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Abstract

Regulatory frameworks, such as the EU AI Act, encourage openness of general-
purpose AI models by offering legal exemptions for “open-source” models. Despite
this legislative attention on openness, the definition of open-source foundation
models remains ambiguous. This paper models strategic interactions among the
creator of a general-purpose model (the generalist) and the entity that fine-tunes the
general-purpose model to a specialized domain or task (the specialist), in response
to regulatory requirements on model openness. We present a stylized model of
the regulator’s choice of an open-source definition to evaluate which AI openness
standards will establish appropriate economic incentives for developers. Our results
characterize market equilibria — specifically, upstream model release decisions and
downstream fine-tuning efforts — under various openness regulations and present
a range of effective regulatory penalties and open-source thresholds. Overall, we
find the model’s baseline performance determines when increasing the regulatory
penalty vs. the open-source threshold will significantly alter the generalist’s release
strategy. Our model provides a theoretical foundation for AI governance decisions
around openness and enables evaluation and refinement of practical open-source
policies.

1 Introduction

Foundation models with publicly available weights, such as Llama and Deepseek [42, 13], have the
potential to distribute economic benefits and broaden access to AI development. However, developers
of these general-purpose models have faced criticism for marketing their products as “open-source”
while departing from established open-source principles and concealing essential design decisions
[29]. Traditionally, open-source software (OSS) describes publicly available source code with few
restrictions on use, modification, and redistribution [24]. Foundation models complicate the standard
open-source definition, as they exhibit different degrees of openness, ranging from models with
hosted API access to open-weight models to fully open models with public weights, code, data, and
no use restrictions [38, 20]. Open-source definitions that transfer principles of OSS to foundation
models prohibit any use restrictions or monetization of the model [41] and may require disclosure
of all components, including training data [24]. Industry embraces a more lenient definition, where
open-weights models released under a non-proprietary license qualify as open-source, even when
commercial use restrictions exist (e.g., Llama and Mistral Large [3, 33]).

Regulatory frameworks for foundation models have proposed various definitions of “open-source”
that reflect this uncertainty. While the EU AI Act exempts open-source models from disclosure
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and documentation requirements, it disqualifies any monetized open-source AI products from using
exemptions for open-source models [41]. Singapore’s generative AI governance framework stipulates
that open-source models should provide all source code, documentation, and data required to retrain
the model from scratch [17]. Other regulations provide less clarity — the US AI Foundation Model
Transparency Act mentions “open source foundation models” as possibly being exempt from data
disclosure requirements, but does not define open source [1].

This work offers a game-theoretic model of strategic interactions under various AI openness reg-
ulations. A general-purpose technology producer (the generalist) decides an openness level for a
multi-purpose AI technology. One or more domain specialist(s) may then adapt or fine-tune the
base model depending on the openness level set by the generalist. Finally, a regulatory threshold
moderates the costs associated with different openness levels. We solve the game by providing a
closed-form solution for both players’ strategies in Section 2. Sections 3 and 4 analyze the sensitivity
of the generalist’s openness decision, bargaining outcomes, and the resulting fine-tuning investments
to changes in the threshold and penalty. Finally, to illustrate the practical application of our model, we
show that the model’s predicted equilibrium corresponds to real-world release strategies of developers
and present takeaways for open-source AI regulation in Section 5.

1.1 Related Work

Open-source contributions are often framed as altruistic [4, 6] because conventional valuation methods
cannot appraise products with a price of zero and unknown quantities due to unrestricted copying and
redistribution rights [22]. However, when developers’ decisions to open source are viewed as strategic
responses to competitors or internal production constraints, these openness decisions transform into
a competitive choice to reduce costs or penetrate price-sensitive markets [39]. Dynamic models
of competition and adoption in markets with proprietary software and OSS substitutes [5, 10, 39]
link open-source decisions to product performance, capturing profit-driven strategy rather than
appealing to altruism. For foundation models in particular, recent work examines how openness
affects strategic behavior throughout the AI value chain. Building on the theoretical framework of
fine-tuning games, Xu et al. [45] show that intermediate levels of openness can motivate early-market
specialists to strategically curtail their fine-tuning efforts to outcompete subsequent specialists, and
this reduced model performance leaves generalists, specialists, and end consumers worse off relative
to zero openness. Wu et al. [44] similarly assess how open-source engagement with a closed-source
counterpart impacts innovation for pretrained and adapted foundation models [44].

This paper makes two contributions to modeling strategic openness decisions. First, while existing
models evaluate openness as a binary between fully closed or fully open [39, 44], we analyze
how generalists strategically adjust their openness levels along a spectrum in order to capture the
competitive dynamics of offering partially open models that do not clear the open-source threshold.
Second, we consider how administratively imposed openness guidelines alter the generalist’s release
strategy. Xu et al.’s [45] setup assumes there is a single, exogenous openness level imposed on the
generalist, with the analysis centering on how this fixed level affects specialist strategies. Unlike
approaches which evaluate the effects of openness on technology adoption and improvement (or
fine-tuning) decisions at the specialist level, our setup simultaneously models how generalists adapt
their openness and compliance decisions in response to regulatory constraints.

2 Model

This section describes our model of strategic interactions between actors who contribute to the
development of a general-purpose AI model. We begin by introducing the concept of openness we
aim to measure, then present the model formally.

2.1 Levels of Openness

Our concept of openness, denoted ω ∈ [0, 1], projects the observed behaviors of developers onto a
continuum to reason about how these behaviors affect developer revenue and strategic reactions. We
offer a numeric score for the sake of analysis, under the assumption that the set of choices a firm
makes can be mapped into a single range that summarizes the cumulative amount of effort invested in
opening a model. We rely on prior work to define how different openness practices correspond to
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points on the continuum [38, 9] and treat this one-dimensional measure of openness as a modeling
abstraction.

Fully Hosted API access API access Weights Weights, code, data available Weights, code, data available
closed access to model to fine-tuning available with use restrictions without use restrictions

0←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Model Access −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 1

Figure 1: Example of an openness continuum defining ω ∈ [0, 1] based on model access [38].

Several works suggest approaches for converting multidimensional openness assessments of models
into a spectrum, using feedback mechanisms, risk descriptions, levels of system access, and other
indicators to quantify openness [9, 29, 38]. Our work builds on these recommendations by character-
izing how the evaluation of openness along such a spectrum affects the incentives of general-purpose
model developers.

2.2 Game Setup

The interactions between AI developers are formalized as a game between two players, which we
refer to as the generalist (G) and domain specialist (D). Before the game begins, we assume that
the generalist has invested in bringing the general-purpose model to an initial performance level
α0 ∈ R+. Performance represents a coarse measure of the model’s accuracy on target tasks, along
with generation speed and efficiency. We further assume that a regulator publishes an open-source
threshold θ ∈ [0, 1], which is a value on some continuum of openness. The regulator’s choice of
θ defines the threshold at which G receives legal exemptions and, by extension, dictates G’s costs
of development for an open vs. closed model. After the regulation is announced, G and D make
investment decisions sequentially, as proposed in Laufer et al. [26]. The generalist must decide
an openness level ω ∈ [0, 1] to offer the model at given the θ threshold. An openness level of
ω = 0 corresponds to G choosing not to release the model to market, whereas an openness level of
ω = 1 indicates a fully open model with all components publicly accessible and zero use restrictions.
The specialist then brings the model to an improved performance level α1 in the fine-tuning stage,
cooperating with the generalist to increase their joint revenue. The full game with G’s openness
decision has the following stages:

1. G and D bargain over δ(ω, α1) ∈ [0, 1], a coefficient that controls the division of revenue
between the two players.

2. G chooses an openness level ω ∈ [0, 1] for the base model with performance α0, where the
model is considered open if ω ≥ θ and closed otherwise. An openness level closer to 0
represents a more closed model, whereas 1 represents a fully open model. When G abstains
from releasing the model (ω = 0), the specialist receives zero utility.

