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ABSTRACT

Masked diffusion language models (MDLMs) have emerged as a promising gener-
ative framework for natural language, owing to parallel non-autoregressive gener-
ation capabilities with iterative unmasking/denoising. However, typical MDLMs
require a very large number of neural network function evaluations for effec-
tive inference, making them computationally expensive in many real-world NLP
applications that rely on conditional sequence-to-sequence generation. In this
work, we propose a two-stage distillation method for conditional MDLMs that
distills knowledge of (i) classifier-free guidance as well as (ii) unmasking tra-
jectory from the existing teacher MDLM into a student MDLM. This allows the
student MDLM, during inference, to (i) reduce two forward passes, required by a
classifier-free guided (teacher) MDLM, to a single pass, and (ii) drastically reduce
the number of unmasking steps. In this way, by dual distillation of guidance and
trajectory knowledge, our MDLM achieves speedups of up to 16× while virtually
retaining the quality of generation.

1 INTRODUCTION

The rapid progress in deep learning–based language models, particularly autoregressive large lan-
guage models (LLMs) (Dubey et al., 2024; Yang et al., 2025) and, more recently, masked diffusion
language models (MDLMs) (Nie et al., 2025b; Zhao et al., 2025), has led to their widespread de-
ployment across diverse applications, including conversational agents, code generation, and machine
translation. Given their adoption at both small scale (task-specific models) and large scale (general-
purpose systems), efficiency during deployment has emerged as a critical requirement. To this end, a
variety of techniques have been proposed to optimize model usage while preserving performance. At
the training stage, knowledge distillation has been extensively studied as a means to transfer knowl-
edge from large pre-trained models to more compact students (Gu et al., 2024; Agarwal et al., 2024).
At the inference stage, approaches such as KV-caching (Li et al., 2025) and speculative decoding
(Leviathan et al., 2023) have demonstrated significant improvements in runtime efficiency for LLMs.
Parallel efforts are now underway for MDLMs, with recent studies exploring KV-caching (Ma et al.,
2025; Hu et al., 2025) and distillation strategies (Deschenaux & Gulcehre, 2025; Hayakawa et al.,
2025) to enable efficient large-scale deployment.

Prior work on improving the generation efficiency of diffusion models for image synthesis through
distillation has identified two primary sources of inefficiency: (1) the requirement of multiple it-
erative steps to generate outputs (Salimans & Ho, 2022), and (2) the need for two forward passes
through the denoising network when applying classifier-free guidance (Meng et al., 2023). Distilla-
tion in the first case aims to reduce the number of sampling steps necessary to achieve high-quality
outputs, while in the second, it seeks to eliminate the overhead introduced by dual forward passes.
For masked diffusion language models (MDLMs), prior studies have similarly investigated dis-
tillation to reduce the number of generation steps; however, these efforts have been restricted to
unconditional generation and sentence completion tasks. This narrow scope limits our understand-
ing of distillation for MDLMs, as the sampling inefficiencies of guided MDLMs remain largely
unexplored, particularly in the context of sequence-to-sequence task-specific settings.
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Our aim in this work is to develop efficient conditional MDLMs for sequence-to-sequence NLP
tasks via the framework of knowledge distillation. Our contributions are

1. a two-stage distillation framework for conditional MDLMs, which trains student models
to tackle sampling inefficiencies that arise due to classifier-free guidance and multi-step
denoising; to the best of our knowledge, our work is the first to explore distillation for
guided conditional MDLMs for seq-to-seq NLP tasks.

2. comprehensive analysis on multiple seq-to-seq NLP tasks showcasing improved efficiency
versus performance trade-off in the distilled MDLMs compared to the vanilla-fine-tuned
MDLMs; our presented distilled MDLMs exhibit up to 16× speedup without significant
degradation in sample quality, as well as improve few-step generation.

2 PRELIMINARIES

2.1 MASKED DIFFUSION LANGUAGE MODELS

Masked diffusion language models (MDLMs) define the diffusion forward and reverse processes in
the discrete (or the token) space (Hoogeboom et al., 2021; Austin et al., 2021). The forward process
iteratively replaces tokens in the sequence with mask tokens, and the reverse process is learned to
iteratively unmask tokens to generate new samples (Sahoo et al., 2024; Nie et al., 2025a).

Let V be a fixed word/token vocabulary. Let t ∈ [0, 1] be the timestep for the diffusion process,
where t = 0 corresponds to no noise and t = 1 corresponds to a fully masked sequence. We denote
a ground truth sequence of length L from a given dataset as x0 = (x

(0)
0 , x

(1)
0 , x

(2)
0 , ...., x

(L−1)
0 )

where ∀i ∈ {0, 1, ..., L− 1}, x(i)
0 ∈ V . The forward process is defined as

qt|0(xt|x0) =

L−1∏
i=0

qt|0(x
(i)
t |x

(i)
0 ) where qt|0(x

(i)
t |x

(i)
0 ) :=

{
αt, x(i)t = x

(i)
0 ,

1− αt, x(i)t = ⟨m⟩,
(1)

where ⟨m⟩ represents the mask token, xt is the vector of discrete random variables over the set
V ∪ {⟨m⟩}, representing the partially-masked sequence at timestep t, αt is the hyperparameter
controlling the proportion of masked tokens in the sequence at a given timestep, and q0(·) is the
data distribution. To reverse this process for generation, we train a denoising neural network with
parameters θ that outputs pθ(·|xt) estimating the true data distribution given the noisy sequence
(i.e., q0|t(·|xt))1. For timesteps s and t with 0 ≤ s < t ≤ 1, the reverse process is obtained as:

pθ(xs|xt) =

L−1∏
i=0

pθ(x(i)
s |xt) where

pθ(x(i)s |xt) =


t−s
t pθ(x

(i)
0 |xt), x

(i)
t = ⟨m⟩, x(i)s ̸= ⟨m⟩

s
t , x

(i)
t = ⟨m⟩, x(i)s = ⟨m⟩

1, x
(i)
t ̸= ⟨m⟩, x(i)s = x

(i)
t .

