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Abstract

Connecting audio encoders with large language001
models (LLMs) allows the LLM to perform var-002
ious audio understanding tasks, such as auto-003
matic speech recognition (ASR) and audio cap-004
tioning (AC). Most research focuses on train-005
ing an adapter layer to generate a unified au-006
dio feature for the LLM. However, different007
tasks may require distinct features that empha-008
size either semantic or acoustic aspects, mak-009
ing task-specific audio features more desirable.010
In this paper, we propose Prompt-aware Mix-011
ture (PaM) to enhance the Speech LLM that012
uses multiple audio encoders. Our approach013
involves using different experts to extract dif-014
ferent features based on the prompt that indi-015
cates different tasks. Experiments demonstrate016
that with PaM, only one Speech LLM surpasses017
the best performances achieved by all single-018
encoder Speech LLMs on ASR, Speaker Num-019
ber Verification, and AC tasks. PaM also out-020
performs other feature fusion baselines, such021
as concatenation and averaging.022

1 Introduction023

Large language models (LLMs) have demonstrated024

exceptional performance across various natural lan-025

guage processing tasks (OpenAI, 2023), paving the026

way for developing multimodal models (Li et al.,027

2023; Jin Xu, 2025; Wang et al., 2024b). In recent028

work, there has been a growing focus on merging029

speech encoders with LLMs, so that the LLM can030

understand the spoken content without the need031

for explicit transcription, promoting tasks such as032

direct speech translation (Chen et al., 2024b) and033

named entity recognition from speech (Li et al.,034

2024). Much of this work leverages adapter lay-035

ers like attention layers (Yu et al., 2024), adaptive036

CTC downsamplers (Ling et al., 2023), and con-037

volutional layers (Fathullah et al., 2023) to down-038

sample and map speech features into the LLM’s039

embedding space. Beyond semantic understanding040
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Figure 1: ASR and Audio Caption tasks favor different
encoders and layers of features. The x-axis corresponds
to each layer of the encoder, while the bar chart illus-
trates the fine-grained layer importance, based on the
normalized weight across layers from all encoders. The
dotted lines indicate the average (AVG) importance of
different encoders.

tasks, Speech LLMs have been extended to en- 041

compass a broader range of applications, including 042

audio event detection and audio captioning (Chu 043

et al., 2024). 044

Multitasking requires that the input audio fea- 045

tures contain as much relevant information as 046

possible, representing the input speech, which 047

may include speech content, noise, and speaker- 048

specific characteristics. When fine-tuning self- 049

supervised speech encoders, researchers assign 050

learnable weights to each layer and observe that 051

different downstream tasks prioritize different lev- 052

els of features (Chen et al., 2022). In our Speech 053

LLM framework, a similar trend is evident, where 054

different tasks prioritize different encoders and fea- 055

ture levels (Figure 1). These biases arise from the 056

inherent differences in the tasks themselves. For 057

instance, the automatic speech recognition (ASR) 058

task focuses solely on the speech content, disregard- 059

ing other factors such as speaker characteristics and 060

background noise. In contrast, tasks like audio cap- 061

tioning (AC) may rely on these additional factors 062

that ASR intentionally excludes. 063

Consequently, researchers have proposed us- 064

ing multiple encoders to extract more robust fea- 065

tures. For instance, WavLLM (Hu et al., 2024) 066
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employs both the WavLM (Chen et al., 2022) and067

