanford Alpaca synthetic
instruction tuning data.

• Model Scale. Compared with the performance gains from our technique components (chain of
actions and coordinate normalization) in Table 2, the benefit of scaling parameter size becomes
relatively marginal. As we observe that a larger model size does not lead to dramatic improvement in
performance, we do not scale the model scale but focus on the base (220M) and large (770M) models
in this work. In addition, our choice is also based on other considerations, including the constriction
of GPU memory and computation budget.

5.4 COMPUTATION COST

Table 4 compares the inference speed and GPU memory cost for Auto-UI and Llama 2. Auto-UI is
able to achieve nearly real-time inference (within less than one second for an action prediction) with
less than 10GB GPU memory. The inference speed is over 10 times faster than Llama 2. Our work
shows the strength of the medium-sized language model in building autonomous agents, which is
able to achieve competitive performance with fast inference.

Table 4: Computations cost of Auto-UI and Llama. The computation efficiency is computed by time
(s) divided by the number of inferences (n). Llama 2 is hosted with 8-bit quantization and float16
precision to improve the inference speed.

Model Feature Extraction (s/n) Model Inference (s/n) Peak GPU Memory (GB)

Auto-UIbase 0.06 0.19 (45x) 4.6 (10x)
Auto-UIlarge 0.06 0.59 (15x) 8.2 (6x)

Llama 2 - 8.5 49.7

6 CONCLUSION

This work presents an autonomous UI agent called Auto-UI that can interact in a multimodal UI
environment without environment parsing or application-dependent API access. In addition, we
propose a chain-of-action technique that leverages the previously executed actions and future action
plans to help the agent decide what action to execute. Experimental results show that Auto-UI
achieves superior performance to previous prompting-based and fine-tuning baselines. Besides the
strong performance and generality across domains, Auto-UI can infer an action as fast as within less
than one second.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Adept. Act-1: Transformer for actions. https://www.adept.ai/act, 2022.

Aristotle. Physics 184a10–21.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. https://vicuna.lmsys.org, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and program
synthesis. arXiv preprint arXiv:2307.12856, 2023.

James Hendler. Is there an intelligent agent in your future? Nature, 11, 1999.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, and Chenglin Wu.
Metagpt: Meta programming for multi-agent collaborative framework, 2023.

Terence Irwin. Aristotle’s first principles. Clarendon Press, 1989.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. ArXiv preprint, abs/2205.11916, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597,
2023.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Pattie Maes. Agents that reduce work and information overload. In Readings in human–computer
interaction, pp. 811–821. Elsevier, 1995.

Yohei Nakajima. Babyagi. https://github.com/yoheinakajima/babyagi, 2023.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. In Deep Learning for Code
Workshop, 2022.

OpenAI. Gpt-4 technical report, 2023.

Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. arXiv preprint
arXiv:2304.03442, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning, pp.
8748–8763. PMLR, 2021.

10



Under review as a conference paper at ICLR 2024

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research (JMLR), 21:1–67, 2020.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in the
wild: A large-scale dataset for android device control. arXiv preprint arXiv:2307.10088, 2023.

Reworkd. Agentgpt. https://github.com/reworkd/AgentGPT, 2023.

Toran Bruce Richards. Auto-gpt: An autonomous gpt-4 experiment. https://github.com/Significant-
Gravitas/Auto-GPT, 2023.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, et al. Multitask prompted training enables
zero-shot task generalization. In International Conference on Learning Representations, 2021.

John R Searle. Speech acts: An essay in the philosophy of language, volume 626. Cambridge
university press, 1969.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L Griffiths. Cognitive architectures
for language agents. arXiv preprint arXiv:2309.02427, 2023.

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. Meta-gui: Towards
multi-modal conversational agents on mobile gui. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing, pp. 6699–6712, 2022.

Srinivas Sunkara, Maria Wang, Lijuan Liu, Gilles Baechler, Yu-Chung Hsiao, Jindong Chen, Abhan-
shu Sharma, and James WW Stout. Towards better semantic understanding of mobile interfaces. In
Proceedings of the 29th International Conference on Computational Linguistics, pp. 5636–5650,
2022.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-following model.
Stanford Center for Research on Foundation Models. https://crfm. stanford. edu/2023/03/13/alpaca.
html, 2023a.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023b.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008, 2017.

