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ABSTRACT

The goal of meta-learning is to learn a universal model from various meta-training
tasks, enabling rapid adaptation to new tasks with minimal training. Currently,
mainstream meta-learning algorithms randomly sample meta-training tasks from a
task pool, and the meta-model treats these sampled tasks equally without discrim-
ination, training on them as a whole. However, due to the limitations imposed by
training computational power and time constraints, harmful tasks sampled from
the imbalanced distribution can have a significant impact on the optimization of
the meta-model. Therefore, this paper introduces a form of meta-learning called
Task-Environment Interaction Meta-Learning(TIML), which is distinct from rein-
forcement learning with data preprocessing. In TIML, we create a Task Explo-
ration and Exploitation Selector that assesses the interaction between the meta-
learning model and the presently sampled task environment. It conducts training
differently based on factors such as task difficulty, rewards, harmfulness levels,
and others, thereby altering the current practice of uniformly handling multiple
tasks. By doing so, we can rapidly enhance the generalization and convergence of
meta-learning parameters for unknown tasks. Experimental results demonstrate
that the proposed TIML method achieves improvements in model performance
while maintaining the same training time complexity. It exhibits faster conver-
gence, greater stability, and can be flexibly combined with other models, show-
casing its robust simplicity and universality.

1 INTRODUCTION

True artificial intelligence should possess the ability to learn how to learn, enabling rapid profi-
ciency in few-shot or even zero-shot learning scenarios. For machines, the strategy is to commence
with prior knowledge and transfer experiences from analogous tasks to novel ones. Meta-learning
(Schmidhuber, 1987; Thrun & Pratt, 2012) stands as a framework that embodies the entire learning
process, extracting common knowledge from tasks within the same distribution.

Presently, meta-learning algorithms can be categorized into three primary types: metric-based,
network-based, and optimization-based algorithms. Metric-based techniques encode prior knowl-
edge into an embedding space where similar (different) classes are brought closer (pushed far-
ther) apart (Liu et al., 2018; Koch et al., 2015; Snell et al., 2017; Sung et al., 2018; Vinyals et al.,
2016; Oreshkin et al., 2018). Conversely, network-based methods, often seen as black-box meth-
ods, employ networks or external memory to directly generate weights (Munkhdalai & Yu, 2017;
Munkhdalai et al., 2018; Santoro et al., 2016), weight updates (Andrychowicz et al., 2016; Hochre-
iter et al., 2001; Ravi & Larochelle, 2017; Antoniou et al., 2018; Nichol et al., 2018; Finn et al.,
2017b; Rajeswaran et al., 2019), or predictions (Mishra et al., 2017; Santoro et al., 2016). Mean-
while, optimization-based methods utilize a two-level optimization approach to comprehend the
learning process. This encompasses initialization and weight updates, tailored for adapting to new
tasks with minimal examples (Antoniou et al., 2018; Baik et al., 2020a;b; Jiang et al., 2019; Finn
et al., 2017b; Wu et al., 2023). The outer-level optimization fosters generalization, while the inner-
level optimization facilitates adaptation to new tasks, working in tandem to achieve meta-learning.

Take, for example, Model Agnostic Meta-Learning (MAML) Finn et al. (2017b), which learns an
effective initialization that enhances few-shot learning’s generalization prowess. The model rapidly
adapts to new tasks through minimal gradient updates. Following this trajectory, recent research
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endeavors have concentrated on refining initializations. For instance, learning adaptive hyperparam-
eters (Baik et al., 2020a; Li et al., 2017) has yielded a novel weight update rule that significantly
enhances the rapid adaptation process. Incorporating adaptive loss functions Baik et al. (2021) into
various tasks results in more precise gradient updates, bolstering generalization for future tasks.
The practice of conducting large-scale Shin et al. (2021) inner-loop meta update bias can enhance
model adaptability across a broader spectrum of tasks. Some approaches even involve adjusting
initial parameters through data augmentation (Rajendran et al., 2020; Ni et al., 2021) or altering the
random sampling methodology Liu et al. (2020). In order to learn the meta-model during meta-
training, most existing meta-learning methods employ a uniform probability random sampling of
meta-training tasks. The underlying assumption behind this uniform sampling is that all tasks are
equally important, but in reality, this is often not the case. The number of meta-training tasks may be
limited, leading to an uneven distribution across different task clusters. This has given rise to various
meta-learning methods (Kaddour et al., 2020; Yao et al., 2021; Liu et al., 2020) that address the sam-
pling process, making judgments about unsampled tasks and selecting tasks that are more beneficial
for training. This approach can be seen as a form of data preprocessing. While this approach may
appear promising in terms of results, our goal is to strive for machine learning that resembles the
human brain. In the process of natural selection, we cannot choose whether tomorrow will be sunny
or rainy; attempting to change the environment we will encounter tomorrow goes against the prin-
ciples of evolution. So, what can we do? When facing unknown environments, we can choose how
to adapt rather than just taking a few steps in every direction, hoping to cover all possibilities. Since
we lack the ability to change the environment, our best course of action is to adapt to it. Therefore,
we have developed a task exploration and exploitation selector. When confronted with randomly
sampled unknown tasks, we systematically explore each task to obtain initial feedback. Based on
this feedback, we calculate future rewards and select tasks with greater potential for further training.
We employ a step-by-step strategy, assessing whether to switch tasks after completing each one.
In each task selection step, we introduce randomization to our decision-making process, adding an
element of exploration to prevent falling into local traps.