the Whisper (Radford et al., 2022) encoder, while068

SALMONN (Tang et al., 2024) integrates the Whis-069

per encoder and the BEATs (Chen et al., 2023).070

However, these approaches consider all encoders071

equally important, and merge the features from072

different encoders based on simple concatenation073

method across all tasks. As demonstrated in our ex-074

periments (Table 1), such conventional approaches075

can enhance performance in some tasks (e.g., audio076

captioning) but degrade others (e.g., ASR). More-077

over, MoWE (Zhang et al., 2024) employs a strong078

encoder and multiple weaker encoders via the Mix-079

ture of experts (MoE) approach. However, MoWE080

only utilizes the input audio to control the routing081

mechanism, without incorporating task-specific in-082

formation in prompts, which leads to suboptimal083

results (Table 11).084

In this paper, we introduce Prompt-aware Mix-085

ture (PaM), a novel MoE method for merging mul-086

tiple encoders to enhance Speech LLMs. Our ap-087

proach integrates a prompt-aware routing mech-088

anism, emphasizes feature fusion, and considers089

the relative importance of each encoder for dif-090

ferent tasks, aiming to improve all downstream091

performance. PaM employs three distinct audio092

encoders: the Whisper encoder, WavLM, and093

Wav2Vec2 (Baevski et al., 2020). We train a set094

of experts for prompt-aware feature fusion, com-095

prising one shared expert and four task-specific096

experts. On each task, an expert learns the optimal097

weights for each encoder and its respective layers,098

and subsequently maps the resulting features to the099

embedding space of the Qwen2.5 model (Team,100

2024). The embedding of the prompt is utilized to101

determine the appropriate routing. Notably, in PaM,102

the routing guides the selection of the fusion pa-103

rameters rather than the choice of the encoder. Ex-104

periments are conducted across three tasks: ASR,105

speaker number verification(SNV), and AC. On106

all datasets, including LibriSpeech (Panayotov107

et al., 2015), AMI (Kraaij et al., 2005), AIR-Bench108

(SNV) (Yang et al., 2024), and AudioCaps (Kim109

et al., 2019), PaM achieve relative 15%, 25%, 3.4%,110

and 7.6%, improvements respectively in compari-111

son to the best-performing single-encoder Speech112

LLM, and get a better average rank on all the tasks113

compare with conventional approaches. Our con-114

tributions can be summarized as follows:115

• We propose a novel multi-encoder Speech116

LLM, which effectively leverages features117

from every layer of each encoder. 118

• We introduce PaM, a specialized MoE method 119

that incorporates a prompt-aware routing 120

mechanism to assign distinct weights to each 121

encoder and their layers based on the task. 122

• We conducted comprehensive experiments 123

demonstrating that PaM significantly en- 124

hances the overall performance of all down- 125

stream tasks. Additionally, we present de- 126

tailed feature importance analyses and explore 127

various combinations of speech encoders and 128

LLMs. 129

2 Method 130

In this section, we begin with an overview of the 131

proposed PaM method (Figure 2). We then elabo- 132

rate on the details of the encoder fusion process, ex- 133

ecuted by a single expert, and describe the prompt- 134

aware routing method. 135

2.1 Overall Architecture 136

The architecture of the proposed PaM method is de- 137

picted in Figure 2 (left). As described in Equation 1, 138

the LLM accepts the text prompt Xprompt, which 139

includes task-related information, along with the 140

speech features Haudio as input, and subsequently 141

generates the response Y. 142

Y = LLM(Xprompt,Haudio) (1) 143

To obtain Haudio, we employ three encoders: the 144

Whisper encoder, WavLM, and Wav2Vec2. For 145

each encoder, the hidden states are initially pro- 146

cessed by a feed-forward network (FFN) as de- 147

scribed in Equation 21, resulting in the feature of 148

each encoder, denoted as Hi. 149

Hi = FFNi(Encoderi(Xaudio)) (2) 150

Next, as shown in Equation 3, we combine these 151

features using an MoE fusion method, which in- 152

cludes a shared expert and N routed experts where 153

the number of routed experts corresponds to the 154

number of predefined tasks. During inference, only 155

one routed expert is selected, based on the task 156

1The FFN module projects the hidden states from the en-
coder’s dimension to the LLM’s dimension, and mapping the
features from each encoder into a unified space that is shared
across all encoders.
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Figure 2: The architecture of the proposed PaM method. The output feature of the prompt guides the routing of the
MoE adapter where we use a fixed shared expert and a single routed expert. For each expert, the last hidden states
of all encoders are concatenated with a set of fused hidden states derived from a fusion weight matrix. Subsequently,
an FFN is applied to align with the dimensions of the LLM.

indicated by the prompt.157

Haudio = Expertshare(H{1,2,3})158

+

N∑
j=1

Gj(Xprompt)× Expertj(H{1,2,3}) (3)159

Overall, each expert processes the features from all160

encoders (H{1,2,3}) for feature fusion. The shared161

expert extracts common features for all tasks, while162

the routed expert performs task-specific feature fu-163

sion. The routing is determined by the user input,164

which is the prompt.165

2.2 Multi-layer Fusion166

We describe the multi-layer fusion process in Fig-167

ure 2 (right). Different encoders exhibit distinct168

strengths. For example, WavLM is excellent at ex-169

tracting speaker information (Chen et al., 2022),170

while Wav2Vec2 excels in capturing semantic con-171

tent (Baevski et al., 2020). The Whisper en-172

coder (Radford et al., 2022), trained on a vast173

amount of data, provides superior features for AC174

and ASR in noisy environments2. Additionally,175

features from different layers contain varying lev-176

els of information. Deeper layers hold high-level177

semantic information, whereas lower layers may178

contain fine-grained acoustic details. Thus, for fea-179

ture fusion, we consider features from all layers180

of all three encoders. Specifically, for the feature181

Hi from a single encoder, it includes hidden states182

from all Li Transformer (Vaswani et al., 2017) lay-183

ers as well as h0
i , the hidden states following the184

2These biases in the ability of different encoders on dif-
ferent tasks are also consistent with the results of our single-
encoder baselines shown in Table 1

convolutional layers (Equation 4). 185

Hi = {h0
i ,h

1
i , ...h

Li
i } (4) 186

As illustrated in Equation 5, we consider the hidden 187

states h{0-(Li-1)}
i to derive the fused hidden states 188

hfused
k . For the hidden states of each layer, a single 189

scalar weight is assigned to control its importance. 190

We utilize a set of scalar weights that includes k el- 191

ements {w1
i,j , . . . , w

k
i,j} for each hidden state hi,j 192

from all three encoders to generate three fused hid- 193

den states hfused
{1,...,k}, to maintain the diversity of 194

fusion feature. Thus, the dimension of the whole 195

learnable matrices is W ∈ Rk×(L1+L2+L3−3). 196

hfused
k =

3∑
i=1

Li−1∑
j=1

wk
i,j · hi,j (5) 197

Finally, we concatenate the last hidden states of 198

the three encoders hLi

{1,2,3} with the three fused hid- 199

den states hfused
{1,...,k} along the feature dimension. 200

Afterward, we apply an FFN to compress the fea- 201

ture dimension to match the dimension of the LLM 202

embedding (Equation 6)3. 203

hfinal = Concat(hLi

{1,2,3},h
fused
{1,...,k}) 204

Expert(·) = FFN(hfinal) (6) 205

The parameters in our fusion method are indepen- 206

dent among the routed experts. The use of fusion 207

3We leverage both the final and fused hidden states, which
are commonly used in semantic-related tasks (e.g., ASR) and
acoustic-related tasks (e.g., audio captioning). The subse-
quent FFN module projects the concatenated features to the
dimension of the LLM input embeddings, ensuring alignment
between the feature space of speech features and text features.
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weight matrices highlights multi-level feature fu-208

sion, while the final concatenation followed by the209

FFN provides more fine-grained feature fusion.210

2.3 Prompt Aware Routing211

A prompt refers to a text segment that provides212

context or objectives for generation, which can typ-213

ically be categorized into several distinct types ac-214

cording to task. For instance, speech-related tasks,215

sound-related tasks and speech chat tasks (Yang216

et al., 2024). In this paper, we investigate three217

tasks: ASR, speaker number verification, and AC.218

We utilize distinct experts for each task. For effec-219

tive routing, the router must identify the task type220

based on the prompt. We employ a simple classifi-221

cation approach (Equation 7 and 8) wherein we use222

the last hidden states Hprompt of the prompt from223

the LLM, followed by a FFN and Softmax activa-224

tion, to obtain the task posteriors P(Task|Hprompt).225

Hprompt = LLM(Xprompt) (7)226

P(Task|Hprompt) = Softmax(FFN(Hprompt)) (8)227

As shown in Equation 9, we select the routed ex-228

pert with the Top-1 probability by the indicator229

function.230

Gj =

{
1 if j ∈ Top-1(P(Task|Hprompt))

