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ABSTRACT

Despite the widespread adoption of deterministic samplers in diffusion models
(DMs), their potential limitations remain largely unexplored. In this paper, we
identify collapse errors, a previously unrecognized phenomenon in ODE-based
diffusion sampling, where the sampled data is overly concentrated in local data
space. To quantify this effect, we introduce a novel metric and demonstrate that
collapse errors occur across a variety of settings. When investigating its underlying
causes, we observe a see-saw effect, where score learning in low noise regimes ad-
versely impacts the one in high noise regimes. This misfitting in high noise regimes,
coupled with the dynamics of deterministic samplers, ultimately causes collapse
errors. Guided by these insights, we apply existing techniques from sampling,
training, and architecture to empirically support our explanation of collapse errors.
This work provides both intensive empirical evidence and theoretical analysis of
collapse errors in ODE-based diffusion sampling, emphasizing the need for further
research into the interplay between score learning and deterministic sampling, an
overlooked yet fundamental aspect of diffusion models.

1 INTRODUCTION

Maximum likelihood-based generative modeling methods have demonstrated impressive capabilities
for recovering data distributions, with diffusion methods being the latest advancement. A key
advantage of diffusion models is their ability to achieve better diversity, whereas previous GAN-based
methods (15) often struggle to fully capture the multi-modality of the data distribution (46; 35; 12).
In diffusion models, the data distribution is learned by estimating the score function (the gradient
of the log probability) through training denoisers. To enhance their performance, the score function
is learned across various noise regimes and utilized in an annealing manner. The trained score
models are then employed to sample from the data distribution, either via score-based Markov
Chain Monte Carlo (MCMC) (58) or a reverse diffusion process (20; 59; 2). These models have
achieved remarkable success in tasks such as super-resolution (29; 69; 50), text-to-image generation
(46; 49; 43; 45), and video generation (21; 66; 6).

At first glance, diffusion models appear to be a complete solution: they possess strong theoretical
foundations and achieve state-of-the-art practical performance, providing a double-layered validation.
However, their practical behavior remains poorly understood. As researchers delve deeper into the
success of diffusion models, they uncover intriguing phenomena—such as memorization (16; 65;
11; 8; 56), generalization (22; 30; 68), and hallucination (1; 25; 32)—that further complicate our
understanding. A key observation is that, the Deep Neural Network (DNN) used for score learning
plays a critical role in these phenomena. For instance, generalization in diffusion models has been
attributed to certain inductive biases inherent in DNNs (22). Additionally, hallucination is often
linked to underfitting in low noise regimes, where the target score function is complex (1). Conversely,
memorization occurs when the model perfectly fits the optimal empirical denoiser (16), indicating an
overfitting of the score function of the true population distribution.

Motivated by these insightful findings, we aim to continue this line of research by discovering and
understanding the potential issues of the diffusion model paradigm. In particular, in addition to
the previous works that mainly focus on the score learning, we also pay attention to the sampler in
the diffusion model (i.e., the inference algorithm for DMs), especially the deterministic ones, e.g.,
DDIM (57), which have gained significant popularity due to their improved sampling efficiency,
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controllable generation, and theoretical coherence. To systematically study this, we conducted
extensive experiments by training hundreds of score-based DNNs on both real image and synthetic
datasets, using different model sizes, dataset sizes, and sampling algorithms. Through our study, we
identify a critical yet previously overlooked issue arising from the interplay between deterministic
sampling and score learning. In specific, we study an overlooked phenomenon in diffusion models
(see Fig. 1, 2, and Fig. 4 in (34)): Despite the success of deterministic samplers in diffusion models,
the samples they generate tend to become overly concentrated in certain regions of the data
space, compared to training samples and those generated by stochastic samplers (e.g., DDPM (20)).
We term this phenomenon collapse error. We summarize the main findings of this paper as follows:
• What is Collapse Error? We study collapse error—an overlooked failure mode in deterministic

diffusion samplers where generated samples become overly concentrated. Although hinted at in
prior work (34), it has not been explicitly identified. To quantify this phenomenon, we introduce
TID from first principles and use FID as a supplement, demonstrating the universality of collapse
error across synthetic and real-world datasets under diverse settings.

• Why Do They Occur? We reveal that collapse error stems from the interplay between deterministic
sampling dynamics and misfitting of the score function in high noise regimes. Through both
extensive empirical experiments and theoretical analysis, show that this misfitting arises from the
simultaneous learning of score functions in low and high noise regimes, a phenomenon we term the
see-saw effect. To our knowledge, this is the first study to explicitly examine how score learning
and sampler dynamics jointly contribute to an fine-grained failure mode in diffusion models.

• How Is Our Explanation Validated? To support our interpretation of collapse error, we evaluate
several existing techniques originally proposed for other empirical purposes across three dimensions:
sampling strategies, training methodologies, and model architectures. We find that these techniques
coincide with our theoretical understanding and effectively reduce collapse error, thereby providing
indirect validation of our hypothesis.

2 RELATED WORKS

Mode Collapse. When discussing collapse, it is natural to associate it with mode collapse in GANs
(15), a well-known issue where the generator fails to capture the full multi-modality of the data
distribution (9; 60; 72). Early work by Goodfellow et al. (15) introduced the GAN framework but
acknowledged its instability during training, which often leads to mode collapse. Numerous efforts
have sought to mitigate this issue. Techniques such as minibatch discrimination (51), unrolled GANs
(40), and PacGAN (33) attempt to diversify the generator’s output by improving the discriminator’s
ability to detect mode collapse. Wasserstein GANs (WGAN) (3) and its improved variant (WGAN-
GP) (17) tackle mode collapse by reformulating the loss function to improve stability. Moreover,
architectural innovations such as progressive growing of GANs (23) and BigGAN (7) have shown
improved diversity in generated samples by leveraging better network designs. Despite these advances,
mode collapse remains an active area of research, especially in tasks requiring high data complexity
and diversity. While diffusion model collapse errors share some similarities with GAN mode
collapse, a key distinction is that collapse errors in diffusion models can occur within a single mode.
Furthermore, mode collapse in GANs is primarily caused by the discriminator dominating the training
process (3; 17; 33), whereas the dynamics of collapse errors in diffusion models are fundamentally
different.

Samplers of Diffusion Models. Stochastic samplers for diffusion models include annealing
Langevin dynamics (58) and reverse stochastic differential equations (59). Empirical studies have
shown that these stochastic methods suffer from high computational costs. In Langevin dynamics, a
large number of steps is required to ensure adequate mode mixing (42; 4), while reverse stochastic
differential equations demand high-resolution time step discretization for accurate sampling (59; 24).
Fortunately, the reverse stochastic differential equation has an equivalent deterministic formulation
(59; 57; 39), and experimental results demonstrate that deterministic samplers provide an improved
sampling efficiency (53; 37; 55; 38; 73). A widely accepted explanation is that deterministic sam-
plers produce straighter sampling trajectories, which facilitate the use of coarser time discretization
(57; 44; 37; 53), and the ODE samplers are proven to be faster than SDE samplers theoretically (10).
Numerous works have further extended deterministic samplers by designing better time discretization
schemes, high-order solvers, and better diffusion processes (24; 13; 35; 34; 44).
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Figure 1: Collapse errors visualization at the sample level. The first column shows reference images
from CIFAR10 and CelebA ODE-sampled datasets. The second, third, and fourth column show
their top-7 nearest neighbors (NN) in ODE-sampled, SDE-sampled, and training datasets .

Understanding & Explaining Diffusion Models through Score Learning. Recent studies dissect
diffusion behaviour almost exclusively through the lens of the score network itself. Memorisation.
When the learned score perfectly fits the optimal empirical denoiser, the model can reproduce or
leak training data, a risk documented for 2-D images (16; 65), 3-D medical volumes (11), and even
exact sample extraction (8; 56). Generalisation. Conversely, under-fitting the empirical denoiser
can improve test performance: geometry-adaptive harmonic bases (22), risk–bound analyses (30),
and “fail-to-memorise” observations (68) link good generalisation to a deliberately imperfect score.
Hallucination. Extreme under-fitting at low noise leads to hallucinated details, explained by mode
interpolation (1) or structural artefacts in translation tasks (25). Geometry. Complementary work
uncovers low-dimensional structure in the score field itself: subspace clustering (64), hidden Gaussian
manifolds (31). Score–Sampler Synergy. While many perspectives attribute success or failure
primarily to score fitting, another line of work observe that small misfitting in the high-noise regime
can destabilize deterministic sampling (71), and SDE sampling mitigates score bias by injecting
noise(67), though without fine-grained analysis. Our work advances this underexplored score–sampler
interplay by uncovering a distinct and fine-grained failure mode, which we term collapse error. We
trace collapse to a see-saw effect in diffusion training and the interaction between score approximation
and deterministic sampling dynamics. Through extensive empirical evidence and theoretical analysis,
we establish collapse error as a qualitatively new explanation of diffusion model failure.

