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Abstract

The field of vision-language models (VLMs), which take images and texts as inputs
and output texts, is rapidly evolving and has yet to reach consensus on several
key aspects of the development pipeline, including data, architecture, and training
methods. This paper can be seen as a tutorial for building a VLM. We begin by
providing a comprehensive overview of the current state-of-the-art approaches,
highlighting the strengths and weaknesses of each, addressing the major challenges
in the field, and suggesting promising research directions for underexplored areas.
We then walk through the practical steps to build Idefics3-8B, a powerful VLM
that significantly outperforms its predecessor Idefics2-8B, while being trained
efficiently, exclusively on open datasets, and using a straightforward pipeline.
These steps include the creation of Docmatix, a dataset for improving document
understanding capabilities, which is 240 times larger than previously available
datasets. We release the model along with the datasets created for its training.

1 Introduction

Vision-language models (VLMs), that take images and texts as inputs and output texts, are highly
effective in various applications such as document and figure understanding (Hu et al., 2024), solving
visual mathematical problems (Gao et al., 2023), or converting webpage screenshots into code
(Laurençon et al., 2024). The advancement of powerful open large language models (Touvron et al.,
2023; Jiang et al., 2023; Team et al., 2024) and vision encoders (Zhai et al., 2023; Sun et al., 2023;
Radford et al., 2021) allows researchers to build upon these unimodal pre-trained models to create
advanced VLMs that solve these tasks with increasing accuracy (Dai et al., 2023; Liu et al., 2023;
Bai et al., 2023; Lin et al., 2023; Li et al., 2023; Wang et al., 2023).

Despite advancements in the field, the literature highlights a variety of divergent design choices
across key aspects of the development pipeline, indicating a lack of consensus. For instance, while
many recent models (Koh et al., 2023; Li et al., 2023; Liu et al., 2023) have chosen to concatenate the
sequence of image hidden states with the sequence of text embeddings before feeding it as input to
the language model, the Llama 3-V model (Dubey et al., 2024) use interleaved Transformer-based
cross-attentions to fuse the visual information into the LLM, similar to Flamingo (Alayrac et al.,
2022). These different core choices in VLM development, often not ablated or justified in research
papers, make it challenging to distinguish which decisions impact model performance and assess the
compute and data efficiency trade-offs associated with each method.

In this paper, we begin by guiding the reader through the main research questions in the field, offering
a detailed overview of the latest VLM approaches to address these challenges, along with the strengths
and weaknesses of each. Specifically, we focus on (a) the various architectures used to connect
pre-trained language models with vision encoders, (b) the different types of data employed in VLM
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training, their utility, and the typical stage at which they are introduced, (c) the training methods for
VLMs, which are often divided into multiple stages for efficiency and stability, and (d) the challenges
encountered in model evaluation. We propose future research directions, particularly around data, to
enhance model performance.

Building on this overview, we then walk through the practical steps for building Idefics3-8B, a
powerful VLM trained efficiently, using only open datasets and a straightforward pipeline. Idefics3-
8B significantly outperforms its predecessor, Idefics2-8B (Laurençon et al., 2024), particularly in
document understanding tasks, with a 13.7-point improvement on DocVQA (Mathew et al., 2021).
To especially boost the capabilities on this task, we created the Docmatix dataset, which includes
2.4 million images and 9.5 million QA pairs derived from 1.3 million PDF documents—a 240-fold
increase in scale compared to previous open datasets. We release our model alongside the datasets
used for its training.

2 Analyzing architectural choices in VLMs

2.1 Connecting unimodal pre-trained models

Since the introduction of Frozen (Tsimpoukelli et al., 2021) and Flamingo (Alayrac et al., 2022),
most VLMs have been built on top of unimodal pre-trained backbones, a language model and/or a
vision encoder, rather than training entirely new models from scratch (Koh et al., 2023; Li et al., 2023;
Liu et al., 2023). The availability of powerful open-source LLMs (Dubey et al., 2024; Jiang et al.,
2023; Team et al., 2024) and image encoders (Zhai et al., 2023; Sun et al., 2023; Radford et al., 2021),
which are increasingly expensive to train, enables researchers to leverage these models to create
high-performing VLMs at a reduced cost (Dai et al., 2023; Koh et al., 2023; Liu et al., 2023; Vallaeys
et al., 2024). These two pre-trained models are usually connected with either a cross-attention or a
self-attention architecture.

2.1.1 Cross-attention architecture

The cross-attention architecture is introduced in Flamingo (Alayrac et al., 2022). The image hidden
states encoded by the vision backbone are used to condition the frozen language model using freshly
initialized cross-attention layers that are interleaved between the pretrained language model layers.
The keys and values in these layers are obtained from the vision features, while the queries are derived
from the language inputs. In practice, a cross-attention block is inserted after every four Transformer
blocks in the LLM, adding newly initialized parameters equivalent to roughly 1/4th of the LLM’s
size. This significant increase in parameters enhances the model’s expressivity, allowing it to achieve
strong performance without unfreezing the LLM during training, thereby preserving the pre-trained
LLM’s performance on text-only tasks.

Idefics1 (Laurençon et al., 2023) and OpenFlamingo (Awadalla et al., 2023) are open replications of
Flamingo. More recently, Llama 3-V (Dubey et al., 2024) also adopted this approach to adapt Llama
3 to multimodality.

2.1.2 Self-attention architecture

In the self-attention architecture (or fully-autoregressive architecture), introduced in FROMAGe
(Koh et al., 2023) and BLIP2 (Li et al., 2023), the output of the vision encoder is treated as tokens
and concatenated to the sequence of text tokens. The entire sequence is then passed as input to the
language model. The sequence of visual tokens can be optionally pooled into a shorter sequence,
making the model more efficient both during the training and at inference. We refer to the layers
that map the vision-hidden space to the text-hidden space as modality projection layers. Figure 1
highlights the different components of the self-attention architecture.

Most recent VLMs have now adopted this design, including Llava (Liu et al., 2023), Qwen-VL (Bai
et al., 2023), DeepSeek-VL (Lu et al., 2024), SPHINX (Lin et al., 2023), VILA (Lin et al., 2023),
MiniGemini (Li et al., 2024), Monkey (Li et al., 2023), MM1 (McKinzie et al., 2024), Idefics2
(Laurençon et al., 2024), MiniCPM-V (Yao et al., 2024), InternLM (Dong et al., 2024) or InternVL
(Chen et al., 2024).
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2.1.3 Which architecture performs best?

The performance comparison between these two main types of architectures was explored in Lau-
rençon et al. (2024). The pre-trained unimodal models are Mistral-7B (Jiang et al., 2023) for the LLM
and SigLIP-SO400M (Zhai et al., 2023) for the vision encoder. The model with the self-attention
architecture has a total of 8.3B parameters, including 740M newly initialized, while the model
with the cross-attention architecture has a total of 10B parameters, including 2.5B newly initialized.
The authors demonstrate that the cross-attention architecture significantly outperforms when the
backbones are kept frozen during training. However, when parts of the vision encoder and language
model are trained with LoRA (Hu et al., 2022), adding an extra 200M trainable parameters distributed
across both models, the cross-attention architecture performs worse despite having more parameters
overall.

Nonetheless, this study did not evaluate the performance of the VLMs on text-only benchmarks.
Intuitively, when parts of the language model are unfrozen during training, we need to incorporate
data from the LLM training data mixture into the VLM training data to maintain performance on
text-only benchmarks.

