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Abstract

Absorption near edge structures in the core electron excitation spectra reflect the
anisotropy of orbitals in the transition final state and can be used for analyzing
local atomic environment including its orientation. So far, the analysis of fine
structures is mainly based on a fingerprint-matching with high-cost experimental or
simulated spectra. If core electron excitation spectra, including its anisotropy, can
be predicted at low cost using machine learning, the application range of the core
electron excitation spectra will be accelerated and extended for such as orientation
and electronic structure analysis of liquid crystals and organic solar cells at high
spatial resolution. In this study, we introduce a message-passing neural network for
predicting core electron excitation spectra using a unit direction vector in addition
to molecular graphs as input. Utilizing a database of calculated C K-edge spectra,
we have confirmed that the network can predict core electron excitation spectra
reflecting the anisotropy of molecules. Our model is expected to be expanded to
other physical quantities in general that depend not only on molecular graphs but
also on anisotropic vectors.

1 Introduction

Fine structures of core electron excitation spectra near the excitation edges, electron-energy loss near
edge structure (ELNES) and X-ray absorption near edge structure (XANES or NEXAFS), have been
widely used as one of the most effective fingerprints for determination of local atomic structures
and electronic states. The fine structures reflect the excitation of an electron from an occupied core
orbital to unoccupied orbitals. Since the fine structures differ depending on the symmetry of the
orbital against the momentum transfer during the core electron excitation, orientation-dependence
of the spectra can be used to analyze the local atomic environments including anisotropic nature of
orbitals. This kind of analysis has been applied for analyzing orientation of molecules such as polymer
films[1], liquid crystals[2] and organic solar cells[3, 4] through analysis on orientation dependence
of characteristic peaks corresponding anisotropic orbitals. Meanwhile, quantitative analysis on fine
structures has conventionally been done by fingerprint matching of reference spectra obtained from
standard samples with known structures, but it is difficult to apply to unknown structures.

Recently, comparison with spectral shapes obtained by first-principles calculations has been used to
analyze the experimental spectra[5, 6, 7]. As reference spectra can be obtained faster and on a larger
scale with calculations than with experiments, databases of simulated core electron excitation spectra
have been constructed and published[8, 9, 10, 11]. While experimental databases typically contain
a few hundred spectra, simulated ones can include over 10,000 spectra. However, first-principles
calculations are computationally expensive, and it is still difficult to obtain spectra exhaustively for a
large number of candidate structures to identify unknown structure from experimental data without a
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priori structural information. It would be useful to develop a low-computational-cost alternative to
first-principles calculations that can obtain spectra exhaustively for a large number of structures.

In this context, attempts have been made to predict spectra from molecular structures using machine
learning models, and there have been several reports: prediction from molecular graphs using a
message passing graph neural network (GNN)[12], a deep neural network[13, 14, 15], and prediction
using neural network ensemble through featurized local structural information[16]. However, as
far as the authors know, the prediction of core electron excitation spectra considering anisotropy
according to the momentum transfer has not been proposed.

From the perspective of predicting physical quantities in general, many machine learning models for
material science, not limited to the spectral example above has been proposed. Previous research in
GNN architecture includes notable models such as DimeNet[17] and GemNet[18] that leverage invari-
ance, both emphasizing the utilization of invariance properties. Exploring equivariance, PaiNN[19]
and NequIP[20] have been proposed, employing strict equivariance constraints. Moreover, attempts
to enhance expressive capabilities by slightly relaxing equivariance constraints and incorporating
nonlinear transformations have been done in SCN[21] and eSCN[22]. However, most models predict
physical quantities that depend solely on structure, overlooking the explicit integration of material
anisotropy and directional dependencies. It is crucial to consider such directional dependencies when
dealing with anisotropic physical quantities, including strain tensors, resistivity tensors, dielectric
polarization, and phenomena like dipole transitions. These physical quantities and phenomena reflect
the anisotropic nature of materials, and neglecting them in model construction could limit accurate
predictions of material properties.