(2)

Training uses a simplified upper bound on the negative log-likelihood as the objective (Shi et al.,
2024; Sahoo et al., 2024).

− log pθ(x0) ≤
∫ 1

0

α′
t

1− αt
E

q(xt|x0)

 ∑
∀i:xi

t=⟨m⟩

− log pθ(xi0|xt)

 dt. (3)

Here, α′
t is the time derivative of αt. Unlike typical diffusion models, masked diffusion pro-

cesses can be learned with a time-independent neural network, which allows the use of standard
Transformer-based architectures without extra time conditioning to parameterize the reverse process
(Zheng et al., 2025).

1This is equivalent to estimating the token distribution on the masked positions given the unmasked tokens.
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2.2 KNOWLEDGE DISTILLATION IN LANGUAGE MODELS

Knowledge distillation (Hinton et al., 2015) refers to a broad spectrum of techniques that make use
of a capable teacher model to train a more efficient student model. The idea is to train a student
model to mimic outputs from a more complex teacher model. We particularly focus on distillation
techniques that enable student models to mimic output distributions from a teacher model using
divergence-based loss functions. In language modeling, earlier works have successfully explored
such techniques on masked language models (Sanh et al., 2019) as well as generative encoder-
decoder and decoder-only language models (Wen et al., 2023). Recent works have also applied
reinforcement learning-based divergence minimization for distilling autoregressive LLMs (Gu et al.,
2024; Agarwal et al., 2024).

3 DISTILLATION OF CONDITIONAL MASKED DIFFUSION LANGUAGE
MODELS

In this section, we introduce distillation techniques for training efficient conditional MDLMs on
seq-to-seq tasks. Let the conditional sequence be denoted as y = (y(0), y(1), . . . , y(L1−1)) and the
ground truth target sequence be denoted as x0 = (x

(0)
0 , x

(1)
0 , . . . , x

(L2−1)
0 ). The diffusion process

operates on the target sequence, where we denote xt as a noisy (or partially masked) sequence at
time t. Let x̂θ(xt,y) be a masked diffusion denoiser with parameters θ that estimates the log-
probabilities of the clean sequence given xt and y (i.e., x̂θ(xt,y) ≈ log pθ(x0|xt,y)). In practice,
the input to the network is passed by concatenating y and xt with a separator token or a string in
between.

We improve the inference-time efficiency by aiming to reduce the number of function evaluations
(NFEs, which is equal to the number of forward passes from the denoiser) required to generate
target sequences without significant degradation in generation quality. We first fine-tune an MDLM
for a specific seq-to-seq task using a standard training method following Nie et al. (2025a) (refer
to Algorithm 4 in Appendix B for the details). Next, we propose a two-stage distillation procedure
(similar to Meng et al. (2023)). In the first stage, we distill guided teacher outputs into a student
model. In the second stage, we distill multi-step outputs from the distilled model obtained from the
first stage into another student model. In the following subsections, we discuss both stages in detail.

3.1 FIRST STAGE: GUIDANCE DISTILLATION

Classifier-free guidance (CFG) allows for improving grounding on the given condition by trading
off generation diversity (Ho & Salimans, 2021). The classifier-free guided log-probabilities of the
true data x0 are computed as follows (Schiff et al., 2025):

log pγ(x0|xt,y) ∝ γ log p(x0|xt,y) + (1− γ) log p(x0|xt) (4)

Here, γ is the guidance scale which controls the diversity versus fidelity trade-off. To compute the
unconditional log-probabilities (i.e., the second term in the RHS of Equation 4) using the denoiser,
we replace y with ϕ = ⟨m⟩|y|, which is a sequence of all masked tokens of the same length as y.
Although prior works have proven that using the above formulation consistently improves generation
quality as long as the guidance scale is properly tuned, the computation requires the evaluation of
both conditional (i.e., log p(x0|xt,y)) and unconditional log-probabilities (i.e., log p(x0|xt)). This
doubles the NFEs required at every denoising step. In this stage, we tackle this inefficiency by
distilling classifier-free guided outputs from the teacher model into a single forward pass of a student
model.

We distill guided outputs on a range of guidance scales to retain the flexibility of choosing the right
trade-off between diversity and fidelity. To do so, we need to incorporate an additional scalar input
(i.e., guidance scale) into the student denoiser. As mentioned in Section 2.1, we use a standard
Transformer architecture as our denoiser. To this, we first add an extra two-layer MLP with SiLU
activation function (Elfwing et al., 2017). The guidance scale value is converted to a sinusoidal
embedding and passed through the MLP, producing an embedding of the same size as the hidden

3
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Algorithm 1: Distilling Guidance Knowledge for Conditional MDLMs
Given: Trained teacher denoiser x̂η(·,y), untrained student denoiser x̂θ(·,y, γ), guidance

scale range [γmin, γmax], mask token ⟨m⟩.
θ ← η ; ▷ Initialize student with teacher weights
repeat