2 RELATED WORK

The objective of few-shot learning is to tackle scenarios where only a limited number of samples are
available for each task. The ultimate aim is to acquire the ability to generalize to unseen examples
based on these constrained samples. To achieve this, the field of meta-learning places its focus
on rapidly adapting to novel tasks through the accumulation of knowledge from a diverse array
of similar tasks. Pioneering works in this domain encompass (Snell et al., 2017; Vinyals et al.,
2016; Munkhdalai & Yu, 2017; Andrychowicz et al., 2016; Mishra et al., 2017; Santoro et al., 2016;
Antoniou et al., 2018; Finn et al., 2017a; Edwards & Storkey, 2016; Finn et al., 2018; Lee et al.,
2019; Wang et al., 2020; Zhou et al., 2021; Ravichandran et al., 2019; Tokmakov et al., 2019; Zhang
et al., 2019; Bengio et al., 2013), among others.

One of the most widely acknowledged algorithms for acquiring an effective initialization is MAML
(Finn et al., 2017b). Due to its straightforward nature and model-agnostic attributes, it has found ex-
tensive applications across various domains. The popularity of MAML has spurred the development
of a series of variant algorithms rooted in MAML (Snell et al., 2017; Antoniou et al., 2018; Baik
et al., 2020a;b; Jiang et al., 2019; Baik et al., 2021; Shin et al., 2021; Ni et al., 2021; Rajeswaran
et al., 2019; Flennerhag et al., 2019; Grant et al., 2018; Jamal & Qi, 2019; Park & Oliva, 2019; Rusu
et al., 2018; Triantafillou et al., 2019; Vuorio et al., 2019; Aimen et al., 2023). These algorithms aim
to address known shortcomings of MAML, such as meta-level overfitting.

However, despite the success of these methods, they seem to overlook a crucial aspect: task envi-
ronment interaction training. Many contemporary two-tier meta-learning algorithms lack explicit
task interaction operations, and they train all tasks uniformly. There are also some indirect meth-
ods for handling tasks, such as adaptive task sampling algorithms Liu et al. (2020), which consider
random task sampling to be suboptimal, and they achieve some results by greedy sampling of data.
However, the time complexity of greedy sampling can significantly increase, and it may not adapt
well to situations where the data environment cannot be changed. There are also data augmentation
methods Ni et al. (2021) that can increase the amount of data for few-shot learning. Previous task
handling methods can be summarized as preprocessing samples and then passing them to the model
to learn better tasks. However, the goal of meta-learning is for any model to learn quickly under few-

2



Under review as a conference paper at ICLR 2024

shot conditions, and increasing data preprocessing methods can weaken the model’s generalization,
transferability, and handling of unknown situations.

Therefore, we propose a Task Environment Interaction Meta-Learning algorithm. We accomplish
this by employing random task sampling to simulate natural random environmental occurrences. We
have constructed a task environment interaction mechanism that selectively trains on randomly ap-
pearing task environments and includes a certain probability of conducting random exploration train-
ing. This approach achieves outstanding performance without altering the existing meta-model’s
structure and time complexity. It not only maintains its simplicity but can also be combined with
other algorithms. Most importantly, it closely aligns with natural evolutionary scenarios where train-
ing for unknown tasks occurs randomly rather than in large-scale combinations.

3 APPROACH

3.1 PRELIMINARIES AND PROBLEM DEFINITION

Our objective is to acquire shared initial parameters φ via a two-tier meta-learning model, which,
after adapting to specific task learning, can offer promising starting points for various tasks. Lever-
aging existing knowledge, we can achieve favorable outcomes by taking a few steps of gradient
descent. In the context of meta-learning, there exists a collection of tasks Ti, where each task Ti is
drawn from a task distribution p(T ). Each Ti comprises two separate datasets: a support setDS

i and
a query setDQ

i . Each task contains a set of inputs x and outputs y: DS
i = xs

i , y
sK
is=1

,DQ
i = xq

i , y
qM
iq=1

.
We initialize the meta-parameter φ in the outer loop of meta-learning and utilize it as the starting
point for training in the inner loop of meta-learning. We randomly select multiple tasks Ti from
the task distribution p(T ) and employ the support set DS

i to train and update φi for each task Ti.
Within each task Ti, we employ the support set DS

i to update the parameters φi and employ the
query set DiQ to assess the performance of the updated parameters on that task, thereby obtaining

the loss LDQ
i

Ti
. Following several rounds of training, we use the losses LTi

from each task to adapt
the meta-parameters φ, aiming to enhance the model’s generalization capabilities.