0 otherwise
(9)231

To train the FFN, we create diverse prompts for232

each task using the LLM. Specifically, we manually233

write several prompts for each task and instruct234

ChatGPT to rewrite these prompts. We list the235

examples of these prompts in Appendix A.1. It is236

important to note that the audio features follow the237

prompt because we use the prompt to guide feature238

extraction and fusion. This approach differs from239

other works, where the audio features <|AUDIO|>240

can be positioned before the prompt.241

2.4 Training Objective242

The training loss function, as illustrated in Equa-243

tion 10, is the sum of the cross-entropy loss LG244

for prompt-aware routing and the cross-entropy245

loss Lllm between the LLM’s output Y and the246

/ground truth Ŷ. Loss function, as illustrated in247

Equation 10, is the sum of the cross-entropy loss248

LG for prompt-aware routing and the cross-entropy249

loss Lllm between the LLM’s output Y and the250

ground truth Ŷ.251

L = LG(P(Task|Hprompt),Task)252

+ Lllm(Y, Ŷ) (10)253

3 Experimental Setups 254

In this section, we present a detailed description of 255

our experimental setups, covering datasets, evalua- 256

tion metrics, hyperparameters for the model archi- 257

tecture, and training. The links to the pretrained 258

models and datasets used can be found in Ap- 259

pendix A.2, while the implementation details of 260

baseline methods are available in Appendix A.3. 261

3.1 Datasets and Evaluation Metrics 262

We assess the efficacy of our method across three 263

audio-to-text tasks: automatic speech recognition 264

(ASR), speaker number verification (SNV), and 265

audio captioning (AC). We list the detailed infor- 266

mation of training data in Appendix A.2. In total, 267

the training data contains 450 hours of audio sig- 268

nals. The test dataset includes LibriSpeech-test- 269

clean, LibriSpeech-test-other, AMI, the SNV test 270

set from AIR-Bench, and the test set of AudioCaps 271

along with its corresponding QA version from Au- 272

dioBench (Wang et al., 2024a), which contains di- 273

verse questions. ASR tasks focus on semantics. 274

The LibriSpeech test set originates from audio- 275

books, demonstrating ASR performance in a clean 276

scenario. AMI, a real meeting corpus containing 277

spontaneous talk, reflects ASR performance in a 278

more challenging, real-world scenario. SNV and 279

AC test sets can indicate the Speech LLM’s abil- 280

ity to understand speaker and acoustic information. 281

We evaluate the performance using word error rate 282

(WER) for ASR tasks, accuracy for SNV, and ME- 283

TEOR (Banerjee and Lavie, 2005) for AC. Addi- 284

tionally, we list the results on AC and AC QA tasks 285

with more metrics in Appendix A.4. 286

3.2 Model Architecture and Training 287

We train our model based on Huggingface Trans- 288

formers Library4. Our model consists of three au- 289

dio encoders, a pre-fusion adapter for each encoder, 290

a PaM fusion module, and an LLM. In our main 291

experiments, the encoders are Whisper-Small en- 292

coder, WavLM-Base-Plus, and Wav2Vec2-Base- 293

960h, each with approximately 100 million pa- 294

rameters. We downsample the features from the 295

Whisper encoder by a factor of two, resulting in 296

a frame length of 40ms, consistent with the frame 297

length of Wav2Vec2 and WavLM. The pre-fusion 298

adapter is an FFN that transforms the encoder’s 299

hidden dimension DE to the LLM’s hidden dimen- 300

sion DLLM. Each expert in the PaM fusion module 301

4https://github.com/huggingface/transformers
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Model
LibriSpeech AMI SNV AudioCaps AudioCaps QA

AVG Rank↓
WER(clean)↓ WER(other)↓ WER↓ Acc↑ METEOR↑ METEOR↑

Single-encoder Baselines
- Whisper (Radford et al., 2022) 9.61 16.73 16.27 18.80% 32.96 15.04 5.67
- WavLM (Chen et al., 2022) 5.59 10.57 18.97 41.40% 27.14 12.77 5.50
- Wav2Vec2 (Baevski et al., 2020) 4.30 09.46 26.69 39.00% 23.81 11.20 5.33

Multi-encoder Baselines
- WavLLM (Hu et al., 2024) 4.95 (- 0.65) 09.19 (+0.27) 15.29 (+0.98) 39.20% (- 2.20) 34.93 (+1.97) 16.35 (+1.31) 2.67
- SALMONN (Tang et al., 2024) 5.04 (- 0.74) 09.70 (- 0.24) 19.04 (- 2.77) 49.40% (+8.00) 34.86 (+1.90) 15.97 (+0.93) 3.50
- Average 4.76 (- 0.46) 10.43 (- 0.97) 17.20 (- 0.93) 45.50% (+4.10) 33.22 (+0.26) 15.53 (+0.49) 3.67

PaM (Ours) 3.65 (+0.65) 07.07 (+2.39) 12.79 (+3.48) 42.80% (+1.40) 35.47 (+2.51) 15.70 (+0.66) 1.67

Table 1: Comparison of the proposed PaM method with single and multi-encoder baselines. Values in the brackets
indicate performance improvement (green) or degradation (red) compared to the best single encoder result. The
AVG rank column shows the average rank on each task. Smaller ranks indicate better performance.