Bryan Wang, Gang Li, and Yang Li. Enabling conversational interaction with mobile ui using large
language models. In Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems, pp. 1–17, 2023a.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023b.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
arXiv preprint arXiv:2308.11432, 2023c.

11



Under review as a conference paper at ICLR 2024

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. ArXiv preprint,
abs/2201.11903, 2022.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao
Liu, Yaqin Zhang, and Yunxin Liu. Empowering llm to use smartphone for intelligent task
automation. arXiv preprint arXiv:2308.15272, 2023.

Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory and practice. The knowledge
engineering review, 10(2):115–152, 1995.

Zhiyong Wu, Lingpeng Kong, Wei Bi, Xiang Li, and Ben Kao. Good for misconceived reasons:
An empirical revisiting on the need for visual context in multimodal machine translation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 6153–6166, Online, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
acl-long.480.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu
Zhong, Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal models for
zero-shot smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023.

Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin, Samuel White, Kyle Murray, Lisa Yu, Qi Shan,
Jeffrey Nichols, Jason Wu, Chris Fleizach, et al. Screen recognition: Creating accessibility
metadata for mobile applications from pixels. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, pp. 1–15, 2021.

Zhuosheng Zhang, Kehai Chen, Rui Wang, Masao Utiyama, Eiichiro Sumita, Zuchao Li, and Hai
Zhao. Neural machine translation with universal visual representation. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020.

Zhuosheng Zhang, Shuohang Wang, Yichong Xu, Yuwei Fang, Wenhao Yu, Yang Liu, Hai Zhao,
Chenguang Zhu, and Michael Zeng. Task compass: Scaling multi-task pre-training with task prefix.
In Findings of the Association for Computational Linguistics: EMNLP 2022, pp. 5671–5685, 2022.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. In The Eleventh International Conference on Learning Representations,
2023a.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal
chain-of-thought reasoning in language models. arXiv preprint arXiv:2302.00923, 2023b.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li,
Lewei Lu, Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for open-world
enviroments via large language models with text-based knowledge and memory. arXiv preprint
arXiv:2305.17144, 2023.

12



Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 DATA STATISTICS

We use the AITW benchmark dataset (Rawles et al., 2023). AITW is a large-scale benchmark
dataset for UI control, which contains natural language instructions, screenshots, and actions. There
are 715K episodes spanning 30K unique instructions, covering diverse multi-step tasks such as
application operation, web searching, and web shopping, on over 350 Apps and websites. This dataset
covers various device types and operation systems in varying screen resolutions to ensure generality.
There are five subsets in the benchmark dataset, namely, General, Install, GoogleApps, Single, and
WebShopping.

(i) General contains miscellaneous tasks that need interaction with third-party Apps and websites, as
well as question answering.

(ii) Install contains tasks related to installing and uninstalling Apps, App login, and App login support.

(iii) GoogleApps contains tasks about manipulating various Google applications such as Gmail,
Calendar, Photos, and Settings.

(iv) Single contains atomic tasks (e.g., “upvote the post”) whose preceding actions have been already
completed (e.g., opening Instagram, going to home feed, looking at a post).

(v) WebShopping contains tasks related to online shopping on E-commerce websites, e.g., searching
for an item, adding an item to the cart, and viewing the shopping cart.

Table 5 presents the data statistics of the AITW dataset. Each subset is split episode-wise into a
training, validation, and test set (80/10/10%).

Table 5: Dataset statistics.
Dataset Episodes Screens Instructions

General 9,476 85,413 545
Install 25,760 250,058 688
GoogleApps 625,542 4,903,601 306
Single 26,303 85,668 15,366
WebShopping 28,061 365,253 13,473

A.2 TASK EXAMPLES

We show the task examples from the AITW benchmark dataset (Rawles et al., 2023). Figures 6-10
show the examples in each subset, i.e., General, Install, GoogleApps, Single, and WebShopping. The
gold actions for each screen are depicted in the illustrations for reference.