In this study, we developed a message passing neural network[23] model that can predict spectra due
to the dipole transition. Our model can predict site-specific spectra which is dependent on not only
the molecular graph but also the dipole moment direction relative to the molecular graph. Notably,
our model consists of transformations that satisfy the physically required invariance of symmetric
operations on the input pair of molecular graph and dipole moment with respect to dipole transitions,
ensuring an inductive bias with respect to the invariance.

2 Methods

2.1 Spatial symmetry constraints of dipole-transition spectra

In the limit of small angle electron scattering or long wavelength of incident X-ray in ELNES and
XANES, respectively, the core electron excitation process can be described in the form of dipole
transition. The transition matrix element for ELNES and XANES from an occupied initial state
|ψi⟩ to an unoccupied final state |ψf ⟩ is proportional to ⟨ψi|q · r|ψf ⟩ and ⟨ψi|ϵ̂ · r|ψf ⟩, respectively,
where r is the relative position of the excited electron from the core, q is the momentum transfer,
ϵ̂ is the polarization vector. In either case, the generalized oscillator strength is proportional to the
square of the transition matrix element and the differential cross section of energy loss spectrum can
be expressed as a function of energy loss E as:

∂σ(E)

∂E
∝

∑
i,f

∥n̂ · ⟨ψi|r|ψf ⟩ ∥2δ(E − (Ef − Ei)), (1)

where n̂ is the unit directional vector parallel to the momentum transfer q or polarization vector ϵ̂,
and Ei and Ef are the energy eigenvalues of |ψi⟩ and |ψf ⟩, respectively.

Based on Eq. 1, we consider the constraints imposed on spectra associated with dipole transitions.
Let G the structural (molecular or crystal) graph defined by atomic numbers Zi and positions r⃗i, n̂ the
dipole vector, n site index as input, and the target site-specific spectrum of n-th site in G for transition
regarding n̂, Sn(G, n̂). The invariance of Sn(G, n̂) against symmetry operations are as follows:

Sn(G, n̂) = Sn(G, i(n̂)) = Sn(i(G), n̂) = Sn(R(G), R(n̂)) = Sn(T (G), n̂), (2)
where i is the spatial inversion, R ∈ SO(3) a general 3D rotation, T ∈ T (3) the displacement.

2.2 Model architecture

To satisfy the constraints in Eq. 2, we employ the message passing neural network (MPNN)[23] and
referred to its variant, polarizable atom interaction neural network (PaiNN)[19].
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2.2.1 PaiNN and its limitations about input

The PaiNN[19] model, classified among message passing neural networks[23], employs rotationally
equivariant representations. It is designed by modeling equivariant interactions in Cartesian space,
avoiding equivariant convolutions relying on spherical harmonics and Clebsch-Gordon transforms,
which contributes to its conceptual simplicity and computational efficiency. The model takes atomic
numbers Zi ∈ N and atomic positions r⃗i ∈ R3 as inputs. Internally, it employs two node-wise
features at each i-th site: an SO(3) equivariant 3D vector v⃗i and an SO(3) invariant scalar si. The
features v⃗i and si at i-th site are initialized with zero vector v⃗0

i = 0⃗ and embedded by atomic number
Zi, respectively. Subsequently, they are updated by message constructed with relative positional
vectors between site i and j, r⃗ij = r⃗i − r⃗j . The transformation of features v⃗i and si while preserving
their equivariance and invariance, respectively, is achieved by properly constructed message and
update functions.

The design of PaiNN implies a dependency of its model output solely on the input structural graph
G. Consequently, PaiNN cannot incorporate additional information beyond G, such as directional
information respective to G.

2.2.2 Element specific non-zero initialization of node-wise vector feature

Expanding on the above, we introduce directional details by setting node-wise vectors with non-
zero values. These initial vectors need only adhere to the symmetry requirements concerning their
orientation, allowing flexibility in their magnitude. Consequently, we initialized vector v⃗i using a
scaled vector constructed using the embedded representation specific to each elemental species:

v⃗0
i = bZi ⊗ n̂ ∈ RF×3, (3)

where bZi
∈ RF×1 is the embedded representation for the Zi-th element, and F is the dimension of

the embedded representation.