3. Assuming G does not abstain, D chooses to adopt G’s model and invests in improving it to
performance α1 ≥ α0.

We assume that players will choose to abstain when their utilities are negative, although in practice,
developers may tolerate short-term losses. The final revenue shared by G and D, given by a
revenue function r(α1) : R+ → R+, depends on the model’s final performance α1. For simplicity
and unless otherwise stated, we assume r is the identity function in our analysis. In standard
cooperative bargaining games [25, 37], δ(ω, α1) represents the result of a linear revenue-sharing
contract between players. G receives δ(ω, α1) · r(α1) as its share of the final revenue, while D
receives (1 − δ(ω, α1)) · r(α1). However, this model of surplus division in bilateral bargains
[16, 35] is challenged when an openness decision enters G’s strategy. The bargaining parameter
δ(ω, α1) represents the result of licensing and subscription arrangements when dividing revenue from
foundation model development. Higher openness forces G to forfeit a share of the bargained revenue
δ(ω, α1) · r(α1) because G can no longer charge directly for model usage or other support services
and must instead replace direct revenue from model performance with indirect benefits, such as a
reputational premium for offering an open model. δ(ω, α1) is simplified to δ for the remainder of the
paper, but we treat it as endogenous to players’ strategic decisions due to the bargaining stage.
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If the model is open, G’s payoff is fixed to ϵα1, where ϵ ∈ [0, 1] is a constant that captures reputational
gains of G. The ϵ constant accounts for “commons-based” production, where participants organize
efforts and capture value without exclusive rights via property or contracts, relying instead on indirect
rewards like reputation and cost sharing [7]. This contrasts with the δ parameter, which reflects direct
market incentives through a revenue-sharing agreement between the generalist and specialist.

2.3 Utility & Cost Functions

Utility (U ) Cost (ϕ)

UG := (ϵω + δ(1− ω)) · r(α1)− ϕG(ω|θ) ϕG := α0ω + cωα1(1− ω) + p1[ω < θ]
UD := (1− δ(1− ω)) · r(α1)− ϕD(α1|ω, α0) ϕD := (α1 − α0)

2ω−1 + cωα1ω

Table 1: Utility and cost functions for the generalist and specialist. The constant parameters ϵ and cω
define costs and rewards exogenous to the game, and the value of α0 is fixed because our game is only
concerned with G’s decision to open an existing general-purpose model. Openness regulation takes
the form of parameters θ (representing stringency of the open-source definition) and p (representing
the penalty for failing to meet the open-source definition).

Table 1 describes the cost and utility functions of both players. Each player’s utility is calculated
as their revenue share minus the costs of model improvement and hosting. G’s revenue structure
changes according to the openness level at which the model is offered, with reputational gains (ϵ)
influencing revenue more as openness increases and the bargaining outcome (δ) influencing revenue
more as openness decreases.

ϕG(ω|θ, α0) = α0ω︸︷︷︸
1. production

+ cωα1(1− ω)︸ ︷︷ ︸
2. operation

+ p1[ω < θ]︸ ︷︷ ︸
3. regulatory

(1)

Generalist Cost Function. G’s cost function (Equation 1) can be categorized into production costs,
operation costs, and regulatory costs. Production costs refer to a fixed cost the generalist faces to
offer the model with performance α0 an openness level ω. In our case, we use α0ω to cover the
production costs of documenting and releasing the model, which scale with higher levels of openness
and performance. Operation costs capture the variable expenses required to run and host the model,
including costs of inference and system maintenance. For a more closed model, G hosts specialized
servers to process user requests and charges the user via pay-per-use API calls. The generalist’s
operation costs decrease with ω because G can offload hosting and inference costs to users and benefit
from community-built optimizations at higher levels of openness. For simplicity, we normalize the
coefficients for production and regulatory compliance costs to one, using cω to compare between
operation costs and revenue. The constant cω quantifies the ratio of average operation costs to revenue
per unit of performance for D. G pays an additional regulatory cost, p, to comply with regulatory
requirements when the model is closed (ω < θ) and does not quality for open-source exemptions.

ϕD(α1|ω, α0) = (α1 − α0)
2ω−1︸ ︷︷ ︸

1. production

+ cωα1ω︸ ︷︷ ︸
2. operation

(2)

Specialist Cost Function. The total cost for the domain specialist ϕD (Equation 2) is composed
of production costs and operation costs. As ω approaches zero, D’s production costs go to infinity,
indicating an infeasible strategy where it becomes prohibitive to fine-tune or improve a model with
heavily restricted access. However, cheaper production costs for models with higher levels of openness
are partially offset by the operation costs D must pay for self-hosting the model and shouldering
inference costs directly. We prove results for a particular set of quadratic cost functions and monotonic
revenue functions, although these represent only a specific subset of possible functional forms for the
broader class of utility functions. Specifically, we assume D faces quadratic costs when developing
the model from performance α0 to α1 since incremental improvements are more expensive at higher
performance, and discount development costs for D by a factor of ω−1 since there are fewer charges
associated with adopting and improving a more open model (Table 1).
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Specialist & Generalist Cost Sharing. In the basic version of the fine-tuning game presented by
prior work [26], model performance is the only feature in G’s strategy space. The cost functions for
the generalist and specialist are condensed into single terms, as ϕG = α0

2 and ϕD = (α1 − α0)
2.

This simplification is effective when investments in model performance represent a joint production
process with shared revenue, as development and operation costs rise with performance for the
generalist and specialist. However, our game setup explicitly models both performance and openness
as decision variables. Unlike the original fine-tuning game [26], where costs scale equivalently for
all features (the single feature being performance), openness imposes opposite effects on cost for
the two players. For any given α1, higher openness decreases production costs for the specialist but
increases operation costs. These changes in cost are shifted to the generalist, and higher openness
increases production costs for the model but decreases operation costs for the generalist. To capture
how openness induces cost shifts between players, our game explicitly decomposes cost functions
into separate terms for development and operation. Appendix C has more detailed discussion of the
utility functions and cost sharing.

3 Analysis of Equilibrium Strategies

This section characterizes the subgame-perfect equilibria strategies as a function of the game parame-
ters ϵ, cω, p, θ. We provide closed-form expressions for the best response of each player under a fixed
revenue-sharing parameter δ. Proofs of all propositions are provided in Appendix B.1.

3.1 Subgame Perfect Equilibria

Proposition 1 (Characterization D’s Equilibrium Strategy). In a game with quadratic costs and
a monotonic revenue function r(α1), if ω ≤ 1−δ

cω−δ , then D’s best-response strategy is given by

α∗1 = α0 +
ω(1−δ(1−ω)−cωω)

2 . If ω > 1−δ
cω−δ , D will choose to abstain.

D must choose a performance level α∗1 ≥ α0 for their adapted, or fine-tuned, model in the game.
The condition for D’s participation in Proposition 1, ω ≤ 1−δ

cω−δ , is only satisfied when the costs of
operating the model at baseline performance do not exceed D’s share of r(α1). Using the specialist’s
best response, G’s strategy can then be solved in terms of the θ threshold.