13



Under review as a conference paper at ICLR 2024

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000
Set episode status as COMPLETE

Goal: Open a new Chrome private window

Figure 6: An example episode from General.

14



Under review as a conference paper at ICLR 2024

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

Input text "microsoft authenticator"
0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

0 100 200 300 400 500

0

200

400

600

800

1000

Set episode status as COMPLETE

Goal: uninstall "Microsoft Authenticator"

Figure 7: An example episode from Install.

15



Under review as a conference paper at ICLR 2024

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400

0

100

200

300

400

500

600

700 Set episode status as COMPLETE

Goal: turn off javascript in the chrome app

Figure 8: An example episode from GoogleApps.

16



Under review as a conference paper at ICLR 2024

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400
Input text "ebay.com"

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400
Set episode status as COMPLETE

Goal: go to google search bar and search & open ebay.com in chrome

Figure 9: An example episode from Single.

17



Under review as a conference paper at ICLR 2024

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400
Input text "lowe's"

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400
Input text "best rated coffee maker"

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700

0

200

400

600

800

1000

1200

1400
Set episode status as COMPLETE

Goal: Look up the best rated coffee maker on Lowe's.

Figure 10: An example episode from WebShopping.

18



Under review as a conference paper at ICLR 2024

A.3 COORDINATE NORMALIZATION

Table 6: Target output examples after the coordinate normalization.
Action Type Target Output

dual-point gesture
(click)

“action_type”: 4, “touch_point”: [0.8497, 0.5964], “lift_point”: [0.8497, 0.5964],
“typed_text”: “”

dual-point gesture
(scroll)

“action_type”: 4, “touch_point”: [0.2, 0.5], “lift_point”: [0.8, 0.5], “typed_text”:
“”

type “action_type”: 3, “touch_point”: [-1.0, -1.0], “lift_point”: [-1.0, -1.0],
“typed_text”: “what’s the news in chile?”

go_back “action_type”: 5, “touch_point”: [-1.0, -1.0], “lift_point”: [-1.0, -1.0],
“typed_text”: “”

go_home “action_type”: 6, “touch_point”: [-1.0, -1.0], “lift_point”: [-1.0, -1.0],
“typed_text”: “”

enter “action_type”: 7, “touch_point”: [-1.0, -1.0], “lift_point”: [-1.0, -1.0],
“typed_text”: “”

status_complete “action_type”: 10, “touch_point”: [-1.0, -1.0], “lift_point”: [-1.0, -1.0],
“typed_text”: “”

A.4 LLM PROMPT

We use the following prompt for PaLM 2-CoT and ChatGPT-CoT due to its optimal performance
reported in Rawles et al. (2023).

Given a mobile screen and a question, provide the action based on the screen information.

Available Actions:
{"action_type": "click", "idx": <element_idx>}
{"action_type": "type", "text": <text>}
{"action_type": "navigate_home"}
{"action_type": "navigate_back"}
{"action_type": "scroll", "direction": "up"}
{"action_type": "scroll", "direction": "down"}
{"action_type": "scroll", "direction": "left"}
{"action_type": "scroll", "direction": "right"}

Previous Actions:
{"step_idx": 0, "action_description": "press [HOME key]"}
{"step_idx": 2, "action_description": "click [Google Icon]"}
{"step_idx": 3, "action_description": "click [search for hotels]"}

Screen:
<img id=0 class="IconGoogle" alt="Google Icon"> </img>
<img id=1 class="IconX" alt="Close Icon"> </img>
<p id=2 class="text" alt="search for hotels"> search for hotels </p>
<p id=3 class="text" alt="in"> in </p>
<p id=4 class="text" alt="mexico city mexico"> mexico city mexico </p>
<img id=5 class="IconMagnifyingGlass" alt="Search Icon"> </img>
<p id=6 class="text" alt="Share"> Share </p>
<p id=7 class="text" alt="Select alI"> Select alI </p>
<p id=8 class="text" alt="Cut"> Cut </p>
<p id=9 class="text" alt="Copy"> Copy </p>
<p id=10 class="text" alt="hotel in mex"> hotel in mex </p>
<img id=11 class="IconMagnifyingGlass" alt="Search Icon"> </img>
<p id=12 class="text" alt="best hotel"> best hotel </p>
<p id=13 class="text" alt="mexico city"> mexico city </p>
<p id=14 class="text" alt="in"> in </p>
<img id=15 class="IconMagnifyingGlass" alt="Search Icon"> </img>
<p id=16 class="text" alt="K"> K </p>
<p id=17 class="text" alt="hotel ciudad"> hotel ciudad </p>
<p id=18 class="text" alt="de mexico"> de mexico </p>
<p id=19 class="text" alt="gran"> gran </p>
<img id=20 class="IconVBackward" alt="Left Icon"> </img>
<img id=21 class="IconNavBarCircle" alt="Home Icon"> </img>
<img id=22 class="IconNavBarRect" alt="Overview Icon"> </img>