2.1.4 Impact of the pre-trained backbones on performance

Various studies find that the performance of each standalone unimodal pre-trained backbone correlates
with the performance of the resulting VLM. For instance, in (Laurençon et al., 2024), the authors
demonstrate that replacing the language model from LLaMA-1-7B (Touvron et al., 2023) (35.1% on
MMLU (Hendrycks et al., 2021)) with Mistral-7B (Jiang et al., 2023) (60.1% on MMLU) leads to a
substantial improvement across benchmarks. Analogously, replacing CLIP-ViT-H (Radford et al.,
2021) (78.0% on ImageNet (Deng et al., 2009)) with SigLIP-SO400M (Zhai et al., 2023) (83.2%
on ImageNet), also leads to a substantial performance improvement across all benchmarks, without
changing the total number of parameters of the VLM.

Because vision encoders are often trained on different datasets and optimized for various tasks, some
models, like SPHINX (Lin et al., 2023), combine representations from multiple encoders, such as
DINOv2 (Oquab et al., 2023) and CLIP (Radford et al., 2021), to create a richer sequence of visual
embeddings, though this comes at the expense of computational efficiency.

Recent research has heavily focused on improving open language models (Touvron et al., 2023;
Dubey et al., 2024; Team et al., 2024; Jiang et al., 2023; Zheng et al., 2024; Conover et al., 2023;
Mehta et al., 2024; Abdin et al., 2024; Hu et al., 2024; DeepSeek-AI et al., 2024; Bai et al., 2023). In
contrast, few open-vision encoders have been released, with SigLIP-SO400M standing out due to
its favorable performance-to-parameter ratio with only 400M parameters. This suggests a need for
extensively trained open-source vision encoders at scale.

2.2 Examining the other architectural choices

2.2.1 Is a vision encoder really necessary?

Instead of employing a vision encoder, Fuyu (Bavishi et al., 2023) feeds image patches directly
into the language model after applying a simple linear projection to adjust the dimensions. This
architecture offers two main advantages: it is independent of another pre-trained model and preserves
all the information from the original image. The latter point is crucial since the original image details
might be necessary for accurately responding to the prompt. On the other hand, a pre-trained vision
encoder transforms an image into a representation that is independent of the user’s prompt. As a
result, vision encoders aim to capture as much information as possible and can still miss details
pertinent to the prompt. VisFocus (Abramovich et al., 2024) attempts to address this drawback by
incorporating the user’s prompt into the vision encoder. However, this approach is less natural in
interleaved image-text conversations, where prompts may refer back to previous questions.

Despite these advantages, this architecture has not yet demonstrated superior performance. Fuyu
scores significantly lower on benchmarks compared to the best models of similar size released around
the same time. PaliGemma (Beyer et al., 2024) also experimented with this approach and reported a
notable drop in performance compared to using a pre-trained vision encoder. The authors suggest
that bypassing a vision encoder pre-trained on billions of images could lead to longer training times
to achieve similar performance.
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Furthermore, handling image representation within the language model might decrease its per-
formance on text-only benchmarks. Even if this approach outperformed others on multimodal
benchmarks, most VLMs are still not evaluated on text-only benchmarks, making it unclear whether
omitting a vision encoder affects text benchmark performance.
Finally, this approach has not been tested yet with an efficient pooling strategy that does not signifi-
cantly reduce information by operating directly on raw pixels. Looking ahead, for tasks like video
understanding or extension to other modalities, it will be important to develop an architecture that can
efficiently reduce the number of visual tokens passed to the language model to maintain a reasonable
sequence length.

2.2.2 How should we connect the vision encoder to the language model?

Many models, such as FROMAGe (Koh et al., 2023) and LLaVA (Liu et al., 2023), use a simple
linear layer between the vision encoder and the LLM, ensuring that all encoded visual information is
retained since no pooling strategy is applied. However, this approach results in a long sequence of
visual tokens, making training and inference less efficient. To address this, Qwen-VL (Bai et al., 2023)
reduces the number of visual tokens by using a single-layer cross-attention module between a group
of embeddings and the image hidden states. Similarly, Idefics2 (Laurençon et al., 2024) employs
a cross-attention module within a perceiver resampler (Jaegle et al., 2021; Alayrac et al., 2022),
demonstrating that the number of visual tokens can be compressed to as few as 64 (divided by 77)
while maintaining performance for most tasks, except those that require extensive OCR capabilities.
InternLM-XComposer2-4KHD (Dong et al., 2024) also shows that increasing the number of visual
tokens per image is primarily necessary for benchmarks focused on OCR tasks, such as InfoVQA
(Mathew et al., 2022) and DocVQA (Mathew et al., 2021).

Despite the efficiency of the perceiver resampler, its use has been challenged in several papers,
which suggest leveraging the 2D structure of images more effectively. For instance, HoneyBee (Cha
et al., 2024) introduces the C-Abstractor, which reintroduces 2D positional embeddings to the visual
features, followed by ResNet blocks (Xie et al., 2017). In mPLUG-DocOwl-1.5 (Hu et al., 2024),
the H-Reducer is introduced, using convolutions to divide the number of image hidden states by
4. InternVL (Chen et al., 2024) also achieves a fourfold compression using a simple pixel shuffle
strategy. Recently, MiniCPM-V 2.6 (Yao et al., 2024), like Idefics2, chose the perceiver resampler
with 64 learnable embeddings but enhanced it by adding 2D positional embeddings.

2.2.3 The image-splitting strategy: a trick to increase the number of visual tokens

Introduced in UReader (Ye et al., 2023) and SPHINX (Lin et al., 2023), the image splitting strategy
involves dividing an original image into multiple sub-images, each of which is encoded separately by
the vision encoder. The number of tiles can be fixed, such as consistently using four crops per image,
or it can vary depending on the image’s original resolution, with the image split every N pixels, for
example.

When the number of tiles is based on the original resolution, the model is trained with varying
numbers of visual tokens. This approach is particularly advantageous during inference: for simpler
tasks, fewer visual tokens are needed, saving computational resources, while more computing can
be allocated by increasing the image resolution for tasks that require intensive OCR. This flexibility
is highly beneficial for models designed to excel both at reasoning on a single image with high
computational resources and at processing videos with many frames while maintaining a reasonable
sequence length by using a lower resolution for each frame.

Most vision encoders are designed for relatively low, fixed image resolutions and are not well-suited
for processing large images. The image-splitting strategy addresses this by enabling the use of
off-the-shelf pre-trained vision encoders at their original resolution, simply by feeding multiple
smaller sub-images to the encoder instead of the original large image. Since the vision encoder’s
weights are shared across each sub-image, this approach also enhances training efficiency.

However, since the tiles of an image are not independent, encoding each one separately can be
suboptimal and may result in a loss of global context. To address this, the current strategy involves
adding the downscaled original image to the list of tiles, resizing it to match the resolution supported
by the vision encoder. While this helps retain some of the overall context, it’s not a perfect solution, as
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the reduced resolution of the original image makes it difficult to capture finer details and its resolution
depends on the original image’s resolution.

Can we do better than the image-splitting strategy? An alternative to the image-splitting strategy
and a promising direction for future research is to develop a vision encoder that can natively process
images of varying resolutions, including very large ones, without changing the original aspect ratios,
potentially incorporating a mechanism for handling long-context efficiently. This model could be
trained efficiently using the Patch’n’Pack (Dehghani et al., 2023) strategy. It would generate a
different number of visual tokens per image based on the original resolution, enabling the entire
image to be encoded directly without the need to crop it into multiple sub-images.