(y,x0) ∼ data, t ∼ U(0, 1), xt ∼ qt|0(xt|x0) ; ▷ forward diffusion process

ϕ← ⟨m⟩|y| ; ▷ sequence of ⟨m⟩ tokens of length |y|
γ ∼ U(γmin, γmax); ▷ sample guidance scale

log pteacher ← γ x̂η(xt,y) + (1− γ) x̂η(xt, ϕ) ; ▷ CFG from teacher

log pstudent ← x̂θ(xt,y, γ) ; ▷ single forward pass of the student

LGD =
∑

∀i: x(i)
t =⟨m⟩

DKL(p
(i)
student∥ p

(i)
teacher) ; ▷ Compute loss

Gradient descent with∇θLGD;
until convergence;

size of the Transformer. The embedding is then prepended to the token embeddings of the input.
The self-attention mechanism conditions the sequence on the CFG-scale embedding, which gets
jointly learnt with the distillation. We denote this modified student network with parameters θ as
x̂θ(·, y, γ).
Algorithm 1 shows the proposed guidance distillation algorithm for conditional MDLMs. Let x̂θ

and x̂η be the student and teacher MDLMs, respectively. The parameters of the student denoiser
x̂θ are initialized with the teacher weights η except for the MLP parameters, where the first layer is
initialized randomly and the second layer is initialized with zeros. We first sample a guidance scale
value γ uniformly from a given range [γmin, γmax]. Next, we compute a CFG estimate of the log-
probabilities of the target sequence from the teacher model following Equation 4 (i.e., γ x̂η(xt,y)+
(1 − γ) x̂η(xt, ϕ)) and a conditional estimate of the target sequence from the student model (i.e.,
x̂θ(xt,y, γ)). To push the conditional estimate of the student closer to the guided estimate of the
teacher, we employ the mode-seeking KL-divergence loss DKL(p

γ
θ∥ pγη). The loss is computed over

all masked positions in xt.

3.2 SECOND STAGE: PROGRESSIVE TRAJECTORY DISTILLATION

In this stage, we employ distillation to obtain a student model with improved few-step generation
quality. Our base method follows the progressive distillation setup called self-distillation through
time (SDTT) as proposed in Deschenaux & Gulcehre (2025). We adapt the setup for conditional
MDLMs and incorporate distillation from a guidance distilled MDLM (obtained from the first stage
as described in Section 3.1).

Algorithm 2 describes the trajectory distillation mechanism that enables better few-step sampling.
We begin with the guidance distilled MDLM x̂θ(·,y, γ). Let the new student model to be trained be
denoted as x̂ξ(·,y, γ). The core idea is to mimic outputs from the teacher that are generated with
multiple sampling steps into a single step from a student model. We consider a special case of this
scenario where we distill two steps from the teacher with the fixed step size into a single student
step (Salimans & Ho, 2022). To begin, we first fix an initial sampling step size ∆(≤ 1). Given
the guidance scale γ ∼ U(γmin, γmax), a function solve(xt,∆, x̂θ(·,y, γ)) is defined that takes
xt and first samples xt−2∆ by simulating two reverse diffusion steps each of step size ∆ using
Equation 2. We gather the log-probabilities on the unmasked positions in each step during this pro-
cess. Finally, the function takes an additional step to compute log-probabilities on all the remaining
masked positions in xt−2∆ and returns the target log-probabilities. More details on solve appear
in Appendix A and Algorithm 3. To train the student denoiser xξ, similar to guidance distillation
from Section 3.1, we compute the mode-seeking KL-divergence loss on all masked positions of xt.

We progressively repeat this distillation after fixed training intervals by replacing the teacher with the
student and doubling the step size. This allows the student model to be progressively trained to better
mimic the teacher’s estimate of the data distribution with larger and larger step sizes (essentially
reducing the number of sampling steps).

4
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Algorithm 2: Distilling Trajectory Knowledge for Conditional MDLMs
Given: Trained teacher denoiser x̂θ(·,y, γ), untrained student denoiser x̂ξ(·,y, γ), guidance
scale range [γmin, γmax], number of distillation rounds R, sampling step size ∆.

Given: solve(xt,∆, x̂θ(·,y, γ)) that uses x̂θ to unmask xt for two sampling steps with ∆
step size and one extra step to unmask the remaining masked positions (refer to Algorithm 3).
ξ ← θ ; ▷ Initialize student with teacher’s weights

for R iterations do
repeat

(y,x0) ∼ data, t ∼ U(0, 1), xt ∼ qt|0(xt|x0) ; ▷ forward diffusion process

γ ∼ U(γmin, γmax); ▷ sample guidance scale

log pteacher ← solve(xt,∆, x̂θ(·,y, γ)); ▷ simulate two sampling steps

log pstudent ← x̂ξ(xt,y, γ) ; ▷ single forward pass of the student

LTD =
∑

∀i: x(i)
t =⟨m⟩

DKL(p
(i)
student∥ p

(i)
teacher) ; ▷ Compute loss

Gradient descent with∇ξLTD
until convergence;
θ ← ξ; ▷ Student becomes the new teacher
∆← ∆ ∗ 2; ▷ Double the step size

end

4 EXPERIMENTAL SETTINGS

4.1 DATASETS AND EVALUATION

We evaluate our distillation approach on three sequence-to-sequence NLP tasks: (1) Bible style
transfer, using the dataset of Carlson et al. (2017), which contains parallel Biblical sentences paired
with simplified English and other versions of the Bible; in particular, we consider the PUB-BBE
(Public Bible versions→ Bible in Basic English) and PUB-ASV (Public Bible versions→ Amer-
ican Standard Version) tasks; (2) paraphrasing, using the Quora Question Pairs (QQP) dataset
(Sharma et al., 2019); and (3) question generation, using the Quasar-T dataset (Dhingra et al.,
2017), following the setup of Gong et al. (2023).

For evaluation, we report METEOR (Banerjee & Lavie, 2005) and ROUGE-L (Lin, 2004), two stan-
dard n-gram-based metrics that compare generated outputs against reference texts, across all tasks.
Efficiency is measured in terms of speedup, defined by the reduction in the number of function eval-
uations (NFEs), where NFE corresponds to the total number of forward passes through the MDLM
during sampling. We distinguish between denoising steps and NFEs: for the vanilla-fine-tuned
teacher MDLM, each denoising step requires two forward passes due to classifier-free guidance,
yielding NFE = 2 × denoising-steps. In contrast, for the distilled MDLMs, guidance distillation
reduces this computation to a single forward pass per step, resulting in NFE = denoising-steps.