Instruction: What time is it in Berlin?
Answer: Let’s think step by step. I see unrelated search results in the Google app,
I must clear the search bar, so the action is {"action_type": "click", "idx": 1}

Previous Actions:

19



Under review as a conference paper at ICLR 2024

{"step_idx": 0, "action_description": "click [DISMISS]"}

Screen:
<p id=0 class="text" alt="Update your"> Update your </p>
<p id=1 class="text" alt="Gmail app"> Gmail app </p>
<p id=2 class="text" alt="attach files from"> attach files from </p>
<p id=3 class="text" alt="To"> To </p>
<p id=4 class="text" alt="download the"> download the </p>
<p id=5 class="text" alt="Drive,"> Drive, </p>
<p id=6 class="text" alt="latest"> latest </p>
<p id=7 class="text" alt="version"> version </p>
<p id=8 class="text" alt="of"> of </p>
<p id=9 class="text" alt="Gmail"> Gmail </p>
<p id=10 class="text" alt="UPDATE"> UPDATE </p>
<p id=11 class="text" alt="DISMISS"> DISMISS </p>
<p id=12 class="text" alt="Got"> Got </p>
<p id=13 class="text" alt="it"> it </p>
<img id=14 class="IconVBackward" alt="Left Icon"> </img>

Instruction: see creations saved in the google photos
Answer: Let’s think step by step. I see a popup, I need to open Google Photos, so
the action is {"action_type": "click", "idx": 11}

Previous Actions:

Screen:
<p id=0 class="text" alt="M"> M </p>
<p id=1 class="text" alt="New in Gmail"> New in Gmail </p>
<p id=2 class="text" alt="All the features you"> All the features you </p>
<p id=3 class="text" alt="love with"> love with </p>
<p id=4 class="text" alt="a fresh"> a fresh </p>
<p id=5 class="text" alt="look"> look </p>
<p id=6 class="text" alt="new"> new </p>
<p id=7 class="text" alt="GOT IT"> GOT IT </p>

Instruction: open app "Google Play services"
Answer: Let’s think step by step. I see the GMail app, I need to open the app
drawer, so the action is {"action_type": "navigate_home"}

Previous Actions:

Screen:
<p id=0 class="text" alt="Tuesday, Aug"> Tuesday, Aug </p>
<p id=1 class="text" alt="9"> 9 </p>
<img id=2 class="IconChat" alt="Chat Icon"> </img>
<img id=3 class="IconGoogle" alt="Google Icon"> </img>

Instruction: open app "Messenger Lite" (install if not already installed)
Answer: Let’s think step by step. I see the home screen, I need to open the app
drawer, I should swipe up, so the action is {"action_type": "scroll", "direction":
"down"}