3 Training methods and datasets for VLMs

Training VLMs typically occurs in multiple stages, primarily due to (a) the limited availability
of high-quality data at scale, (b) memory constraints for efficient training, and (c) stability issues.
During these stages, progressively higher-quality data is introduced, the maximum image resolution
is gradually increased, and more model parts are unfrozen. Figure 2 illustrates the key stages of
training and the types of datasets used at each stage. As discussed in the previous section, the process
begins with two unimodal pre-trained backbones: a language model and a vision encoder.

3.1 Multi-stage pre-training

The primary goal of pre-training is to align the backbone models and train the newly initialized
parameters in the model. This is achieved using large-scale datasets to expose the VLM to a wide
variety of examples to build extensive knowledge and improve robustness against out-of-domain
data. To preserve the initial performance of the LLM, some models, like VILA (Lin et al., 2023) and
LLaVA-NeXT (Liu et al., 2024), begin training by freezing the backbone models and focusing solely
on the newly initialized parameters (the connector) until a satisfactory performance level is achieved.
Afterward, the vision encoder and/or the language model can be gradually unfrozen. If instabilities
arise, or if there’s a need to enhance the model’s expressivity while adding more regularization than
full unfreezing, a LoRA (Hu et al., 2022) approach can be effective even during the pre-training phase
(Laurençon et al., 2024).

To efficiently train on a large number of images, the image resolution is typically kept low at the
start of training and gradually increased over time. Once the resolution is sufficiently high, datasets
containing large images, such as PDFs, can be incorporated into the training data.

In the following paragraphs, we will discuss the various types of data typically used during this
process. Examples of the most common ones are illustrated in Figure 3.

Image-text pairs Image-text pair datasets are typically created by crawling the web to download
images and extract their alt-texts from HTML files. This method allows for easy collection and
strong alignment between images and text, leading to large datasets like LAION (Schuhmann et al.,
2022) (5B images), COYO (Byeon et al., 2022) (700M images), and DataComp (Gadre et al., 2024)
(12.8B images). However, these alt-texts are often noisy, ungrammatical, or too brief, complicating
training. To address this, recent methods have used synthetic re-captioning, where models generate
new captions for existing images (McKinzie et al., 2024; Betker et al., 2023; Laurençon et al., 2024).
For example, LAION COCO (Schuhmann et al., 2022) re-captioned 600M images from LAION-5B
using a mix of BLIP and CLIP models, while VeCap (Lai et al., 2023) combined original alt-texts
with synthetic captions from LLaVA (Liu et al., 2023) to create a dataset of 300M samples.

While much work has focused on improving caption quality, less attention has been given to selecting
"good" images, despite many web images (e.g., logos, icons, portraits) being suboptimal for VLM
training. Synth2 (Sharifzadeh et al., 2024) addresses this by starting with LLM-generated captions
and then generating images via Text-to-Image models. Moreover, image deduplication techniques
like SNIP-Dedup Webster et al. (2023) and SemDeDup (Abbas et al., 2023) have shown that training
on half of the deduplicated LAION dataset yields almost the same performance as using the full
dataset.
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Interleaved image-text documents Training on interleaved image-text documents, as introduced
by Flamingo (Alayrac et al., 2022) with the proprietary M3W dataset, uses web documents that
preserve the original order of images and text. OBELICS (Laurençon et al., 2023) is an open-source
dataset following this approach, containing 141M documents and 353M images, sourced from
Common Crawl dumps and filtered to remove spam and ads. This type of dataset enhances in-context
learning, improves the model’s understanding of images interleaved with text, and exposes it to a
broader text distribution than standard image-text pairs, as supported by findings in MM1 (McKinzie
et al., 2024). OBELICS has been used in training VLMs like MM1 (McKinzie et al., 2024), Idefics2
(Laurençon et al., 2024), and BLIP-3 (Xue et al., 2024). The scale of such datasets has since expanded
significantly, with MINT-1T (Awadalla et al., 2024) growing to 1T documents and 3.4B images, and
OmniCorpus (Li et al., 2024) reaching 2.2B documents and 8.6B images. Model-based filtering, as
seen in Phi-3 (Abdin et al., 2024) and FineWeb-Edu (Penedo et al., 2024) for educational content,
could further enhance these datasets but remains underexplored.

PDF documents Two primary datasets for PDF documents paired with their text transcriptions are
OCR-IDL (Biten et al., 2022) and PDFA2. OCR-IDL includes 26M pages of industry documents,
while the English-only filtered version of PDFA contains 18M pages sourced from Common Crawl,
offering greater diversity than OCR-IDL. Both datasets were created using OCR extraction tools
to obtain corresponding texts and their locations within the documents, which can be linearized
into a full document transcription. Idefics2 (Laurençon et al., 2024) used these datasets directly
during pre-training, an approach also adopted at scale in Llama 3-V (Dubey et al., 2024) to enhance
performance on document understanding tasks.

Synthetic data The datasets discussed earlier offer several key advantages. They establish founda-
tional skills such as (a) image captioning, (b) handling an arbitrary number of images interleaved
with diverse texts, and (c) text transcription, all of which are essential for tackling more complex
tasks. These datasets are abundant, as they are primarily built by crawling the web, ensuring a broad
distribution of texts and images, enhancing robustness against rare examples.
However, these datasets fall short in addressing many of the tasks that users typically require, such as
document understanding or visual math reasoning, which are significantly more challenging. Relying
on generalization or the limited examples in current fine-tuning datasets to master these tasks is not
ideal.
In the training of LLMs, synthetic data has proven to be highly effective (Zheng et al., 2024; Gu-
nasekar et al., 2023; Liu et al., 2024; Dubey et al., 2024). Given the recent advancements in VLMs,
which now solve many real-world examples with high accuracy, creating and training on large-scale
synthetic datasets is a logical step. These datasets can be tailored to include examples that closely
resemble the tasks users will likely request, making them more relevant than the data used in earlier
training stages.
The main categories of synthetic data that could be used are outlined in Section A.2.

3.2 Fine-tuning

Similar to the approach commonly used with LLMs (Touvron et al., 2023), fine-tuning is typically
done in two stages: supervised fine-tuning (SFT) followed by an alignment phase.

Which datasets should be used for the SFT? The literature offers many high-quality datasets
containing diverse images and covering a wide range of tasks. They are often annotated by humans,
ensuring accurate QA pairs. Although most of them are relatively small individually, when combined,
they provide a sufficient number of examples for an effective SFT.
Inspired by previous work on LLMs (Wei et al., 2022; Sanh et al., 2022), InstructBLIP (Dai et al.,
2023) and M3IT (Li et al., 2023) were among the first to introduce curated mixtures of academic
datasets for fine-tuning VLMs. Building on these efforts, The Cauldron (Laurençon et al., 2024)
introduced a collection of 50 high-quality datasets covering a broad range of tasks, including gen-
eral visual question answering, counting, captioning, text transcription, document understanding,
chart/figure analysis, table understanding, visual reasoning, geometry, spotting differences between
two images, and converting screenshots into functional code. Each dataset in this compilation is
formatted into a standardized question/answer format, and when multiple QA pairs exist per image,

2https://huggingface.co/datasets/pixparse/pdfa-eng-wds
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they are combined into a multi-turn conversation. However, a drawback of academic datasets is that
their answers tend to be concise, which may lead the model to generate similarly brief responses,
which are often less preferred by users. A potential solution is to use an LLM to expand and rephrase
the answers, as in M3IT (Li et al., 2023) and Llava 3-V (Dubey et al., 2024).