3 BACKGROUND

3.1 DIFFUSION MODELS FOR GENERATIVE MODELING

Diffusion models define a forward diffusion process to perturb the data distribution pdata to a
Gaussian distribution. Formally, the diffusion process is an Itô SDE dxt = f(xt) + g(t)dw,
where dw is the Brownian motion and t flows forward from 0 to T . The solution of this diffusion
process gives a transition distribution pt(xt|x0) = N (xt|αtx0, σ

2
t I), where αt = e

∫ t
0
f(s)ds and

σ2
t = 1− e−

∫ t
0
g(s)2ds. In the typical variance-preserving diffusion schedule, f and g are designed

such that limt→0 pt(x) = pdata(x) and limt→T pt(x) = N (x|0, I). From this, it follows that
limt→0 αt = 1, limt→0 σt = 0, limt→T αt = 0, and limt→T σt = 1. We refer to t → T and t → 0
as high and low noise regimes, respectively. Diffusion models sample data by reversing this diffusion
process, where ∇xt

log pt(xt) is required. To learn this term, a neural network sθ is trained to
minimize an empirical risk by marginalizing ∇xt

log pt(xt|x0), leading to the following loss:

L(θ) = Et∼U(0,1),ϵ∼N (0,I)

N∑
n=1

∥sθ(αtxn + σtϵ, t) + ϵ/σt∥2.

To further balance the diffusion loss at different t’s, people usually adopt loss reweighing (24) or an
alternate objective using ϵ-prediction (20; 44), leading to the following well-known denoising score
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matching (DSM) loss:

L(θ, t) = Eϵ∼N (0,I)

N∑
n=1

∥sθ(αtxn + σtϵ, t)− ϵ∥2.

where sθ(·, t) can be viewed as the learned score function at time t. The DSM loss behaves
differently between high and low noise regimes. In high noise regimes, since limt→T αt = 0,
and limt→T σt = 1, the noisy observation of the data (i.e., αtxn + σtϵ) contains almost no data
signals, and the ϵ can be easily inferred by nearly an identity mapping. In contrast, in low noise
regimes, the noisy observation of the data is almost clean, making the ϵ prediction more challenging
than the one in high noise regime.

3.2 SAMPLERS FOR DIFFUSION MODELS

To sample from the diffusion model, a typical approach is to apply a reverse-time SDE which reverses
the diffusion process (2):

dxt = [f(xt)− g(t)2∇xt
log pt(xt)]dt+ dw̄,

where dw̄ is the Brownian motion and t flows forward from T to 0. For all reverse-time SDE, there
exists corresponding deterministic processes which share the same density evolution, i.e., {pt(xt)}Tt=0
(59). In specific, this deterministic process follows an ODE:

dxt = [f(xt)−
1

2
g(t)2∇xt log pt(xt)]dt,

where t flows backwards from T to 0. The deterministic process defines a velocity field, v(x, t) =
[f(xt) − 1

2g(t)
2∇xt

log pt(xt)]. Here, we also define the velocity field predicted by score neural
network, sθ: vθ(xt, t) = f(xt)− 1

2g(t)
2sθ(xt, t).

ODE-based deterministic samplers offer distinct advantages over stochastic methods. First, they
achieve efficient sampling with drastically fewer steps compared to stochastic samplers, while
maintaining high-quality outputs (59; 57). Besides, their deterministic nature ensures reproducible
results from fixed initial noise, crucial for controlled generation tasks such as latent space interpolation
(57; 50). Moreover, deterministic trajectories mitigate error accumulation in low-step regimes,
delivering more stable sample fidelity than stochastic counterparts (24). Additionally, the ODE
framework provides theoretical coherence, enabling rigorous stability analysis and integration with
advanced solvers (37; 38) for accelerated sampling.

4 INTRODUCTION OF COLLAPSE ERRORS IN DIFFUSION MODELS

(a) (b)

Figure 2: ODE and SDE sampled data in
scatter plots (left) and histograms (right).

In this section, we introduce collapse errors both
conceptually and visually, explaining how they can
be observed at both the individual sample level and
the distributional level.

Collapse Errors at the Sample Level. To illus-
trate the collapse phenomenon intuitively, we vi-
sualize several collapsed samples when we train
typical diffusion models on CIFAR10 and CelebA
datasets. The training of diffusion models follows
the typical Variance-Preserving ϵ-prediction score
matching schedule (59), with the only modification being the dataset size, which is set to 20,000.
Detailed experimental settings can be found in Appendix.B.1. In Fig. 1, we show three collapsed
samples from each dataset, along with their top-7 Nearest Neighbors (NN) search by l2 norm, in
the ODE sampled, SDE sampled, and training datasets. We observe that, although ODE-sampled
images exhibit good quality, their nearest neighbors tend to be exhibit similar attributes than those
from SDE-sampled and training datasets. For example, ODE samples share nearly identical facial
orientation, whereas stochastic samplers yield variation. Besides, ODE samples display uniform hair
color, gender, and expression, whereas others do not. While these differences are hard to capture
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quantitatively through visuals alone, they point to conceptual demonstration of the practical impact
of collapse error. To quantify this, we will design specific metric from the first principle. More
collapsed samples can be found in Appendix. B.2.

Collapse Errors at the Distribution Level. Now that we have discussed the collapse errors at
the sample level, we extend the concept of collapse errors to the distribution level. Specifically,
we visualize the collapse errors in lower-dimensional data. Fig. 2 shows an example of collapse
error when training a MLP on a 2D chessboard-shape distribution. Detailed experimental settings
can be found in Appendix.C.1. We observe that, compared to SDE sampled data points, the ODE
sampled data points are more concentrated in certain regions. Specifically, in Fig. 2a, we observe the
clustering of ODE sampled data point cannot cover the SDE sampled data points, indicating the ODE
sampled data points exhibit less divergence. We emphasize that such phenomenon can be observed
from existing work. For example, in Fig. 4 of (34), deterministic samplers yield non-uniform samples
on the same chess-board dataset. When we look at the histogram of this 2D clustering plot, shown
in Fig. 2b, we find that the ODE sampled distribution exhibits sharp peaks in specific regions, in
contrast to the SDE-sampled distribution, which indicates the samples are concentrated in those
regions. Collapse errors on more synthetic datasets can be found in Appendix. C.2.

5 THE CAUSES OF COLLAPSE ERRORS

(a) (b)

Figure 3: We evaluate TID values for totally
four synthetic 2D datasets, and we individually
visualize the statistic of number of neighbors
with distance for the spiral-shape dataset. The
detailed experiment settings can be found in
Appendix. C.1. (a) The bars show P (X > x),
where X is the number of neighours within dis-
tances ϵ = 0.01. The plots show the functions
x−α modeled by Hill’s estimator, where the Tail
Index α quantifies the heaviness of tail. (b) The
Tail Index Difference (TID(ϵ)) measured on
various datasets. A higher TID value at specific
ϵ distances correspond to more severe collapse.

We first introduce a quantitative metric to evaluate
collapse errors and explore key influential factors.
We then present intensive empirical evidence to
identify the root causes behind collapse errors.

5.1 QUANTIFICATION OF COLLAPSE ERRORS

In the previous Sec. 4, we showed that when col-
lapse errors occur, we can identify some samples
whose neighbors are more similar to them. In
other words, by fixing a distance, we can find
samples that have more neighbors within this dis-
tance. Formally, let the training dataset be D =
{x1, x2, ..., xN}, where xi is a data and N is the
dataset size, we define the number of neighbors of
xi within a distance ϵ as:

ni(D, ϵ) = #{xj | d(xi, xj) ≤ ϵ, j ∈ [1, N ]},

where d(·, ·) is a distance metric. In this paper, we
specifically use the l2 norm as the distance metric throughout, as it is more essential for capturing
collapse errors in diffusion models. We further discuss the choice of distance metrics in Appendix. A
and I.