includes a fusion weight matrix (R3L×3) and a lin-302

ear layer (R6DLLM×DLLM) to fuse features from all303

encoders. Here, L represents the number of layers304

in the encoder, which is 12 for all encoders in our305

experiments. For the fused features, we set k = 3,306

corresponding to the number of last hidden states.307

We utilize four routed experts, each corresponding308

to a specific task category: ASR-clean, ASR-noisy,309

SNV, and AC. For each category, we generate 50310

prompts using ChatGPT (OpenAI, 2023). For the311

LLM model, we select the Qwen2.5-3B (Team,312

2024). In section 4, we also experiment with other313

encoders, including Hubert-Base-LS960, Whisper-314

Large-v3, and WavLM-Large. Additionally, we315

add the BEATs model, which performs well on AC316

task to further enhance PaM in Appendix A.5.317

We list the training and inference parameters in318

Appendix A.6.319

4 Results320

4.1 Main Results321

As demonstrated in Table 1, we compare the pro-322

posed PaM method with single and multi-encoder323

baselines. Each encoder exhibits distinct advan-324

tages. When utilizing a single encoder, the Speech325

LLM with the Whisper encoder performs best on326

the AMI dataset and AC tasks. The primary rea-327

son is that the Whisper model is trained on vast328

speech data, exposing it to diverse acoustic condi-329

tions. Consequently, it excels in challenging ASR330

and AC tasks in real-world environments and noisy331

conditions. The WavLM encoder, trained on multi-332

speaker speech signals, provides the best features333

for the SNV task. The Wav2Vec2 encoder per-334

forms best on the LibriSpeech dataset mainly be-335

cause it was pretrained on this dataset. However,336

since the LibriSpeech dataset consists of clean au-337

diobooks, the Speech LLM with the Wav2Vec2 338

encoder shows poor performance on the AMI and 339

AudioCap datasets. 340

We reimplemented the feature fusion methods 341

of WavLLM and SALMONN, training the Speech 342

LLM with the three audio encoders in our setups. 343

Both methods use concatenation but are followed 344

by different projection layers: WavLLM with a lin- 345

ear layer and SALMONN with a Q-former layer. 346

Additionally, we implemented a simple averaging 347

method that directly computes the average of the 348

features from the three encoders. Compared to 349

the best performance of single encoder baselines, 350

all three fusion methods achieve better METEOR 351

scores on AC tasks. However, performance may 352

degrade on other tasks. For example, we observed 353

performance degradation for all three methods on 354

the LibriSpeech test-clean subset. This is expected 355

since the same features are used for all tasks. Fea- 356

tures containing more useful acoustic information 357

for AC tasks may lack useful semantic information 358

for ASR tasks. 359

PaM consistently outperforms all single encoder 360

baselines, delivering performance improvements 361

across all tasks. This consistent improvement can 362

be attributed to the MoE adapter, which provides 363

unique features tailored for each task. Compared 364

to other fusion methods (i.e., concatenation and av- 365

eraging), PaM achieves significantly lower WERs 366

on the LibriSpeech and AMI datasets and similar 367

performance on SNV and AC tasks. 368

4.2 Feature Importance 369

In Figure 3, we visualize the fusion weights for 370

each expert, excluding the shared expert, which 371

can be interpreted as the fusion weight for each 372

task. We summed the weights for every four layers 373

to enhance clarity, resulting in the total weight for 374
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Encoders LibriSpeech AMI SNV AudioCaps AudioCaps QA AVG Rank↓
WER(clean)↓ WER(other)↓ WER↓ Acc↑ METEOR↑ METEOR↑

Whisper+X 4.42 8.92 13.96 43.70% 35.41 16.11 4.5
WavLM+X 4.07 7.97 18.47 47.47% 32.48 15.01 5.5
Wav2Vec2+X 3.42 7.20 18.18 45.13% 32.33 15.02 4.3
HuBERT+X 3.87 8.21 19.49 36.90% 31.82 15.08 6.8

Whisper+X+Y 4.22 8.11 13.79 49.77% 35.37 16.31 3.0
WavLM+X+Y 3.72 7.99 16.35 38.73% 34.23 15.82 4.0
Wav2Vec2+X+Y 3.77 6.90 16.90 42.63% 34.23 15.82 3.8
HuBERT+X+Y 4.03 7.96 17.13 44.17% 34.18 16.13 4.0

Table 2: Results with different combinations of encoders. The first and last four rows represent combinations of two
and three encoders respectively. Each row’s results are the average performance of a fixed encoder paired with all
possible combinations of one or two other encoders, highlighting the unique strengths of each encoder.
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Figure 3: The weights for each encoder and its layers.

shallow, middle, and deep layers. Generally, dif-375

ferent tasks require different features, so each ex-376

pert has distinct fusion weights. Specifically, when377

the expert for ASR-clean is activated, it mainly378

focuses on features from WavLM and Wav2Vec2,379

especially the deep layers. When the expert for380

ASR-noise is activated, it primarily focuses on fea-381

tures from the Whisper encoder and WavLM. For382

SNV and AC tasks, all three encoders have similar383

fusion weights. For the SNV task, features from384

the middle layers are more important, while for the385

AC task, shallow layers contribute more.386

4.3 Combinations of Encoders387

In Table 2, we extend our investigation to encom-388

pass more combinations of encoders, including two389

and three encoders, and incorporate the HuBERT390

encoder. To highlight the strengths of each encoder,391

we calculate the performance by keeping one en-392

coder fixed and varying the other encoders, then393

computing the average. The average (AVG) rank394

reflects the overall multitask performance. It is 395

evident that using three encoders significantly out- 396

performs using two encoders in all combinations, 397

thereby demonstrating the effectiveness of employ- 398

ing more encoders for Speech LLMs. 399

We can observe that different encoders offer 400

varying benefits, which proves that the tasks- 401

specific encoders could significantly improve the 402

performance on corresponding tasks. For example, 403

when Whisper is used, regardless of how many en- 404

coders are employed, the Speech LLM achieves 405

the lowest WER on AMI and the highest ME- 406

TEOR scores on AudioCaps. On the other hand, 407

Wav2Vec2 provides an advantage for recognizing 408

speech signals in LibriSpeech. This indicates that 409

when selecting encoders for Speech LLM, it is es- 410

sential to consider the domain, downstream tasks, 411

and the capabilities of each encoder. It is suggested 412

to use a robust general domain model like Whisper 413

in combination with domain-specific encoders such 414

as Wav2Vec2. 415

4.4 Larger Encoders and LLMs 416

We try to further enhance performance by re- 417

placing the encoders in the proposed method 418

with their larger versions (Table 3). Specifically, 419

we replace the Whisper-Small encoder with the 420

Whisper-Medium encoder, Wav2Vec2-Base-960h 421

with Wav2Vec2-Large-960h, and WavLM-Base- 422

Plus with WavLM-Large. Our observations indi- 423

cate that on the LibriSpeech-clean dataset, perfor- 424

mance does not significantly improve and may even 425

slightly degrade. However, for the SNV and AC 426

tasks, performance consistently improves, suggest- 427

ing that more challenging sound-related tasks ben- 428

efit more from better encoders. Additionally, we 429

observe that when all encoders are replaced with 430

their larger versions, we achieve the best perfor- 431
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Models LibriSpeech AMI SNV AudioCaps AudioCaps QA