2.2.3 Message and update blocks

The invariance of the features under T on G is satisfied by using translational invariant r⃗ij for the
message block. The invariance and equivariance of features under R on both G and n̂ is also satisfied
by the message function in PaiNN. However, the message function for v⃗i in PaiNN is asymmetric
under the inversion operation i on either G or n̂, which also results in si to be asymmetric under i due
to the mixing of v⃗i and si in the message and update functions. To satisfy the constraints concerning
invariance against space inversion symmetry operation i, i.e. Sn(i(G), n̂) = Sn(G, i(n̂)) = Sn(G, n̂)
intrinsically, the message function for v⃗i, ∆v⃗m

i is modified slightly from one in PaiNN as follows:

∆v⃗m
i =

∑
j

v⃗j ◦ ϕvv(sj) ◦Wvv(∥r⃗ij∥) +
∑
j

(v⃗j · r⃗ij) ◦ ϕvs(sj) ◦W ′
vs(∥r⃗ij∥)

r⃗ij
∥r⃗ij∥

, (4)

where ϕvv and ϕvs are the activation functions, Wvv and W ′
vs are the weight functions as following

Eq. (8) in the reference[19]. The modification is only on the second term and is just multiplying the
inner product v⃗j · r⃗ij which is odd against v⃗i and r⃗ij so that the overall message function is odd and
even against the inversion operation i on v⃗i and r⃗ij , respectively.

The other message function for si and the update functions are the same as PaiNN. This modification
makes si to be updated with v⃗i, which reflects the input direction n̂. As a results, si posses even
symmetry against i on G and n̂, which is the required invariance for Sn(G, n̂) as described in Eq. 2.

2.2.4 Output block

The non-zero initialization of v⃗i by Eq. 3 and the modified message function by Eq. 4 make si to
satisfy the required symmetry in Eq. 2. The prediction of site-specific spectrum done by converting
si at the site of interest by a multilayer perceptron consisting of two fully-connected layers.

2.3 Dataset and training for evaluation

To validate the model, a spectral dataset that includes dipole vector dependent and site-specific
oscillation intensity is needed. In this study, we validate our model with a simulated C K-edge

3



spectral database of organic molecules[10], which is constructed by first-principles calculations
based on density functional theory (DFT) and contains 117,340 site-specific spectra for three typical
directions of dipole vectors of symmetrically unique sites in 22,155 molecules with no more than
eight non-hydrogen atoms (C, O, N, and F) in the QM9 database[24, 25]. We preprocessed the spectra
with Gaussian smearing of 0.5 eV in the energy range of 288-310 eV sampled equally spaced as 256
dimensional vectors for the objective variable. Spectral intensities were normalized by scaling the
entire data set so that the averaged intensity of each spectrum in the energy range considered was 1,
while preserving the relative magnitude relationship between the spectra per site.

The model was developed by modifying PaiNN implemented in the Open Catalyst Project’s library
opc[26] with PyTorch Geometric[27] and PyTorch[28], based on the description in Sec. 2.2.2-2.2.4.
The mini-batch learning with batch size of 32 molecular graphs was performed. The loss function
is the mean squared error (MSE) between the predicted and reference spectra on carbon sites with
available spectra. We used the Adam[29] optimizer with a learning rate of 0.0001 for the learning
process, implementing early stopping with a patience of 40 epochs.

3 Results and discussions

We evaluated the prediction performance using the processed C K-edge spectra dataset described in
Section 2.3. The dataset was randomly divided: 80% for training and validation (in a ratio of 0.8:0.2)
and 20% for testing based on molecules. The number of anisotropic and site-specific spectra for
training, validation, and testing were 221,274, 55,653, and 69,477, respectively.