In Fig. 3a, we observe that when collapse occurs, the ODE-sampled dataset tends to have more
neighbors within a short distance than the training dataset. This leads to a heavier tail in the survival
function P (# of neighbors > x), reflecting stronger local concentration. To rigorously measure this
effect, we employ Hill’s estimator (19):

α(D, ϵ) =
1

N

N∑
i=1

log
n̂k(D, ϵ)

n̂N (D, ϵ)
,

where n̂k denotes the k-th largest statistic of n after sorting in descending order. Intuitively,
a smaller α corresponds to a heavier tail, i.e., stronger concentration of neighbors. To com-
pare the relative heaviness between two datasets, we define the Tail Index Difference (TID):
TID(DSD, DTD, ϵ) = α(DTD, ϵ) − α(DSD, ϵ), where DTD and DSD is the training datasets
and sampled dataset, respectively. A larger TID indicates that the sampled data are more locally
concentrated than the training data. For clarity of presentation, we often omit the inside DTD, DSD

and ϵ, as these will be understood from the context.
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Figure 4: TIDs/FIDs evaluated on ODE sampled images generated by diffusion models trained on
CIFAR10 dataset across various training settings, containing model width and samplers.

(a) (b) (c) (d) (e)

Figure 5: In the high-dimension MoG dataset setting, we visualize the density evolution of the
first dimension of the data during an ODE sampling. (a) The evolution of the probability density
across timesteps, starting from the Gaussian prior to the final target distribution. (b-e) The marginal
distribution xt between sampled data (blue) and ground truth training data (orange) at specific
timesteps t = 0.8, 0.6, 0.4, 0.0.

Fig. 3b shows the TID plot along ϵ across various synthetic datasets. The detailed description and
visualization of these synthetic datasets, and experimental settings can be found in Appendix. C.1.
We found that in certain interval of ϵ, the TID is above 0, showing that the ODE sampled dataset
suffers from a collapse error. While TID involves pairwise distance computation, it can be efficiently
estimated using a subset of the dataset, due to the scale-invariant property of Hill’s estimator, making
the TID metric practical for large dataset. Importantly, while TID is derived from first principles
to directly quantify collapse error, we also find its trends to be consistent with FID measurements,
further validating the reliability of TID. Therefore, we report FID together with TID on image data.
We put more discussion of relation between TID and FID in Appendix. A and L.

5.2 INFLUENTIAL FACTORS OF COLLAPSE ERRORS

We conduct intensive experiments on real image datasets and use TID and FID as metrics to evaluate
the collapse error. We find that colllapse error occur in a wide range of training settings. Fig. 4 shows
the tendency of TID/FID along different training settings, including model width, different samplers,
and dataset size. Our experiments follow the standard score-matching training in (59). We give the
details of these experiments in Appendix. B.1. In this subsection, we mainly demonstrate our findings
on collapse trends along these training factors on CIFAR10. We also provide experimental results on
CelebA in Appendix. D, which demonstrate similar TID trends. Especially, we observe that the choice
of sampler plays a critical role in collapse errors, as measured by TID/FID. Deterministic samplers
such as ODE (59) and DDIM (57) consistently exhibit higher TID/FID values, suggesting increased
sample concentration. In contrast, stochastic samplers like SDE (59) and ALD (58) maintain low
TID/FID values across settings, preserving diversity.

5.3 COLLAPSE ERRORS PROPAGATES DURING SAMPLING

Before discussing the misfitting in diffusion models, we demonstrate how collapse errors occur in
a specific case. To better illustrate and analyze this phenomenon, we conduct experiments on a
high-dimension Mixture of Gaussian setting, which provides an analytical form of score function
for further analysis. We put the derivation of score function for our MoG setting in Appendix. E.2.
Specifically, we suppose a synthetic n-dimension MoG dataset by:

x0 ∼ 0.5×N (x0| − 1n, 0.2In) + 0.5×N (x0|1n, 0.2In),

where 1n represent a vector filled with ones with a length of n and In is an identity matrix with a
size of n× n. The details of the experimental settings can be found in Appendix. E.1. While this
section focuses on a specific data distribution to better illustrate how collapse errors occur, we provide
additional experimental results in Appendix.F with similar phenomena across other settings.
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(a) (b) (c) (d)

Figure 7: Evaluations of diffusion models trained on high-dimensional MoG when the models are
MLPs with increasing widths. (a) Mean absolute errors of vθ(·, 1) and vθ(·, 0.1) accross different
MLP widths trained under L(θ) and L(θ, t = 1). (b) TD(ϵ = 0.02) evaluated on ODE sampled
datasets with varying model width. (c) and (d) visualize the learned vθ(·, 1) and vθ(·, 0.1), respec-
tively, across different MLP widths.

Collapse Errors Occur at the Beginning of Sampling. In Section 4, we characterized collapse
errors as sharp-peak patterns at the distribution level. In this experiment, we find that collapse errors
occur early in the ODE sampling process. Fig. 5b shows the intermediate sampled distribution from
t = 1 to t = 0.8. We find that even in such early stages of sampling, the collapse errors are already
significant, as indicated by the sharp peaks in the distribution. In addition, as shown in Fig. 5a, the
collapse errors begin as soon as the the ODE sampling starts, marked by the presence of sharp peaks
in the density. Similar early-onset patterns have also been observed in prior work (Fig. 4 of (34)).

(a) (b)
Figure 6: (a) Visualization of first dimension
of velocity field (vθ(x, t)[: 1]) when the target
distribution is a high-dimension MoG. Here,
the other dimension ofxt (xt[1 :]) are fixed
by a standard Gaussian noise and the veloc-
ity is calculated along the first dimension of xt

(xt[: 1]). (b) Velocity error covariance across
sampling step xt. The covariance is calculated
by comparing the error vectors of vθ(xt, t) and
vθ(x1.0, 1.0). The tested points x1 are sampled
from high-dimension standard Gaussian.

Collapse Errors Propagate along t. During the
ODE sampling, collapse errors not only occur at
the begin of sampling but also propagate and in-
tensify as the sampling progresses. For example,
in Fig. 5a, we observe the formation of sharp
peaks in xt that propagate along t, creating distinct
ridges in the 3D visualization. These ridges repre-
sent regions where the probability density becomes
highly concentrated as sampling progresses.Such
phenomenon can be observed from existing work.
For example, Fig. 4 of (34) demonstrates that sam-
ple concentration occurs early in the sampling pro-
cess particularly in score matching, which strongly
aligns with our observations.

Velocity Error Propagtes along determinstic
sampling steps xt. To understand why collapse
errors tend to accumulate during sampling, we ex-
amine the velocity field predicted by the diffusion model, vθ(xt, t), as shown in Fig. 6a. At t ≈ 1,
the velocity field displays oscillatory misfitting along the xt-axis, but appears relatively static across
t, suggesting that erroneous local patterns in velocity do not correct over time. As a result, sampled
data trajectories converge and collapse into narrow paths, as visualized by the red dashed lines. To
quantify how these errors persist, we compute the covariance of velocity prediction errors between
different time steps, shown in Fig. 6b. We observe that ODE-based samplers exhibit significantly
higher error covariance across t, indicating that errors made at earlier steps propagate and accumulate.
In contrast, SDE-based samplers exhibit minimal covariance, suggesting their inherent stochasticity
helps decorrelate errors over time, thereby mitigating collapse. Additional results across datasets and
architectures supporting this finding are provided in Appendix F.

In summary, we show that the collapse errors occur in the early sampling stage and are retained as
the sampling progresses. We also identify that these early-stage collapse errors are caused by the
misfitting of the predicted velocity field, which will be investigated in the next subsection.

5.4 MISFITTING IN HIGH NOISE REGIMES

In Sec. 3, we showed that the training dynamics of diffusion models vary across t. In high noise
regimes (i.e., αt → 0 and σt → 1), the diffusion model predicts noise from data that is nearly
Gaussian noise. Specifically, under the ϵ-prediction training objective, the task of diffusion models in
high noise regimes is a trivial identity mapping. At first glance, one might expect that the simplicity of
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the training objective in large noise regimes would lead to perfect learning. However, our experiments
in the previous subsection reveal that diffusion models can misfit even this straightforward target
function, as illustrated by the oscillatory pattern of vθ(xt, 1) in Fig. 6a, and the large error covariance
shown in Fig. 6b. This counterintuitive finding motivates us to investigate the underlying causes of
misfitting in high noise regimes.