Alignment phase There are several reasons to include an alignment stage following supervised
fine-tuning. The first objective is to align the model’s output with human preferences, making it more
intuitive and better at following complex instructions. Additionally, as demonstrated in RLHF-V (Yu
et al., 2024), this stage effectively reduces hallucinations, where the model might describe objects or
details not actually present in the image. It also enhances model safety by minimizing the risk of
generating harmful content. It also may further improve overall model performance.
RLAIF-V (Yu et al., 2024) provides a dataset of 80K preference pairs, used in the training of
MiniCPM-V 2.5 (Yao et al., 2024). VLFeedback (Li et al., 2023) offers 380K comparison pairs, where
model responses sampled from 12 VLMs are ranked by GPT-4V (Achiam et al., 2023). Similarly,
SPA-VL (Zhang et al., 2024) generates 100K preference pairs through a comparable approach. DPO
(Rafailov et al., 2024) is then commonly applied to these datasets during the alignment phase.

4 Idefics3: adapting Llama 3 to multimodality

In this section, we detail the construction of Idefics3, a VLM based on Llama 3.1 (Dubey et al., 2024)
and SigLIP-SO400M (Zhai et al., 2023). First, we begin by preparing the dataset used for training.

4.1 Dataset preparation

Our approach mainly takes the datasets used in the training of Idefics2 (Laurençon et al., 2024) while
also adding complementary datasets for supervised fine-tuning to expand the range of tasks covered.
These datasets are detailed below.

4.1.1 Extending The Cauldron

As previously mentioned, The Cauldron (Laurençon et al., 2024) is a collection of 50 high-quality
datasets from existing literature. We have expanded this collection by adding 6 more datasets: Cord-
v23 for training models to output information in JSON format, LNQA for large-scale real-world
visual question answering, ShareGPT-4o and IIW-400 (Garg et al., 2024) for generating detailed
captions, Geo170K (Gao et al., 2023) for tasks involving geometry, and Docmatix for document
understanding.

In Table 3, we present the statistics of the datasets included in The Cauldron and the text-only
instruction datasets used for the supervised fine-tuning. For each dataset, we give the number of
different images it contains, the number of question-answer pairs, the total number of tokens for the
answers in the question-answer pairs, and the selected percentage of answer tokens it represents in
our final mixture after upsampling or downsampling.

4.1.2 Enhancing document understanding capabilities with Docmatix

Document understanding is a critical business application for VLMs. Yet, only a few open-source
datasets are available for boosting the performance of models in this area, and they typically include
only a limited number of examples. For instance, DocVQA (Mathew et al., 2021) offers 10K images
and 40K QA pairs, InfographicVQA (Mathew et al., 2022) contains 2K images and 10K QA pairs,
and VisualMRC (Tanaka et al., 2021) provides 3K images and 12K QA pairs.

Moreover, generating high-quality synthetic data for this task is relatively straightforward if we
reframe the problem as one of LLM-based data generation rather than relying solely on VLMs.
Standard OCR tools can accurately extract text from PDF documents, and an LLM can then be used
to generate QA pairs based on this text.
These motivations lead us to build a large-scale document understanding dataset.

We begin with the text transcriptions from the English PDFA dataset and use Phi-3-small (Abdin
et al., 2024) to generate QA pairs. To ensure diverse outputs, we employ five different prompts. To

3https://huggingface.co/datasets/naver-clova-ix/cord-v2
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maintain dataset quality, we filter the results, discarding 15% of QA pairs flagged as incorrect. This
is done by using regular expressions to detect code and removing answers containing the keyword
"unanswerable." Figure 4 shows an overview of our dataset creation pipeline.

The resulting dataset, Docmatix, includes 2.4M images and 9.5M QA pairs derived from 1.3M PDF
documents, representing a 240-fold increase in scale compared to previous open datasets.

Model / Training data Model size DocVQA (ANLS)
Florence-2 / DocVQA 700M 60.1
Florence-2 / Docmatix 700M 71.4

Idefics2 / General mixture 8B 74.0

Table 1: Ablation on the importance of Docmatix to improve the
performance on document understanding tasks.

To assess Docmatix’s effectiveness,
we conduct ablation studies using the
Florence-2 (Xiao et al., 2024) model.
We train two versions of the model:
one trained over multiple epochs on the
DocVQA dataset, and another trained for
a single epoch on a subset of Docmatix
(20% of images and 4% of QA pairs),
followed by an epoch on DocVQA to ensure proper format for evaluation. The results, shown in
Figure 1, are significant: training on this small portion of Docmatix leads to a nearly 20% relative
improvement. Additionally, the specialist 0.7B Florence-2 model performs only 5% worse than the
much larger 8B Idefics2 (Laurençon et al., 2024) generalist model.

Since Docmatix was made publicly available prior to this paper, it has already been used to enhance
the performance of the moondream2 model4, which achieved a 103% improvement on DocVQA
compared to its previous version.

4.2 Building Idefics3

4.2.1 Architecture and training methods

Following Idefics2 (Laurençon et al., 2024), we use SigLIP-SO400M (Zhai et al., 2023) for the vision
encoder, and swap the language model for Llama 3.1 instruct (Dubey et al., 2024), as it significantly
outperforms Mistral-7B (Jiang et al., 2023).

For the connector between these backbones, Idefics2 uses a perceiver resampler to encode each image
up to 980x980 pixels into 64 visual tokens. With Idefics3, we aim to enhance OCR capabilities. To
address the bottleneck for OCR tasks of having too few visual tokens per image, we replace the
perceiver resampler with a simple pixel shuffle strategy. This method, as in InternVL-1.5 (Chen et al.,
2024), acts as a pooling technique that reduces the number of image hidden states by a factor of 4,
encoding each image up to 364x364 pixels into 169 visual tokens.

During both training and inference, we follow the image-splitting strategy, where the original image
is divided into a matrix of tiles of 364x364 pixels. The number of rows and columns in this matrix
depends on the resolution of the original image. The vision encoder processes each tile separately,
resulting in a sequence of visual tokens.
However, because images have a 2D structure, and the number of rows and columns in the tile matrix
varies for each image, linearizing these visual tokens into a single sequence can cause the model to
lose the information about the original arrangement of tiles, making it difficult to reconstruct their
positions accurately. To address this issue, we follow the common practice of inserting a text token
‘\n‘ after each row of tiles, and of appending the original image, downscaled to 364x364 pixels, to the
sequence of tiles to provide the model with the complete image in its entirety (Lin et al., 2023; Dong
et al., 2024). Additionally, as in mPLUG-DocOwl-1.5 (Hu et al., 2024), we prepend each tile with
the textual tokens ‘<row_x_col_y>‘, where x and y indicate the tile’s position in the matrix.

Details of the Idefics3 training process are summarized in Table 4. The training involves three stages
of pre-training followed by supervised fine-tuning.

In the first pre-training stage, the model’s backbones remain frozen to preserve their performance
while learning the newly initialized parameters. We gradually increase the maximum image resolution
from 364² to 1820². From the second stage onward, we efficiently train the backbones using DoRA
(Liu et al., 2024), a variant of LoRA (Hu et al., 2022), and introduce larger images into the training
data. The final pre-training stage focuses on training with large synthetic datasets.

4https://huggingface.co/vikhyatk/moondream2
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During the supervised fine-tuning phase, we apply NEFTune noise (Jain et al., 2024) to the inputs and
calculate the loss only on the answer tokens. The learning rate is kept constant during the first two
pre-training stages but is linearly decayed to zero during the final pre-training stage and supervised
fine-tuning. The entire training process, including restarts, is completed in 5 days on 32 H100 nodes.