Figure 1: Prediction results of site-specific anisotropic C K-edge spectra Sn(G, n̂). (a) Sorted MSE
of the prediction on the test dataset. (b-e) Predicted (red) and calculated (gray) spectra for typical
percentiles in terms of MSE loss (0, 50, 95, and 100%) as denoted in (a). The inset in (b-e) shows the
molecule id in QM9 corresponding G, site index n, directional vector n̂, and the MSE value.

Figure 1a shows the distribution of MSE, confirming that the over 95% data points has MSE below
0.1. Figures 1b-e show the predicted spectra (red line) and calculated results (gray line), sampled
at typical percentiles at 0, 50, 95, and 100%, respectively as shown in Fig. 1a. For MSEs below
0.1 (Figs. 1b-d), the predicted spectra show good agreement with the calculated ones. Particularly,
for the top 50% of MSEs, the predicted spectra closely resemble the calculated spectra. In the
case of the worst-performing prediction (Fig. 1e), the general trend of peak distribution around
297eV rising and falling at 305eV is reproduced. However, accurate prediction of the major peaks is
lacking. This specific spectrum corresponds to the trifluorocarbon site in molecule id #23880 (refer
to Supplementary Fig. S6). The poor prediction results might stem from the limited trifluorocarbon
site data, consisting of only 87 sites within the 117,340 sites in the database, and the distinct spectral
features originating from chemical interactions with highly electronegative fluorine. Concerning the
value of MSE and metrics for spectral similarity, we evaluated the MSE and its use by comparing it
with another metric by simulating spectra with added noise (See Supplementary).

Predictions account for relative intensity enables the derivation of molecular spectra by aggregating
site-specific ones. Figure 2 displays both the site-specific spectra and the molecular spectra of a
representative molecule (id #10578) from QM9, which represents the median MSE for the molecular
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Figure 2: Prediction results of site-specific and molecular anisotropic C K-edge spectra for molecude
id #10578 in QM9. Left panel shows the molecular structure formula and the three-dimensional
structure drawn by RDKit[30] and VESTA[31], respectively. Middle and right panel show the
predicted (solid lines) and calculated (dotted lines) spectra for site-specific spectra for each C site and
molecular spectra, respectively.

spectra (refer to Supplementary). Not only the site-specific spectra but also the molecular spectra
are predicted correctly including its dipole moment direction dependence, which confirms potential
applications for molecular structure analysis taking advantage of anisotropic dipole transition.

Additionaly, we evaluated the generalization performance of the model by a scaffold splitting,
a test on larger molecules, and prediction of orientation dependence of a specific molecule (see
Supplementary). The results confirm the model’s generalization ability to predict the spectra of
molecules with different sizes and shapes. For the efficiency and speed of spectra prediction, we
also compared the computational cost of our model with that of first-principles calculations, and
comfirmed that our model is 106 times faster than first-principles calculations (see Supplementary).

4 Conclusion

We propose a message passing neural network based on PaiNN for predicting core electron excitation
spectra considering its constraints on the physically required symmetry. We tested the model on C
K-edge spectra of organic molecules, and it can predict the general shape of most of the site-specific
spectra and molecular spectra including its dependence on the dipole moment direction.

So far, analysis considering anisotropy of core electron excitation spectra requires a highly accurate
reference, whether by calculation or experiment. The cost of obtaining such reference may become a
bottleneck in future, and our model, which is low-cost compared to first-principles calculations, will
be useful for analyzing materials such as polymers, liquid cells, and organic solar cells.