We conduct experiments on both synthetic datasets and real image datasets. For synthetic datasets,
we use a high-dimensional MoG as the training dataset to ensure an analytical score function, and
use a 2-layer MLP as the score prediction neural network (details in Appendix. E.1). In Fig. 7a,
we show the Mean Absolute Errors (MAE) of vθ(·, 1) (High Noise Regime), and vθ(·, 0.1) (Low
Noise Regime), when we increase the MLP width. We observe a counterintuitive trends in high noise
regimes: as the model width increases, the MAE of vθ(·, 1) increases, despite the task being a trivial
identity mapping. One may consider that the errors in high noise regime are due to the larger model
capacity. However, when we train the diffusion models only in high noise regimes (under L(θ, t = 1))
with growing model capacities, we do not observe significant errors, as marked as the red line in
Fig. 7a. We refer to this phenomenon as a see-saw effect in diffusion model training: In training a
diffusion model in both low and high noise regime, the learning in low noise regimes can adversely
affect the learning in high noise regimes. We also confirm the misfitting in high noise regime by
visualizing vθ(·, 1), shown in Fig. 7c. To validate the universality of the see-saw phenomenon, we
provide theoretical results in Proposition 1 and additional experimental results in Appendix. G.3.

(a) (b)

Figure 8: Diffusion loss L(θ, t = 0.1) (left) and
L(θ, t = 1) (right) when the diffusion models
are trained on CIFAR10 with various settings
on model widths and dataset sizes.

We also find similar trends on CIFAR10, as shown
in Fig. 8. It is noteworthy that unlike the synthetic
MoG dataset, the score function for real datasets
is unknown, so we cannot directly calculate the
velocity errors. Instead, we use DSM loss which
serves as the MSE from the optimal empirical de-
noiser (63). In specific, we evaluate the predicted
score function in high and low noise regimes by
L(θ, t = 1) and L(θ, t = 0.1). We give detailed
training settings in Appendix. G.1. As shown in
Fig. 8a, in low noise regimes, larger models achieve
lower DSM loss, as expected. However, in the high
noise regime, the DSM loss increases with model size, indicating misfitting. While increasing the
dataset size reduces the DSM loss in both regimes, larger models still exhibit slightly higher errors in
the high noise regime even with larger datasets. We also conduct the same experiment on CelebA and
find similar see-saw phenomenon on DSM loss, and we put them in Appendix. G.

6 VALIDATING THE CAUSE OF COLLAPSE VIA EXISTING METHODS

(a) (b)

Figure 9: (a) TID values evaluated across dif-
ferent ϵ comparing the techniques and the origi-
nal method, when the MLP width is 1000. (b)
MAE of vθ(·, 1.0) trained by MLPs with dif-
ferent widths comparing original method, two-
model training, and skip connection.

In the previous section, we demonstrate that the
collapse errors arise from two main factors: (1)
The error in the velocity field tends to propagate
along t, and (2) when the model becomes capable
of learning the complex score function in low noise
regimes, the errors in high noise regimes tend to
increase. Building on these insights, in this section,
we introduce several existing techniques to mitigate
collapses errors from three perspectives, includ-
ing sampling, training and model architecture. We
conduct experiments on a high-dimensional MoG
dataset and use TID to evaluate the effect of the
introduced techniques on mitigating collapse er-
rors (details in Appendix. H.1). Experiments on
CIFAR10 and CelebA are put in Appendix H.2. It is important to note that our goal is not to propose
these techniques as definitive solutions to completely eliminate collapse errors but rather to provide
supporting evidence that reinforces our understanding of their underlying causes.
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Sampling Techniques. We have shown that velocity errors tend to propagate along t, causing the
data point to be influenced by similar errors, which bias its sampling trajectory and ultimately lead to
collapse errors in the final generated data. Building on this insight, we are motivated to introduce
stochasticity during sampling, which allows the sampled data points be influenced by random errors
during sampling. We find that the predictor-corrector sampler is effective in address collapse errors.
In a predictor-corrector sampler, the ODE sampler is combined with an extra score-based MCMC
stage:

xm+1
t = xm

t + ϵmt sθ(x
m
t , t) +

√
2ϵzm

t ,
where zm

t is a random standard Gaussian noise, ϵt is the step size of the MCMC, and m = 1, 2, ...,M .
This iteration can be repeat multiple times to improve the accuracy of MCMC. We follow the official
implementation in (58), where the step size ϵmt is set to be αt(r∥z∥2/∥sθ(xt, t)∥2)2, where r is a
predefined signal-to-noise ratio, and M is set to be 1.

Training Techniques. We have shown that despite the trivial target function in high noise regimes,
the model tends to misfit it when it is capable of fitting complex function in low noise regimes. We
hypothesize that training in low noise regimes adversely affect that in high noise regimes. To support
this hypothesis, we propose a technique to separate the training for high and low noise regimes. In
specific, without modifying the model architecture, we training the original model under smaller t,
and a duplicate model under larger t. In specific, the training objective is:

L′(θ1, θ2) = Et∼U(0,t′)L(θ1, t) + Et∼U(t′,1)L(θ2, t),

where θ1 and θ2 are the parameters of the two models, and t′ is a value within (0, 1), indicating the
separation point between the high and low noise regimes.

Model Architecture. We have shown that the target function in high noise regimes is nearly an
identity mapping in the ϵ-prediction objective. This motivates us to incorporate skip connection into
model architecture (24), since skip connection can provide an identity mapping as a precondition. In
specific, we propose the model architecture with skip connections by:

ŝθ(xt, t) = c1θ1(t)xt + c2θ2(t)sθ(xt, t),

where c1θ1(t) and c2θ2(t) are learnable MLPs with parameters of θ1 and θ2, respectively, and sθ(xt, t)
is a neural network. Fig. 9 shows the effectiveness of these techniques on mitigating collapse errors.
By applying techniques on two-model training and skip connections, the diffusion model no longer
misfit in high noise regimes when model size increases.

7 CONCLUSION AND LIMITATION

In this paper, we introduced collapse error, a previously unexplored error pattern in diffusion models
where deterministic samplers overly concentrate probability mass in data space. Although hints of
this phenomenon appear in prior work, its mechanism and consequences have not been systematically
studied. To quantify collapse, we proposed the Tail Index Difference (TID), derived from first
principles, and further employed FID as a complementary metric, since we find FID can also capture
collapse indirectly (Appendix. A). Thanks to the scale-invariant property of Hill’s estimator, TID can
be computed efficiently, making it applicable to large datasets. We demonstrated the practical impact
of collapse error through both quantitative and qualitative evidence: numerically, collapse degrades
traditional metrics such as FID/TID; conceptually, collapsed samples exhibit excessive semantic
similarity. More fundamentally, collapse reflects an intrinsic flaw in distribution modeling: the
learned distribution becomes spuriously concentrated, deviating from the true target. We attributed
collapse to the interplay between deterministic samplers and score misfitting, and we theoretically
showed a see-saw effect in score matching training that induces such misfitting. Finally, guided by our
first-principle understanding, we proposed mitigation techniques that proved effective in alleviating
collapse, thereby validating our reasoning.

Limitations. Our work does not propose a novel training algorithm or sampler specifically designed
to eliminate collapse error. While we conducted extensive controlled experiments and validated our
observations against prior findings, our study does not exhaustively cover collapse across large-scale
datasets, broader model sizes, or extended training regimes. Such a systematic exploration would
require scaling experiments far beyond the scope of this work. We instead focus on controlled settings
to isolate and rigorously analyze collapse, leaving large-scale investigations for future work.
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8 REPRODUCIBILITY STATEMENT

Source code necessary to reproduce our experiments is provided in the supplementary material
submitted with this paper. Detailed descriptions of datasets, preprocessing steps, model configurations,
and training procedures are included in Appendix B.1, C.1, E.1, G.1, H.1, ensuring full reproducibility
of our results.
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A DISCUSSION

Score Learning & Deterministic Samplers In this study, we identify and investigate collapse
errors in diffusion models when using deterministic samplers. We find that collapse errors arise
from the interplay between deterministic sampling dynamics and overfitting of the score function in
high noise regimes. While both factors contribute to collapse errors, our analysis suggests that score
learning plays a more significant role, whereas deterministic samplers primarily act as a trigger. In
our preliminary experiments, when we apply different deterministic samplers to the same learned
score model, we observe no significant differences in collapse severity. We put the preliminary results
in Appendix K. Although the variations across deterministic samplers are subtle, further investigation
into their impact on collapse errors remains an interesting direction for future research.

Distance Metric To evaluate collapse errors, we calculate distances among samples using the l2
norm in the data space, whereas many existing works measure Fréchet distances (14) in the feature
space. Our motivation for directly applying the l2 norm is that the reverse diffusion process operates
in the data space, making it the natural setting where collapse errors occur. Nevertheless, it remains an
interesting direction to investigate collapse errors in the feature space. Our preliminary experiments
reveal that when collapse errors occur, their statistics in the feature space become biased, leading
to mean shifts. We put the preliminary results in Appendix. I. We hypothesize that in the feature
space, each channel represents local patterns in the images; thus, when collapse errors occur, the
presence of certain local patterns increases or decreases, resulting in feature bias. As a result, standard
metrics such as FID and Inception Score also respond to collapse, indirectly capturing its effect.
Consequently, addressing collapse errors may lead to improved performance as reflected by these
metrics. We leave the collapse errors in feature space as an open question for further research.

