
Unsupervised 3D Part Decomposition via Leveraged Gaussian Splatting

Jae Goo Choy1, Geonho Cha2, Hogun Kee3, and Songhwai Oh3∗

Abstract— We propose a novel unsupervised method for
motion-based 3D part decomposition of articulated objects
using a single monocular video of a dynamic scene. In contrast
to existing unsupervised methods relying on optical flow or
tracking techniques, our approach addresses this problem
without additional information by leveraging Gaussian splatting
techniques. We generate a series of Gaussians from a monocular
video and analyze their relationships to decompose the dynamic
scene into motion-based parts. To decompose dynamic scenes
consisting of articulated objects, we design an articulated
deformation field suitable for the movement of articulated
objects. And to effectively understand the relationships of Gaus-
sians of different shapes, we propose a 3D reconstruction loss
using 3D occupied voxel maps generated from the Gaussians.
Experimental results demonstrate that our method outperforms
existing approaches in terms of 3D part decomposition for
articulated objects. More demos and code are available at
https://choonsik93.github.io/artnerf/.

I. INTRODUCTION

Understanding the 3D structure of a scene is one of
the core problems in computer vision and graphics. Ad-
ditionally, comprehending the 3D kinematics of articulated
objects provides valuable information, especially in robotics
tasks. Some researchers [1], [2], [3] incorporate 3D kine-
matic information of articulated objects to manipulate them.
Therefore, inferring motion-based parts from RGB video is
crucial, and unsupervised methods capable of inferring parts
from unfamiliar objects are valuable for manipulating un-
seen articulated objects. Meanwhile, recent dynamic neural
radiance fields (NeRF) methods enable us to reconstruct a
4D scene from an RGB video [4], [5], [6]. Kerbl et al.
[7] proposed 3D Guassian splatting (3DGS), a novel view
image synthesis technique representing the scene with 3D
Gaussians. By utilizing differentiable splatting techniques [8]
with Gaussians, it achieves not only high image synthesis
quality but also a dramatic increase in rendering speed. 4D
Guassian Splatting (4DGS) [9] applies the idea of 3DGS to
enable novel view image synthesis in dynamic scenes, and
like 3DGS, it offers high image synthesis quality and fast
rendering speed.

WatchItMove [10] (WIM) is a method to infer a canonical
space with 3D partitioned information of articulated objects
from multi-view videos. WIM consists of two modules: a
network that partitions the canonical space into a set of
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Fig. 1. Visualization of the entire process of the proposed method. In
the first stage, Gaussians are generated by 4DGS, and in the second stage,
the articulated deformation field is trained using the generated Gaussians to
predict part segmentation and its deformation.

ellipsoids, and a network that predicts the pose changes of the
ellipsoids over time. WIM successfully partitions the canon-
ical space into parts unsupervisedly through image synthesis
using the NeRF technique. However, WIM is vulnerable
when a monocular video is given, and it subdivides objects
into ellipsoids, leading to the disadvantage of unnecessarily
dividing them into more parts than the actual number of
parts.

To resolve this issue, we propose a novel method to infer
the 3D structure of articulated objects from a monocular
video, leveraging Gaussian splatting techniques. In particular,
we take three benefits of 4DGS: fast image rendering speed,
fast training speed, and high quality Gaussians for dynamic
scenes. The proposed method consists of two stages. In the
first stage, 3D Gaussians are generated for each time stamp
from the monocular video using 4DGS. In the second stage,
an articulated deformation field is trained, which consists of
a decomposition network that partitions the canonical space
into parts and a deformation network that infers pose changes
over time for each part. The whole process of the proposed
method is visualized in Figure 1.

By using the articulated deformation field, we can deform
the canonical 3D Gaussians to any time in the training
scene. We train the articulated deformation field by ren-
dering the images from the deformed 3D Gaussians and
comparing those with the ground-truth images. However,
this photometric loss alone is not sufficient to efficiently
train the articulated deformation field, so we introduce a 3D
reconstruction loss that takes into account the 3D shape of
the Gaussians.



The 3D reconstruction loss is inspired from iterative clos-
est point (ICP) techniques [11], [12], [13], [14]. In essence,
when given two distinct point clouds, X and Y, ICP aims to
iteratively optimize a delta function Ψ(X) by minimizing a
distance metric, such as the chamfer distance [15], between
the transformed point cloud X+Ψ(X) and Y. To compute the
chamfer distance between two point clouds, it is necessary
to find the nearest point for each point in the point cloud,
which can lead to instability during training. To address these
challenges, the 3D reconstruction loss computes the distance
between two Gaussians by voxelizing them.