Opportunities for improvement There are several straightforward opportunities for improvement.
First, although we did not encounter instabilities when fully unfreezing the backbones, we opted for
a LoRA approach to enhance training efficiency. However, we believe that carefully executed full
unfreezing can lead to better performance. Additionally, during the first two pre-training stages, the
loss function is far from converging, but we moved to the next stage to reduce computational costs. In
stage 3 of pre-training, only a fraction of the examples available in the chosen datasets are used, again
to reduce computational demands. Further significant improvements can be achieved by creating and
incorporating the synthetic datasets mentioned in Section 3.1 into the stage 3 data mixture.

4.2.2 Evaluation

We evaluate Idefics3 on commonly adopted and challenging benchmarks: MMMU (Yue et al., 2024)
for multidiscipline college-level problems, MathVista (Lu et al., 2024) for visual mathematical
reasoning, MMStar (Chen et al., 2024) for general image understanding, DocVQA (Mathew et al.,
2021) for document understanding, and TextVQA (Singh et al., 2019) for text reading on natural
images. For Idefics3, we evaluate the benchmarks by resizing all images so that the longest side is
4x364 pixels. The exception is DocVQA, which has larger images, where we resize them to 5x364,
matching the maximum resolution used during training. For Idefics2-70B, we resize the longest side
of all images to 1960 pixels, the maximum resolution seen during its training. The prompts used for
the evaluations are provided in Section A.7.1.

Table 2 presents the results of Idefics3 against Idefics2-70B and Idefics2-8B (Laurençon et al., 2024).
The detailed performance of Idefics3 across each category of MMMU is present in Table 5. Compared
to Idefics2, Idefics3 benefits from having more visual tokens per image, a third stage of pre-training
on large high-quality synthetic datasets, and an improved language model backbone. Despite being
trained less extensively during the first two pre-training stages, these enhancements led to significant
improvements across various tasks, particularly in document understanding tasks, with a boost of
13.7 points on DocVQA. However, the large gap of 11.4 points between Idefics2-70B and Idefics3-8B
on MMMU indicates that scale is necessary for this benchmark to encapsulate sufficient knowledge
into the model’s weights. We qualitatively evaluate Idefics3 in Section A.7.3.

MMMU MathVista MMStar DocVQA TextVQA
Idefics2-8B 45.2 52.2 49.5 74.0 73.0

Idefics2-70B 58.0 59.8 58.1 84.1 77.3
Idefics3-8B 46.6 58.4 55.9 87.7 74.9

Table 2: Performance of Idefics3 against Idefics2-8B and Idefics2-70B. The evaluations are done in
zero shot and without any chain-of-thought prompting.
(Benchmark, Split, Metric): (MMMU, val, MMMU score), (MathVista, testmini, MMMU score),
(MMStar, val, acc.), (DocVQA, test, ANLS score), (TextVQA, val, VQA acc.).

5 Conclusion

In this paper, we provided a comprehensive tutorial on building vision-language models (VLMs),
emphasizing the importance of architecture, data, and training methods in the development pipeline.
Through an in-depth analysis of current state-of-the-art approaches, we highlighted the strengths and
weaknesses of various design choices and suggested potential research directions for improving the
models. We then detailed the practical steps taken to build Idefics3-8B, a VLM that demonstrates
significant improvements in document understanding tasks, particularly through the use of the
introduced Docmatix dataset. By releasing both the model and the datasets, we aim to contribute to
develop the next generation of responsible and open VLMs.
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A Appendix

A.1 Self-attention architecture

Figure 1 highlights the different components of the self-attention architecture.
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Figure 1: From Laurençon et al. (2024). The self-attention, or fully-autoregressive, architecture:
Input images are processed by the Vision encoder. The resulting visual features are mapped (and
optionally pooled) to the LLM input space to get the visual tokens. They are concatenated (and
potentially interleaved) with the input sequence of text embeddings (green and red column). The
concatenated sequence is fed to the language model (LLM ), which predicts the text tokens output.

A.2 Types of pre-training datasets

Figure 2 illustrates the key stages of training and the types of datasets used at each stage, while figure
3 presents the main types of pre-training datasets.

Mult i-stage pretraining

Stage 1 Stage 2

- Interleaved docs
- Image-text pairs

- Stage 1 data
- PDFs

Progressively increasing image resolution and unfreezing

Stage 3

- Stage 1 + 2 data
- Diverse synth. data

SFT

- Academic datasets
- Conversations

Fine-tuning

Alignment

- Preference data

Figure 2: The different stages of training and the types of datasets used.

Image-text pair Inter leaved image-text document PDF document

The fire is burning 
in the distance 
behind trees.

The match between Tottenham Spurs vs Chelsea will kick off from 
16:30 at Tottenham Hotspur Stadium, London.

The derby had been played 54 times and the Blues have dominated 
the Spurs. Out of 54 matches played, Chelsea has won 28 times [...]

COVIDIEN Mallinckrodt Addendum
This Addendum to the Consulting 
Agreement (the "Agreement") of [...]

Figure 3: Types of examples used during the pre-training of VLMs. (a) An image-text pair from
LAION COCO, (b) an interleaved image-text document from OBELICS, (c) a PDF document from
OCR-IDL.

The main categories of synthetic data that could be used are outlined below.
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Image captioning The leading dataset for images paired with detailed captions is PixelProse
(Singla et al., 2024). This dataset, built using images from CC12M (Changpinyo et al., 2021),
CommonPool (Gadre et al., 2024), and RedCaps (Desai et al., 2021), contains captions
generated by Gemini 1.0 Pro (Team et al., 2023). Despite being smaller in scale with
17M images, PixelProse offers richer descriptions and uses a stronger model for caption
generation, making it an improvement over LAION COCO. Future improvements could
include a more diverse, filtered, and deduplicated set of images, better models to reduce
potential hallucinations in the generations, and various prompts for stylistic diversity. A
similar dataset, ShareGPT-4o5, re-captions images using GPT-4o to obtain 57K examples.

Real-world visual question answering Datasets in this category contain QA pairs about real-
world images, covering topics like identifying people or objects, understanding subtle
scenes, counting, color identification, or spatial positioning. The leading dataset in this area
is LNQA6, with 300K images sourced from Localized Narratives (Pont-Tuset et al., 2020)
and 1.5M QA pairs.

Text reading in natural images In LLAvAR (Zhang et al., 2023), the authors use OCR tools
to extract text from real-world images in the LAION-5B dataset (Schuhmann et al., 2022),
resulting in 420K samples. Similar approaches are seen in MiniCPM-V (Yao et al., 2024)
and Llama 3-V (Dubey et al., 2024). The key advantage of these datasets is their scalability
and the unique distribution of text in natural images compared to PDF documents, which
enhances the model’s ability to tackle tasks like TextVQA (Singh et al., 2019).

Text transcription The leading dataset for text transcription is PDFA, mentioned above. However,
linearizing texts coherently from bounding boxes can be challenging, and math equations
are often inaccurately transcribed or omitted, an area where models like Nougat (Blecher
et al., 2023) excel. Additionally, figures and tables are often poorly transcribed by OCR
tools. A better strategy for text transcription would involve combining a traditional OCR
tool, a document-specialized model like Nougat, and a robust VLM to judge, refine, and
merge the outputs of these models.

Document understanding Understanding documents from images is complex, making the
generation of quality synthetic QA pairs challenging even for advanced VLMs. However,
accurate text transcriptions from document images can be obtained with OCR tools, and
text-only LLMs are performant at generating QA pairs from these transcriptions. This
approach was used to create the dataset Docmatix, introduced in detail later in this paper,
which includes 1.3M documents up to 4 pages long and 9.5M QA pairs. Enhancements
could involve generating more diverse questions, such as summarizing a paragraph, and
employing a strong VLM to filter out erroneous generated QA pairs.