Previous Actions:
{"step_idx": 0, "action_description": "scroll down"}

Screen:
<img id=0 class="IconThreeDots" alt="More Icon"> </img>
<p id=1 class="text" alt="Search your phone and more"> Search your phone and more </p>
<p id=2 class="text" alt="M"> M </p>
<p id=3 class="text" alt="O"> O </p>
<img id=4 class="IconPlay" alt="Play Icon"> </img>
<p id=5 class="text" alt="Clock"> Clock </p>
<p id=6 class="text" alt="YouTube"> YouTube </p>
<p id=7 class="text" alt="Photos"> Photos </p>
<p id=8 class="text" alt="Gmail"> Gmail </p>
<p id=9 class="text" alt="All apps"> All apps </p>
<p id=10 class="text" alt="g"> g </p>
<p id=11 class="text" alt="O"> O </p>
<img id=12 class="IconTakePhoto" alt="Camera Icon"> </img>
<p id=13 class="text" alt="10"> 10 </p>
<p id=14 class="text" alt="Calendar"> Calendar </p>
<p id=15 class="text" alt="Camera"> Camera </p>
<p id=16 class="text" alt="Chrome"> Chrome </p>
<p id=17 class="text" alt="Clock"> Clock </p>
<p id=18 class="text" alt="0"> 0 </p>
<p id=19 class="text" alt="M"> M </p>
<p id=20 class="text" alt="B"> B </p>
<img id=21 class="IconPerson" alt="Person Icon"> </img>
<p id=22 class="text" alt="Gmail"> Gmail </p>
<p id=23 class="text" alt="Drive"> Drive </p>
<p id=24 class="text" alt="Files"> Files </p>

20



Under review as a conference paper at ICLR 2024

<p id=25 class="text" alt="Contacts"> Contacts </p>
<p id=26 class="text" alt="G OO"> G OO </p>
<img id=27 class="IconGoogle" alt="Google Icon"> </img>
<img id=28 class="IconLocation" alt="Location Icon"> </img>
<img id=29 class="IconCall" alt="Phone Icon"> </img>
<img id=30 class="IconChat" alt="Chat Icon"> </img>
<p id=31 class="text" alt="Google"> Google </p>
<p id=32 class="text" alt="Maps"> Maps </p>

Instruction: Search for hotels in Chicago.
Answer: Let’s think step by step. I see the app drawer, I need to search, so the
action is {"action_type": "click", "idx": 27}

Previous Actions:
<HISTORY>
Screen:
<SCREEN_REPRESENTATION>
Instruction: <GROUNDING_GOAL>
Answer: Let’s think step by step. I see

A.5 USING SCREEN DESCRIPTIONS

We are interested in whether Auto-UI can be further improved when screen annotations are available.
Therefore, we incorporate screen descriptions containing icon and text information, organized in
HTML syntax, into our language input Xlanguage. Detailed examples of screen descriptions can be
found in the “Screen” section in A.4.

Table 7: Results of Auto-UI when using annotated screen descriptions.
Model Overall General Install GoogleApps Single WebShopping

Auto-UIbase 72.84 66.97 75.93 70.29 82.56 68.46
w/ Screen Descriptions 75.54 70.30 78.05 73.04 85.31 71.00

In Table 7, we see that Auto-UI can perform better when the annotated screen descriptions are
available. The results show that there is still room for performance gains for Auto-UI. However, as
the annotations are not always available in real-world applications, we do not include them by default
in our framework.

B FURTHER ANALYSIS

B.1 CATEGORY COMPARISON WITH THE ICL BASELINE

To understand how the ICL baseline performs on our task and assess the advantage of Auto-UI, we
conduct a category comparison with ChatGPT.

Table 8: Category comparison with the ICL baseline on the General test.
Model Overall Action Type Click Scroll

ChatGPT 5.93 41.72 8.50 4.00
Auto-UI 68.24 87.03 58.34 82.74

We see that the ICL method (ChatGPT) is quite accurate at predicting the action type (41.72%) but
fails at lower-level executions, e.g., clicking positions (8.5%) and scrolling directions (4.0%). The
results show that using HTML-based layout information is not enough to accurately execute actions.
In contrast, Auto-UI has the advantage of predicting both action types and performing low-level
executions by leveraging multimodal perception and the chain-of-action technique.

21


	Introduction
	Related Work
	Language Agents
	UI Control with Natural Language

	Methodology
	Problem Formalization
	Framework Overview
	Coordinate Normalization

	Experiments
	Dataset
	Baselines
	Evaluation Measures
	Implementation Details
	Main Results

	Analysis
	Category accuracy
	Generalization Ability
	Comprehensive Analysis
	Computation Cost

	Conclusion
	Appendix
	Data Statistics
	Task Examples
	Coordinate Normalization
	LLM Prompt
	Using Screen Descriptions

	Further Analysis
	Category comparison with the ICL baseline