Through extensive experiments, we demonstrate the ef-
fectiveness of the proposed method in unsupervised 3D part
decomposition by comparing its performance on articulated
objects datasets with other state-of-the-art methods. In sum-
mary, the contributions of this paper can be summarized as
follows

• We propose a novel approach to infer the 3D parts of
articulated objects from monocular videos leveraging
Gaussian splatting techniques.

• Our method demonstrates the state-of-the-art perfor-
mance in a 3D part decomposition task.

II. RELATED WORK

A. 3D part decomposition

The use of point clouds for 3D part decomposition
is prevalent in the field, with various deep learning net-
works [16], [17], [18], [19], efficiently handling unordered
point cloud information. Large-scale 3D part datasets like
ShapeNetCore [20] and PartNet [21] have contributed to the
success of these approaches. While these methods excel in
decomposing parts from a single point cloud, they face chal-
lenges when encountering objects from unseen categories.
To address this, several unsupervised methods use multiple
point clouds and object motions for 3D part decomposition.
For instance, Tzionas et al. [22] and Nunes et al. [23] utilize
3D motion tracking information for simultaneous 3D decom-
position and mesh reconstruction of articulated objects, along
with the recovery of 3D kinematics. In a similar vein, Choy
et al. [24] employ point cloud registration [14] for motion-
based 3D decomposition without the need for explicit 3D
motion tracking. Additionally, some studies [25], [26], [27]
propose motion-based part decomposition from images using
optical flow. Notably, Noguchi et al. [10] introduce a method
for decomposing articulated objects into parts from multi-
view videos using the NeRF technique. Their approach is
underpinned by the assumption that articulated objects can
be effectively approximated by a set of ellipsoids.

B. Novel view image synthesis for dynamic scenes

Neural Radiance Fields (NeRF) is a method that encodes
3D information from various multi-view images and en-
ables us to render images at arbitrary viewpoints based on
this encoded information. Notably, NeRF techniques have
evolved beyond static scenes, extending their applicability to
dynamic scenes with an additional temporal dimension [4],

[5], [6], [28]. The core concept underlying these advance-
ments involves defining a time-invariant canonical space
and use deformations to this space to achieve rendering
across the entire temporal span. However, deviating from the
mainstream, an alternative approach efficiently encodes high-
dimensional 4D volumes using six planes. This alternative,
as proposed in [6], enables the rendering of dynamic scenes
without relying on a canonical space, presenting a novel
perspective in the field of NeRF methods. 4DGS, on the
other hand, uses a Gaussian splatting technique that maps
3D Gaussians to 2D, unlike the NERF method that calculates
colors per ray, resulting in higher quality images and faster
rendering speed.

III. PRELIMINARY

A. 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [7] is a computer graph-
ics method for reconstructing a 3D scene from multi-view
images. In this technique, the 3D scene is represented as a
point cloud, where each point possesses Gaussian properties,
centered at X ∈ R3 with a covariance matrix as

G(x) = e−
1
2 xTΣ−1x. (1)

And the covariance matrix Σ is defined as the multiplication
of a rotation matrix R and a scaling matrix S:

Σ = RSST RT . (2)

Each point also has rendering attributes, including opacity
o ∈ R and color in spherical harmonic (SH) form c ∈ Rk,
where k is the number of spherical harmonic functions. In
summary, each 3D Gaussian point has a set of attributes as
(X , r, s, c, o), and the collection of all Gaussians is denoted
as G.

The novel view image Î with a viewing transform matrix
W is rendered by splatting the 3D Gaussians G. Furthermore,
3DGS introduces the differentiable view frustum and fast
sorting techniques, which allow for extremely fast rendering.
The differentiable splatting method is denoted as S, where
Î = S(G,W).

B. 4D Gaussian Splatting

4D Gaussian Splatting (4DGS) [9] extends the applica-
bility of 3DGS which is only applicable to static scenes, to
dynamic scenes by introducing a Gaussian deformation field
F . It deforms the 3D Gaussians G at the canonical space
to the arbitrary time space t, as G′ = G + F(G, t). The
Gaussian deformation field F predicts the deformation of
the pose X , the rotation factor r, and the scale factor s of
each Gaussian, as (X + ∆X , r + ∆r, s + ∆s). At time t,
the rendered image using the viewing transform matrix W
is denoted as S(G′,W).

IV. METHOD

A. Articulated deformation field

We are considering dynamic scenes comprising articulated
objects, where the scene contains up to K parts (though the
actual number of parts may be fewer). A key characteristic



Fig. 2. Visualization of the structure of (a) a decomposition network and
(b) a deformation network.