Furthermore, the proposed model architecture is extended to be applied to other targets than
ELNES/XANES by setting the required physical symmetry as an inductive bias to predict spectral
data that physically depends on the orientation to molecules and crystals, which can advance GNN in
materials science by explicitly incorporating directional dependencies in physical quantities alongside
the representation of material graphs. This new approach complements the existing GNN paradigm
by filling the gap in addressing directional aspects, fostering more accurate predictions in materials
science. We anticipate that this novel strategy will contribute to an improved understanding of
material anisotropy, offering innovative methodologies for detailed characterization.
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Supplementary Material

Evaluation of noise and metrics

In this study, we employed mean squared error (MSE) as the loss function during training and as a
metric for evaluating the model’s prediction accuracy. To validate the appropriateness of MSE and
assess its performance under practical noise conditions in spectroscopy, we conducted an evaluation
using simulated noise-added spectra. We assumed simple Poisson noise with a noise factor λ,
introducing no correlation between each energy bin to replicate the noise observed in spectra:

Snoise = Poisson(Smol(G, n̂)× λ)/λ, (5)

Figure S1a displays Poisson noise spectra with varying intensities, illustrating how spectral shapes
change in response to different levels of Poisson noise. To evaluate MSE and the metric’s performance,
we randomly selected ten spectra from the dataset shown in Fig. S1b. The relationship between MSE
and the Poisson noise factor λ is illustrated in Fig. S1c, depicting clear linearity between MSE and
the intensity of Poisson noise for all spectra.

Additionally, we utilized spectral discriminatory entropy (SDE) to assess the similarity between two
spectral metrics: MSE and spectral angle mapper (SAM). SAM between the i-th and j-th spectra, si
and sj , is defined as follows:

SAM(si, sj) = arccos

(
⟨si, sj⟩
∥si∥∥sj∥

)
. (6)

Note that spectral information divergence (SID) is also a metric for spectral similarity, but it was not
utilized in this study due to the presence of zero values in the calculated C-K edge spectra, which
causes SID to be undefined. Spectral discriminatory entropy (SDE) serves as the metric to evaluate
the discriminatory power of metric m for the target spectrum t within the database ∆. It is defined as
follows:

Hm(t; ∆) = −
J∑

j=1

pmt,∆(j) log2 p
m
t,∆(j),

pmt,∆(i) =
m(t, si)∑J
j=1m(t, sj)

,

(7)

7

http://www.rdkit.org


Figure S1: (a) Spectra with no noise and Poisson noise with different Poisson noise factor λ. (b)
The ten randomly selected spectra from the dataset. (c) Relationship between MSE and λ. (d) and
(e) spectra discriminatory entropy of the predicted spectra λ with respect to λ for MSE and SAM,
respectively. The colors of the lines in (c), (d), and (e) correspond to the line colors of the spectra in
(b).

where pi is the spectral descriminatroy probability of the i-th bin of the spectrum. Utilizing SDE
enables us to evaluate the discriminatory power of both MSE and SAM for ten randomly selected
target spectra within the entire C-K edge database, denoted as ∆.

Poisson noise factor dependence of SDE for the ten spectra is shown in Figs. S1d and e for MSE and
SAM, respectively, within the same plot range. For both metrics, there is observable variation among
the ten spectra, yet the general trend remains consistent: as the noise decreases, indicating an increase
in spectral discernibility, the SDE of the spectra declines. There is a clear difference in the SDE
between the two metrics, with MSE exhibiting a more significant decrease in SDE than SAM and a
smaller distribution range. It should be noted that SAM is a metric that is irrespective of the scale of
the spectra, whereas MSE is a metric that is sensitive to the scale of the spectra. From this point of
view, SAM might be more practical than MSE for spectral shape comparisons involving spectra of
unknown scale. However, for training spectral prediction models, MSE proves appropriate as the
model’s output scale is confined by the training data, preserving the relative scale between spectra.
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Evaluation of prediction on molecular spectra

The molecular spectra can be predicted by summing all site-specific sppectra in the molecule:

Smol(G, n̂) =
∑
n

Sn(G, n̂). (8)