Time Embedding To address error propagation along t, our initial approach involved using time
embedding methods; however, we found them to be less effective. Our experiments, shown in
Appendix. F, revealed that velocity errors can still propagate over short periods of t even using
time embedding, leading to collapse errors. From another perspective, DNNs actually generalize
through interpolation (41; 5; 70). If our goal is to eliminate error propagation, it implies preventing
the DNN from interpolating along t. However, this raises an important question: would limiting
interpolation along t affects diffusion models generalization? We leave this as an open question for
further research.

B EXPERIMENTS ON REAL IMAGE DATASET

B.1 EXPERIMENTAL SETTINGS

In this section, we introduce our experimental settings on real image dataset, containing CIFAR10
(27), CelebA (36), and MNIST (28).

Diffusion Process In this paper, we follow the typical variance-preserving diffusion process
predefined in (59). This diffusion process serves as the default setting for all experiments, unless
otherwise specified. In specific, the diffusion process is defined by the following stochastic differential
equation:

dx = −1

2
β(t)xdt+

√
β(t) dw,

where t progresses from 0 to 1, x represents the data vector at time t, and dw denotes the brownian
motion. The time-dependent noise variance function β(t) controls the amount of noise added to the
data over time, and it is defined as:

β(t) = β̄min + t
(
β̄max − β̄min

)
,

where β̄min = 0.1 and β̄max = 20. It is important to note that in this paper, we primarily focus on the
typical VP diffusion process to maintain variable control. However, this does not imply that collapse
errors occur only in the VP diffusion process. Appendix J presents our preliminary results of collapse
errors on other diffusion processes.
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Model Architecture For CIFAR10 and CelebA, we adopt the a U-Net architecture (47). We set the
default setting of U-Net as the one introduced in (59), with a modification to the channel multiplier,
changing it from the default setting of (1,2,2,2) to (1,2,2). This adjustment is made to accommodate
experiments on lower resolutions. Retaining the original three-layer U-Net configuration would
constrain our resolution choices to multiples of 8. By transitioning to a two-layer U-Net, we enable
the use of resolutions that are multiples of 4, which facilitates experimentation with lower data
dimensions. Additionally, we adjust the model size by tuning the config.model.nf parameter, which
controls the model width. For MNIST, the model was a four-layer U-Net, consisting of an encoder
and decoder. The encoder included four convolutional layers (kernel size 3, LogSigmoid activation)
and a MaxPooling layer (2×2) for downsampling. For channel sizes for each convolutions are 32, 64,
128, 256, from the top level to the bottom level. The decoder mirrored this structure with transpose
convolutions for upsampling and used skip connections to combine features from the encoder. A final
output convolution layers layer to reconstruct the image. To feed the time variable, the time variable t
was expanded and concatenated to the input x as an additional channel.

Dataset Construction To illustrate the collapse error, we reduce the original CIFAR10 and CelebA
datasets to a size of 20,000 samples. To better observe the collapse phenomenon, no training
techniques such as data augmentation are applied. Additionally, training datasets with varying image
sizes are generated by down-sampling the original data. For CIFAR10 dataset, we use the defaut
settings in pytorch.

Training We set the epoch number to be 48,000 for CelebA and CIFAR10, and 1200 for MNIST.
We use Adam optimizer (26) with a learning rate of 5e-3 for CIFAR10 and CelebA, and 2e-4 for
MINST. We use stochastic gradient decent with a batch size of 128 for CIFAR10 and CeleA, and 60
for MNIST. The training objective is the ϵ-prediction objective as discussed in Sec. 3. All experiments
were run on 8 NVIDIA RTX4090 GPUs.

Sampling and Evaluation To sample from the trained diffusion model, we use ODE samplers with
100 steps and SDE samplers with 1,000 steps using Euler’s method, where t is discretized evenly
within (0,1). We adpot the same ODE samplers and SDE samplers from (59). We further discuss the
samplers in Appendix. K. We apply these samplers for all experiments unless otherwise specified.
To evaluate TID(DTD, DSD, ϵ), we obtain DTD by randomly sample 2,000 data from the training
dataset, and we obtain DSD by sampling 2,000 data from the diffusion model. We set the default
distance ϵ parameter in TID for CIFAR10 and MNIST by 0.2, and for CelebA by 0.25.

When we conduct experiments on TID trends, we fix a default training settings and do ablation study
on other dimension. The default setting is "image size=16, Model Width=128, Dataset size=20,000,
training epoch=48,000".

Figure 10: The first row shows reference images sampled from the diffusion model (using ODE
sampling) and their nearest neighbors in the generated dataset. The second row shows the reference
images and their nearest neighbors in the training dataset. For left to right, each column represents
the dataset of CelebA, CIFAR10, and MNIST.

B.2 MORE COLLAPSE SAMPLES IN REAL IMAGE DATASET

In Fig. 10, we show additional collapse samples to supplement Fig. 1. It can be observed that the
nearest neighbors in the generated dataset (first row) are much more similar to the sampled images
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compared to the nearest neighbors in the training dataset (second row). This highlights a collapse
phenomenon, where ODE sampled images are overly concentrated in certain regions of the data
space.

C EXPERIMENTS ON 2D SYNTHETIC DATASET

C.1 EXPERIMENTAL SETTINGS

In this section, we introduce our experimental settings on synthetic datasets.

Dataset Construction The chessboard-shaped dataset is generated to form a 4× 4 grid pattern,
mimicking a chessboard, where data points are concentrated in alternate cells. Each cell is 1 × 1
unit in size. The points within each cell are uniformly distributed.The spiral-shaped dataset consists
of points along a single spiral curve. The spiral is generated by varying the radius and the angle
of each point. The radius increases linearly from 0 to 2 units as the angle progresses from 0 to 4π
(representing two full turns). Then Gaussian noise of standard deviation 0.1 added to their coordinates.
The semi-circle-shaped dataset comprises two semi-circles with radius of 1, positioned at slightly
different vertical offsets. The first semi-circle is centered at (0.5, 0.1), and the second one is centered
at (−0.5,−0.1). Points are evenly distributed along these arcs, with Gaussian noise of standard
deviation 0.1 added to each coordinate. The 2D Mixture of Gaussians (MoG) dataset is generated by
defining 6 Gaussian components, each with a mean placed in a circular pattern with a radius of 2
and a standard deviation of 0.2. The weights of each component are set equally, and the covariance
matrices are diagonal with the same variance for both dimensions. All the dataset sizes are set as
500,000.

Model Architecture We use a three-layer Multilayer Perceptron (MLP) with 100 neurons in each
layer and Tanh activation functions. The time variable t is concatenated to the data input x.

Training The model was trained in stochastic gradient decent with a batch size of 2000 and using
the Adam optimizer (26) with a learning rate of 5×10−3, and the training was conducted over 10,000
iterations.

C.2 COLLAPSE ERRORS ON 2D SYNTHETIC DATASET

In Fig. 11, we visualize collapse errors at distribution level on more 2D synthetic datasets to
supplement Fig. 2
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Figure 11: Comparison of ODE sampled data and true data in both scatter plots (top row) and
histograms (bottom row). From left to right, the true data distribution are chessboard, spiral, semi-
cicle and MoG-shaped distribution. Blue represents the sampled data, and orange represents the true
data. The collapse phenomenon can be observed as the sampled data concentrates in specific regions,
leading to a sharp peak in the histogram.

D TID ON CELEBA

To supplement Fig. 4, we evaluate the TID on CelebA on various experimental settings, as shown in
Fig. 12. The details of experimental settings can be found in Appendix. B.1.

We observe that the TID values evaluated on almost all training settings are larger than 0, indicating
the university of collapse errors. Observations from Fig. 4 and 12 are summarized as follows:

Model Width TID values increase as the model width grows. This trend is particularly significant
for smaller dataset sizes (e.g., 10,000, 20,000, 30,000), where the collapse error becomes more severe
with larger model capacities. For larger dataset sizes (e.g., 40,000), the growth in TID values is less
evident, suggesting that larger datasets mitigate collapse errors to some extent, even when model
width increases.

Dataset size TID values decrease as dataset size increases. For all model widths, smaller datasets
(e.g., 10,000 samples) exhibit significantly higher TID values, indicating more pronounced collapse
errors. In contrast, larger datasets (e.g., 40,000 samples) result in near-zero TID values, highlighting
the importance of dataset size in reducing collapse errors.