The MAML algorithm, as a well-recognized dual-level meta-learning model Finn et al. (2017a),
aims to incorporate prior knowledge from sampled tasks into the neural network parameters θ. These
parameters serve as shared initialization weights, enabling rapid adaptation to new tasks. The net-
work commences its learning process with the initialized weights θ and progressively adjusts them
to cater to each task T i over a specified number of inner loop iterations. The network’s parameters
for each task are denoted as θi, j, where j indicates the current time step. The update equation for
θi,j is as follows:

θi,j+1 = θi,j − α∇θL
DS

i

Ti

(
fθi,j

)
(1)

At the onset of each task, θi,0 = θ. Following S rounds of inner-loop updates, each task acquires a
network weight value θ′i = θi,δ that aligns with its specific task requirements. To assess the model’s
generalization and gather feedback regarding the initial parameters for the current task, a query set
DQ

i is extracted from Ti and employed to compute the updated initialization weight θ, reinforcing
generalization across all tasks.

θ ← θ − β∇θ

∑
Ti

LDQ
i

Ti

(
fθ′

i

)
(2)

3.2 META-LEARNING WITH TASK-ENVIRONMENT INTERACTION(TIML)

In the context of two-tier meta-learning, the outer loop is responsible for the meta-parameter’s gen-
eralization ability, while the inner loop individually trains, validates, and provides feedback to the
outer loop for each task Ti ∼ p(T ). In previous methods, the training approach and frequency for
each inner loop task were the same. However, due to the inherent differences among tasks, this
uniform training was not ideal. Many algorithms have started to improve task sampling by group-
ing tasks with low differences together for uniform training, achieving promising results (Yao et al.,
2021; Liu et al., 2020; Wang et al., 2021). Nevertheless, this approach assumes that all samples need
to be traversed to provide feedback, which may not align with real-world scenarios. In the evolution
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of future algorithms, tasks won’t be pre-prepared en masse, waiting for our algorithms to learn. In-
stead, they will emerge over time. Therefore, random sampling is more in line with the principles
of natural evolution. Under the premise of random sampling, to address the limitations of uniform
training, we design a task environment interaction mechanism. Each task is treated as an environ-
ment, akin to the natural world’s environment selection. When multiple tasks appear simultaneously,
in order to change the status quo of uniform training, we take the following steps: (1)Initially, we
train each task for a brief period to gain a preliminary understanding of the environment and ob-
tain feedback. (2)Based on the difficulty of the environment and our future expectations, we select
one task to dive deeper into training to promptly acquire new feedback. We repeat this process to
select tasks for in-depth training. (3)To avoid the greediness of task selection based solely on com-
putational results, we introduce a normal random selection mechanism to enhance generalization.
(4)Finally, we use the feedback from the in-depth training of tasks to update the meta-parameters in
the outer loop.

This approach helps adapt to the ever-changing task landscape in a more natural and effective manner
while improving the overall meta-learning process. The whole optimization algorithm of TIML is
illustrated in Algorithm 1.

Algorithm 1 Meta-Learning with Task-Environment Interaction(TIML).

Require: Task distribution p(T ), step size hyperparameters α, β
1: Randomly initialize meta θ;
2: while not done do
3: Sample batch of tasks Ti ∼ p(T );
4: for all Ti do
5: Initialize θi,0 = θ

6: Compute Ii =

(
θi,DS

i ,DQ
i ,LDQ

i
Ti

, Ni

)
7: end for
8: for level selection step t : = 1 to len(Ti) do
9: Compute At = argmaxi (Ri(t)) or At = random (1, len (Ti)) ( random < ε)
10: for inner-loop step j : = 2 to S do
11: Evaluate∇θL

Ds
At

TAt

(
fθAt,j−1

)
with respect to K examples

12: Compute adapted parameters with gradient descent:

13: θAt,j = θAt,j−1 − α∇θL
Ds

At
TAt

(
fθAt,j−1

)
14: Evaluate L

DQ
At

TAt

(
fθAt,j

)
with respect to K examples

15: end for
16: Update the average reward RAt(t) and the number of times selected NAt

17: NAt(t) = NAt(t− 1) + 1, RAt(t) = RAt(t− 1) +
L

DQ
At

TAt
(t)−RAt

(t−1)

NAt
(t)

18: end for
19: Perform gradient descent to update meta-weight:

20: θ ← θ − β∇θ

∑
TAt
L

DQ
At

TAt

(
fθAt

)
21: end while

After randomly sampling tasks, initial information gathering is conducted for each task. We define
task environment information as Ii, which includes task parameters θi, support set DS

i , query set

DQ
i , loss LDQ

i

Ti
, and the number of in-depth learning iterations Ni. The formula is as follows:

Ii =

(
θi,DS

i ,D
Q
i ,L

DQ
i

Ti
, Ni

)
(3)

Next, the task environment information is interacted with the meta-model to provide feedback. Task
information Ii is passed into the meta-model to calculate the future utility Ri for each task in the
t-th round of selection:
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Ri(t) = Ri(t− 1) +
LDQ

i

Ti
(t)−Ri(t− 1)

Ni(t)
(4)

After obtaining the returns for the t-th round, we employ a greedy approach to directly select the
task At with the highest returns for in-depth learning and record its number of in-depth learning
iterations Ni:

At = argmax
i

(Ri(t)) (5)

Ni(t) = Ni(t− 1) + 1 (6)

Due to the risk of falling into local optima with a greedy approach, we introduce a random pa-
rameter, denoted as ”random” for task exploration, as shown in Figure 1 and Algorithm 1. When
”random.rand” is less than the exploration factor ε, we randomly select a task for in-depth learning.
This approach effectively prevents overfitting while providing valuable support for the generaliza-
tion of outer meta-parameters.