Proposition 2 (Characterization of G’s Equilibrium Strategy). In a game with quadratic costs and
a monotonic revenue function r(α1), G’s preferred openness ω∗ will be one of the values in the
following set:

ω∗ ∈

{
1

3(ϵ− δ + cω)(δ + cω)

(
(ϵ− δ + cω)(1− δ) + (cω − δ)(δ + cω)±[(

(ϵ− δ + cω)(1− δ) + (cω − δ)(δ + cω)
)2

+

6(ϵ− δ + cω)(δ + cω)
(
(ϵ− δ − 1 + cω)α0 +

(ϵ− cω)(1− δ)

2

)] 1
2
)
, 0, θ, 1

}
G will choose the value in the set which maximizes UG. G will choose to abstain if and only if
UG < 0 for all candidates in the set.

3.2 Generalist Strategies at Equilibrium

We begin by characterizing G’s openness strategies at equilibrium for a two-player game under
different bargaining agreements without regulation (p = 0 and θ has no effect). The Nash bargaining
solution calculates joint utility as the product of UD and UG, the vertical monopoly (VM) solution as
the sum, and the egalitarian solution as the minimum of UD and UG.

Bargaining Effects. The δ∗ value which maximizes a specific measure of joint utility is identified
via grid search, as an analytical solution for the equilibrium bargaining agreement is intractable with
multiple game parameters and ω∗ selected from a set. Figure 2 visualizes G and D’s equilibrium
strategies over initial model performance (α0) and reputational benefits (ϵ) when no regulation is
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imposed. G chooses a fully open model when the bargained revenue-sharing agreement is δ∗ = 0,
but chooses a fully closed model when α0 is high and δ∗ is moderate. Counterintuitively, G chooses
intermediate openness when δ∗ is maximized and the bargained revenue-sharing outcome for a closed
model strongly favors G. This intermediate openness level empowers D to adopt and improve the
model at low α0, which generates greater total revenue than would be possible under a fully closed
approach. Full plots of the equilibrium outcomes with variations to α0, ϵ, and cω are in Appendix G.
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Figure 2: G’s equilibrium strategies for ω∗ (top row) and δ∗ (bottom row) at cω = 0.1 with no
regulation (p = 0). Low initial performance (α0) and high reputational benefits (ϵ) lead to partial
openness. Since G unilaterally controls the model’s release strategy, G can use the openness decision
to remove or weaken the bargain, explaining why a fully open model coincides with bargains that
allocate no closed revenue to G.

In general, G prefers a fully closed strategy as the initial model performance α0 increases, even for
higher ϵ values, because the performance is high enough to generate considerable subscription and
licensing revenue via r(α1) without specialist improvements.

Openness-Performance Tradeoff. G’s no-regulation equilibrium strategies corroborate empirical
patterns of model release, where models with lower performance are relatively more open access
and closed models outpace open-weight models by several months in terms of performance (Figure
3). The openness level chosen by G at equilibrium from our main theoretical result quantifies the
observed tradeoff between performance and openness in release strategies in terms of ϵ and α0, as
well as the δ value bargained by players. When α0 and ϵ are both low, G chooses intermediate
openness levels to reduce the specialist’s costs because the model is not performant enough to drive
adoption at full cost under a closed approach. This outcome corresponds to proprietary decisions to
release underperforming models with partial open access, such as Google releasing lower-capability
open variants alongside high-performing closed models (Figure 3).

4 Analysis of Regulation Effects

To identify effective open-source interventions, we characterize the range of regulatory effects across
initial model performances and identifies specific penalty and threshold configurations required
to achieve compliance. The space of key constants ϵ, δ, cω was systematically probed (details in
Appendix G) and in what follows, we establish the existence of three qualitatively different regulatory
outcomes.
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Figure 3: Overview of empirical model release strategies. (Left) Higher performance of a model
corresponds to a higher percentage of closed components, determined by Eiras et al.’s assessment of
model components [14]). (Right) For each generation, closed-weight models have higher performance
than open-weight ones, despite open-weight models showing comparable performance to closed-
weight models from previous time periods. The performance gap between open- vs. closed-weight
models (blue region) persists even as absolute performance improves across generations. Appendix F
reports the figure data.

4.1 Regulation Effects on Openness Decisions

The boundary where G’s openness decision transitions from a fully closed model to a partially open
one represents the indifference curve where G’s utility for maintaining a fully closed model (ω ≈ 0)
is equal to the utility for opening the model. For any (p, θ) combination below this curve, G will
choose an openness level that meets the threshold. We provide a closed-form expression for this
curve that identifies which combinations of (p, θ) will drive changes to G’s openness strategy. Proofs
are in Appendix E.
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Figure 4: Indifference curves for the generalist over (p, θ) choices for game parameters cω =
0.01, ϵ = 0.15 and α0 ∈ {0.5, 1, 5}. In the region of non-compliance above the indifference curve,
G keeps the model at an openness level ω∗ → 0. In the area of compliance below the indifference
curve, G chooses ω∗ = θ.

Proposition 3. The indifference curve separating fully closed from partially open strategies in
the space of regulation profiles (p, θ) is defined by p = θ(δ + α0

α1
− ϵ − cω)α1. For any p <

θ(δ + α0

α1
− ϵ− cω)α1, G fully closes the model.

Regulation can lead to deadweight loss. The area above the indifference curve illustrates an
outcome where openness regulation lowers both players’ utilities without yielding any openness
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improvements (Figure 4). There are no corresponding improvements to α1 in this region because D
cannot contribute via fine-tuning efforts. Above the indifference curve, any increases to the penalty
directly deduct from G’s utility because the model stays fully closed. D’s revenue share is also
reduced because the bargain shifts in G’s favor as the penalty is increased. Extreme combinations
of (p, θ) do not just produce deadweight loss but cause G to withdraw from the market entirely by
abstaining, which represents the worst-case outcome because no positive utility can be generated.

4.2 Regulation Effects With Compliance
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Figure 5: Player utilities under various (p, θ) regulations when α0 = 0.1, cω = 0.05, and ϵ = 0.1
with Nash bargaining. (UG, UD)-improving regulations are enclosed in the gray region, with the
lower left corner of the gray region corresponding to the no-regulation equilibrium where p = 0 and
θ has no effect. For overly stringent θ thresholds, both players’ utilities decrease.

Definition 1 (Pareto-Optimal Policies). Given a vector of d utility functions u ∈ Rd, the Pareto-
optimal policy is the regulatory profile (θ, p) that maximizes the following optimization problem:
argmaxp,θ w⊤u s.t. ∥w∥1 = 1, wi > 0,∀i ∈ [d]. The Pareto-optimal policies optimize some
weighting over the objectives, where the weight vector w sits on the standard d-simplex.

Regulation can lead to Pareto improvement over (ω, α1, UG, UD). When initial performance (α0)
is low, there is a region of regulation where G complies with the open-source threshold but would
fully close otherwise. This intermediate openness level is mutually beneficial because D makes
significant model improvements that increase the total amount of surplus allocated by the bargain.
Figure 6 presents one set of parameters where a region of regulation achieves Pareto improvement
over (ω, α1, UG, UD), guiding players toward a mutually beneficial equilibrium that is unachievable
without imposing a penalty.

The mutually beneficial openness level is not chosen in the absence of regulation because bargaining
alone does not provide a credible commitment mechanism. There is no assurance that G will keep the
model open rather than fully closing it to maximize its own δ-share if D concedes a greater revenue
share. Cheap shot strategies that are individually beneficial to G are constrained by regulation; the
penalty ensures G will at least open the model at the threshold under certain conditions, and D
can safely offer a more favorable bargain to secure G’s cooperation. In Figure 7, the no-regulation
bargaining outcome is roughly balanced (δ∗ ≈ 0.5), but introducing a penalty p > 0 changes the
bargaining outcome so that δ∗ ≈ 1 as the threshold increases below the indifference curve.