Dimension TID values grow with higher data dimensions. For smaller dataset sizes (e.g., 10,000),
the TID values increase steeply as data dimensions increase, indicating that collapse errors are
amplified in higher-dimensional settings. For larger datasets, the increase in TID values is more
gradual, demonstrating the stabilizing effect of larger datasets.

Training Epochs TID values increase with training epochs, particularly for smaller datasets. For
datasets with 10,000 samples, the TID values rise steadily as the number of epochs increases,
suggesting that longer training amplifies collapse errors in smaller datasets. However, for larger
datasets (e.g., 40,000), the TID values plateau at a relatively low level, indicating that sufficient data
can counteract the adverse effects of prolonged training.
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Figure 12: TIDs evaluated on ODE sampled images generated by diffusion models trained on CelebA
or CIFAR10 dataset across various training settings, containing model width, dataset size, data
dimension and training epoch.

E EXPERIMENTS ON HIGH DIMENSIONAL MOG DATASET

E.1 EXPERIMENTAL SETTINGS

We suppose a synthetic n-dimension MoG dataset by:

x0 ∼ 0.5×N (x0| − 1n, 0.2In) + 0.5×N (x0|1n, 0.2In),

where 1n represent a vector filled with ones with a length of n and In is an identity matrix with a size
of n×n. The dataset size are 50,000. In specific in Sec. 5.3 and Sec. 6, we choose n to be 10. We use
a two-layer Multilayer Perceptron (MLP) with 1000 neurons in each layer with Tanh activation. The
time variable t was concatenated to the data input x. The model was trained in stochastic gradient
decent with a batch size of 2000, using the Adam (26) with a learning rate of 5e-3, and the training
was conducted over 10,000 iterations.

E.2 DERIVATION OF SCORE FUNCTION OF HIGH DIMENSIONAL MOG DATASET

We consider an MoG distribution in the following:

x0 ∼ 1

K

K∑
k=1

N (µk, σ
2
k · I),

where K is the number of Gaussian components, µk and σ2
k are the means and variances of the

Gaussian components, respectively. Suppose the solution of the diffusin process follows:

xt = αtx0 + σt · ξ where ξ ∼ N (0, I).

Since x0 and ξ are both sampled from Gaussian distributions, their linear combination xt also forms
a Gaussian distribution, i.e.,

xt ∼
1

K

K∑
k=1

N (αtµk, (σ
2
kα

2
t + σ2

t ) · I).

Then, we have

∇p(xt) =
1

K

K∑
i=1

∇xt

[
1

2
(

1√
2πσ2

i α
2
t + σ2

t

) · exp(−1

2
(
xt − µiαt

σ2
i α

2
t + σ2

t

)2)

]

=
1

K

K∑
i=1

pi(xt) · ∇xt

[
−1

2
(
xt − µiαt

σ2
kα

2
t + σ2

t

)2
]

=
1

K

K∑
i=1

pi(xt) ·
−(xt − µiαt)

σ2
kα

2
t + σ2

t

.

We can also calculate the score of xt, i.e.,

∇ log p(xt) =
∇p(xt)

p(xt)
=

1/K ·
∑K

i=1 pi(xt) ·
(

−(xt−µiαt)
σ2
kα

2
t+σ2

t

)
1/K ·

∑K
i=1 pi(xt)

.
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F COLLAPSE ERRORS PROPAGATION IN OTHER DATASETS

F.1 DENSITY EVOLUTION IN OTHER DATASETS

When observing collapse errors in a distribution level, we normally need 50,000 data. Since it is
expensive to sample 50,000 real image data, we hereby show the density evolution in synthetic
datasets, as shown in Fig. 17.

Experimental Settings The datasets in Fig. 17 contains semicircle, spiral, chessboard-shaped
datasets, the synthetic MoG, and a 1D MoG datasets. The construction of semicircle, spiral,
chessboard-shaped datasets, the synthetic MoG, are introduced already in Appendix. C.1. The
1D MoG datasets is the 1D version of the high-dimension MoG in Appendix. E.1 where the dimen-
sion n is set to be 1. We use a three-layer Multilayer Perceptron (MLP) with 100 neurons in each
layer and Tanh activation functions. The time variable t was concatenated to the data input x. The
model was trained in stochastic gradient decent with a batch size of 2000, using the Adam optimizer
(26) with a learning rate of 5e-3, and the training was conducted over 10,000 iterations.

F.2 VELOCITY MISFITTING IN OTHER DATASETS

In this subsection, we visualize the learned velocity field in both synthetic datasets and real image
datasets. Here, we introduce experimental settings in this section.

Dataset Construction The datasets in this subsection contain 1D-MoG dataset, MNIST, CIFAR10
and CelebA. The construction of 1D-MoG dataset follows the previous section (Appendix. F.1). To
speed up the training, we set the dataset size of CIFAR10 and CelebA to be 15,000, and downsample
the data to have a image size of 8× 8. We also down sample the MNIST Data to be 8× 8.

Training We set the epoch number to be 48,000 for CelebA and CIFAR10, and 1200 for MNIST.
We use Adam optimizer (26) with a learning rate of 5e-3 for CIFAR10 and CelebA, and 2e-4 for
MINST. We use stochastic gradient decent with a batch size of 128 for CIFAR10 and CelebA, and 60
for MNIST.

Model Architecture In our experiments, we identify error propagation in the velocity field along t
as a core factor contributing to collapse errors. We note that this behavior is architecture-dependent
and does not occur in all model architectures. For instance, consider a 1D case vθ(x, t); if the error
propagates only along t, switching the variables (i.e., reordering to vθ(t, x)) could prevent error
propagation along t. While we have not exhaustively explored all possible model architectures, we
have conducted experiments on prominent architectures such as U-Net with time embeddings and
MLP with time concatenation.

In this section, we use totally three model architectures for real image dataset, U-Net-raw, U-
Net-reduced, and U-Net-temb. We will introduce them one by one. For CIFAR10 and CelebA
experiments, the model architecture follows the default implementation in (59), but we change
the channel-multiplier in U-Net to (1,2,2) instead of the default (1,2,2,2). We refer this model by
U-Net-raw. We also use a simplified model in this section. The model was a two-layer U-Net,
consisting of an encoder and decoder. The encoder included two convolutional layers (kernel size
3, 256 channels, Tanh activation) and a MaxPooling layer (2× 2) for downsampling. The decoder
mirrored this structure with transpose convolutions for upsampling and used skip connections to
combine features from the encoder. A final output convolution layers layer to reconstruct the image.
To feed the time variable, we adopt two approches. In the first approach, the time variable t was
expanded and concatenated to the input x as an additional channel. In the second approach, the ts
are presented by a typical positional embeddings (62) implemented in (59) and then projected to
embeddings by a single-layer MLP with a width of 512, then the embeddings are add to the output
after each convolution. We refer these two model by U-Net-reduced-concat and U-Net-reduced-temb.
For the 1D MoG dataset, we adopt the model architecture from Appendix. E.1.

To supplement the experiment on synthetic dataset, we visualize the sampling trajectories and velocity
field when we set the MLP width to 10, 80, 100, 1000, respectively. We observe that when model
size grows, the model misfit in high-noise regime, leading to more severe trajectory concentration, as
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(a) (b)

Figure 13: (a) Visualization of the velocity field (vθ(x, t)) when the target distribution is a 1D MoG.
(b) Velocity error covariance across t. The covariance is calculated by comparing the error vectors of
vθ(x, t) and vθ(x, 1.0). The tested point x are sampled from standard 1D Gaussian.

(a) (b) (c) (d)

Figure 14: Visualization of learned velocity fields and corresponding sampling trajectories when
the target distribution is a 1d MoG. (a) Analytical solution. (b-d) learned velocity field when the
three-layer Tanh MLP width is 10, 100, 1000, respectively.

shown in Fig. 13. We also calculate the error covariance to show the velocity error propagates, as
shown in Fig. 14.

In Fig. 15, we show the velocity error when we train U-Net-reduced-concat on MNIST CIFAR10,
and CelebA. We observed that when the model size grows, the error in high noise regime increase
correspondingly. Moreover, the error propagates along t. When the velocity map is oscillated along
xt, it implies that at certain regions, the samples are directed to be closer. Once samples collapse to
similar positions, it is difficult for them to escape from the collapsed region in later sampling, as the
velocity field governs their dynamics identically.