Chart understanding ChartGemma (Masry et al., 2024) uses Gemini 1.5 Flash (Reid et al.,
2024) to generate 160K QA pairs for chart analysis, covering a range of questions like
summarizing insights, converting charts to Markdown tables, and assessing the validity of
stated facts based on the chart.

Table understanding A dataset for table understanding can be created by either using a strong
VLM with table images taken from the web, or by synthetically generating tables with an
LLM, rendering them to images, and generating QA pairs with the LLM. However, to our
knowledge, there is currently no large-scale open-source synthetic dataset available for this
task.

Reasoning with chain-of-thought In Meteor (Lee et al., 2024), the authors developed a proprietary
dataset to enable a model to answer complex questions using a chain-of-thought strategy
(Wei et al., 2022). They began by collecting challenging QA pairs from academic datasets,
where the answers were provided without explanations. Then, they employed Claude 3
Haiku (Anthropic, 2024) to generate detailed and comprehensive rationales for these answers.
These rationales were finally filtered by GPT-4V (Achiam et al., 2023) to ensure quality,
resulting in a final set of 1.1M question-rationale-answer triples.

Visual mathematical reasoning Even the most advanced VLMs currently struggle with complex
mathematical reasoning and geometry tasks. Generating synthetic data directly from a
teacher model is problematic because the teacher often fails to provide correct answers.

5https://huggingface.co/datasets/OpenGVLab/ShareGPT-4o
6https://huggingface.co/datasets/vikhyatk/lnqa
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Instead, datasets like Geo170K (Gao et al., 2023) and MAVIS-Instruct (Zhang et al., 2024)
are created by augmenting small and accurate academic mathematical datasets using an
LLM. In AlphaGeometry (Trinh et al., 2024), the authors train a model exclusively on
synthetically generated geometric problems, enabling it to solve olympiad-level challenges
effectively.

Converting web screenshots into HTML code To develop models capable of efficiently con-
verting web screenshots into functional HTML code, WebSight (Laurençon et al., 2024)
introduced a fully synthetic dataset comprising 2M pairs of HTML code and their corre-
sponding screenshots. The HTML and TailWind CSS code were generated using DeepSeek-
Coder (Guo et al., 2024), merged into a single file, and then filtered and rendered to obtain
the web screenshot. Instead of relying on a general LLM coder, further improvements
could be achieved by using a specialist LLM fine-tuned specifically for HTML and CSS
generation, enabling the creation of more diverse and visually appealing websites. In
InternLM-XComposer-2.5 (Zhang et al., 2024), in addition to the WebSight dataset, the
authors built a proprietary dataset that includes HTML and CSS files from The Stack v2
(Lozhkov et al., 2024) which were heavily filtered to remove external links and irrelevant
content. This approach benefits from more diverse websites in the dataset, though it may
introduce challenges with potentially noisy, lengthy, or difficult-to-learn examples.

Locating objects in an image Determining the exact positions of objects within an image by
generating bounding boxes around them is useful for various applications, such as enabling
a VLM to navigate the web by selecting where to click based on positional output. In
BLIP3-GROUNDING-50M (Xue et al., 2024), large-scale grounding datasets are created
by using a diverse set of images, where objects and their locations are identified using
open-world image tagging and object detection models.

A.3 Challenges in evaluating VLMs

A.3.1 Open-ended and multiple-choice benchmarks

The earliest and most popular multimodal benchmarks, such as VQAv2 (Goyal et al., 2017), OKVQA
(Marino et al., 2019), TextVQA (Singh et al., 2019), and COCO Captioning (Lin et al., 2014), are
mainly open-ended. These benchmarks rely on specific ground-truth answers for each question, so
even minor variations in the model’s responses can lead to a score marked as incorrect.
This method of evaluation tends to favor models that produce answers closely aligned with the
benchmark’s expected format or writing style. For example, VQAv2, which assesses general real-
world image understanding, typically expects short answers, often just one or two words. Even when
the evaluation prompt clearly specifies this format, models like Gemini 1.0 Ultra (Team et al., 2023)
and GPT-4V (Achiam et al., 2023) achieve scores of 77.8 and 77.2, respectively. These scores are
notably lower than those of much smaller models that include a small portion of VQAv2 in their
fine-tuning data: MM1-3B-Chat (McKinzie et al., 2024) reaches 82.0, and moondream2 achieves
79.4 with only 1.9B parameters. This discrepancy highlights the challenge of evaluating different
models without letting the benchmark’s template influence the results.
One potential way to mitigate this bias is to perform few-shot evaluations, although this approach is
less effective than training on the benchmark training set, and is not currently used for evaluating
instruct models.
However, the level of ambiguity in these evaluations can vary by benchmark. For instance, TextVQA
and DocVQA (Mathew et al., 2021) require the model to read and extract text directly from an image
without rephrasing it, which reduces ambiguity. In MathVista (Lu et al., 2024), where answers are
always numerical, each question is paired with specific instructions, such as indicating whether the
answer should be an integer or a float rounded to two decimal places.
Recently proposed, the LAVE metric (Mañas et al., 2024) consists of asking an LLM to evaluate
whether the response generated by the VLM is correct, given the ground truth and the specific
question, thereby reducing the template problem.
Another way to reduce ambiguity is to use benchmarks that include multiple-choice questions
(MCQs), where the model selects the correct option by choosing the corresponding letter. Many
recent benchmarks have adopted this approach, such as MMMU (Yue et al., 2024), MMStar (Chen
et al., 2024), and MMBench (Liu et al., 2023).
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A.3.2 Challenges in model evaluation during the pre-training stage

There is a significant discrepancy between the performance of VLMs at the pre-training stage versus
after fine-tuning. For instance, Idefics2-base (Laurençon et al., 2024) scores 57.9 on TextVQA (Singh
et al., 2019) using 8 in-context examples and less than 55 on DocVQA (Mathew et al., 2021) during
pre-training. However, after fine-tuning, it achieves 70.4 on TextVQA and 67.3 on DocVQA in a
zero-shot setting, without employing the image-splitting strategy. As noted earlier, these open-ended
tasks are less influenced by the specific template expected by the benchmark.

One reason for this gap is that the model only starts learning the specific task of visual question
answering (beyond just image captioning or text transcription) during the fine-tuning stage—unless a
third pre-training stage is conducted using large synthetic VQA datasets, as described in Figure 2,
which offer examples more aligned with the ones present in benchmarks.

When instruction data is omitted during pre-training, more complex tasks like document understanding
may perform poorly, and the impact of development choices in the VLM may only become evident
after fine-tuning, leading to a delayed feedback loop. This delay can make pre-training ablations
misleading. For example, in Idefics2, the authors found no noticeable improvements during pre-
training when using 128 visual tokens instead of 64 with their architecture. While this held true
for most tasks, the benefit of using more visual tokens per image became apparent in OCR tasks
after fine-tuning with the image-splitting strategy. Therefore, to obtain more accurate insights during
pre-training ablations, we recommend incorporating instruction data into the data mixture.

A.3.3 Risk of contamination and overoptimization in some benchmarks

Some benchmarks are derived from the validation or test sets of existing academic datasets. For
instance, MathVista (Lu et al., 2024), a leading benchmark for evaluating reasoning and math
capabilities, shows signs of potential contamination. We found that at least 6.6% of the questions
include images from the training sets of academic datasets often used in supervised fine-tuning, and
2.2% feature both an image and a question that is identical or highly similar.