Fig. 3. Visualization of the articulated deformation field Ψ for the proposed
model. The articulated deformation field Ψ(x, t) is formulated using the
outcomes from W(x) and D(t).

of articulated objects is that spatial locations belonging to
the same part in the canonical space can be mapped to
arbitrary times t by the same 3D transformation. Therefore,
the articulated deformation field can be defined as

Ψ(x, t) =
K∑

k=1

wk(x)(Rk(t)x + tk(t))

= w(x)T (R(t)x + t(t)),

(3)

where Ri(t) ∈ R3×3 and ti(t) ∈ R3 represent the rotation
and translation for the i-th part at time t, and wi(x) ∈
{0, 1} represents whether the spatial location x belongs to
the i-th part or not. R(t) ∈ RK×3×3, t(t) ∈ RK×3, and

w(x) ∈ RK are aggregations of all rotations, translations,
and probabilities. For the articulated deformation field, we
introduce a decomposition network W(x) : R3 → RK and a
deformation network D(t) : R → RK×7. The decomposition
network utilizes a tri-plane structure, and the deformation
network outputs a quaternion and translation, as illustrated
in Figure 2. The overall articulated deformation field Ψ(x, t)
is visualized in Figure 3.

B. The entire pipeline for training

First, we utilize 4DGS to generate a set of Gaus-
sians {G1, · · · ,GF } given a set of training cameras
{(M1, t1), · · · , (MF , tF )}, where M is the view matrix of
the camera and t is the frame time, and F is the number of
frames. For convenience, the Gaussian in the central frame
and the time have been defined as the canonical Gaussian
and canonical time as (Gcan, tcan) = (GF//2, tF//2). We
then create the articulated deformation field as described in
Section IV-A and train it using the set of Gaussians. When
training the articulated deformation field, the parameters of
the generated Gaussians are frozen. As a result, we can obtain
the decomposition of the canonical space and deformation
from the canonical space to arbitrary times. The whole
pipeline is visualized in Figure 1.

C. Loss function

This section explains the losses for training the articulated
deformation field Ψ.
Photometric loss. Given a view matrix and the time (M, t),
the photometric loss is the L1 color loss between the ground-
truth image I and the rendered image with the deformed
canonical Gaussians Ψ(Gcan) as Î = S(Ψ(Gcan, t),M):

Lphoto = ∥I − Î∥1. (4)

3D reconstruction loss. To efficiently train the articulated
deformation model, we introduce a novel 3D reconstruction
loss. The core idea of the 3D reconstruction loss is simple.
First, we denote the point cloud of Gaussians G as G(X ).
When mapping the point cloud of the canonical space Gaus-
sians Gcan(X ), to the arbitrary time ti in the training camera
using the articulated deformation field as Ψ(Gcan(X ), ti), it
should closely resemble the Gi(X ).

We propose a new method for measuring the distance
between two point clouds, tailored for our articulated de-
formation field, due to unsatisfactory results observed with
the chamfer distance commonly used for measuring distance
between two point clouds. First, we voxelize the point clouds
of each Gaussians into a voxel map of size W × H × D,
denoted as V (Gi(X )), where W , H , and D represent the
dimensions of the voxel map. We map V (Gcan(X )) to time ti
as Ψ(V (Gcan(X )), ti), and define the 3D reconstruction loss
as the L2 loss between Ψ(V (Gcan(X )), ti) and V (Gi(X )) as
follows:

L3D =
1

F

F∑
i=1

∥Ψ(V (Gcan(X )), ti)− V (Gi(X ))∥22. (5)



Fig. 4. Visualization of the process of obtaining Ψ(V (Gcan(X )), t) from
the articulated deformation field network. Each part is visualized with a
different color - red, yellow, and blue - in the voxel regions, and the overall
emptiness voxel map V (Gcan(X )) is the sum of the emptiness voxel map for
all parts. After applying the corresponding transformations to the emptiness
voxel map for each part and revoxelizing, we obtain Ψ(V (Gcan(X )), t).

To map V (Gcan(X )) to time ti, we transform Gcan for all rota-
tions and translations, then take the weighted sum according
to the label vector, and finally voxelize them. A visual
representation of the process of obtaining Ψ(V (Gcan(X )), t)
is given in Figure 4.
Total loss function. The total loss function is

Ltotal = Lphoto + L3D + Ltv, (6)

where Ltv is a grid-based total-variational loss [6], [5], [29],
[9].

V. EXPERIMENTS

We evaluate the performance on a 3D part segmentation
task, conducting all experiments on a GeForce RTX 4070
Ti Super GPU with a maximum of 40 parts. The proposed
method takes an average of 10 minutes on the D-NeRF
dataset and 3 minutes on 4DGS alone, where the second
stage averages 7 minutes.