In Fig. 16, we show the velocity error when we train U-Net-reduced-temb on MNIST and U-Net-raw
on CIFAR10 and CelebA. Firstly, we observe that the model with various width fit score function
high noise regime much better using U-Net-reduced-concat, with an absolute error around 0.01, so
we cannot oberve a clear relation from the velocity error to the model size. Besides, we find when
applying time embedding, the velocity error become less structured, but the error still propagate for
within a short period of t. As we discussed, once the the data points get closer in sampling, it is hard
for them to escape from similar position in later sampling. Admittedly, we also consider using time
embedding to address collapse errors, but by doing some preliminary experiments, we find it less
effective than the three techniques introduced in Sec.6.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 15: Visualization of the learned velocity fields vθ(xt, t) in high noise regimes (t ∈ [0.8, 1))
when U-Net-reduced-concat models are trained on MNIST, CIFAR10 and CelebA (top to bottom
rows, respectively). The channel sizes of convolution filters in U-Net-reduced-concat models are set
as 32, 128, 256, 512, and 1024, displayed from left columns to right columns.

Figure 16: Visualization of the learned velocity fields vθ(xt, t) in high noise regimes (t ∈ [0.8, 1))
when U-Net-reduced-temb models are trained on MNIST and U-Net-raw are trained on CIFAR10
and CelebA (top to bottom rows, respectively). The channel sizes of convolution filters in U-Net-
reduced-concat models are set as 32, 64, 96, 128, displayed from left columns to right columns.
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(a) (b) (c) (d) (e)

Figure 17: Visualization of the density evolution of the first dimension of data across semicircle,
spiral, chessboard-shaped datasets, the synthetic MoG, and a 1D MoG datasets, during ODE-based
diffusion sampling. (a) The evolution of the probability density across timesteps, starting from the
Gaussian prior to the final target distribution (MoG). (b-e) Comparison of the probability density
between sampled data (blue) and true data (orange) at specific timesteps t = 0.8, 0.6, 0.4, 0.0.
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G MORE EXPLANATIONS ON SEE-SAW PHENOMENON

G.1 EXPERIMENTAL SETTINGS

In this section, we provide detailed descriptions of the experimental settings used in Fig. 7 and Fig. 8.
Additionally, we present extended experimental results on other high-dimensional MoG datasets and
different model architectures.

For the experimental settings of the synthetic high-dimensional MoG dataset, the dataset construction
follows Appendix. E.1. We utilize a Multilayer Perceptron (MLP) with an equal number of neurons
in each layer. The time variable t is concatenated with the data input x. The model is trained using
gradient descent with the Adam optimizer (26), a learning rate of 5e-3 , and 10,000 training iterations.
To supplement our findings in Fig. 7, we conduct extensive experiments varying key parameters,
including MLP width, MLP depth, MLP activation functions, MoG standard deviation, and MoG
dimensionality. The velocity error is computed by averaging the Mean Absolute Error (MAE) over
five independent runs. Each experimental setting is denoted in the format ’MoG Dimension-MoG
Standard Deviation-MLP Depth-MLP Activation’. For example, ’10-0.02-3-ReLU’ refers to an
experiment setting where the MoG has 10 dimensions and a standard deviation of 0.02, with an MLP
comprising 3 layers and using ReLU activation.

For the experimental settings of CIFAR10 and CelebA, we follow the dataset construction and training
details described in Appendix. B.1. The model architectures used follow the U-Net-reduced design,
as introduced in Appendix. F.1. We report DSM losses as the average over five independent runs.

G.2 EXPERIMENTAL RESULTS

In this section, we present our experimental results using various MLP and MoG configurations.
Fig. 19 and Fig. 20 illustrate the see-saw phenomenon observed in MLPs with ReLU and Tanh
activations, respectively. We observe that MLPs with ReLU activations fit the score function in high
noise regimes significantly better than those with Tanh activations. Although MLPs with ReLU
exhibit lower error in high noise regimes, the see-saw phenomenon persists: once the MLP starts
to fit the score function better in low noise regimes, it begins to misfit in high noise regimes. The
see-saw phenomenon is even more pronounced in MLPs with Tanh activations.

Furthermore, we visualize the predicted velocity function in both high and low noise regimes,
confirming that the model misfits in high noise regimes by fitting the velocity function in an oscillatory
manner.

To complement the results presented in Fig. 8, we also evaluate the DSM loss of diffusion models
trained on the CelebA dataset, as shown in Fig. 18.

(a) (b)

Figure 18: Diffusion loss L(θ, t = 0.1) (left) and L(θ, t = 1) (right) on CelebA with various settings
on model widths and dataset sizes.

G.3 THEORETICAL EXPLANATION ON SEESAW EFFECT

Note that for Gaussian mixture model, the ground-truth score at time t satisfies (54)

st(x) = tanh(⟨µt, x⟩)µt − x, µt = µe−t. (1)

for ∥µ∥ = 1 being the mode mean of the Gaussian mixture at time t = 0, x, µ ∈ Rd. Then, in order
to better explain the see-saw effect, we consider the special case that d = 1. Besides, as it is known
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(a) (b) (c)

Figure 19: Visualization of velocity error when the training distribution is a high-dimensional MoG
and the models are MLPs with increasing widths. For top to down the experiment settings are
’5-0.02-1-ReLU’, ’10-0.02-1-ReLU’, ’25-0.02-1-ReLU’, ’10-0.02-2-ReLU’, ’25-0.2-2-ReLU’, ’10-
0.02-3-ReLU’. The explaination of these experiments notation can be found in Appendix. G.1 (a)
Mean absolute error of vθ(·, 1) and vθ(·, 0.1) along MLP widths. (c) and (d) visualize the learned
vθ(·, 1) and vθ(·, 0.1), respectively, along MLP widths.
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(a) (b) (c)

Figure 20: Visualization of velocity error when the training distribution is a high-dimensional MoG
and the models are MLPs with increasing widths. For top to down the experiment settings are
’5-0.02-1-Tanh’, ’10-0.02-1-Tanh’, ’10-0.002-2-Tanh’, ’10-0.002-3-Tanh’. (a) Mean absolute error
of vθ(·, 1) and vθ(·, 0.1) along MLP widths. (c) and (d) visualize the learned vθ(·, 1) and vθ(·, 0.1),
respectively, along MLP widths.
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that the denoising score matching problem is equivalent to learn the optimal score function, we then
resort to the following minimization problem as the score learning problem:

θ∗ = argmin
θ

Ex

[
∥fθ(x, t1)− st1(x)∥22 + ∥fθ(x, t2)− st2(x)∥22

]
,

where we set x ∼ N(0, 1) and consider two timestamps t1 → 0 and t2 → ∞, which stand for the
low-noise regime and high-noise regime, respectively. Moreover, in order to model the learner’s
function with different complexities (mimicking the neural network with varying neurons), we
consider the following score network model:

fp
θ (x, t) = θ0 · t+

p∑
i=1

θi ·Hei(x),

where p > 0 is used to control the complexity of the function, Hei(x) is the degree-i Hermite
polynomial, which is typically used to characterize the learnability of non-linear models under
Gaussian measure. More specifically, the Hermite polynomials is a family of basis functions under
Gaussian measure, i.e., it holds that

He0(x) = 1, He1(x) = x, He2(x) =
1√
2
(x2 − 1), He3(x) =

1√
6
(x3 − 3x), . . . , (2)

and the following orthogonality holds∫
Hei(x)Hej(x)µ(dx) = δij . (3)

Besides, it follows from Riesz-Fischer theorem (see, for example (48, Theorem 11.43)) that any
square integrable function s ∈ L2(µ) with respect to Gaussian measure µ can be formally expanded
as

s(x) ∼
∞∑
ℓ=0

αℓHeℓ(x), αℓ =

∫
s(x)Heℓ(x)µ(dx), (4)

with αℓ the ℓth Hermite coefficient of s.

Then, consider the setting that t1 → 0 and t2 → ∞, we can obtain:

• for t1 = 0, we have

st1(x) = tanh(⟨µ, x⟩)− x =

∞∑
i=1

α
(1)
i Hei(x),

where α
(1)
1 , α

(1)
3 , . . . , α

(1)
2k+1 . . . < 0 and α

(1)
2 , . . . , α

(1)
2k . . . = 0;

• for t2 → ∞, we have

st2(x) = −x =

∞∑
i=1

α
(2)
i Hei(x),

where α
(2)
1 = −1 and α

(2)
2 , α

(2)
3 , . . . , α

(2)
2k . . . = 0.

Then, based on the above results, we can further derive the optimal solutions for θ∗(p), when
considering at most degree-p Hermite polynomials, as follows:

θ∗(p) =
θ1∗(p) + θ2∗(p)

2
,

where
θ1∗(p) = argmin

θ
Ex

[
∥fp

θ (x, t1)− st1(x)∥22
]
, θ2∗(p) = argmin

θ
Ex

[
∥fp

θ (x, t2)− st2(x)∥22
]
.