Additionally, this benchmark often includes questions that are especially difficult to answer unless
the model has encountered them during training. For example, we find that at least 6.1% of the
questions in MathVista ask variations of the question, "What is the age gap between these
two people in the image?". Variants of this question are also abundant on KVQA (Shah et al.,
2019). Therefore, models incorporating KVQA in their fine-tuning data will have an advantage for
MathVista.

Ultimately, benchmarks should be used to measure model performance, not as a training objective.
Fine-tuning on similar examples can boost scores, but it provides little evidence for the model’s
ability to generalize to real-world scenarios. Thus, we encourage researchers to exclude images used
in the benchmarks they evaluate from their supervised fine-tuning data.

A.4 Dataset creation pipeline of Docmatix

Figure 4 shows an overview of our dataset creation pipeline.

A.5 Supervised fine-tuning mixture of Idefics3

In Table 3, we describe in detail the mixture of data used during the supervised fine-tuning stage.

Dataset # images # QA pairs # tokens % mix

Captioning
ShareGPT-4o 7 57,259 57,259 39,696,010 13.03%

7https://huggingface.co/datasets/OpenGVLab/ShareGPT-4o
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LNarratives (Pont-Tuset et al., 2020) 507,444 507,444 21,328,731 1.40%
TextCaps (Sidorov et al., 2020) 21,953 21,953 389,658 1.28%
VisText (Tang et al., 2023) 7,057 9,969 1,245,485 1.23%
IIW-400 (Garg et al., 2024) 400 400 103,024 0.68%
Screen2Words (Wang et al., 2021) 15,730 15,743 143,103 0.23%

Real-world visual question answering
LNQA 8 302,780 1,520,942 21,107,241 3.46%
VQAv2 (Goyal et al., 2017) 82,772 443,757 1,595,929 2.10%
COCO-QA (Ren et al., 2015) 46,287 78,736 286,982 0.94%
Visual7W (Zhu et al., 2016) 14,366 69,817 279,268 0.92%
OK-VQA (Marino et al., 2019) 8,998 9,009 38,853 0.26%
VSR (Liu et al., 2023) 2,157 3,354 10,062 0.13%

OCR, document understanding, text transcription
Docmatix (ours) 1,273,215 9,488,888 392,302,612 10.31%
RenderedText9 999,000 999,000 27,207,774 7.15%
DocVQA (Mathew et al., 2021) 10,189 39,463 337,829 2.22%
TextVQA (Singh et al., 2019) 21,953 34,602 181,918 1.19%
Cord-v2 10 800 800 178,388 1.17%
ST-VQA (Biten et al., 2019) 17,247 23,121 127,846 0.84%
OCR-VQA (Mishra et al., 2019) 165,746 801,579 6,073,824 0.60%
VisualMRC (Tanaka et al., 2021) 3,027 11,988 168,828 0.55%
IAM (Marti and Bunke, 2002) 5,663 5,663 144,216 0.47%
InfoVQA (Mathew et al., 2022) 2,118 10,074 61,048 0.40%
Diagram image-to-text11 300 300 22,196 0.07%

Chart/figure understanding
Chart2Text (Obeid and Hoque, 2020) 26,985 30,242 2,852,827 4.38%
DVQA (Kafle et al., 2018) 200,000 2,325,316 8,346,234 4.27%
ChartQA (Masry et al., 2022) 18,271 28,299 185,835 1.90%
PlotQA (Methani et al., 2020) 157,070 20,249,479 8478299.278 0.65%
FigureQA (Kahou et al., 2017) 100,000 1,327,368 3,982,104 0.61%
MapQA (Chang et al., 2022) 37,417 483,416 6,470,485 0.33%

Table understanding
TabMWP (Lu et al., 2023) 22,729 23,059 1,948,166 1.60%
TAT-QA (Zhu et al., 2021) 2,199 13,215 283,776 1.40%
HiTab (Cheng et al., 2022) 2,500 7,782 351,299 1.15%
MultiHiertt (Zhao et al., 2022) 7,619 7,830 267,615 0.88%
FinQA (Chen et al., 2021) 5,276 6,251 242,561 0.64%
WikiSQL (Zhong et al., 2017) 74,989 86,202 9,680,673 0.64%
SQA (Iyyer et al., 2017) 8,514 34,141 1,894,824 0.62%
TQA (Kembhavi et al., 2017) 1,496 6,501 26,004 0.34%
WTQ (Pasupat and Liang, 2015) 38,246 44,096 6,677,013 0.33%

Reasoning, logic, maths, geometry
Geo170K (Gao et al., 2023) 9,067 177,457 17,971,088 2.95%
GeomVerse (Kazemi et al., 2024) 9,303 9,339 2,489,459 2.45%
CLEVR-Math (Lindström and al, 2022) 70,000 788,650 3,184,656 2.09%
CLEVR (Johnson et al., 2017) 70,000 699,989 2,396,781 0.79%
A-OKVQA (Schwenk et al., 2022) 16,539 17,056 236,492 0.78%
IconQA (Lu et al., 2021) 27,315 29,859 112,969 0.74%
AI2D (Kembhavi et al., 2016) 3,099 9,708 38,832 0.51%

8https://huggingface.co/datasets/vikhyatk/lnqa
9https://huggingface.co/datasets/wendlerc/RenderedText

10https://huggingface.co/datasets/naver-clova-ix/cord-v2
11https://huggingface.co/datasets/Kamizuru00/diagram_image_to_text

28

https://huggingface.co/datasets/vikhyatk/lnqa
https://huggingface.co/datasets/wendlerc/RenderedText
https://huggingface.co/datasets/naver-clova-ix/cord-v2
https://huggingface.co/datasets/Kamizuru00/diagram_image_to_text


NLVR2 (Suhr et al., 2019) 50,426 86,373 259,119 0.43%
RAVEN (Zhang et al., 2019) 42,000 42,000 105,081 0.43%
TallyQA (Acharya et al., 2019) 98,680 183,986 738,254 0.36%
Spot the diff (Jhamtani et al., 2018) 8,566 9,524 221,477 0.36%
GSD (Li et al., 2023) 70,939 141,869 4,637,229 0.30%
ScienceQA (Lu et al., 2022) 4,985 6,218 24,872 0.16%
Inter-GPs (Lu et al., 2021) 1,451 2,101 8,404 0.11%
HatefulMemes (Kiela et al., 2020) 8,500 8,500 25,500 0.08%

Screenshot to code
WebSight (Laurençon et al., 2024) 500,000 500,000 276,743,299 0.91%
DaTikz (Belouadi et al., 2023) 47,974 48,296 59,556,252 0.02%

Text-only general instructions, math problems, arithmetic calculations
OpenHermes-2.5 (Teknium, 2023) 0 1,006,223 248,553,747 8.16%
MetaMathQA (Yu et al., 2024) 0 395,000 74,328,255 2.44%
AtlasMathSets12 0 17,807,579 455,411,624 2.24%
MathInstruct (Yue et al., 2024) 0 261,781 45,393,559 1.49%
OrcaMath (Mitra et al., 2024) 0 200,031 63,780,702 1.05%
Goat (Liu and Low, 2023) 0 1,746,300 167,695,693 0.55%
LIMA (Zhou et al., 2023) 0 1,052 633,867 0.52%
Dolly (Conover et al., 2023) 0 14,972 1,329,999 0.44%
CamelAIMath (Li et al., 2023) 0 49,744 21,873,629 0.04%

Table 3: The statistics of datasets used for instruction fine-tuning. # tokens is the total number of
tokens for each dataset for the answers only. % mix is our selected percentage of answer tokens for
each dataset in the final mixture.