The prediction results of molecular spectra in the test data, using the model trained on the site-specific
spectra under the random split, are illustrated in Fig. S2. Although the test data contains a total of
4,334 molecules, we display results for 3,857 molecules where carbon sites are all symmetrically
non-equivalent. This selection was made because the database only includes site spectra for one
site among the symmetrically equivalent sites in the molecule, and directional information for the
other equivalent sites is unavailable. The results for the typical percentiles of 0, 25, 50, 75, 100%
of molecules id #273, #10228, #10578, #16771, and #23880 are shown in Figs. S3, S4, 2 in the
main text, S5, and S6, respectively. All the molecular structure formula and the three-dimensional
structures are drawn by RDKit[30] and VESTA[31], respectively. Notably, molecule #23880, which
exhibited the worst predicted MSE, corresponds to the molecule containing the trifluorocarbon site,
for which the site-specific spectra also demonstrated the lowest prediction accuracy, as shown in
Fig. 1. It is plausible that the peak shift associated with the strong electronegativity of fluorine was
not adequately learned due to the relatively small representation of molecules containing fluorine
within the training dataset.

Figure S2: Sorted MSE of the molecular anisotropic C K-edge spectra of the prediction on the test
dataset.

x
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z

Figure S3: Prediction results of site-specific and molecular anisotropic C K-edge spectra for
molecude id #273 in QM9, which is located at 0% percentile (best accuracy). Left panel shows the
molecular structure formula and the three-dimensional structure. Middle panel and right panel show
the predicted (solid lines) and calculated (dotted lines) spectra for site-specific spectra for each C site
and molecular spectra, respectively.
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Figure S4: Prediction results of site-specific and molecular anisotropic C K-edge spectra for
molecude id #10228 in QM9, which is located at 25% percentile. Left panel shows the molecular
structure formula and the three-dimensional structure. Middle panel and right panel show the
predicted (solid lines) and calculated (dotted lines) spectra for site-specific spectra for each C site and
molecular spectra, respectively.
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Figure S5: Prediction results of site-specific and molecular anisotropic C K-edge spectra for
molecude id #16771 in QM9, which is located at 75% percentile. Left panel shows the molecular
structure formula and the three-dimensional structure. Middle panel and right panel show the
predicted (solid lines) and calculated (dotted lines) spectra for site-specific spectra for each C site and
molecular spectra, respectively.

Scaffold split evaluation

To further validate the model’s predictive performance beyond random splitting, we proceeded to
evaluate its generalization using scaffold splitting[32], a technique that partitions datasets into training
and testing sets while preserving structural diversity among molecules. Employing the ScaffoldSplitter
class from the deepchem[33] module, the dataset was divided into train, validation, and test sets at a
ratio of 6:2:2 based on molecular count. Consequently, the spectra were distributed across the train,
validation, and test sets, resulting in 209,004, 69,669, and 67,731 spectra, respectively.

Figure S7 shows the prediction results for the test data using scaffold splitting. As shown in Fig. S7a,
there is an overall degradation in predictive accuracy, as indicated by the increased MSE compared
to that of random split shown in Fig. 1. Figures S7b-e illustrate spectra at the 0, 50, 75, and 100
percentiles, representing typical examples. While an overall decrease in prediction accuracy is
observed, there is a discernible capturing of general trends, up to the percentile at 75%. The decrease
in prediction performance in scaffold split compared to the random split indicates that including
a diverse range of structures is effective in training the predictive model. This underscores the
importance of covering a wide range of molecular structures for effective model training, emphasizing
the challenges posed by limited structural diversity in achieving robust predictive capabilities.
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Figure S6: Prediction results of site-specific and molecular anisotropic C K-edge spectra for
molecude id #23880 in QM9, which is located at 100% percentile (worst accuracy). Left panel shows
the molecular structure formula and the three-dimensional structure. Middle panel and right panel
show the predicted (solid lines) and calculated (dotted lines) spectra for site-specific spectra for each
C site and molecular spectra, respectively.

Figure S7: Prediction results of site-specific anisotropic C K-edge spectra Sn(G, n̂) for the test
dataset split by scaffold splitting. (a) Sorted MSE of the prediction on the test dataset. (b-e) Predicted
(red) and calculated (gray) spectra for typical percentiles in terms of MSE loss (0, 50, 75, and 100%)
as denoted in (a). The inset in (b-e) shows the molecule id in QM9 corresponding G, site index n,
directional vector n̂, and the MSE value.