WER(clean)↓ WER(other)↓ WER↓ Acc↑ METEOR↑ METEOR↑

Base PaM 3.65 07.07 12.79 42.8% 35.47 15.70

PaM with Larger Encoders
- ① Whisper-Medium 3.93 07.93 12.43 47.5% 35.61 15.58
- ② WavLM-Large 3.75 06.43 12.10 45.6% 35.95 16.71
- ③ Wav2Vec2-Large 3.74 06.49 15.06 47.6% 35.50 16.74
- ① + ② + ③ 3.58 05.93 11.51 56.9% 36.94 16.50

PaM with different LLMs
- Qwen2.5-7B 3.68 08.36 15.26 43.7% 35.46 15.71
- LLaMA3.2-3B 4.98 11.57 15.57 50.5% 35.83 16.34
- LLaMA3.1-8B 4.85 08.87 15.01 50.8% 35.81 15.82

Table 3: Results with larger encoders and various LLMs. To enhance performance, we replaced the Base version’s
encoders and experimented with different LLMs.

mance across almost all tasks, albeit at the cost of432

increased computation.433

In our investigation of other LLMs, including434

Qwen2.5-7B, LLaMA3.2-3B, and LLaMA3.1-8B,435

we observed some improvements in certain tasks.436

However, the overall performance was not superior437

to that of Qwen2.5-3B. The potential reason for this438

is that we used short audios, and both the prompts439

and answers were brief, thereby not fully utilizing440

the strong semantic understanding capabilities of441

the larger LLMs. Consequently, we opted to use442

Qwen2.5-3B in this paper. It is important to empha-443

size that for Speech LLMs, the extracted features444

may be more critical than the LLM itself for many445

downstream tasks. In addition, we also compare the446

concatenation fusion strategy (WavLLM) and PaM447

using larger LLMs based on the LLaMA3.1-8B448

and Qwen2.5-7B, We find that the performance of449

concatenation fusion strategy is inconsistent across450

different base models of similar size, whereas PaM451

maintains stable, as detailed in Appendix A.7.452

4.5 Parameters of the Adapter453

In PaM, we employ multiple experts, merge and454

concatenate various features. Consequently, the455

number of parameters is slightly higher than that456

of the baseline Concatenation and Average meth-457

ods. To ensure a fair comparison, we reduce the458

dimensionality within PaM, resulting in only 29M459

total parameters, similar to the baselines. PaM460

outperforms the baseline across almost all tasks,461

with similar overall parameters. Notably, during462

inference, PaM activates only 26M parameters, in463

contrast to the 37M parameters activated by the con-464

catenation method, demonstrating the efficiency of465

PaM. In this configuration, each expert contains466
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Figure 4: Performance comparison of a smaller PaM
(29M parameters) with Concatenation (37M parameters)
and Average (24M parameters).