4.2 TRAINING AND INFERENCE DETAILS

To obtain initial teacher models fine-tuned on seq-to-seq tasks, we fine-tune the pre-trained MDLM
with 113M non-embedding parameters released by Nie et al. (2025a)2. We fix the noise scheduler
αt = 1− t. All our training experiments are conducted on a single NVIDIA RTX A6000 GPU with
bfloat16 precision. For optimization, we use the AdamW optimizer (Loshchilov & Hutter, 2019)
with β1 = 0.9 and β2 = 0.95. We set a small value ϵ = 10−5, indicating the minimum possible
noise level to prevent numerical overflow in loss calculation. The learning rate is linearly warmed up
to a maximum value after which it stays constant. The gradient norm is clipped to 1.0 during training.
We store an exponential moving average of weights during training with a decay rate of 0.999, which
is used in the inference phase. We observed that the loss curves during the distillation phase were
quite unintuitive and didn’t properly indicate convergence. For stage-1 (guidance) distillation, we
set γmin = 1 and γmax = 3. For stage-2 (trajectory) distillation, we fix the initial step size ∆ as

2https://huggingface.co/nieshen/SMDM
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PUB-ASV ( ) PUB-ASV ( )

PUB-BBE ( ) PUB-BBE ( )

Quasar-T ( ) Quasar-T ( )

QQP ( ) QQP ( )

Figure 1: Main results displaying the metrics versus denoising steps plots for the four tasks men-
tioned in Section 4.1. Here, γ refers to the guidance scale during inference and R refers to the
number of distillation rounds in trajectory distillation (which may differ for each task as mentioned
in Section 4.2). Our distilled MDLMs consistently outperform the vanilla-fine-tuned teacher on few-
step generation.

1/2k (k ∈ N) depending on the task, which also gives us the total number of rounds R = k. To
better assess the training progress, we generated outputs after fixed training step intervals on a small
validation set and tracked the metrics mentioned in Section 4.1. For inference, we use a greedy
heuristic-based sampling strategy proposed in Chang et al. (2022), details of which are present in
Algorithm 5 in the Appendix B. We set the sampling temperature to 0.5. Further hyperparameter
details can be found in Appendix D.

5 RESULTS AND DISCUSSION

Figure 1 shows the main results of our distillation experiments with the datasets mentioned in the
previous section. We plot metrics versus denoising steps on every test set with three settings: (1)
vanilla-fine-tuned MDLM on the given task, (2) guidance-distilled MDLM with vanilla-fine-tuned
model as the teacher, and (3) trajectory-distilled MDLM with R distillation rounds where the teacher
in the first round is the guidance-distilled MDLM and the teacher in a subsequent round r is the

6
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Table 1: Ablations on different loss functions for guidance distillation on various seq-to-seq NLP
tasks. The guidance distilled MDLMs using divergence-based loss functions (based on KL diver-
gence and TVD) outperform the teacher MDLM (with mode-seeking KL-divergence performing
the best), while the MDLM distilled with MSE loss underperforms significantly. The highlighted
mode-seeking KL loss is used in the main experiments.

PUB-BBE PUB-ASV
METEOR ROUGE-L METEOR ROUGE-LSettings Denoising

steps γ = 1.4 γ = 2.0 γ = 1.4 γ = 2.0 γ = 1.4 γ = 2.0 γ = 1.4 γ = 2.0

4 35.368 31.858 39.997 35.232 49.449 44.43 54.657 49.254
16 51.897 50.385 52.972 50.657 67.354 66.123 68.789 67.235

Vanilla-
fine-tuned
(teacher) 64 59.03 57.293 58.77 56.102 73.102 71.987 73.329 72.027

4 39.11 36.978 43.281 39.49 54.304 50.915 58.846 54.085
16 54.893 54.788 55.791 54.401 70.176 69.652 71.282 70.28mode-seeking

KL 64 60.734 60.551 60.272 59.043 74.693 74.495 74.83 74.295

4 37.81 34.714 42.197 37.069 52.621 48.452 57.448 51.834
16 54.245 53.577 55.417 53.339 69.24 68.319 70.521 69.041mode-covering

KL 64 60.335 59.859 60.078 58.332 74.208 73.855 74.356 73.663

4 38.734 36.152 43.07 38.586 53.885 50.363 58.606 53.563
16 54.616 54.361 55.715 54.04 70.042 69.269 71.184 69.881TVD
64 60.655 60.356 60.243 58.753 74.583 74.319 74.778 74.093

4 29.297 27.906 38.862 34.722 37.697 36.982 49.464 47.08
16 44.487 45.211 50.327 49.023 53.266 53.791 60.958 60.297MSE
64 51.391 51.739 55.02 53.845 58.854 59.171 64.686 64.191

Quasar-T QQP
4 21.777 18.493 26.671 21.272 32.724 31.472 34.202 31.086

16 26.731 25.34 31.699 28.33 38.341 38.251 38.679 37.202
Vanilla-

fine-tuned
(teacher) 64 28.237 27.663 33.307 30.795 40.017 40.068 39.882 38.686

4 22.523 19.525 27.836 22.476 33.71 32.989 35.124 32.653
16 27.224 26.303 32.59 29.522 38.978 39.28 39.252 38.153mode-seeking

KL 64 28.684 28.636 34.014 32.047 40.523 40.921 40.349 39.489

4 22.133 19.253 27.271 22.29 33.085 32.19 34.614 31.853
16 27.146 26.074 32.278 29.386 38.749 39.006 39.122 37.905mode-covering

KL 64 28.49 28.628 33.672 31.899 40.354 40.764 40.26 39.349

4 22.461 19.292 27.746 22.352 33.594 32.602 35.079 32.236
16 27.249 26.364 32.584 29.654 38.896 39.197 39.214 38.062TVD
64 28.619 28.606 33.973 31.958 40.442 40.874 40.314 39.414

4 20.39 15.045 27.728 21.364 27.398 27.984 30.943 29.878
16 25.005 20.196 31.837 26.088 31.116 31.972 33.892 33.507MSE
64 26.281 21.963 33.045 27.679 31.845 33.241 34.448 34.548

trajectory-distilled MDLM from round r − 1. We show the plots on two different guidance scales,
considering that we distill on a range of guidance scales.