Regulation can encourage specialist innovation. Regulation that falls below the indifference
curve redistributes utility from G to D when α0 is high enough for G to sacrifice licensing and
subscription revenue by choosing higher levels of openness. Figure 7 illustrates how increasing the
open-source threshold below the indifference curve transfers utility from G to D without deterring
G’s participation. Higher openness levels in this region raise α1 by reducing production costs for D,
but G loses closed revenue. For instance, Meta loses licensing revenue by developing and releasing
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open-weight models, but cheap access to advanced models allows specialists to develop derivatives
like Vicuna and Alpaca [11, 40] which can surpass the original Llama models in performance.
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5 Discussion

This work introduces an openness decision into the generalist’s strategy space, modeling how this
parameter affects strategic equilibria in foundation model development. While existing models of
openness regulation assume compliance is mandatory and all model developers make homogeneous
openness decisions [45], our setup allows generalists to select a continuous openness level based on
regulation intensity and model performance. The model we present therefore explains the strategic
positioning of AI models along an openness-performance frontier and anticipates how adjustments to
open-source thresholds will impact fine-tuning and bargaining dynamics.

5.1 Implications for Open-Source AI Regulation

Regulatory approaches to openness should shift with average model performance to empower
innovation. Low initial performance creates opportunities for Pareto improvements through openness
regulation, while high performance at most permits the strategic redistribution of utility between
generalists and specialists. As model capabilities evolve, regulatory strategies may need to shift to
redistribution approaches that target the specialist’s willingness to contribute to model performance.
This targeted approach can address competitive imbalances between generalists and specialists, even
in environments where a few generalists dominate the offerings of high-performance foundation
models. Given that models may excel in certain domains while underperforming in others, regulators
must also determine whether to use composite performance metrics, domain-specific benchmarks, or
capability-weighted averages to define model performance, with each approach reflecting different
model development priorities.

Effective open-source thresholds require calibrated penalties. Regulators should consider enforce-
ment costs in regions where higher thresholds cannot influence the generalist’s openness decision. For
regions above the indifference curve, higher thresholds cause wasted enforcement costs on evaluation
and monitoring of additional closed model components, without any corresponding improvements
to model openness. Resources allocated to open-source regulation should be concentrated near the
indifference curve, and enforcement approaches should scale the regulatory penalty based on specific
model characteristics like baseline performance or operation costs to ensure that all generalists face
real compliance incentives. This prevents scenarios where developers of high-performing models
absorb regulatory penalties as a business expense rather than modifying their transparency practices.

5.2 Limitations and Future Work

Our model abstracts from several behavioral and competitive dynamics that can affect the theoretical
results presented in this paper. For example, regulatory thresholds can create psychological anchoring
that influences behavior independent of the penalty, as firms target the threshold even if the penalty
is minimal. Firms may also feel competitive pressure to meet the threshold if they believe that
competitors will meet it, creating norms that transcend direct cost calculation of the penalty. Modeling
multi-firm competition with a closed-source incumbent can also reveal when established firms pivot
to open-source strategies and how timing of market entry affects whether entrants adopt open-source
approaches.

The bargaining process may deviate similarly from axiomatic solutions. Our analysis mainly examines
Nash bargaining, which uniquely satisfies independence of utility origins and units, Pareto efficiency,
symmetry, and independence of irrelevant alternatives [31]. The two alternative bargaining solutions
we consider (VM and Egalitarian) are also Paretian, symmetric, and independent of utility origins.
However, generalists and specialists may arrive at non-standard bargaining agreements in practice
which violate these properties, especially when utilities are expressed in currency and players have
bounded rationality [15].

While the main analysis assumes that higher model openness and performance are generally beneficial,
a regulator also considers safety risks associated with higher performance or market-wide loss
scenarios, such as intermediate levels of openness where consumers may be worse off [45]. This
complexity suggests that defining openness as a multidimensional property may be valuable to capture
factors beyond simple model access, such as documentation, licensing, and explainability of model
outputs [28].
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A Additional Related Work

Models of AI Regulation. Numeric thresholds dictate in practice which “covered” products are
subject to regulatory standards. The number of floating point operations (FLOPs), the compute cost
based on the average market price of the cloud compute, net annual sales, and the number of active
monthly users appear as representative thresholds in AI-related legal measures [2]. Although the
accuracies of these thresholds are disputed [21], a binary qualification system for rewards may yield
more aggregate effort than a continuous reward structure or rewards based on relative performance, as
incentives to improve performance intensify with proximity to the threshold [19]. Existing works on
the effect of AI requirements on market dynamics model how firms strategically respond to targeted
safety regulations [27] and how reputational pressures to satisfy safety constraints facilitate entry of
new developers [32].

Openness & Market Strategy. Technology providers can gain a competitive advantage by dif-
ferentiating through price and performance using one of two strategies: versioning and portfolio
broadening [18]. Product versioning refers to the release of multiple iterations of a product within the
same market segment, typically by developing closed models that compete primarily on performance
quality. In contrast, portfolio broadening involves expanding product scope to cover several market
segments, such as introducing cheaper, open variants of models. Developers of open models can
acquire greater market share by monetizing paid premium models and services at a later stage (e.g.,
tiered pricing and commercial licensing) or by inflating demand for complementary goods, using
approaches analogous to product seeding or loss leading [34].

Foundation Model Economics. Paid, pretrained base models with distributed fine-tuning efforts
create a tiered market structure that constrains downstream improvements based on access terms set
by the generalist. For example, fully contractible token allocations give the specialist full freedom
over how to allocate a budget to fine-tuning, whereas per-task token pricing limits the specialist’s fine-
tuning options [8]. Theoretical models of foundation model development assess how this production
structure affects regulatory efforts [27, 23] and market competition [36, 30], while complementary
works focused on provider-side strategy derive pricing recommendations for API endpoints and
training data [8, 43, 46] that align the incentives of model developers with contributors.

B Derivation of Subgame Perfect Equilibria

B.1 Solution for Fixed Initial Performance

The game is solved by backward induction using the functions from Table 1.

Proof of Proposition 1. First, UD is strictly concave.

∂2UD

∂α1
2

=
∂2

∂α1
2

(
(1− δ(1− ω)) r(α1)︸ ︷︷ ︸

r(α1)=α1

−(α1 − α0)
2ω−1 − cωα1ω

)

=
∂

∂α1

(
1− δ(1− ω)− 2(α1 − α0)ω

−1 − cωω
)

= −2ω−1.

∂2UD

∂α1
2 < 0 because ω ∈ (0, 1] by definition. Since any local maximum is a global maximum, the

critical point of UD gives D’s best response.
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α∗1 = argmax
α1

UD(α0)

⇒ ∂UD

∂α1

∣∣∣
α1=α∗

1

= 0

⇒ ∂

∂α1

(
(1− δ(1− ω)) r(α1)︸ ︷︷ ︸

r(α1)=α1

−ϕD(α1|ω, α0)
)∣∣∣

α1=α∗
1

= 0

⇒ ∂

∂α1

(
(1− δ(1− ω))α1 − (α1 − α0)

2ω−1 − cωα1ω
)∣∣∣

α1=α∗
1

= 0

⇒ 1− δ(1− ω)− 2(α1
∗ − α0)ω

−1 − cωω = 0

⇒ ω(1− δ(1− ω)− cωω)

2
+ α0.

When the condition ω ≤ 1−δ
cω−δ is satisfied, the critical point is feasible and optimal. In cases where

the condition is not satisfied, UD is negative in all cases. Using the fact that UD is strictly concave, if
the critical point is negative, the numerical optimum of UD must be at the constraint α1 = α0.

UD(α1 = α0) = (1− δ(1− ω))α0 − 0− cωα0ω

= α0 (1− δ + δω − cωω)

This utility is non-negative if and only if the condition is met: (1−δ+δω−cωω) ≥ 0 ⇐⇒ ω ≤ 1−δ
cω−δ .