A.6 Training parameters of Idefics3

Details of the Idefics3 training process are summarized in Table 4.

A.7 Evaluation of Idefics3

A.7.1 Prompts used for the evaluation

We evaluate MMStar (Chen et al., 2024) using our default template for multiple-choice questions, as
seen during supervised fine-tuning:

Question: {question}
Choices:
A. {choice_a}
B. {choice_b}
C. {choice_c}
D. {choice_d}
...
Answer with the letter.

We evaluate MMMU (Yue et al., 2024) and MathVista (Lu et al., 2024) using the VLMEvalKit (Duan
et al., 2024) library. For the multiple-choice questions in these benchmarks, we also use our default
template.

For TextVQA (Singh et al., 2019) and DocVQA (Mathew et al., 2021), we evaluate and train using
the prompts from Gemini (Reid et al., 2024).

12https://huggingface.co/datasets/AtlasUnified/atlas-math-sets
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Figure 4: Overview of the pipeline used for the creation of Docmatix.

Pre-training SFT
Stage 1 Stage 2 Stage 3

Number of steps 1000 3000 1500 5000

Learning rate (max, min) (10−4, 10−4) (10−4, 10−4) (10−4, 0) (5x10−5, 0)

Batch size 1024

Sequence length 10K

Max image resolution

364²
364² → 728²

728² → 1092²
1092² → 1456²
1456² → 1820²

1820² 1820² 1820²

Backbones training Frozen LoRA LoRA LoRA

Data • OBELICS
• LAION COCO

• OBELICS
• LAION COCO

• PDFA

• PDFA
• Docmatix
• Websight
• LNQA

• PixelProse
• ChartGemma

• The Cauldron

Table 4: The different training stages of Idefics3, along with the parameters and datasets used.

TextVQA
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Answer the following question about the image using as few words as possible. Follow these
additional instructions:
-Always answer a binary question with Yes or No.
-When asked what time it is, reply with the time seen in the image.
-Do not put any full stops at the end of the answer.
-Do not put quotation marks around the answer.
-An answer with one or two words is favorable.
-Do not apply common sense knowledge. The answer can be found in the image.
Question: question

DocVQA

Give a short and terse answer to the following question. Do not paraphrase or reformat
the text you see in the image. Do not include any full stops. Just give the answer without
additional explanation.
Question: {question}

We use the stop words Question, User, <end_of_utterance> and the EOS token to stop a
generation.

A.7.2 Detailed performance on MMMU

The detailed performance of Idefics3 across each category of MMMU (Yue et al., 2024) is present in
Table 5.

A.7.3 Qualitative evaluation

In Figure 5, we present examples where Idefics3 is able to accurately extract information from a
CV, generate HTML code to recreate a website from a screenshot, and summarize a research paper
given a screenshot. However, since the model was mainly trained on short answers during supervised
fine-tuning, and did not benefit from an alignment phase, we observe that it can sometimes struggle
to follow instructions for more challenging prompts. Nonetheless, we find that adding a brief prefix
to the assistant’s response allows the user to easily shape the generated output as desired.
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MMMU category Score

Overall 46.6
Accounting 33.3
Agriculture 56.7

Architecture and Engineering 33.3
Art 56.7

Art Theory 76.7
Basic Medical Science 50.0

Biology 36.7
Chemistry 40.0

Clinical Medicine 53.3
Computer Science 50.0

Design 73.3
Diagnostics and Laboratory Medicine 43.3

Economics 40.0
Electronics 40.0

Energy and Power 36.7
Finance 40.0

Geography 50.0
History 56.7

Literature 80.0
Manage 47.7

Marketing 53.3
Materials 26.7

Math 26.7
Mechanical Engineering 33.3

Music 26.7
Pharmacy 53.3

Physics 26.7
Psychology 53.3

Public Health 46.7
Sociology 56.7

Art & Design 58.3
Business 42.7

Health & Medicine 49.3
Humanities & Social Science 61.7

Science 36.0
Tech & Engineering 39.5

Table 5: Detailed performance of Idefics3 across each category of MMMU (Yue et al., 2024).
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User  prompt:
Extract the information in this CV.

Idefics3 output:
1. Personal Information: 
   - Name: Jane Franklin
   - Title: Douglas-Kelly Professor of English
   - Address: University of Pennsylvania, Philadelphia, PA 19104, USA
   - Home Address: 713 N 4th St, Philadelphia, PA 19123, USA
   - Phone: 267-861-5317
   - E-mail: jane_franklin@gmail.com
2. Professional Experience:
   - 2014-07 - present: Douglas-Kelly Professor of English, University of Pennsylvania, Philadelphia, PA
     - Taught a total of 18 undergraduate and 9 postgraduate courses, mainly focused on contemporary conceptual drama and 
performance arts, as well as experimental poetry and fiction.
     - Supervised 12 MA theses.
     - Member of the Postgraduate Studies Board from 2014 to 2017.
   - 2008-08 - 2013-01: Professor Assistant of English, University of Chicago, Chicago, IL
     - Assisted in developing and executing core curriculum requirements for over 20 undergraduate and postgraduate 
courses.
     - Supervised 16 BA theses and 6 MA theses.
3. Education:
   - 2000-08 - 2008-05: University of Chicago, Chicago, IL, PhD in Comparative Literature
     - The Department of Modern Languages
     - Thesis title: "The Lesbianism of Marcel Proust: An Analysis of the Traits of Female Queer Culture in Search of Lost Time"
     - Thesis supervisor: Professor George Swan
   - 1999-08 - 2000-05: City University of New York, New York, NJ, MA in English
     - The Department of English
     - Graduated summa cum laude
     - Thesis title: "Thomas Gunn's Peculiar (Post)Modernism: An Analysis of Gunn's Late Works in Comparison to the Ideas 
and Values of the Movement"
     - Thesis supervisor: Professor Anne Plath
     - Academic achievements:
       - Dean's List 2000
       - Awarded "Best Thesis in Modern Languages" 2000
   - 1996-09 - 1999-07: University of Oxford, Oxford, UK, BA in American Studies
4. Books:
   - 2017-05: "The Rustle of Language," New York: Hill and Wang
   - 2013-07: "Sexual Politics in Post-2000 American Drama," Woodstock and New York: The Overlook Press
   - 2011-01: "The Man Who Fell, Asleep: Structural Analysis of Narrative," New York: W. W. Norton & Co.

User  prompt:
Transform this website screenshot 
into HTML code

Idefics3 output:
<html>
<link href="https:/ / cdn.jsdelivr.net/ npm/ tailwindcss@2.2.19/ dist/ tailwind.min.css" 
rel="stylesheet">
<body class="font-sans antialiased text-gray-900 leading-normal tracking-wider bg-cover 
bg-center" style="background-image: 
url('https:/ / source.unsplash.com/ random/ 1600x900/ ?web');">
[...] (output truncated)

Assistant prefix:
<html>

Website 
rendering

User  prompt:
Give a summary of this paper.

Idefics3 output:

TLDR of the paper: The paper discusses the challenges in building vision-language 
models (VLMs) and proposes a method to address these challenges. The authors 
argue that the design of VLMs are often not justified experimentally and that there is 
a lack of understanding of the impact of different design choices on model 
performance. They conduct extensive experiments around pre-trained models, 
architecture choice, data, and training methods to identify the most important 
factors that affect VLM performance. The authors also release a model that achieves 
state-of-the-art performance within its size category across various multimodal 
benchmarks.

Figure 5: Generation of Idefics3 on various examples.
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