Then, as the Hermite polynomials are orthogonal with each other and we set x ∼ N(0, 1) in the
above optimization problems. We can immediately obtain that θ1∗i (p) = α

(1)
i and θ2∗i (p) = α

(2)
i for

all i ≤ p.

Consequently, we can obtain the following proposition, showing the seesaw effect as p increases.

Proposition 1 Let ℓp1(θ) = Ex

[
∥fp

θ (x, t1)− st1(x)∥22
]

and ℓp2(θ) = Ex

[
∥fp

θ (x, t2)− st2(x)∥22
]

be
the score learning losses for timestamps t1 and t2 respectively. Then, it holds that

ℓp1(θ
∗(p)) ≤ ℓp+1

1 (θ∗(p+ 1)), ℓp2(θ
∗(p)) ≥ ℓp+1

2 (θ∗(p+ 1)),

for all p ≥ 1.
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Proof. As x ∼ N(0, 1), based on the properties of Hermite polynomials, we can show that

ℓp1(θ
∗(p)) =

p∑
i=1

[θ∗i (p)− α
(1)
i ]2 +

∑
i>p

[α
(1)
i ]2

ℓp2(θ
∗(p)) = [θ∗1(p) + 1]2 +

∑
i>1

[θ∗i (p)]
2.

Note that θ∗i (p) =
α

(1)
i +α

(2)
i

2 for any i ≤ p, we can then show that

ℓp1(θ
∗(p)) =

1

4

p∑
i=1

[α
(1)
i ]2 +

∑
i>p

[α
(1)
i ]2,

which is strictly decreasing as p increases. Besides, we also have

ℓp1(θ
∗(p)) =

1

4
[1− α

(1)
1 ]2 +

1

4

∑
i>1

[α
(1)
1 ]2,

which is strictly increasing as p increases. This completes the proof.
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H MORE DETAILS OF POTENTIAL SOLUTIONS

H.1 EXPERIMENTAL SETTINGS

We use the default experimental settings from Appendix B.1 and Appendix E.1, with additional
necessary modifications to incorporate the three proposed techniques. Specifically, for the predictor-
corrector technique, we follow (59) and apply a one-step MCMC correction after each ODE step.
For the Two-Model training strategy, we duplicate the original model and set t′ = 0.6, separating the
training of high and low noise regimes. For the skip connection technique, we construct the model as
follows:

ŝθ(xt, t) = c1xt + c2sθ(xt, t),

where c1θ1(t) and c2θ2(t) are learnable coefficients with parameters θ1 and θ2, respectively. and sθ
is the default model introduced in Appendix B.1 and Appendix E.1 for real image and synthetic
datasets, respectively.

We model c1θ1(t) and c2θ2(t) using a two-layer MLP with 30 neurons per layer and Tanh activation
functions. Our preliminary experiments also suggest that directly setting c1θ1(t) and c2θ2(t) to fixed
coefficients σt and 1−σt provides satisfactory results, where σt is derived from the diffusion process
solution, i.e.,

xt = αtx0 + σtξ, ξ ∼ N (0, I).

H.2 VALIDATING THE CAUSE OF COLLAPSE VIA EXISTING METHODS ON REAL IMAGE
DATASETS

In this section, we apply the three proposed techniques to CIFAR10 and CelebA, with necessary
modifications to adapt them to real image datasets.

(a) (b)

Figure 21: We evaluate the effectiveness of proposed techniques on mitigating collapse errors when
the training datasets are CIFAR10 and CelebA. TID values evaluated across different ϵ comparing the
proposed techniques (corrector, two-model training, and skip connection) and the original method.
(a) and (b) shows the experimental results on CIFAR10 and CelebA, respectively.
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I FEATURE DENSITY WHEN COLLAPSE ERRORS OCCUR

In this paper, we consistently use the l2 norm as the distance metric when evaluating collapse errors.
It is important to note that we choose the l2 norm because we observe that collapse errors exhibit
more distinctive characteristics in the raw pixel space. While many studies, particularly in image
generation tasks, calculate similarity using the Fréchet distance (14) in feature space, our preliminary
experiments show that collapse errors manifest differently in raw pixel space compared to feature
space. In feature space, the errors appear more like a ‘biased’ error, which presents another interesting
avenue for exploration. In this section, we show our preliminary results. In our experiments, we use
InceptionV3 (61) to extract features from ODE, SDE sampled data, and training data. The features
are extracted after the first Maxpooling layer, with a length of 64. Fig. 22 shows the statistics of
features of selected channels. The CIFAR10 images are downsampled to 16× 16 and the dataset size
is set to be 10,000. We follows other experimental settings in Appendix. B.1.

= = = =

Figure 22: Visualization of InceptionV3 feature histograms of SDE sampled CIFAR10 (top row),
and ODE sampled CIFAR10 (second row) using the same trained score neural network. The select
feature channel indices are 1, 19, 23, 30 and 57 (from left to right)

We mention in Sec. A that a primary reason for using the l2 norm as the distance metric is that
diffusion sampling typically operates in the data space, making the l2 norm a natural choice. However,
we acknowledge that diffusion sampling can also be performed in the feature space, as in Latent
Diffusion Models (46). In such cases, collapse errors may occur in the feature space, making the
direct application of the l2 norm in the data space less effective for evaluating them. Furthermore,
this raises two important questions: If collapse errors arise in the feature space, (1) how do they
behave in the data space? (2) can commonly used metrics on data space such as FID (18) and IS (52)
effectively capture them? We leave these as open questions for future investigation.

J COLLAPSE ERRORS ON OTHER DIFFUSION PROCESSES

In this paper, we primarily conduct experiments on the typical VP diffusion process to maintain
variable control. We also observe collapse errors in other diffusion processes, including the linear
(35; 34) and Sub-VP (59) diffusion processes. Fig. 23 illustrates the occurrence of collapse errors on
the high-dimensional MoG dataset. We follow all experimental settings detailed in Appendix E.1,
except for the choice of the diffusion process.

K COLLAPSE ERRORS ON OTHER DETERMINISTIC SAMPLERS

To demonstrate collapse errors, our study mainly study a specific deterministic sampler: the reverse
ODE sampler. It is important to note that while we focus on this sampler for controlled variable
analysis, this does not imply that collapse errors are absent in other deterministic samplers. In this
section, we also present evidence of collapse errors when using DDIM (57) and the second-order
DPM solver (37). Our experiments do not reveal significant differences in collapse errors among these
samplers, though exploring how specific deterministic samplers influence collapse errors remains an
interesting direction for future research.
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Figure 23: Visualization of the density evolution of the first dimension of data on the synthetic MoG
datasets, during ODE-based diffusion sampling. The diffusion processes are Sub-VP (top row) and
linear (lower row). (a) The evolution of the probability density across timesteps, starting from the
Gaussian prior to the final target distribution (MoG). (b-e) Comparison of the probability density
between sampled data (blue) and true data (orange) at specific timesteps t = 0.8, 0.6, 0.4, 0.0.

Figure 24 illustrates the occurrence of collapse errors on the high-dimensional MoG dataset. We
follow all experimental settings detailed in Appendix E.1, with the only difference being the choice
of samplers.

Figure 24: Visualization of the density evolution of the first dimension of data on the synthetic
MoG datasets, using different deterministic samplers. The deterministic samplers are ODE (top
row), DDIM (middle row) and second-order DPM (lower row). (a) The evolution of the probability
density across timesteps, starting from the Gaussian prior to the final target distribution (MoG). (b-e)
Comparison of the probability density between sampled data (blue) and true data (orange) at specific
timesteps t = 0.8, 0.6, 0.4, 0.0.
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L DISCUSSION ON THE TID METRIC

Our TID evaluation involves pairwise distance calculations, which may raise concerns regarding
computational cost. However, to compute TID, we only need to calculate pairwise distances within a
subset of the dataset. We find that using a subset of 2,000 samples is sufficient to reliably demonstrate
collapse errors. Moreover, as shown in Sec. 5.3, collapse errors can be identified through the density
distribution of a single dimension of the dataset. This suggests that evaluating collapse errors does
not necessarily require full pairwise distance calculations across all dimensions; instead, computing
distances within a single dimension may be sufficient. Finally, we do not expect computational cost
to be a significant concern for TID estimation, as it can be efficiently computed using a reduced
dataset subset and a single dimension of the data.

M USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used only to refine the writing and improve clarity of presen-
tation. They did not contribute to research ideas, methodology, implementation, or experimental
analysis.
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