only 0.9M parameters, which is smaller than other 467

components of the model, such as the LLM and 468

encoders. Consequently, PaM can be further en- 469

hanced by increasing the number of experts with 470

minimal impact on computational cost. 471

5 Discussions 472

Ablation study and routing method: To further 473

validate the effectiveness of PaM, we conducted an 474

ablation study, like PaM without the shared expert, 475

as detailed in Appendix A.8. We also compare PaM 476

against a learnable routing approach without task 477

information, commonly employed in MoE models. 478

The results indicate that PaM is more efficient and 479

better suited to handling multiple downstream tasks 480

than conventional routing and fusion strategies. 481

Moreover, Table 3 highlights the strengths of each 482

encoder. These findings encourage researchers to 483

7



select encoders tailored to their downstream tasks484

for the Audio-LLM. While we did not incorporate485

this prior knowledge into the routing mechanism,486

leveraging it presents a promising direction for fu-487

ture work.488

Other further work: More and Unseen Tasks.489

Although our experiments involve three tasks and490

five datasets, they are representative as they encom-491

pass both semantic and acoustic-related tasks. PaM492

can be extended to other tasks, such as speech trans-493

lation, which requires features similar to ASR and494

thus is not included in our paper. Alignment. Al-495

though our paper primarily emphasizes the role of496

PaM in feature fusion, it also serves an alignment497

function by mapping the different fused features498

into the LLM’s embedding space. Since we use499

different features for different prompts/tasks, the500

projections needed for feature aligment also vary.501

This is why each expert not only has fusion pa-502

rameters but also its own FFN for projection. In503

addition, we also explored the LLM module initial-504

ization method in Appendix A.9.505

6 Related Works506

Audio Encoders: Audio encoders can be clas-507

sified into supervised and self-supervised models.508

Supervised models typically employ ASR tasks to509

train an end-to-end model with an audio encoder510

and a text decoder. By omitting the decoder, the511

encoder can serve as a feature extractor (Radford512

et al., 2022; Baevski et al., 2020). Self-supervised513

models can be trained on unlabeled speech signals.514

For instance, Wav2Vec2 (Baevski et al., 2020) and515

HuBERT (Hsu et al., 2021) were trained to pre-516

dict the pseudo-discrete target at masked time steps.517

WavLM (Chen et al., 2022) is a variant of HuBERT,518

designed to facilitate speaker identity extraction by519

using multi-speaker signals. Different model archi-520

tectures, training methods, and data can result in521

encoders with distinct properties and advantages,522

making the mixture of audio encoders effective for523

Speech LLMs.524

Speech LLM: To construct end-to-end speech525

LLMs, a natural approach is to extract discrete526

tokens from continuous speech signals and then527

expand the vocabulary of text LLMs to under-528

stand these speech tokens (Rubenstein et al., 2023b;529

Veluri et al., 2024; Ma et al., 2024a). An alterna-530

tive is to use an adapter layer, to directly convert531

the continuous speech features to the continuous532

embedding space of the LLM. For example, Qwe-533

nAudio (Chu et al., 2024) employs average pooling 534

to downsample speech features, followed by two 535

linear layers for projection. SALMONN (Tang 536

et al., 2024) utilizes the Q-former (Yu et al., 2024), 537

a cross-attention-based adapter, to achieve a higher 538

compression ratio. Compared to previous works, 539

our adapter handles more encoders and generates 540

different features based on the prompt, rather than 541

a single feature for all prompts. 542

Mixture of experts: MoE has attracted grow- 543

ing interest, which replaces the FFN sub-layer in 544

Transformer models with multiple experts (Shazeer 545

et al., 2017). These MoE methods typically employ 546

massive experts and extremely sparse activation 547

routing, increasing model size while maintaining 548

constant inference costs, without explicitly consid- 549

ering the specialization of individual experts (Fe- 550

dus et al., 2022; Lepikhin et al., 2020). However, 551

the vast scale of these models presents significant 552

deployment challenges. In contrast, the earliest 553

MoE research introduced a data-dependent, train- 554

able combining method (Jacobs et al., 1991; Ma- 555

soudnia and Ebrahimpour, 2014), which aims to 556

decompose complex tasks into simpler sub-tasks, 557

each managed by a dedicated expert. Such works 558

have inspired recent advances in developing modu- 559

lar models called expert specialization (Ma et al., 560

2018; Gupta et al., 2022), providing solutions for 561

deploying large-scale MoE models (Lu et al., 2024) 562

and enabling individual experts to learn and decom- 563

pose diverse knowledge (Dai et al., 2024). Inspired 564

by these insights, we proposed a specialized MoE 565

fusion method integrating multiple audio features 566

to enhance Speech LLMs. 567

7 Conclusion 568

In conclusion, we propose PaM, a MoE-based fea- 569

ture fusion method designed to provide Speech 570

LLM with diverse features from multiple encoders 571

based on users’ input prompts. Experimental 572

results indicate that PaM surpasses both single- 573

encoder and multi-encoder baselines across a va- 574

riety of tasks and datasets. We provide a detailed 575

analysis of the feature importance of different en- 576

coders, demonstrating that PaM effectively lever- 577

ages different encoders and levels of features for 578

distinct tasks. Additionally, we present compre- 579

hensive experimental results for the selection and 580

combination of encoders. For future work, we in- 581

tend to expand the training data and incorporate 582

additional tasks. 583

8



8 Limitations584

Owing to resource constraints, our training data585

is limited to several hundred hours. It would be586

preferable to implement our method in larger-scale587

experiments to facilitate comparison with existing588

strong Speech LLMs such as Qwen-Audio (Chu589

et al., 2024) on a more comprehensive benchmark590

like AirBench (Yang et al., 2024).Additionally, we591

train the PaM module from scratch using a prede-592

fined list of audio encoders. It would be beneficial593

to investigate the addition of new encoders to an594

already trained Speech LLM to enhance its perfor-595

mance on new tasks or in new domains. We leave596

this for future work.597
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A Appendix 810

A.1 Prompt Example 811

ASR 1. Hear the audio clip and transform it
into text format. <|AUDIO|>
2. Listen to the following audio and
create a corresponding text transcript.
<|AUDIO|>

Speaker
Number

1. How many speakers’ contributions
are in this recording? <|AUDIO|>

Verification 2. What is the number of speakers in
this spoken content? <|AUDIO|>

AC 1. Listen to this audio and provide a
detailed description. <|AUDIO|>
2. Analyze the recording and summa-
rize its contents. <|AUDIO|>

Table 4: Examples of prompts for different tasks.

A.2 Details of Models and Datasets 812

In this paper, we leverage multiple audio encoders 813

and LLM to construct the end-to-end speech LLM. 814

Our training dataset is sourced from commonly 815

used open-source datasets, totalling approximately 816

450 hours of audio data, corresponding to 313,208 817

samples, as outlined in Table 5. For SNV, we ran- 818

domly concatenate individual utterances to form 819

new speech signals with the number of speakers 820

ranging from one to four. 821

Data Source Task Hours Sample

Librispeech-clean-100 ASR 100h 28539(Panayotov et al., 2015)

AMI (Kraaij et al., 2005) ASR 100h 108502

Common Voice V4 (Part) SNV ∼150h 137041(Ardila et al., 2019)

Audio Caption AC 100h 39126(Kim et al., 2019)

Table 5: The whole training datasets.

In our paper, we adopt multiple pre-trained audio 822

encoders and LLMs, we list the architecture setting 823

for all model we used in our experiments in Table 6. 824

Notably, for the Whisper model, we only used its 825

encoder part as an audio feature extractor. 826

A.3 Details of Baseline Implement 827

In our work, we compare our method against two 828

types of baselines. The first baseline consists of 829

models using a single encoder, while the second 830

baseline involves fusing multiple audio encoders ei- 831

11



Audio Encoder Models Enc Param Layers dmodel dffn dk H Norm

openai/whisper-small 88M 12 768 3072 64 12 Pre
microsoft/wavlm-base-plus 94M 12 768 3072 64 12 Post
facebook/wav2vec2-base-960h 94M 12 768 3072 64 12 Post
openai/whisper-medium 307M 24 1024 4096 64 16 Pre
microsoft/wavlm-large 315M 24 1024 4096 64 16 Post
facebook/wav2vec2-large-960h 315M 24 1024 4096 64 16 Post

Large Language Models Lora Param Layers dmodel dffn dk H Norm

Qwen/Qwen2.5-3B 7M 36 2048 11008 128 16 Pre
Qwen/Qwen2.5-7B 10M 28 3584 18944 128 28 Pre
meta-llama/Llama-3.2-3B 9M 28 3072 128256 128 24 Pre
meta-llama/Llama-3.1-8B 13M 32 4096 14336 128 32 Pre

Table 6: The settings of pre-trained model we used in our experiments. For the audio encoder models, we utilize
only the encoder component and freeze all parameters. For the LLMs, we freeze the base model parameters and
apply LoRA adapters to fine-tune the model.