D will prefer to abstain as long as the condition is not met, and the complete strategy is given by:

D’s strategy:
{

α∗1 = α0 +
ω(1−δ(1−ω)−cωω)

2 if ω ≤ 1−δ
cω−δ ,

abstain else.

When D does not abstain, the performance improvement is always non-negative (i.e., no player will
strategically invest in degrading performance) because ω(1−δ(1−ω)−cωω)

2 ≥ 0 ⇐⇒ ω ≤ 1−δ
cω−δ .

Proof of Proposition 2. Solve for G’s best response using α1
∗. G’s optimization problem becomes:

ω∗ = argmax
ω

UG(α0, ω)

⇒ ∂UG

∂ω

∣∣∣
ω=ω∗

= 0

⇒ ∂

∂ω

(
(ϵω + δ(1− ω))r(α1)− (α0ω + cωα1(1− ω) +�����p1[ω < θ])

)∣∣∣
ω=ω∗

= 0

⇒ ∂

∂ω

(
(ϵω + δ(1− ω))α1 − α0ω − cωα1(1− ω)

)∣∣∣
ω=ω∗

= 0

⇒ ∂

∂ω

(
(ϵω + δ(1− ω))

(ω(1− δ(1− ω)− cωω)

2

)
+ α0)− α0ω−

(cω − cωω)
(ω(1− δ(1− ω)− cωω)

2

)
+ α0

)∣∣∣
ω=ω∗

= 0
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⇒ (ϵ− δ)(
ω∗ − δω∗ − (δ + cω)ω

∗2

2
+ α0) + ((ϵ− δ)ω∗ + δ)(

1− δ

2
− (δ + cω)ω

∗)− α0+

cω(
ω∗ − δω∗ − δω∗2 − cωω

∗2

2
+ α0)− (cω − cωω

∗)(
1− δ

2
− (δ + cω)ω

∗) = 0

⇒ (ϵ− δ)(
ω∗ − δω∗ − (δ + cω)ω

∗2

2
+ α0) +

(ϵ− δ)(1− δ)ω∗

2
− (ϵ− δ)(δ + cω)ω

∗2 +
δ(1− δ)

2
−

δ(δ + cω)ω
∗ − α0 + cω(

ω∗ − δω∗ − (δ + cω)ω
∗2

2
+ α0)−

(cω − cωω
∗)(1− δ)

2
+

cω(δ + cω)ω
∗ − cω(δ + cω)ω

∗2 = 0

⇒
(−(ϵ− δ)(δ + cω)

2
− (ϵ− δ)(δ + cω)−

cω(δ + cω)

2
− cω(δ + cω)

)
ω∗2 + (ϵ− δ)(

(1− δ)ω∗

2
+

α0) +
(ϵ− δ)(1− δ)ω∗

2
+

δ(1− δ)

2
− δ(δ + cω)ω

∗ − α0 + cω(
(1− δ)ω∗

2
+ α0)−

cω(1− δ)

2
+

cωω
∗(1− δ)

2
+ cω(δ + cω)ω

∗ = 0

⇒
(
−3

2
(ϵ− δ + cω)(δ + cω)

)
ω∗2 +

(
(ϵ− δ + cω)(1− δ) + (cω − δ)(δ + cω)

)
ω∗+

(ϵ− δ − 1 + cω)α0 +
(δ − cω)(1− δ)

2
.

Solving for the roots with coefficients A = − 3
2 (ϵ − δ + cω)(δ + cω), B = (ϵ − δ + cω)(1 −

δ) + (cω − δ)(δ + cω), and C = (ϵ − δ − 1 + cω)α0 +
(δ−cω)(1−δ)

2 gives candidate values of ω∗.
Since UG is differentiable between the intervals [0, θ] and [θ, 1] when p > 0, each of these critical
points must be evaluated individually. For some sufficiently small positive value µ > 0, G will
prefer ω = θ to ω = θ − µ. It suffices to show limµ↘0 UG(ω = θ − µ) < UG(ω = θ). Since
UG = (ϵω + δ(1− ω))α1 − α0

2 − α0ω − cωα1(1− ω)− p1[ω < θ]:

lim
µ↘0

UG(ω = θ − µ) = [const]− p

lim
µ↘0

UG(ω = θ) = [const]

Thus, we do not have to check the upper boundary of the closed interval in the optimization over
ω.

C Robustness Checks

C.1 Fixed Initial Performance with Specialist-Side Penalty

The main results in Section 3 rely on cost functions that assign the entire regulatory burden to the
generalist. However, some regulatory frameworks may also impose disclosure and safety testing
requirements on the specialist for fine-tuning a closed model. For instance, EU AI Act Article 25
subjects entities making a “substantial modification” to a high-risk AI system to quality management
and documentation requirements. To determine whether the policy recommendations remain valid
under this alternative liability structure, we test the scenario where both generalists and specialists
face the same regulatory cost p. The specialist’s cost function with a penalty is ϕD := (α1 −
α0)

2ω−1 + cωα1ω + p1[ω < θ].
Proposition 4. In a game with quadratic costs, a monotonic revenue function r(α1), and a specialist-
side penalty p, if ω ≤ 1

δ−cω (
p
α0

+ δ − 1), then D’s best-response strategy is given by α∗1 =

α0 +
ω(1−δ(1−ω)−cωω)

2 . If ω > 1
δ−cω (

p
α0

+ δ − 1), D will choose to abstain.

Proof. D’s utility function differs from the one in B.1 only by the constant penalty term −p1[ω < θ].
Since this constant disappears when deriving with respect to α1, the strict concavity of UD and the
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derivation of D’ best response are identical to Proposition 1. Specifically, the first-order condition
yields α1

∗ = α0 +
ω(1−δ(1−ω)−cωω)

2 . The main difference is the feasibility condition, as the utility
at the constraint instead becomes:

UD(α1 = α0) = (1− δ(1− ω))α0 − 0− cωα0ω − p

= α0 (1− δ + δω − cωω)− p.

When the condition ω ≤ 1
δ−cω (

p
α0

+ δ − 1) is satisfied, the critical point is feasible and optimal.
Since UD is strictly concave, if the critical point is negative, the numerical optimum of UD must
be at the constraint α1 = α0. This utility is non-negative if and only if the condition is met:
α0(1− δ + δω − cωω)− p ≥ 0 ⇐⇒ ω ≤ 1

δ−cω (
p
α0

+ δ − 1). Therefore, D’s complete strategy is
given by:

D’s strategy:
{

α∗1 = α0 +
ω(1−δ(1−ω)−cωω)

2 if ω ≤ 1
δ−cω (

p
α0

+ δ − 1),
abstain else.

G’s best response with a specialist-side penalty is the same as in Proposition 2, since introducing the
specialist penalty only affects when D abstains, not the solution for α1

∗. We replicate the equilibrium
outcomes using the same game parameters as Figures 6 and 7 with the specialist-side penalty for
comparison. Figure 8 (corresponding to Figure 6) and 9 (corresponding to Figure 7) show the
following differences:

1. D abstains for a broader range of (θ, p) combinations above the indifference curve. Specifi-
cally, the maximum penalty where D stops participating participating is lower when they
adapt a closed model that fails to meet the threshold.

2. The additional penalty term slightly reduces D’s utility payoff for choosing α1
∗, but the

reduction is negligible.