Meta-
model 휃
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exploration(휀) and exploitation(1- 휀)

Training Loss ℒ풯 
 

Update  휃�

Calculating 
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풟�
�
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sampling

Inner-
model 휃

Update meta 휃

Candidate 
tasks

Perform task selection Update inner task model Optimize meta-model

Task
Pool

Batch
Tasks

Figure 1: Illustration of TIML: (1) TIML interacts with task environment information for explo-
ration or exploitation (blue arrows). (2) TIML engages in in-depth learning after task selection
(orange arrows). (3) Task information from in-depth learning is used to update the meta-model
(green arrows).

Here, we will also modify the original outer loop update mechanism. The proposed task-
environment interaction mechanism, as shown in Figure 2, retains the information for each in-depth

training task, denoted as L
DQ

At

TAt

(
fθ′

At

)
, during inner loop training. The tasks subjected to in-depth

learning will be used for updating the meta-parameters.

θmeta ← θmeta − β∇θ

∑
TAt

L
DQ

At

TAt

(
fθ′

At

)
(7)

4 EXPERIMENTS

In this section, we will demonstrate the effectiveness of Task Environment Interaction Meta-
Learning in few-shot learning. We initiate the process with random task sampling, and after training,
the meta-parameters are positioned closer to an initial state that better aligns with future tasks. By
dynamically selecting tasks for training based on environmental interactions, we reduce the impact
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Figure 2: Inner Loop Optimization Overview of TIML for Few-shot Learning. (a) Previous methods
uniformly train and learn each task Ti ∼ p(T ), updating meta-parameters based on the loss from all
tasks Ti. Due to compromises among tasks, meta-parameters remain in a conflicting state. (b) TIML
dynamically updates the selection of tasks for in-depth learning in real-time through interaction
between the meta-model and task environment information. It updates meta-parameters with the
loss from the chosen tasks after training, breaking the previous task compromises and bringing
meta-parameters closer to our desired position.

of harmful tasks on the meta-parameters, enabling us to reach optimization more swiftly and lead-
ing to smoother data fluctuations. When combined with other meta-learning algorithms, it enhances
model accuracy from different perspectives. The experiments underscore the crucial role of task
environment interaction training in the process of learning how to learn.

4.1 DATA SET

In the context of few-shot classification tasks, this article utilizes two widely employed datasets
that have been prominent in recent meta-learning research: miniImagenet Simon et al. (2020) and
tieredImagenet Finn et al. (2018). MiniImagenet is well-suited for the design and evaluation of few-
shot learning and meta-learning model algorithms. Conversely, tieredImagenet is employed to assess
the performance of meta-learning algorithms within more intricate and demanding environments.

MiniImagenet is created by randomly selecting 100 classes from the extensive ImageNet dataset.
Subsequently, it is divided into three distinct subsets: a training set, a validation set, and a test set,
with each subset containing images sized at 84x84 pixels. From these 100 classes, 64 are randomly
designated for meta-training, 16 for meta-validation, and the remaining 20 for meta-testing. The
dataset exhibits several key characteristics, making it a prevalent choice in the realm of meta-learning
algorithms: (1)The dataset is relatively compact, enabling swift model training. (2)The classes
within the dataset bear some resemblance to real-world scenarios, promoting applicability. (3)The
dataset features a limited number of images per class, aligning perfectly with the few-shot learning
paradigm and empowering the model to glean knowledge from scant examples.

TieredImagenet, while also derived from the ImageNet dataset, is structured differently based on
supercategories. Comprising 34 supercategories in total, 20 supercategories are allocated for meta-
training, 6 for meta-validation, and 8 for meta-testing. Each supercategory encompasses between
10 to 30 individual classes, leading to a grand total of 608 classes. This dataset presents a more
formidable and intricate challenge, thereby offering a superior means of assessing the robustness
and generalization capabilities of meta-learning algorithms.

In the context of cross-domain few-shot classification, to ascertain the model’s effectiveness in
adapting to novel tasks, we maintain the miniImagenet dataset as the training set and employ the
test set of CUB-200-2011, commonly referred to as CUB[36], for evaluation purposes. CUB com-
prises 200 distinct bird species classes, similar in nature to miniImagenet, and serves as a widely
adopted dataset for image classification. However, miniImagenet and CUB diverge in various as-
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pects such as the number of categories, image size, and resolution. Notably, miniImagenet exhibits
relatively low similarity between its classes, whereas CUB features more pronounced similarities.
Consequently, the transfer from miniImagenet to CUB poses a formidable challenge within the realm
of meta-learning.