Our distilled models achieve up to 16× speedup in conditional generation while maintaining com-
petitive quality. Across multiple benchmarks, we observe substantial efficiency gains with guidance-
and trajectory-distilled MDLMs. On the Bible style transfer (PUB-BBE and PUB-ASV) tasks, our
7-round distilled MDLM with only 16 denoising steps matches the METEOR and ROUGE-L scores
of the vanilla-fine-tuned teacher at 128 denoising steps (i.e., 256 NFEs). This translates to a 16×
overall speedup (2× from guidance distillation and 8× from trajectory distillation). Similar im-
provements are observed for paraphrasing (QQP) and question generation (Quasar-T) tasks. Beyond
this, our proposed method also enhances few-step generation, compared to the vanilla-fine-tuned
MDLM, e.g., on the QQP dataset, our student MDLM with γ = 2.0 achieves a +14.4 point gain
in METEOR scores and +11.7 point gain in ROUGE-L scores over the teacher MDLM for 2-step
generation. Moreover, performance improves progressively across rounds: as the student learns to
approximate the teacher over larger step sizes, the student’s few-step-generation capabilities steadily
strengthen. This trend is evident in our main results, where intermediate-round models that already
offer strong efficiency–quality trade-offs are further improved in later rounds.

Guidance-distilled MDLMs achieve performance that matches, or even surpasses, the per-
formance of their teachers. This comes as an added benefit along with the improved efficiency
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Figure 2: Sample generated outputs from the public Bible versions→basic English (top) and QQP
paraphrasing (bottom) tasks. NFE refers to the number of function evaluations performed to generate
the output. We write “NFE = 2×N” to indicate the use of N denoising steps with 2 NFEs per step
for classifier-free guided generation. Generation errors are indicated in red.

Public Bible Versions→ Bible in Basic English (PUB-BBE)

Input: So the priest gave him hallowed bread: for there was no bread there but the shewbread, that was
taken from before the Lord, to put hot bread in the day when it was taken away.
Generated Outputs:

• Vanilla-fine-tuned (NFE = 2× 128): So the priest gave him holy bread: for there was no bread
there but the holy bread which had been taken away from before the Lord, to put warm bread on the
day when it was taken away.

• Vanilla-fine-tuned (NFE = 2× 16): So the priest gave him holy bread: for there was no bread there
only only holy bread which had been taken away before before the Lord, to put warm bread on the
day when it has taken taken taken away.

• Vanilla-fine-tuned (NFE = 2× 4): So the priest gave him holy bread; him there because there no
only no bread bread bread, the before which the before before before before before before before
before the, on the the when the had taken taken taken taken taken taken taken.

• Distilled (NFE = 16): So the priest gave him the holy bread: for there was no bread there but the
holy bread which was taken from before the Lord, to put soft bread on the day when it was taken away.

• Distilled (NFE = 4): So the priest gave him a holy bread: for there was no bread there but the holy
bread bread was taken taken before before the Lord, to put salt bread on the day when it was taken
away

Sentence Paraphrasing (QQP)

Input: What will be the general equation of the following curve?
Generated Outputs:

• Vanilla-fine-tuned (NFE = 2× 128): What is the general equation of the following curve?

• Vanilla-fine-tuned (NFE = 2× 16): What is the general equation of the following simple curve
curve?

• Vanilla-fine-tuned (NFE = 2× 4): What is the general equation of following curve curve curve
curve curve curve curve??

• Distilled (NFE = 16): What is the general equation of the following curve?

• Distilled (NFE = 4): What is the general equation of the following curve?

obtained by the reduction of two forward passes to a single pass for the computation of the guided
output distribution. To better understand this, we conduct ablation studies on guidance distillation
using the following loss functions:

1. Mode-seeking KL divergence:
∑

x DKL

(
pstudent(x) ∥ pteacher(x)

)
,

2. Mode-covering KL divergence:
∑

x DKL

(
pteacher(x) ∥ pstudent(x)

)
,

3. Total Variation Distance (TVD): (1/2)
∑

x ∥ pteacher(x)− pstudent(x) ∥1, and

4. Mean Squared Error (MSE):
∑

x(1/|x|) ∥ log pteacher(x)− log pstudent(x) ∥22.

Table 1 shows the performance with the aforementioned guidance-distillation loss functions. Our
results show that MDLMs distilled with divergence-based objectives (KL divergence and TVD)
perform comparably, often outperforming the vanilla-fine-tuned teacher MDLM, with the mode-
seeking variant of KL divergence yielding the best performance. We attribute this to its zero-forcing
property: the loss imposes stronger penalties when the student places probability mass in locations
(over vocabulary) where the teacher has lower likelihood. This behavior suppresses the sampling
of low-probability tokens during generation. By contrast, the MSE loss underperforms substan-
tially, even falling short of the vanilla-fine-tuned teacher model. This highlights the critical role of
divergence-based training objectives in effective guidance distillation.
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Qualitative analysis: Figure 2 compares generations from the vanilla-fine-tuned teacher model
and our distilled student model on PUB-BBE style transfer and paraphrasing tasks. The qualitative
observations are consistent with the quantitative results. For the teacher model, we observe a sharp
degradation in sample quality as the NFEs decrease. This degradation arises because reducing NFEs
forces the MDLM to predict/unmask larger sets of tokens independently at each step, weakening
the dependencies among them and leading to incoherent sequences. In contrast, the distilled model
exhibits substantially better few-step generation, retaining high quality even with as low as 16 NFEs;
while an initial speedup is achieved by imitating guided outputs in a single step, major improvement
stems from transferring trajectory knowledge from the teacher, enabling the student to learn stronger
token-level dependencies and form more coherent associations across the sequence. More generated
samples appear in Appendix E.