The specialist-side penalty results in the same qualitative outcomes outside of abstain regions.
Below the indifference curve, lower-performing models generate Pareto improvements, while higher-
performing models produce utility transfers under greater openness.
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Figure 8: (Specialist Penalty) Under a specialist penalty, equilibrium outcomes for α0 = 0.1, cω =
0.01, ϵ = 0.1 with Nash bargaining show Pareto improvement over utilities (ω, α1, UG, UD) for any
(p, θ) regulation in the dotted region.
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Figure 9: (Specialist Penalty) Under a specialist penalty, equilibrium outcomes for α0 = 1, cω =
0.01, ϵ = 0.1 with Nash bargaining create a region where raising the open-source threshold improves
ω, α1, and UD but lowers UG. This utility transfer encourages specialist innovation, measured by α1.

C.2 Log Scaling for Production Costs

As an additional robustness check, we consider alternative forms of the production costs associated
with G releasing the model publicly. Although quadratic revenue remains the dominant term, we
explore sublinear scaling for G’s production costs. Fixed costs in internal documentation and release
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processes suggest that logarithmic scaling may offer a more precise estimate of production costs than
linear scaling. With logarithmic production costs (α0 logω), G’s optimization problem becomes:

⇒ (ϵ− δ)(
ω∗ − δω∗ − (δ + cω)ω

∗2

2
+ α0) + ((ϵ− δ)ω∗ + δ)(

1− δ

2
− (δ + cω)ω

∗)−α0ω
−1+

cω(
ω∗ − δω∗ − δω∗2 − cωω

∗2

2
+ α0)− (cω − cωω

∗)(
1− δ

2
− (δ + cω)ω

∗) = 0

⇒ (ϵ− δ)(
ω∗ − δω∗ − (δ + cω)ω

∗2

2
+ α0) +

(ϵ− δ)(1− δ)ω∗

2
− (ϵ− δ)(δ + cω)ω

∗2 +
δ(1− δ)

2
−

δ(δ + cω)ω
∗ −α0ω

−1 + cω(
ω∗ − δω∗ − (δ + cω)ω

∗2

2
+ α0)−

(cω − cωω
∗)(1− δ)

2
+

cω(δ + cω)ω
∗ − cω(δ + cω)ω

∗2 = 0

⇒
(−(ϵ− δ)(δ + cω)

2
− (ϵ− δ)(δ + cω)−

cω(δ + cω)

2
− cω(δ + cω)

)
ω∗2 + (ϵ− δ)(

(1− δ)ω∗

2
+

α0) +
(ϵ− δ)(1− δ)ω∗

2
+

δ(1− δ)

2
− δ(δ + cω)ω

∗ −α0ω
−1 + cω(

(1− δ)ω∗

2
+ α0)−

cω(1− δ)

2
+

cωω
∗(1− δ)

2
+ cω(δ + cω)ω

∗ = 0

⇒
(
−3

2
(ϵ− δ + cω)(δ + cω)

)
ω∗2 +

(
(ϵ− δ + cω)(1− δ) + (cω − δ)(δ + cω)

)
ω∗+

(ϵ− δ − 1 + cω)α0 +
(δ − cω)(1− δ)

2
+α0ω

−1

⇒
(
−3

2
(ϵ− δ + cω)(δ + cω)

)
ω∗3 +

(
(ϵ− δ + cω)(1− δ) + (cω − δ)(δ + cω)

)
ω∗2+(

(ϵ− δ + cω)α0 +
(δ − cω)(1− δ)

2

)
ω∗ −α0.

Solving the cubic with the following coefficients and checking boundary points gives candidate
values of ω∗:

• A = − 3
2 (ϵ− δ + cω)(δ + cω),

• B = (ϵ− δ + cω)(1− δ) + (cω − δ)(δ + cω),

• C = (ϵ− δ + cω)α0 +
(δ−cω)(1−δ)

2 ),
• D = −α0.

With linear scaling for production costs, G’s best response is obtained from the set of candidate
values given by Aω2 + Bω + C (Appendix B), where A = − 3

2 (ϵ − δ + cω)(δ + cω), B =

(ϵ− δ + cω)(1− δ) + (cω − δ)(δ + cω), and C = (ϵ− δ − 1 + cω)α0 +
(δ−cω)(1−δ)

2 .

Log scaling for production costs produces qualitatively similar outcomes to the main results, as the
quadratic or cubic terms from revenue dominate the production cost in either case. We reproduce
equilibrium outcomes using the same parameters as Figures 6 and 7 in Figures 10 and 11. For low
performance (α0 = 0.1 in Figure 6), UG increases more due to reduced release costs and the model
being significantly more open, but all the core qualitative insights of the analysis are preserved.
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Figure 10: (Log Scaling) Under log scaling for production costs, equilibrium outcomes for low
performance (α0 = 0.1, cω = 0.01, ϵ = 0.1) with Nash bargaining still create a region where raising
the open-source threshold improves ω, α1, and UD but lowers UG.
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Figure 11: (Log Scaling) Under log scaling for production costs, equilibrium outcomes for high
performance (α0 = 1, cω = 0.01, ϵ = 0.1) with Nash bargaining show Pareto improvement over
utilities (ω, α1, UG, UD) for any (p, θ) regulation in the dotted region.

C.3 Alternate Division of Operation Costs

At either extreme of openness (ω = 0 or ω = 1), either the specialist or generalist will assume the
majority of operation costs. For the main results in Section 3, G’s operation cost is cωα1(1 − ω)
in order to ensure that operation costs sum to a constant between the generalist and specialist:
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ϕGop. + ϕDop. = cωα1(1 − ω) + cωα1ω = cωα1. Operation costs between G and D sum to a
constant value because at least one player must pay for hosting and inference in order to generate
revenue through model usage. This implies that total operation costs depend on the final performance
achieved after fine-tuning, rather than baseline performance, and the generalist must bear some of the
operation costs associated with improved performance. As a robustness check, we examine the effect
of changing G’s operation cost from cωα1(1− ω) to cωα0(1− ω), meaning the generalist does not
bear any additional operation costs resulting from downstream model improvements. The coefficients
in G’s best response change from:

• A = − 3
2 (ϵ− δ + cω)(δ + cω) to A = − (δ+cω)(ϵ−δ)

2 ,

• B = (ϵ− δ + cω)(1− δ) + (cω − δ)(δ + cω) to B = (ϵ−δ)(1−δ)
2 ,

• C = α0(ϵ− δ − 1 + cω) +
(ϵ−cω)(1−δ)

2 to C = α0(ϵ− δ − 1 + cω).

While UG increases slightly, there are no qualitative differences in the equilibrium outcomes with
cω ∈ {0.01, 0.1, 0.5, 1} between the version with G’s operation costs as cωα0(1−ω) vs. cωα1(1−ω).
We add plots for the replication of equilibrium outcomes with the same parameters as Figures 6 and 7
with α0 in Figures 12 and 13.

These two setups are qualitatively indistinguishable because for models with downloadable weights,
D will incur most of the operation costs for fine-tuning when ω is high enough. If ω is low and the
model is mostly closed, the operation costs are divided in one of two ways. First, the closed model
provider offers fine-tuning services, but this fine-tuning occurs on the generalist’s infrastructure
(e.g., OpenAI’s fine-tuning APIs). Second, D covers operation costs related to fine-tuning but must
choose α1 = α0 because production costs ((α1 −α0)

2ω−1) become prohibitive if D tries to improve
the model when openness is extremely low. In this case, the distinction between α1 vs. α0 in G’s
operation costs becomes irrelevant because α1 = α0.
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Figure 12: (Alternate Operation Costs) When G’s operation costs are a function of α0 instead of
final performance, equilibrium outcomes for low performance (α0 = 0.1, cω = 0.01, ϵ = 0.1) with
Nash bargaining still create a region where raising the open-source threshold improves ω, α1, and
UD but lowers UG.