4.2 IMPLEMENTATION DETAILS

In our experiments on datasets derived from ImageNet, we employ two distinct network architec-
tures as the backbone feature extraction network, denoted as f(θ): a 4-layer CNN (referred to as 4-
CONV) and the ResNet12 architecture. The architectural configurations for 4-CONV and ResNet12
closely adhere to the experimental settings established in prior studies (Finn et al., 2017a; Li et al.,
2017; Nichol et al., 2018; Simon et al., 2020; Finn et al., 2018).

During the meta-training phase, our training regimen spans 100 epochs, each consisting of 500
iterations. For 5-shot and 1-shot scenarios, we utilize batch sizes of 2 and 4, respectively. Within
each iteration, we undertake N-way classification by randomly sampling N classes. Subsequently,
we further sample k labeled examples, denoted as DS

i , for the purpose of training, and an additional
set of 15 examples, represented as DQ

i , for testing.

It is important to note that all experiments conducted on the original datasets adhere to the provided
settings and hyperparameters established in their respective source code Mishra et al. (2017).

4.3 EXPERIMENTAL RESULTS

4.3.1 FEW-SHOT CLASSIFIFICATION

We conducted an evaluation of our TIML method using two network architectures: 4-CONV and
ResNet12. In our experiments, we considered classification scenarios with 5 classes (5-way) and
two different sample quantities: 5 samples per class (5-shot) and 1 sample per class (1-shot). We
compared the performance of our method with various other meta-learning approaches on the mini-
ImageNet and tieredImageNet datasets. The results, as summarized in Table 1, clearly demonstrate
that TIML not only significantly enhances the generalization capabilities compared to MAML Finn
et al. (2017b) but can also be effectively combined with other MAML variants like MAML++ An-
toniou et al. (2018) and ALFA Baik et al. (2020a) to achieve even better performance. MAML++
focuses on learning fixed steps and per-layer inner loop learning rates, while ALFA adapts inner loop
learning rates and regularization terms for each task. These methods contribute to the improvement
of model performance from different angles.

TIML aims to design more rational training strategies for meta-learning models by engaging with
the task environment, with the goal of rapidly advancing the model’s evolution and development. In
comparison to other methods, TIML can complement them, continuously refining the methodolo-
gies of meta-learning. The primary contribution of TIML lies in its ability to interact with randomly
generated task environments in real-time, without the need for extensive data preprocessing. Prior to
each training iteration, TIML selects tasks and then delves into training, simultaneously altering the
update approach for meta-parameters to make the evolution of model parameters more realistic and
intelligent.Our improvements go beyond enhancing the final model’s generalization performance;
more importantly, they enhance the model’s intrinsic learning ability. TIML’s approach no longer
relies on extensive data preprocessing but instead changes the training methods and focus. It au-
tonomously selects tasks that are beneficial for model training. Furthermore, to mitigate the risk
of overfitting, a random selection mechanism is introduced. This represents a significant advance-
ment in the field of artificial intelligence. We are not attempting to change the environment (data
preprocessing) but rather striving to adapt to the environment through TIML.

In Table 1, a vertical comparison reveals the differences in performance between TIML and other
meta-learning algorithms under the two network architectures, 4-CONV and ResNet12. It’s evident
that the improvement is more significant under the ResNet12 architecture compared to 4-CONV.
This suggests that in more complex network structures, such as ResNet12, the TIML approach be-
comes increasingly important and exerts a greater impact on model generalization. Similarly, in
the horizontal comparison, the improvement in the 5-shot setting is noticeably more pronounced
compared to the 1-shot setting. This indicates that as the number of samples increases, the con-
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flicts between tasks also escalate, emphasizing the critical importance of selecting appropriate tasks.
Throughout the experimental results, we employed the variance of the 95% confidence interval.
Under our task-environment interactive meta-learning approach, the variance consistently remained
lower than that of other meta-learning methods. We enhance the algorithm’s stability, generalization
ability, reliability, and efficiency. These improvements are of paramount significance and render the
algorithm more practical and reliable, making it suitable for a broader range of application scenarios.

Table 1: Test accuracy on 5-way classifification for miniImageNet and tieredImageNet

Model Backbone miniImagenet tieredImageNet

1-shot 5-shot 1-shot 5-shot

MAMLFinn et al. (2017b) 4-CONV 48.7 ± 1.75% 63.11± 0.91% 49.06 ± 0.91% 67.48 ± 0.47%
MAML + TIML(ours) 4-CONV 48.9 ± 0.49% 65.10 ± 0.47% 49.85 ± 0.48% 70.18 ± 0.35%
MAML++Antoniou et al. (2018) 4-CONV 52.15 ± 0.26% 68.32 ± 0.44% —— ——
MAML++ + TIML(ours) 4-CONV 52.19 ± 0.16% 69.02 ± 0.46% 51.97 ± 0.35% 71.06 ± 0.43%
MAML + ALFABaik et al. (2020a) 4-CONV 50.58 ± 0.51% 69.12 ± 0.47% 53.16 ± 0.49% 70.54 ± 0.46%
MAML + ALFA + TIML(ours) 4-CONV 51.07 ± 0.42% 69.67 ± 0.46% 54.77 ± 0.36% 72.04 ± 0.38%