Testing on larger molecules

As mentioned in Sec. 2.3, the referenced C K-edge spectral dataset is composed of relatively small
molecules, containing no more than eight non-hydrogen atoms. To assess our model’s generalization
capabilities beyond the training data domain concerning molecular size, we included four aromatic
amino acids: Phenylalanine, Tyrosine, Tryptophan, and Histidine.

Figure S8 illustrates the predicted and calculated spectra for these four aromatic amino acids by
the model trained on the random split described in Sec. 3. While the predicted spectra show minor
differences in peak positions and intensities, they broadly capture the overall trends, including
directional dependencies. This suggests the model’s potential for generalizing to larger molecules
beyond the training dataset.

Prediction performance on orientation dependence

As previously examined in the validation of three different data splits, our focus was on assessing
the predictive performance concerning various molecular structures, aiming to evaluate the model’s
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Figure S8: Prediction and calculation results of the C K-edge molecular spectra for the four aromatic
amino acids. The predicted spectra are shown in solid lines, and the calculated spectra are shown in
dotted lines.

robustness concerning structural graphs, denoted as G. However, our model’s dependence extends not
only to the structural graph G but also to the directional vectors n̂ associated with dipole transition
moments.

To investigate the robustness of our model concerning directional vectors n̂, we conducted an
additional evaluation that explored the angle dependency within a specific molecule. Specifically,
we performed computations using DFT, rotating a benzene molecule about the x-axis from 0 to 90
degrees. Figure S9 illustrates the calculated and predicted results for the x, y, and z-directional dipole
transition moments, as well as the directional vector n̂, for the rotated benzene molecules. For the
prediction, we used the same model trained on the C K-edge dataset by the random splitting evaluated
in Sec. 3.

The spectra for the x-direction shown in Fig. S9 are theoretically expected to yield identical spectra as
the rotation axis is parallel to the dipole transition moment. However, slight variations in the spectra
concerning the rotation angles were observed in the first-principles calculations. This discrepancy
likely stems from the finite cell size, periodic boundary conditions, and computational inaccuracies.
However, our model accurately predicted identical spectra, adhering to the principle of rotational
symmetry. This outcome highlights one of the advantages of our model, which effectively captures
symmetry concerning both the graph and directional vector.

The results for the y- and z-directions in Fig. S9 reveal that the model excels in capturing the
angle-dependent trends of both the approximate peak heights and energy positions. Furthermore, as
physically predicted, results of n̂ ∥ y for θ degree rotation are consistent with results of n̂ ∥ z for
90− θ degrees. It should be emphasized that the training dataset only includes the three directional
components (x, y, z) for each molecule, lacking densely sampled spectral data concerning orientation
angular space, i.e. n̂-dependence for both benzene and other molecules. Despite this limitation, the
ability to predict dense angular dependencies is a highly intriguing outcome that could be considered
a successful extrapolation regarding directional predictions. The results indicate that the model has
notable spectral feature angle-dependent prediction performance.
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Figure S9: Prediction results of C K-edge molecular spectra of a benzene molecule for rotation about
x axis. The predicted spectra for each orientation of the dipole vector n̂ are shown in solid lines, and
the calculated spectra are shown in dotted lines. The color of the lines corresponds to the rotation
angle of the benzene molecule about x-axis, specifically, red to purple corresponds to 0 to 90 degrees.