The results hold regardless of which player bears the additional operation costs associated with the
fine-tuned model’s improved performance. In practice, generalists can batch operation costs and take
advantage of cost amortization across larger deployment volumes [12], but because our interest is in
cost parameters the regulator can directly control, we defer the exploration of hardware and scale
efficiencies to future research.
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Figure 13: (Alternate Operation Costs) When G’s operation costs are a function of α0 instead of
final performance, equilibrium outcomes for high performance (α0 = 1, cω = 0.01, ϵ = 0.1) with
Nash bargaining show Pareto improvement over utilities (ω, α1, UG, UD) for any (p, θ) regulation in
the dotted region.

D Model Extensions

D.1 Flexible Initial Performance

G’s costs of developing the model to base performance α0 are dropped from ϕG in our game, as we
assume G has already invested in achieving a fixed performance level prior to the regulation and
cannot adaptively recover sunk development costs. “Development” is a general label for all fixed
costs related to pre-training (data licensing, labor, hardware, R&D) and post-training (alignment,
evaluation). This setup resembles the decisions of model developers who have reached a performance
ceiling and cannot overcome resource limitations in the short term.

Although the main results assume that G’s choice of α0 occurs prior to the introduction of the
regulation, an alternative setup may allow G to simultaneously choose ω and α0 rather than selecting
an openness level given a fixed performance level. This setup represents scenarios where new entrants
jointly choose performance and openness levels for a model or when incumbents decide to release
several variants of a pre-existing model.
Proposition 5. When |ϵ− 1− δ| ≥ cω , the best response (α0

∗, ω∗) obtained by calculating ω∗ and
finding α∗0 numerically using ω∗ achieves a global maximum for UG.

Proof. G’s strategy is two-dimensional:[
α0
∗

ω∗

]
= argmax

α0,ω
UG

From Proposition 1, UG can be written in terms of ω and α0.

UG = (ϵω + δ(1− ω))
(
α0 +

ω(1− ω(1− ω)− cωω)

2

)
−

α0ω + cω

(
α0 +

ω(1− ω(1− ω)− cωω)

2

)
(1− ω)− p1[ω < θ].
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Differentiating UG with respect to G’s decision variables, we get

∂UG

∂α0
= ϵω + δ(1− ω)− ω + cω(1− ω),

∂UG

∂ω
= (ϵ− δ)(

ω − δω − (δ + cω)ω
2

2
+ α0) + ((ϵ− δ)ω + δ)(

1− δ

2
− (δ + cω)ω)− α0+

cω(
ω − δω − δω2 − cωω

2

2
+ α0)− (cω − cωω)(

1− δ

2
− (δ + cω)ω)

∂UG

∂α0ω
= ϵ− δ − 1− cω,

∂UG

∂ωα0
= ϵ− δ − 1 + cω,

∂2UG

∂α2
0

= 0.

From the derivation in the proof of Proposition 2, we know that ∂UG

∂ω = Aω2 + Bω + C, where
A = − 3

2 (ϵ− δ + cω)(δ + cω), B = (ϵ− δ + cω)(1− δ) + (cω − δ)(δ + cω), and C = (ϵ− δ − 1 +

cω)α0 +
(δ−cω)(1−δ)

2 . Therefore,

∂2UG

∂ω2
= 2Aω +B

= −3(ϵ− δ + cω)(δ + cω)ω + (ϵ− δ + cω)(1− δ) + (cω − δ)(δ + cω)

= (ϵ− δ + cω)(1− δ − 3(δ + cω)ω) + (cω − δ)(δ + cω).

∇2UG =

[
∂2UG

∂α0
2

∂2UG

∂α0∂ω
∂2UG

∂ω∂α0

∂2UG

∂ω2

]

=

[
0 ϵ− 1− δ − cω

ϵ− δ − 1 + cω (ϵ− δ + cω)(1− δ − 3(δ + cω)ω) + (cω − δ)(δ + cω).

]
Next, we show that the Hessian of UG is negative semidefinite when |ϵ− 1− δ| ≥ cω . By inspection,
the first principal minor satisfies ∂2UG

∂α2
0

≤ 0. The criterion det(∇2UG) ≥ 0 only holds when
|ϵ− 1− δ| ≥ cω .

det(∇2UG) = 0− (ϵ− 1− δ − cω)(ϵ− δ − 1 + cω)

= −(ϵ− 1− δ)2 + cω
2.

Taking the square root of both sides, we get that det(∇2UG) ≥ 0 only when |ϵ− 1− δ| ≥ cω , given
that cω ≥ 0 since it is a nonnegative cost ratio. This implies that the Hessian matrix ∇2UG is negative
semidefinite when |ϵ − 1 − δ| ≥ cω, which establishes the concavity of UG w.r.t. α0 and ω and
guarantees the joint solution achieves a global maximum.

When the condition |ϵ− 1− δ| ≥ cω is not met, G generates almost no positive utility from releasing
the model (Figures 14 and 15).

D.2 Multidimensional Performance Definition

The utility functions assume performance is a one-dimensional property which permits a linear
ranking of models. However, it is plausible that no single model consistently dominates across all
dimensions (reasoning, general tasks, efficiency). Performance can be extended to a multidimensional
variable to capture such scenarios. Formally, this requires the closed-form derivations for both players’
utility functions to be reformulated to handle vector-valued performance metrics. For example, ∂UD

∂α1
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Figure 14: Generalist’s strategy space for (α0, ω) when |ϵ − 1 − δ| ≥ cω, with parameters ϵ =
0.1, δ = 0.5, cω = 0.01, p = 1, θ = 0.2. (Top) G’s unconstrained strategy space for azimuth = 145
and azimuth = 245. (Bottom) G’s strategy space when abstaining for negative utility payoffs for
azimuth = 145 and azimuth = 245.

would become an n-dimensional vector ∇α1
UD, where each partial derivative entry represents the

marginal utility with respect to a different performance dimension. This setup can encode how
regulatory performance preferences diverge from the utility considerations of end users, but because
this complexity distracts from the core analysis on model openness, we omit such fine-grained
performance definitions from the main results.

E Regulation Equilibrium Results

Proof of Proposition 3. The area above the indifference curve in the space of (p, θ) choices represents
when ω∗ → 0, while the area below it represents when G meets the open-source threshold.

UG(ω ≈ 0) ≥ UG(ω = θ)

δα1 − cωα1 − p∗ ≥ (ϵθ + δ(1− θ))α1 − α0θ − cωα1(1− θ)

δ − cω − p∗

α1
≥ ϵθ + δ − δθ − α0θ

α1
− cω + cωθ

− p∗

α1
≥ θ(ϵ− δ − α0

α1
+ cω)

p∗ ≤ θ(δ +
α0

α1
− ϵ− cω)α1

For a given threshold, as long as p ≤ p∗, G will keep the model closed rather than meeting the
threshold. If p∗ < 0, G will always open the model at or above the threshold, regardless of the
threshold.
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Figure 15: Generalist’s strategy space for (α0, ω) when |ϵ − 1 − δ| < cω, with parameters ϵ =
0.7, δ = 0.1, cω = 0.5, p = 1, θ = 0.2. (Top) G’s unconstrained strategy space for azimuth = 145
and azimuth = 245. (Bottom) G’s strategy space when abstaining for negative utility payoffs for
azimuth = 145 and azimuth = 245.

Proposition 6. There exist games with quadratic costs and a monotonic revenue function r(α1) in
which there are Pareto-optimal regulations that improve all utilities (ω, α1, UG, UD) compared to no
regulation.