MAMLFinn et al. (2017b) Resnet12 58.37 ± 0.49% 69.76 ± 0.46% 58.58 ± 0.49% 71.24 ± 0.43%
MAML + TIML(ours) Resnet12 59.52 ± 0.49% 72.85 ± 0.38% 60.32± 0.43% 75.72 ± 0.33%
MAML + ALFABaik et al. (2020a) Resnet12 59.74 ± 0.49% 77.96 ± 0.41% 64.63 ± 0.49% 82.48 ± 0.38%
MAML + ALFA + TIML(ours) Resnet12 59.55 ± 0.41% 78.62 ± 0.32% 65.42 ± 0.41% 84.59 ± 0.30%

4.3.2 CROSS-DOMAIN FEW-SHOT CLASSIFICATION

To further underscore the effectiveness of our TIML algorithm in adapting to unfamiliar tasks, we
executed the following experiment as a cross-domain few-shot classification assessment. In this ex-
amination, both the meta-test tasks and meta-training tasks were carefully selected from dissimilar
datasets exhibiting relatively low similarity. The results of this experiment have been summarized
in Table 2. For this investigation, we adhered to the experimental protocol established by W.-Y.
Chen et al.Chen et al. (2019) and employed CUB as the meta-test dataset to evaluate the adaptabil-
ity of TIML’s foundational model. This foundational model had undergone its initial training on
miniImagenet, and we sought to evaluate its performance in the context of unknown tasks.

Table 2 displays the performance comparison among MAML, the recent MAML variant ALFA, and
TIML, all of which were trained on the miniImageNet meta-training dataset and evaluated on the
CUB meta-test dataset. Similar to the few-shot classification results presented in Table 1, TIML ex-
hibits a significant enhancement in generalization performance, especially in the more challenging
cross-domain few-shot classification scenario. Notably, TIML outperforms both MAML and ALFA
+ MAML by a greater margin in cross-domain few-shot classification than in few-shot classifica-
tion. This highlights the effectiveness of TIML in learning new tasks from diverse domains and its
robustness in bridging domain gaps, underscoring the importance of task-environment interactive
training.

Another noteworthy observation from the results is that TIML demonstrates substantial improve-
ments in generalization performance over both ALFA + MAML and MAML. This suggests that
TIML addresses a distinct orthogonal problem. While ALFA [4] aims to enhance inner-loop op-
timization by focusing on developing new weight update rules (gradient descent), TIML concen-
trates on task-environment interactive training within inner-loop optimization. The consistent im-
provement in generalization performance across different baselines and architectures for TIML un-
derscores the importance of well-designed task-environment interactive training and its robustness
when combined with other models, showcasing its versatility and effectiveness.

4.3.3 ABLATION EXPERIMENT

In this section, we conducted an ablation study using the 4-CONV backbone in a 5-way 5-shot
mini-classification scenario to better analyze the impact of the methods employed in TIML on the
classification task outcomes.

To analyze the influence of different task selection methods within TIML, we performed experi-
ments comparing four distinct approaches. The first approach involves averaging the training across
all tasks without making any selection, adhering to the conventional meta-learning approach. The
second approach involves random task selection without any specific criteria. The third approach
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Table 2: Test accuracy on 5-way 5-shot cross-domain classifification.

Model
Baselearner

miniImagenet
→ CUB

Backbone 5-shot

MAMLFinn et al. (2017b) 4-CONV 52.70 ± 0.32%
MAML + TIML(ours) 4-CONV 54.18 ± 0.29%
MAML + ALFABaik et al. (2020a) 4-CONV 58.35 ± 0.25%
MAML + ALFA + TIML(ours) 4-CONV 61.59 ± 0.19%
MAMLFinn et al. (2017b) Resnet12 53.83 ± 0.32%
MAML + TIML(ours) Resnet12 56.68 ± 0.29%
MAML + ALFABaik et al. (2020a) Resnet12 61.22 ± 0.22%
MAML + ALFA + TIML(ours) Resnet12 66.75 ± 0.21%

utilizes loss as the criterion for selection, selecting the task with the highest loss for training in each
iteration. The fourth approach involves task-environment interactive learning, where task selection
is made in real-time based on task environment information. This selection mechanism combines
both greedy and random strategies.

The results of these four methods are presented in Table 3. It is evident that random task selection
significantly reduces performance and is not a viable approach. The third and fourth methods yield
nearly identical results, indicating no substantial difference between them, while both outperform
the approach of training on all tasks uniformly. This underscores the effectiveness of our proposed
task-environment interactive meta-learning. Task-environment interaction can be implemented in
various ways, and in this study, we primarily used loss-based criteria to estimate future rewards. In
the future, incorporating accuracy-based criteria may further enhance model performance.