ther based on previous work (Hu et al., 2024; Tang832

et al., 2024) or through an averaging operation.833

For the single encoder baseline, we train the834

model using the same settings as in our method.835

For the second baseline, we train the model us-836

ing the open-source codebases from WavLLM and837

SALMONN, we integrate the adapter components838

from these repositories into our code and train the839

baseline model using our training data, employ-840

ing the same pre-trained audio encoders and LLMs841

as in our method. During training, we applied the842

same hyperparameters as our method. Since we use843

different encoders and LLMs compared to the base-844

lines, we adjust the dimensions of the adapter to845

match the specific audio encoder and LLM we used846

while maintaining other dimensions independent of847

the audio encoders and LLM unchanged. Notably,848

we trained the SALMONN with query length=32849

(as training with the original setting query length=1850

failed) to ensure comparable performance with the851

other baseline methods.852

A.4 Results on Audio Caption with More853

Metrics854

Due to the multiple evaluation metrics for the AC855

task, we scored the AC and AC QA tasks using856

more metrics in Table 7, including CIDEr, SPICE857

(with coco-caption toolkit), FENSE metrics, and858

Sentence-BERT5. We found that the different mod-859

5We used the FENSE open-source repository GitHub and
scored the entire dataset with eval_system.py. For the SBERT
model, we loaded the paraphrase-mpnet-base-v2 model, and
for the echecker, we used echecker_clotho_audiocaps_base.
However, we encountered a bug when loading the
echecker model, which have an unexpected key en-
coder.embeddings.position_ids. To resolve this, we set
strict=False. Additionally, we included results based on simi-
larity using the SBERT model.

els exhibited similar performance trends across al- 860

most all metrics. 861

A.5 PaM with More Encoders 862

We added the BEATs encoder to our framework 863

(which includes four encoders) and found that it 864

significantly improves the performance of our sys- 865

tem on the AC task (Table 8). Although fusing the 866

new encoder had some effect on the AMI and SNV 867

tasks, incorporating the BEATs encoder improved 868

the system’s average rank across downstream tasks 869

(Table 9). We plan to conduct additional experi- 870

ments with the EAT encoder (Chen et al., 2024a) 871

in further work. 872

A.6 Details of Training and Inference 873

Parameters 874

We train our model for five epochs with a learning 875

rate of 5e-5, 2000 warmup steps, and bf16 preci- 876

sion. We freeze all encoders and the LLM, only 877

training adapters and the fusion modules. For the 878

LLM, we apply LoRA (Hu et al., 2022) with a rank 879

of 32 and an alpha of 64, adding LoRA only on the 880

q_proj and k_proj. Each task has the same proba- 881

bility during training. During the inference stage, 882

we select the last checkpoint on the validation set 883

and perform greedy search. 884

A.7 WavLLM and PaM with Larger LLM 885

We experiments with WavLLM (concatenation) 886

and PaM under a larger scale LLM based on 887

Qwen2.5-7B and Llama3.1-8B shown as in Ta- 888

ble 10. We found that PaM consistently outper- 889

forms concatenation on LibriSpeech. However, in 890

more noisy ASR scenarios such as AMI, concate- 891

nation performs better. On tasks like SNV, AC, 892
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Models AudioCaps AudioCaps QA

METEOR↑ FENSE↑ sBERT↑ CIDEr↑ SPICE↑ METEOR↑ FENSE↑ sBERT↑ CIDEr↑ SPICE↑

Single-encoder Baselines
- Whisper 32.96 0.108 0.596 0.431 0.158 15.04 0.105 0.402 0.205 0.083
- WavLM 27.14 0.106 0.500 0.290 0.122 12.77 0.104 0.337 0.127 0.049
- Wav2Vec2 23.81 0.096 0.414 0.205 0.095 11.20 0.092 0.282 0.073 0.038

Multi-encoder Baselines
- WavLLM 34.93 0.109 0.640 0.569 0.175 16.35 0.108 0.448 0.303 0.109
- SALMONN 34.86 0.109 0.631 0.542 0.158 15.97 0.108 0.432 0.254 0.093
- Average 33.22 0.108 0.615 0.471 0.166 15.53 0.108 0.425 0.229 0.093

PaM 35.47 0.111 0.644 0.581 0.183 15.70 0.108 0.428 0.267 0.087

Table 7: More results based on various metrics on the AC task. The sBERT represents Sentence-BERT.

Prompt-aware Mixture (PaM) LibriSpeech AMI SNV AudioCaps AudioCaps QA

WER(clean)↓ WER(other)↓ WER↓ Acc↑ METEOR↑ METEOR↑

- PaM 3.65 7.07 12.79 42.8% 35.47 15.70
- PaM (BEATs) 3.76 7.22 13.11 49.2% 35.70 16.36

Table 8: Results of PaM with more encoders.

and AC QA, concatenation’s performance is not893

stable. In the Qwen-based speech large language894

model, the performance on these three tasks is bet-895

ter than PaM, but in the Llama-based model, the896

performance on these tasks is significantly worse897

than PaM.898

Notably, we note that the concatenation method899

in the Llama-based model performs significantly900

worse on SNV, with only 3.1% accuracy. This is be-901

cause it becomes difficult to follow the instructions902

of the SNV task during the inference stage. After903

further experiments, we found that the concatena-904

tion method becomes progressively less effective905

on SNV. This suggests that the method struggles to906

achieve a balance between multitasking as training907

progresses.908

A.8 Ablation Experiments of Routing Method909

We adopt a prompt-aware routing method to better910

utilize the information in the prompt based on the911

LLM, as described in Equations 7 and 8. To fur-912

ther evaluate the impact of different routing strate-913

gies, we conducted ablation experiments on various914

forms of routing methods, as presented in Table 11.915

• Audio-based Routing Method. The routing916

method employed in most of the MoE mod-917

els, such as Switch Transfomers (Fedus et al.,918

2022), DeepSeekMoE (Dai et al., 2024), and919

MoWE (Zhang et al., 2024), which use the cur-920

rent layer input as the routing module input,921

and optimize routing module directly based922

on the loss of outputs. However, ignores in-923

formation from task labels. 924

G = Top-k(Softmax(X)) (11) 925

We set k = 1, consistent with the configu- 926

ration used in our PaM setup. In our model, 927

the MoE layer is positioned after multiple en- 928

coders, since we use the fused features from 929

multiple encoders as the routing inputs. 930

X = FFN(Concat(hLi

{1,2,3})) (12) 931

In addition, we also performed ablation experi- 932

ments with our PaM routing method. 933

• Without Shared Expert. We maintain 934

the full model configuration but remove the 935

shared expert. 936

• Without Task Label. we retain the use of 937

task-related information extracted from the 938

LLM prompt as input to the routing module, 939

and without any additional labeling informa- 940

tion. Specifically, we remove the auxiliary 941

loss term LG(P(Task|Hprompt),Task) in Equa- 942

tion 10. In contrast to the audio-based rout- 943

ing method, this variant of the PaM routing 944

method uses the prompt feature Xprompt as 945

input but without the task label. 946

We found that the PaM routing method outper- 947

forms audio-based routing on most ASR and AC 948

QA tasks, especially SNV tasks. This suggests that, 949

in our setting, PaM is superior to the basic MoE 950

routing method for fusing multi-encoder features. 951
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Model Whisper WavLM Wav2Vec2 WavLLM SALMONN Average PaM (audio-based) PaM (prompt-aware) PaM (BEATs)