6 RELATED WORK

Diffusion language modeling: Inspired by diffusion generative modeling for images (Ho et al.,
2020; Song et al., 2021a;b), diffusion language modeling has recently surfaced as a non-
autoregressive alternative to the traditional next-word prediction language modeling paradigm. Prior
works have explored Gaussian diffusion process (similar to image diffusion modeling) in word em-
bedding spaces for language modeling (Li et al., 2022) and also explored its scaling laws (Gulrajani
& Hashimoto, 2023). Works of Gong et al. (2023); Lin et al. (2022); Yuan et al. (2024) have ex-
plored diffusion modeling for seq-to-seq NLP tasks with encoder-decoder based architectures. Our
work is based on diffusion modeling in discrete spaces (Hoogeboom et al., 2021; Austin et al., 2021;
Zheng et al., 2024). Specifically, we work with masked or absorbing-state discrete diffusion mod-
eling (Sahoo et al., 2024; Shi et al., 2024) where the diffusion noising process iteratively masks out
the tokens in the sentence. Recent works of Nie et al. (2025b), Zhu et al. (2025), and Ye et al. (2025)
have shown the scalability of masked diffusion for language modeling, showcasing competitive per-
formance to autoregressive LLMs.

Diffusion distillation: Distillation of diffusion models trained to generate images has been widely
explored in the literature. Early works of Luhman & Luhman (2021) distilled by generating a syn-
thetic dataset from a pre-trained diffusion model using deterministic sampling. Later works of Sal-
imans & Ho (2022) and Berthelot et al. (2023) bypassed the creation of a synthetic dataset by
progressive multi-round distillation of diffusion models to reduce the number of generation steps.
Based on these works, Meng et al. (2023) proposed distillation of guided image diffusion mod-
els; this is also the most relevant work to our research. Consistency distillation (Song et al., 2023)
presents distillation techniques for one-step image generation. For MDLMs, the progressive dis-
tillation strategy called self-distillation through time (SDTT) has been proposed by Deschenaux &
Gulcehre (2025). This work was followed by Hayakawa et al. (2025), which introduces dimensional
correlations to further distill the models trained using SDTT. For uniform diffusion language mod-
els (UDLMs), the work of Sahoo et al. (2025) connects UDLMs to Gaussian diffusion and proposes
discrete consistency distillation inspired by consistency models in image generation.

7 SUMMARY, CONCLUSION AND FUTURE WORK

In this work, we present distillation methods for conditional masked diffusion language models
for efficient inference on seq-to-seq NLP tasks. Our methods tackle two main causes of sampling
inefficiencies, i.e., (i) classifier-free guidance and (ii) multi-step denoising generation, reducing the
total number of function evaluations required for generation without any significant degradation
in generation quality. Empirically, we show a speedup of up to 16× on various seq-to-seq NLP
tasks by reducing the number of function evaluations while virtually retaining the performance. By
improving efficiency and few-step sample quality, our proposed method significantly enhances the
capability of MDLMs for task-specific practical use cases. Our proposed dual-distillation framework
shows great potential along two promising directions. First, our framework can be extended to
multimodal MDLMs and to larger model architectures, broadening its applicability. Second, more
exploration can be conducted to leverage structured correlations across token dimensions (Hayakawa
et al., 2025) within conditional settings where dimensional dependencies are crucial.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

The training experiments are performed on top of the open-sourced models provided by Nie et al.
(2025a). The general training and inference settings are mentioned in Section 4.2. More details on
hyperparameters for the specific tasks and distillation stages are mentioned in Appendix D. Addi-
tional details regarding the implementation have been mentioned in Appendix C. We plan to open-
source our code and trained model weights upon de-anonymization.

9 ETHICS STATEMENT

Generative language models are trained on large-scale datasets that may contain societal biases,
which can inadvertently be reflected in the model outputs. Moreover, such models can be misused
for unethical purposes, including generating misleading content or facilitating plagiarism. The fo-
cus of this work is on improving the efficiency of masked diffusion language models, and as such,
it does not introduce additional ethical risks beyond those already associated with generative lan-
guage models. Nevertheless, we acknowledge the broader ethical considerations surrounding the
deployment of generative models and emphasize the importance of responsible use.

10 STATEMENT OF LARGE LANGUAGE MODELS USAGE

Large Language Models (LLMs) were used solely as an assistive tool for improving the clarity and
readability of the manuscript. No part of the research ideation, methodology design, experimental
execution, or analysis was conducted using LLMs. All refinements suggested by the LLM were
carefully reviewed and verified by the authors prior to inclusion. The authors take full responsibility
for the final content of this paper.
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APPENDIX

A CONSTRUCTING TARGETS FOR TRAJECTORY DISTILLATION

We construct a distillation target distribution for trajectory distillation by solving a two-step reverse
diffusion process from a randomly sampled t ∼ U(0, 1) and a fixed step size ∆. To do so, we
defined a function solve that takes a noisy input xt, step size, and the teacher denoiser. Algorithm
3 describes the solve function in detail. For solving a single step, we follow the reverse diffusion
equations from Equation 2 and obtain a sample xt−∆. On the positions that got unmasked in the
step, we collect the log-probabilities predicted by the teacher denoiser. We perform the reverse
solving step and log-probabilities step again, obtaining a sample xt−2·∆. Finally, we perform a
forward pass through the teacher denoiser (i.e., a prediction at t = 0 from a sample at timestep
t− 2 ·∆) and collect log-probabilities on all the remaining masked positions in xt−2·∆. In this way,
we obtain the training target log-probabilities on all masked positions of xt.