Table 3: Experimental Accuracy of Different Choice Task Methods under 5-way5-shot.
Different Selection Methods Backbone miniImagenet

Equal Training for All Tasks 4-CONV 63.11± 0.91%

Random Task Selection Training 4-CONV 52.13± 0.83%

Training on the Most Difficult Task 4-CONV 64.94± 0.35%

Task-Environment Interactor(ours) 4-CONV 65.10 ± 0.12%

5 CONCLUSIONS

In this work, we introduce Task-Environment Interactive Meta-Learning (TIML), which can be ap-
plied to optimize gradient-based meta-learning frameworks. During training, we randomly sample
tasks and select appropriate tasks for the current training iteration by considering the tasks’ dif-
ficulty and expected future rewards. We also incorporate a random mechanism to mitigate over-
fitting. When integrated with various meta-learning algorithms, TIML consistently improves few-
shot classification performance. The results from TIML underscore the critical importance of task-
environment interactive training in few-shot learning. Without the need for extensive data prepro-
cessing or significantly increasing the number of training iterations, selecting tasks that are beneficial
for the current training iteration can lead to performance improvements.

In the natural world, events often occur randomly, and they are not altered by the subject’s intention.
Data preprocessing, which categorizes and pre-processes data before feeding it to a model, may not
necessarily adhere to the principles of evolution. The results of task-environment interactive training
demonstrate that task selection is more crucial than blindly increasing the training iterations. This
approach exhibits strong generality and effectiveness. We believe that our findings can stimulate
further interesting research. For instance, various discussions can be conducted regarding different
task-environment interactive methods. Mechanisms for task-adaptive exploration of new tasks can
also undergo many improvements.

9
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REPRODUCIBILITY STATEMENT

In order to promote and facilitate the reproducibility of our research findings, we have included
the complete source code and supplementary materials as part of this paper. This comprehensive
codebase, along with any additional resources, can be found in the supplementary materials. We
believe that sharing our code and methodology not only ensures transparency in our research but
also allows fellow researchers to replicate and build upon our work, ultimately contributing to the
advancement of knowledge in our field.
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A SELECTED EXPERIMENTAL RESULTS FIGURES

In the section on Algorithm Comparison, we present the experimental results of TIML in comparison
to other algorithms. The left two columns showcase the advancements achieved by TIML on the
4-conv miniImagenet dataset. Meanwhile, the right two columns illustrate even more significant
improvements observed with TIML on the Resnet12 tieredImageNet dataset. These results not only
emphasize the effectiveness of TIML but also highlight its superior performance, particularly in
challenging scenarios. Our findings underscore the potential of TIML as a promising algorithm in
the field of machine learning and computer vision.
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In our study, we conducted a series of ablation experiments to provide a comprehensive comparison
of various task handling approaches. After randomly sampling tasks, we treat them differently, in-
cluding random selection, averaging results after selecting all, choosing the most challenging task,
and adopting TIML (a combination of random and greedy strategies). The results of these exper-
iments unequivocally demonstrate the effectiveness of TIML in task handling and optimization.
Notably, TIML outperforms other methods in our comparative analysis, underscoring its efficiency
and versatility in addressing a wide range of tasks. These findings underscore TIML’s significant
contribution to improving task management and its potential impact on diverse applications.
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B DIFFERENCES FROM OTHER TASK SCHEDULING METHODS

In this section, we compare the differences and connections between six task scheduling methods
and the interactive mechanisms of the task environment in this paper.

(1) The core idea of self-paced learning is to simulate human cognitive mechanisms by initially
learning simple and universally applicable knowledge structures and gradually increasing difficulty,
transitioning to more complex and specialized knowledge. However, the task interaction mechanism
mentioned in this paper involves directly selecting more challenging tasks for learning, skipping the
process of training on all tasks from easy to difficult. We adopt a selective training approach, balanc-
ing training resources among tasks with greater future returns while keeping the number of training
iterations constant. The goal of meta-parameters is to establish a good starting point on different
tasks. We begin with task assessments, prioritizing the training of tasks with higher difficulty and
future returns. Information from tasks involved in the training is used to update meta-parameters,
allowing them to converge more rapidly toward tasks with less favorable outcomes. This approach
differs significantly from self-paced learning.

(2) The focal loss for dense object detection introduces a novel loss function, the focal loss, which
is derived from modifying the standard cross-entropy loss. This function aims to focus the model’s
training on difficult-to-classify samples by reducing the weight of easily classifiable samples. The
objective of this method aligns with the task interaction mechanism proposed in this paper, empha-
sizing concentration on more challenging situations. However, there are several differences in the
specific approach. Firstly, focal loss operates on individual samples, while TIML operates on tasks.
Secondly, focal loss employs a suitable function to measure the contribution of hard-to-classify and
easy-to-classify samples to the overall loss, whereas TIML trains and evaluates tasks to update meta-
parameters based on their difficulty and potential returns. Tasks that are relatively simple but yield
better outcomes are essentially not selected and do not participate in the meta-parameter updating
process. To avoid constantly selecting difficult tasks, we introduce a random selection mechanism,
providing a chance for even simple tasks to be chosen. In summary, while there are some conceptual
similarities between focal loss and TIML, their implementation methods and use cases are distinct.