Additional calculation for evaluation of prediction performance

Additionally, we generated spectral data for evaluation purposes by computing C K-edge spectra
for a rotation series of a benzene molecule and four aromatic amino acid molecules: phenylalanine
(C9H11NO2), tyrosine (C9H11NO3), tryptophan (C11H12N2O2), and histidine (C6H9N3O2). The
molecule structure of benzene for the rotation series was extracted from the C K-edge dataset[10] with
molecule id #214, and the rotation series was generated by rotating the molecule around the z-axis
with 18 degrees intervals. The molecular structures of aromatic amino acids were obtained directly
from PubChem[34] with Compound Identifiers (CIDs) 6140, 6057, 6305, and 6274, respectively
utilized for both prediction and first-principles calculations. The calculation was done based on
DFT[35, 36] within the plane-wave basis pseudopotential method[37] implemented in the CASTEP
code[38] under the same the calculation condition as in the C-K edge dataset[10] except that we used
a 20× 20× 20Å

3
cubic cell with 2,000 extra bands for aromatic amino acids.

Time comparison with first-principles calculations

To assess the efficiency and speed of our model, we compared the time taken to acquire x, y, and
z-directional spectra for each of the all 21,666 molecules included in the carbon K-edge dataset
mentioned in Section 2.3 (See Supplementary for details).

For the prediction, we used the same model trained on the C K-edge dataset by the random splitting
described in Sec. 3. We present a scatter plot in Fig. S10a illustrating the comparison between
the time required for first-principles calculations (tDFT) and the inference time for our model’s
predictions (tGNN) for each molecule. The distribution range of tDFT exhibits a relatively broad span,

13



Figure S10: Comparison between computational time of first-principles calculations (tDFT) and
that of our model (tGNN). (a) Scatter plot between tDFT and tGNN, colored by number of unique
excitation sites Nex. (b, c) number of atom (N ) dependence of tDFT to tGNN, colored by Nex in the
same scale as in (a).

ranging from 1× 103 to 1× 104 seconds. In contrast, the range of tGNN for predictions made after
a one-time typical training with typical duration of 3 hours (∼ 104 seconds) is observed between
3.5 × 10−3 to 3.8 × 10−3 seconds, showcasing a speed enhancement of approximately 106 times.
The marker color in Fig. S10 represents the number of non-equivalent excited sites (Nex) for each
molecule. A noticeable Nex-dependent trend is evident along the tDFT axis, while tGNN displays
negligible dependence. This difference arises from the need for individual spectral computations
for each non-equivalent excited site within a molecule in first-principles calculations, resulting in
time proportional to Nex. Conversely, our model’s prediction encompasses all excited site spectra
with a single input, thereby eliminating Nex dependence. Furthermore, Figs. S10b and c displaying
dependence of tDFT and tGNN dependence on number of atoms in each molecule (N ) indicates
an increase in tDFT with a rise in the number of atoms, whereas tGNN remains largely unaffected.
Typically, first-principle calculations of the core electron excitation spectra of larger molecules in a
given energy range require the inclusion of more unoccupied bands, which can significantly increase
the computation time. These outcomes emphasize that our model’s ability to swiftly predict spectra
without dependency on molecular size or the number of excited sites, indicating its utility for rapid
generation of reference spectra.

Regarding detailed rotation dependence, in some first-principles computation codes, only the three
directional components (x, y, z) are outputted, and to acquire detailed angular dependencies, separate
calculations for systems of the structures corresponding to each rotation angle are required. In
contrast, as demonstrated in the preceding section, our model can provide dense angular dependencies
in spectral outputs beyond the x, y, z directions. This capability enables the efficient exploration
of detailed angular dependencies without the need for additional computations involving structural
rotations.

Computational conditions for time measurement

The calculation time for each molecule by first-principles calculation, tDFT in Fig. S10, was analyzed
on the computations conducted to construct the C-K edge database[10]. The calculation procedure
and conditions of the C-K edge spectra and excitation energies are described in the reference[10].
The calculations were performed using Intel(R) Xeon(R) Silver 4114 or Intel(R) Xeon(R) Gold 6130
processors. The time for each site in the molecules was calculated by summing up the computation
time from the .castep files of the three calculation steps: ground state, excited state, and transition
probability.
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The calculation time for predicting the molecular spectra, tGNN in Fig. S10, was measured using a
single NVIDIA GeForce RTX 4090 GPU.
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