Algorithm 3: solve
Given: Noisy sequence xt of length L, step size ∆, denoiser x̂θ, vocabulary size V , minimum
possible noise level ϵ(> 0).
out← 0 ∈ RL×V

for k = 1, 2 do
pγθ (x0|xt,y)← exp (x̂θ(xt,y, γ));
x0 ∼ pγθ (x0|xt,y) ; ▷ Sample x0 from the denoiser predictions
s← max(t− k ·∆, ϵ) ; ▷ Next step in reverse based on the step size ∆
for all positions i in the sequence do

if xi
t ̸= ⟨m⟩ then
x
(i)
s ← x

(i)
t ; ▷ Umasked tokens remain unchanged

else

x
(i)
s ←

{
⟨m⟩ with probability s

t ,

x
(i)
0 with probability 1− s

t

; ▷ Follows from Equation 2

if x(i)
s ̸= x

(i)
t then

out(i) ← log pγθ (x
(i)
0 |xt,y) ; ▷ Collect log-probs on unmasked

positions

xt ← xs

for j where x
(j)
t = ⟨m⟩ do

out(j) ← x̂
(j)
θ (xt,y, γ) ; ▷ Collect log-probs on the remaining masked

positions after simulating two reverse steps

return out

B MASKED DIFFUSION TRAINING AND INFERENCE

Algorithm 4 outlines the training procedure for MDLMs. Given a training instance x0, a random
timestep t is sampled, after which the forward masked diffusion process is applied. The model is
then trained to reconstruct the masked positions using cross-entropy loss. Finally, the gradients of
this loss are computed and used to update the model parameters via standard optimization.

Algorithm 5 presents the sampling procedure for MDLMs. In this work, we adopt the greedy de-
coding strategy introduced by Chang et al. (2022). At each timestep, let k denote the number of
tokens to be unmasked. The algorithm selects the k tokens with the highest predicted probabilities
under pθ(x0|xt,y). Furthermore, the prediction distribution pθ(x0|xt,y) may be enhanced using
classifier-free guidance, as described in Section 3.1.
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Algorithm 4: MDLM Training Algorithm
Given: MDLM Denoiser x̂θ(·,y), input/source sentence y, mask token ⟨m⟩.
repeat

(x0,y) ∼ data;
t ∼ U(0, 1);
xt ∼ qt|0(xt|x0) ; ▷ forward diffusion process

log pθ(x0|xt,y)← x̂θ(xt,y) ; ▷ forward pass through the network

LMDM = −
∑

x
(i)
t =⟨m⟩

log pθ(xi0|xt,y) ; ▷ Compute loss

Gradient descent with∇θLMDM
until convergence;

Algorithm 5: MDLM Sampling Algorithm
Given: Trained MDLM denoiser x̂θ(·,y), input/source sentence y, Total denoising steps = T ,
generation sequence length L, mask token ⟨m⟩.

Define: ci as the confidence of a token xi
0 as assigned by the distribution pθ(xi

0|xt,y).
xt ← ⟨m⟩|L| ; ▷ Initialize as a sequence of ⟨m⟩ tokens.

for t = 1, T−1
T , T−2

T , ..., 1
T do

s = t− 1
T ;

k = ⌊L(1− s)⌋ ; ▷ number of unmasked tokens at timestep s

pθ(x0|xt,y)← x̂θ(xt,y) ; ▷ forward pass through the network

x0 ∼ pθ(x0|xt,y);

for i = [1, 2, ..., L] do
if xi

t ̸= ⟨m⟩ then
xi
0 = xi

t and ci = 1 ; ▷ Retained already unmasked tokens
else

xi
0 ∼ pθ(xi0|xt,y) and ci = pθ(xi0 = xi

0|xt,y)

if ci ∈ top-k
(
{cl}L−1

i=1

)
then

xi
s = xi

0 ; ▷ Unmask tokens with top-k highest confidence of
sampling

xt ← xs;
return x0

C ARCHITECTURE AND IMPLEMENTATION DETAILS

Since we use the pre-trained models from Nie et al. (2025a), we adopt their Transformer encoder
as the backbone architecture for MDLMs. In contrast to standard diffusion model architectures, no
additional timestep embeddings are incorporated. Our model is configured with 12 layers, a hidden
size of 768, 12 attention heads, and an intermediate dimension of 3072. For the distilled MDLMs,
we have guidance scale as an extra input to the network (as mentioned in Section 3.1). The scalar
guidance scale is first converted to a sinusoidal embedding similar to positional embeddings used
in Transformer-based language models. This sinusoidal embedding goes through a two-layer MLP
with SiLU activation function, and outputs a 768-dimensional embedding vector. We treat this vector
corresponding to the guidance scale as a token embedding and prepend it to the embedding sequence
of the input tokens for conditioning.

Implementation: The input to the denoiser is given by concatenating the conditional sequence
y and the noisy input xt. Consider the conditional sequence y = (y(0), y(1), y(2), . . . , y(L1−1))

and the ground truth target sequence x0 = (x
(0)
0 , x

(1)
0 , x

(2)
0 , . . . , x

(L2−1)
0 ). The in-

put to the denoiser after the forward process will look something like xinp =

(y(0), y(1), y(2), . . . , y(L1−1), ⟨sep⟩, x(0)
0 , ⟨m⟩, x(2)

0 , . . . , ⟨m⟩), where ⟨sep⟩ is a separator to-
ken or string. The ground truth sequence will be partially (or fully) masked depending on the noise
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Task Setup LR warmup steps batch size Max sequence
length

Training
steps

steps
per round

Initial
step size

PUB-BBE
and

PUB-ASV

Vanilla-
fine-tuning 3e-4 500 256

192
22.5K - -

Guidance
distillation 7e-5 1000 192 25K - -

Trajectory
distillation 8e-5 500 160 70K 10K 1/128

QQP

Vanilla
Fine-tuning 1e-5 1000 512

64
20K - -

Guidance
distillation 5e-5 500 512 36K - -

Trajectory
distillation 1e-5 100 512 30K 5K 1/64

Quasar-T

Vanilla
fine-tuning 5e-6 1000 256

64
16K - -

Guidance
distillation 5e-6 500 256 33.5K - -

Trajectory
distillation 1e-5 100 256 25K 5K 1/32

Table 2: Hyperparameter settings for the fine-tuning and distillation training on the tasks performed.