(3) The method proposed in “Difficulty-aware Meta-Learning for Rare Disease Diagnosis (DAML)”
is highly reminiscent of focal loss, as both involve adjusting weights for different situations. In
meta-learning, task loss is used to update meta-parameters in reverse, whereas DAML introduces
dynamically scaled cross-entropy loss for learning tasks. This automatically reduces the weight of
simple tasks and focuses on challenging tasks. This aligns with the TIML concept presented in this
paper, emphasizing a focus on difficult tasks, although the perspective on achieving this goal differs.

(4) In the three articles, “Adaptive Task Sampling for Meta-Learning”, “Probabilistic Active Meta-
Learning”, and “Meta-Learning with an Adaptive Task Scheduler”, as well as in the proposed Task
Interaction Mechanism (TIML) in this paper, the methods share the perspective that tasks randomly
sampled are suboptimal. The distinction lies in the fact that these three methods operate on a task
pool containing all tasks, assuming that all tasks are known. They employ different approaches
to assess and evaluate tasks before feeding them into the training process. In contrast, TIML, as
proposed in this paper, makes superior choices for task training under the premise of random sam-
pling, aiming to adapt to the environment without altering it. Meta-learning, belonging to the field
of few-shot learning, faces challenges in acquiring samples, and the sample landscape continuously
evolves over time. Continuous learning is required when new samples emerge. If operations are
performed on the entire task pool, incorporating new samples requires mixing all samples for task
sampling to achieve meaningful results, rendering previous training outcomes obsolete. With TIML,
incorporating new samples into the previously trained results is sufficient for continued learning.

C SUMMARIZING THE CORE OF THE APPROACH IN THIS PAPER AND
EXPLAINING THE CORE FORMULA

In the experimental section, a task is divided into two parts: a support set and a query set. The sup-
port set is used for training and updating task parameters, while the query set is used for evaluating
the performance of task parameters. We use the task loss on the query set as the criterion, where
a higher loss indicates poor training results. The goal of meta-learning is to have a good starting
point for different tasks, meaning achieving good results with minimal gradient descent. We pass
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the meta-parameters to different tasks within a batch, initially conducting a preliminary assessment
for each task. The criterion for this evaluation is the task loss on the query set after one step of
gradient descent on the task parameters for each task. A high task loss at this stage indicates that
the meta-parameters are distant from optimal parameters for this task, suggesting a need for further
in-depth training. We define a high loss as indicative of a challenging task. To avoid overfitting
solely based on the current task difficulty, we introduce additional factors into the calculation of task
difficulty. These factors include the future expectations from the previous step of the current task
and the number of times the current task has been selected. This calculation yields the task’s future
reward. Based on this future reward, we choose a task for training. After training is complete, the
process repeats, selecting a task for training based on its future reward in a loop.

During the training process, there may be situations where a particular task consistently performs
poorly. According to the aforementioned approach, the system would keep training on this task,
potentially getting stuck in a local minimum. To address this, we introduce a random selection
mechanism to enhance generalization and avoid local traps.

What we truly need is a set of well-tuned meta-parameters. In this context, we have modified the
meta-parameter updating process. We now exclusively utilize the query set losses from tasks that
were selected for training during the task environment interaction mechanism to update the meta-
parameters. Tasks that are selected for training indicate poor performance of the meta-parameters
on these tasks. Therefore, we update the meta-parameters to be more aligned with these selected
tasks.

In Formula 4, LDQ
i

Ti
(t) represents the model’s performance on the selected task in the query set.

Ri(t − 1) denotes the cumulative reward for this task. A larger difference between these two val-
ues indicates a more significant improvement in training effectiveness. To ensure fair comparisons
across different tasks, this difference is normalized by dividing it by the accumulated selection count
for the chosen task. The updated future reward value is obtained by adding this normalized differ-
ence to the previous cumulative reward value.

D PERFORMANCE IMPROVEMENT OF TIML IN COMPLEX NETWORKS

The ResNet12 architecture has a more complex network structure compared to the 4-conv architec-
ture, allowing it to learn richer and more abstract features for each task. Complex networks result in
more precise outcomes during the training process, as shown in Table 1 of the experimental results,
where the ResNet12 architecture demonstrates higher accuracy than the 4-conv architecture on the
same dataset.

Similarly, as information for each task becomes more accurate, the details of conflicts between
tasks become more pronounced. Our task environment interaction mechanism, which updates meta-
parameters using information from the selected tasks during training, effectively reduces more task
conflicts in the ResNet12 architecture compared to the 4-conv architecture, leading to a more no-
ticeable improvement in performance.

Meta-parameters are designed to provide a good starting point for different tasks. Previous methods
updated meta-parameters collectively for all tasks in a batch, reaching a balance point that couldn’t
favor distant tasks more rapidly. In contrast, our proposed method enables faster convergence of
meta-parameters towards distant tasks, resulting in a better starting point. Similarly, in a more
complex network, we not only mitigate more task conflicts but also leverage the finer details of
features to rapidly enhance model performance.
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