Proof. Given a game with Nash bargaining and the parameters α0 = 0.1, cω = 0.05, ϵ = 0.1, the no-
regulation equilibrium is (ω∗ ≈ 0, δ∗ = 0.53, α∗1 = 0.1024) with UD = 0.0480 and UG = 0.0478.
Introducing a regulation of θ = 0.6 and p = 0.05 leads to the equilibrium outcome (ω∗ = 0.6, δ∗ =
0.97, α1 = 0.2746, UG = 0.0575, UD = 0.1090) because UG(ω

∗ = 0.6) > UG(ω
∗ ≈ 0). This

Pareto-dominates no regulation, as (ω, α1, UG, UD) are all strictly better. Figure 6 visualizes the
utility implications over the space of possible regulation tuples (p, θ).

Proposition 7 (Bounds for Pareto-Optimal Regulation). Let µ > 0 be an arbitrarily small constant.
Given that there exist Pareto-improving regulations for utilities (ω, α1, UG, UD), the Pareto-optimal
region is characterized by upper bounds of θ = 1−δ

cω−δ , pmax and lower bounds of θ = µ, p =

θ(δ + α0

α1
− ϵ− cω)α1 + µ.

Proof. To improve ω beyond the no-regulation equilibrium, any Pareto-optimal regulation must
create a binding constraint where G complies with the threshold requirement. There are three cases
of the game: (1) G already clears the required openness threshold without regulation, (2) G violates
the threshold requirement and does not change strategy, or (3) G adjusts the openness level to the
threshold to comply with the regulation. Case (2) is dominated by (1), so the game must fall in (1) or
(3). The regulation only has an effect in case (3), implying that the Pareto improvement region must
lie under the indifference curve.
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By Proposition 3, the lower bound on penalty for the region is given by p = θ(δ+ α0

α1
−ϵ−cω)α1+µ,

where µ > 0 is a small constant. The upper bound on penalty is pmax because raising the penalty at
a given threshold under the indifference curve does not change G’s strategy. By Proposition 1, the
constraint ω ≤ 1−δ

cω−δ must be satisfied if α1 is improved. These two constraints imply θ ≤ 1−δ
cω−δ ,

giving an upper bound on θ. Further, the region of Pareto improvement is lower-bounded by θ = µ
since any effective regulation must improve ω through case (3).

F Data for Figure 3

Although ELO rankings and MMLU scores are used as heuristics to compare model performance,
they are not meant to be a comprehensive measure of overall model capability.

ELO Score is the model’s arena score from the Chatbot Arena LLM Leaderboard. % Closed is
calculated the same as Figure 4b from Eiras et al. [14], using Table 3’s categorization of model
components. The percentage is the the portion of components that received a fully closed classification
(C1/D1) out of the number of components where such a score is available (excluding ? and N/A
labels).

Model ELO Score % Closed
Pythia 893 0
T5 868 0
Stable LM 840 0
Llama 799 0.43
DBRX 1103 0.5
Mistral-7B 1075 0.71
Falcon 1034 0.67
PaLM 1004 1.0
Llama 2 1093 0.8
Command R 1180 0.8
Command R+ 1215 0.8
Llama 3 1269 0.8
GPT-4 1256 0.82
Gemini 1380 0.92
Claude 2 1132 0.92
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MMLU Score uses exact match accuracy for MMLU All Subjects from the HELM leaderboard.
MMLU scores marked with (*) are self-reported in the model documentation, rather than collected
from HELM evaluations, so the comparisons may be inconsistent.

Model MMLU Score Weights Release Date
Claude 3.5 Sonnet 0.873 Closed 06-2024
DeepSeek v3 0.872 Open 12-2024
Gemini 1.5 Pro 0.869 Closed 02-2024
Claude 3 Opus 0.846 Closed 03-2024
Llama 3.1 Instruct Turbo (405 B) 0.845 Open 07-2024
GPT-4o 0.843 Closed 05-2024
Qwen2.5 Instruct Turbo (72B) 0.834 Closed 04-2024
GPT-4 0.824 Closed 03-2023
Amazon Nova Pro 0.82 Closed 12-2024
GPT-4 Turbo 0.813 Closed 11-2023
Llama 3.2 Vision Instruct Turbo (90B) 0.803 Open 09-2024
Llama 3.1 Instruct Turbo (70B) 0.801 Open 07-2024
Mistral Large 2 0.8 Open 07-2024
Gemini 2.0 Flash 0.797 Closed 12-2024
Llama 3 (70B) 0.793 Open 04-2024
Llama 3.3 Instruct Turbo (70B) 0.791 Open 12-2024
PaLM-2 (Unicorn) 0.786 Closed 05-2023
Jamba 1.5 Large 0.782 Open 08-2024
Mixtral (8x22B) 0.778 Open 04-2024
Phi-3 (14B) 0.775 Open 05-2024
Qwen1.5 (72B) 0.774 Closed 02-2024
Yi (34B) 0.762 Open 11-2023
Gemma 2 (27B) 0.757 Closed 06-2024
Claude 3.5 Haiku 0.743 Closed 11-2024
DBRX Instruct 0.741 Open 03-2024
Gemini 1.5 Flash 0.739 Closed 05-2024
DeepSeek LLM Chat (67B) 0.725 Open 11-2023
Command R Plus 0.694 Open 08-2024
PaLM-2 (Bison) 0.692 Closed 11-2023
GPT-3.5 Turbo 0.689 Closed 03-2023
Llama 3 (8B) 0.668 Open 04-2023
OLMo 1.7 (7B) 0.538 Open 07-2024
Chinchilla (70B) *0.676 Closed 03-2022
PaLM (540B) *0.693 Closed 04-2022
U-PaLM *0.707 Closed 10-2022
Flan-PaLM *0.752 Closed 10-2022
Llama (65B) *0.634 Open 02-2023
Llama 2 (70B) *0.689 Open 07-2023
Falcon (180B) *0.706 Open 09-2023
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G Additional Figures

The equilibrium of the game is characterized by a triple (ω, δ, α1). Here, we check the effects of
varying α0, ϵ, and cω ∈ {0, 0.01, 0.1, 0.5} on the no-regulation equilibrium, (ω, δ, α1) for p = 0,
under different bargaining solutions. Figure 2 uses cω = 0.1 over different α0 and ϵ values.

G.1 Openness Levels
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Figure 16: Openness levels (ω∗) chosen by G without regulation (p = 0) under VM, Nash, and
egalitarian bargaining solutions. Rows correspond to bargaining solutions, and operation costs
increase from left to right: cω = 0, 0.01, 0.1, 0.5. Increasing cω causes less intermediate values of
openness in the region of low α0, ϵ because G avoids operation costs by fully opening. The fully
open area at high α0, ϵ recedes as cω increases for Nash and egalitarian bargaining solutions because
D’s utility is harmed by high operation costs for high performance when G receives the majority of
revenue through δ∗.
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G.2 Bargaining Coefficients
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Figure 17: Bargaining coefficients (δ∗) jointly chosen by G and D without regulation (p = 0) under
VM, Nash, and egalitarian bargaining solutions. Rows correspond to bargaining solutions, and
operation costs increase from left to right: cω = 0, 0.01, 0.1, 0.5. For all three bargaining solutions,
higher operation costs push δ to favor G more in regions where G fully closes the model. For low α0,
where G fully opens the model and there is less revenue, the bargain favors D more.
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G.3 Final Performance
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Figure 18: Improvement level (α∗1) chosen by D without regulation (p = 0) under VM, Nash,
and egalitarian bargaining solutions. Rows correspond to bargaining solutions, and operation costs
increase from left to right: cω = 0, 0.01, 0.1, 0.5. D’s level of improvement decreases as operation
costs increase across all bargaining solutions, and regardless of whether G fully opens or closes the
model.
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