A. 3D Part decomposition results

Datasets. To evaluate the performance of 3D part decom-
position, monocular videos of deforming articulated objects
with ground-truth decomposition label are necessary. We
generate our own dataset using articulated objects from two
datasets, the KinArt3D dataset [24] and the PartNet Mobility
dataset [30], both of which provide kinematic models for
articulated objects. We capture images and ground-truth
labels of articulated objects with changing poses using the
same camera views of the D-NeRF dataset [4].
Quantitative results. We conduct a quantitative performance
comparison between the proposed method and the most
relevant method, Watch It Move (WIM) [10]. Additionally,
we use two studies, Segment Anything (SAM) [31] and UIS
[32], both of which perform unsupervised part segmentation
at the image-level without utilizing optical flow as input, as

Fig. 5. Illustration of the optimization process. Starting from a random 3D
part label, our method successfully estimates 3D parts in an unsupervised
manner.

TABLE I
QUANTITATIVE RESULTS OF 3D PART DECOMPOSITION ON CUSTOM

DATASET.

Method mIoU
Door Drawer Kettle Lamp Leg Robot Average

UIS [32] 0.81 0.53 0.92 0.67 0.55 0.81 0.72
SAM [31] 0.94 0.71 0.78 0.91 0.57 0.80 0.79
WIM [10] 0.60 0.67 0.88 0.79 0.86 0.85 0.78

Ours 0.92 0.91 0.92 0.97 0.96 0.92 0.93

baselines. The overall results are summarized in Table I. The
results demonstrate that the proposed method outperforms
the baselines. Image-level part segmentation algorithms [31],
[32] decompose a higher number of parts than the actual
motion-based parts because they do not consider the entire
video sequence. This, in turn, contributes to a decrease in
performance. WIM [10] also shows inferior performance
compared to the proposed method. This is because it was
originally designed to train on multi-view videos rather than
monocular videos, suggesting a degradation in performance
on monocular videos.
Qualitative results. For the quantitative measure, we uti-
lize the mean Intersection over Union (mIoU) between the
predicted labels and the ground-truth labels. The 3D part
decomposition results, on the custom dataset, of the proposed
methods and baselines are shown in Figure 6. We observe
that the decomposition results obtained by the proposed
method are close to the ground-truth and outperform those of
other methods overall The decomposition results for the D-
NeRF dataset are shown in Figure 7. The proposed method
shows reasonable outcomes from a qualitative perspective.
Figure 5 illustrates the progressive enhancements in the
decomposition for the “jumping jack” and “standup” in
the D-NeRF dataset. It depicts labels assigned to occupied
voxels at the canonical space, demonstrating that even start-
ing from completely random labels, meaningful partitions
emerge based on motions. Notably, even without additional
post-processing steps for part merging, redundant parts are
eliminated.
Point cloud distance metric. As mentioned in Section IV-C,
instead of the proposed 3D reconstruction loss, the chamfer
distance can be used in the 3D reconstruction loss. However,



Fig. 6. Qualitative results on the custom dataset. We can see that the decomposition results of the proposed method are superior compared to the baselines.

Fig. 7. Qualitative results on the D-NeRF dataset. We can see that the proposed method successfully synthesizes novel-view images and predicts 3D part
labels.

experimentally, when using the chamfer distance, we observe
that although the decomposition results are seem to be
reasonable, the deformation results are adversely affected.
Figure 8 shows a common failure case when using the
chamfer distance in the “Hellwarrior” scene, where two legs
are switched.

VI. LIMITATIONS

The proposed method has several limitations. The main
limitation is that the proposed method faces challenges in
dividing overly small parts and exhibits instability in results
at joint regions where two parts meet. Furthermore, the
proposed articulated deformation field learns to assign points



Fig. 8. Failure case when using the chamfer distance loss.

to the same part based solely on their motion similarity.
As a result, decomposition results often assign points to the
same part even if they are spatially distant but have similar
motion. This is not intuitive for human perception and needs
improvement.

VII. CONCLUSION

In this paper, we introduce a novel method for inferring
the motion-based parts of articulated objects from monoc-
ular videos leveraging Gaussian splatting. Departing from
conventional approaches, our decomposition model offers
flexibility by avoiding reliance on primitive geometries and
does not require additional information such as optical flow
during training. Inspired by ICP techniques, we tailor a
transformation function to the motion patterns of articulated
objects and address the challenges of the chamfer distance
with voxelized representations of Gaussians. In experiments,
the proposed method shows superior results in unsupervised
3D part decomposition. Future work can focus on overcom-
ing the aforementioned limitations of the proposed method.
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