level randomly selected during the training step (see Algorithm 4). After xinp is passed through the
denoiser, we gather the logit predictions at the masked positions and ignore the unmasked positions.
The denoiser learns to predict masked tokens given the unmasked ones. During inference, we use
the trained network to predict all masked positions, keeping predictions on the unmasked tokens
intact. In distillation, the objective changes to mimicking the distribution of tokens on the masked
positions output by the trained teacher denoiser. As mentioned in Section 4.2, we maintain a set of
parameters with an exponential moving average (EMA) with some decay dema. The way to do this
is to first initialize the EMA parameters θema with the parameters of the denoiser θ before training.
The optimization/parameter update happens as follows:

θ ← θ − κ · ∇L;
θema ← (1− dema) · θ + dema · θema. (5)

Here, κ is the learning rate. The exponential moving average of parameters stabilizes the param-
eter update and helps generalize better. To enable classifier-free guidance, Ho & Salimans (2021)
proposes to train the denoiser on conditional and unconditional generation in tandem by randomly
dropping out the condition with a small probability during training. However, with MDLMs, Nie
et al. (2025a) shows that the unconditional outputs can be obtained by simply masking out the con-
ditional sequence. This doesn’t need any training-time dropping of the conditional sequence, as the
unconditional setting in MDLMs (i.e., the conditional sequence being masked out) gets implicitly
learned.

To decode which positions to re-mask and which to retain, we greedily choose the tokens predicted
with the highest probability (Chang et al., 2022). The ordering of unmasking can be influenced by
designing different inference-time heuristics (see Algorithm 5); however, we do not explore them in
this work.

D HYPERPARAMETER DETAILS

Table 2 provides the hyperparameter values used during training under different datasets and set-
tings. For PUB-BBE and PUB-ASV, we use the entire training corpus of (Carlson et al., 2017),
which consists of paired data between different versions of the Bible. So, we train a single model
on the entire dataset and evaluate on the task-specific test sets. The common training and inference
settings are mentioned in Section 4.2.
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E ADDITIONAL GENERATED OUTPUTS

MDLM outputs from PUB-BBE

Input: and your fields, and your vineyards, and your olive-yards – the best – he doth take, and hath
given to his servants.
Generated Outputs:

• Vanilla-fine-tuned (NFE = 2× 128): And let him take your fields and your vine-gardens and your
olive-gardens, the best, and let him give to his servants.

• Vanilla-fine-tuned (NFE = 2× 16): And his fields take your best vines and vine-ens and your
olivelive-treesens, and give to his servants as servants servants

• Vanilla-fine-tuned (NFE = 2× 4): And your fields take and your vine-gardens and your o–
liveliveens heives and and his to give his servants servants

• Distilled (NFE=16): And your fields and your vine-gardens and your olive-gardens he will take and
given it to his servants.

• Distilled (NFE=4): And your fields and your vine-ardens and your olive-gardens, he will take and
and give to his servants

MDLM outputs from PUB-ASV

Input: And Yahweh said to him, “But I will be with you, and you will defeat Midian as if they are one
man.
Generated Outputs:

• Vanilla-fine-tuned (NFE = 2× 128): And Jehovah said unto him, But I will be with thee, and thou
shalt smite Midian, as though they were one man.

• Vanilla-fine-tuned (NFE = 2× 16): And Jehovah said unto him, But I will be with thee, and thou
shalt sm Midian as though though were were one man man

• Vanilla-fine-tuned (NFE = 2× 4): And Jehovah said unto him, But I will be with thee, and thou
shalt smite Midian as as though they as as.

• Distilled (NFE=16): And Jehovah said unto him, But I will be with thee, and thou shalt overcome
Midian as though they be one man.

• Distilled (NFE=4): And Jehovah said unto him, But I will be with thee, and thou shalt strike Midian
as though they be one man.

MDLM outputs from QQP

Input: How do I convert this 35 mm film camera to a digital camera from scratch?
Generated Outputs:

• Vanilla-fine-tuned (NFE = 2× 128): How do I convert a 35 mm film to a digital camera?

• Vanilla-fine-tuned (NFE = 2× 16): How do I convert a 35 mm film camera to digital camera cam-
era?

• Vanilla-fine-tuned (NFE = 2× 4): How do I convert film cameramm film camera camera camera
camera camera camera camera

• Distilled (NFE=16): How do I convert a 35 mm film camera to a digital camera?

• Distilled (NFE=4): How can I convert a 35 mm film camera to a digital camera?
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MDLM outputs from Quasar-T

Input: Rather than using pure egg tempera , which is dry pigment ground in water and mixed with an
egg yolk for the underpainting , Gnidziejko uses an egg-oil emulsion which consists of the pigment and
water.
Generated Outputs:

• vanilla-fine-tuned (NFE = 2× 128): Which painting medium consists of egg yolks and water?

• vanilla-fine-tuned (NFE = 2× 16): Which painting medium is in water and egg yolks water?

• vanilla-fine-tuned (NFE = 2× 4): Which painting medium involves water water egg egg egg egg
egg egg yol

• Distilled (NFE=16): Which painting medium uses egg yolks and water?

• Distilled (NFE=4): Which painting medium involves water egg and and

19


	Introduction
	Preliminaries
	Masked Diffusion Language Models
	Knowledge Distillation in Language Models

	Distillation of Conditional Masked Diffusion Language Models
	First Stage: Guidance Distillation
	Second Stage: Progressive Trajectory Distillation

	Experimental Settings
	Datasets and Evaluation
	Training and Inference Details

	Results and Discussion
	Related Work
	Summary, Conclusion and Future Work
	Reproducibility Statement
	Ethics Statement
	Statement of Large Language Models Usage
	Constructing Targets for Trajectory Distillation
	Masked Diffusion Training and Inference
	Architecture and Implementation Details
	Hyperparameter Details
	Additional Generated Outputs