AVG Rank 7.7 7.5 7.3 4.5 5.0 5.3 3.5 2.5 1.7

Table 9: Average result rank in all downstream tasks of different models.

Models LibriSpeech AMI SNV AudioCaps AudioCaps QA

WER(clean)↓ WER(other)↓ WER↓ Acc↑ METEOR↑ METEOR↑

Qwen2.5-7B
- WavLLM 5.13 10.81 13.66 51.1% 36.27 16.55
- PaM 3.68 08.36 15.26 43.7% 35.46 15.71

LLaMA3.1-8B
- WavLLM 6.38 14.08 13.95 03.1% 34.91 14.76
- PaM 4.85 08.87 15.01 50.8% 35.81 15.82

Table 10: Results based on our PaM adapter and WavLLM with larger LLM.

For the PaM without shared experts, we found952

that it still outperforms the single model baseline953

and maintains better or comparable performance954

compared to the multi-encoder baseline on almost955

all tasks. Compared to PaM without shared ex-956

perts, PaM with shared experts gains on several957

tasks but is slightly weaker on AC QA and SNV.958

This suggests that while shared experts may slightly959

degrade performance on a few tasks, they can sig-960

nificantly improve the overall effectiveness of the961

PaM model.962

Compare to PaM without task label and PaM, we963

found that PaM achieved improvement on most of964

the tasks, which further illustrates the effectiveness965

of the task information in the prompt, when faced966

with multiple downstream tasks.967

A.9 Initialization setup for LLM968

We train the LLM model from the open-source base969

model, following the setup used widely in nearly970

prior work (Hu et al., 2024; Ma et al., 2024b; Tang971

et al., 2024; Rubenstein et al., 2023a), an interest-972

ing alternative is to initialize with the LLM module973

in pretrained multimodal model like Qwen-audio.974

While we are not adapting such a setup because975

of Qwen-Audio’s feature alignment was specifi-976

cally designed for Whisper’s encoder, which can977

potentially "overfit" to features from Whisper. Our978

new experiments in Table 12 reveal that the feature979

spaces of Wav2Vec2 and WavLM are relatively sim-980

ilar, while Whisper’s feature space shows greater981

divergence. This pattern is also reflected in the982

weight distribution in Figure 3, where Wav2Vec2983

and WavLM appear more closely aligned and sig-984

nificantly different from Whisper. Therefore, us-985

ing other encoders and restructuring the projector 986

module would still require re-adapting the LLM to 987

comprehend new features. 988

A.10 All Detailed Results 989

The detailed results of our experiments with mul- 990

tiple encoders are summarized in Table 13. We 991

observe that, in most cases, the audio encoder that 992

performs well on a single task also enhances the 993

performance of the fusion model on that task. In 994

cases where performance degradation occurs on 995

a specific task when using the corresponding en- 996

coder, the fusion model consistently includes the 997

HuBERT audio encoder, suggesting that incorpo- 998

rating the HuBERT model may have a detrimental 999

effect. This could be attributed to the fact that the 1000

HuBERT model is trained on a smaller pre-trained 1001

dataset compared to other audio encoders. Notably, 1002

even in this case, fusing four audio encoders yields 1003

comparable results to fusing three encoders on the 1004

AVG Rank, indicating that incorporating more en- 1005

coders can still lead to performance improvements. 1006

14



Models
LibriSpeech AMI SNV AudioCaps AudioCaps QA

AVG Rank↓
WER(clean)↓ WER(other)↓ WER↓ Acc↑ METEOR↑ METEOR↑

MoE (audio-based) 4.12 08.32 11.21 26.00% 35.66 15.61 2.67
PaM (without shared) 4.31 07.89 13.43 45.20% 35.27 16.35 2.67
PaM (without task label) 3.97 07.97 13.14 43.50% 35.54 15.42 2.67
PaM (ours) 3.65 07.07 12.79 42.80% 35.47 15.70 2.00

Table 11: Ablation results on our routing method and the result based on the audio-based routing method

Cosine similarity emb 1 2 3 4 5 6 7 8 9 10 11 12

Whisper & WavLM -0.91 -0.76 -0.79 -0.83 -0.83 -0.85 -0.89 -0.89 -0.89 -0.84 -0.69 -0.38 -0.85
Whisper & Wav2Vec2 -0.90 -0.73 -0.77 -0.80 -0.81 -0.84 -0.89 -0.89 -0.89 -0.85 -0.75 -0.69 -0.86
WavLM & Wav2Vec2 0.99 0.13 0.26 0.44 0.52 0.60 0.95 0.99 0.99 0.52 0.06 -0.38 0.48

Table 12: The cosine similarity of the hidden states between the layers of different encoders.

Encoders Whisper WavLM Wav2Vec2 HuBERT
LibriSpeech AMI SNV AudioCaps AudioCaps QA Avg

AVG Rank
WER(clean)↓ WER(other)↓ WER↓ Acc↑ METEOR↑ METEOR↑ ↓ ↑

1
√

- - - 9.61 16.73 16.27 18.8% 32.96 15.04 14.20 22.27 11.67
1 -

√
- - 5.59 10.57 18.97 41.4% 27.14 12.77 11.71 27.10 11.50

1 - -
√

- 4.30 09.46 26.69 39.0% 23.81 11.20 13.48 24.67 11.67
1 - - -

√
7.47 13.85 N 31.1% 23.94 11.28 N 22.10 14.00

Best-1 4.30 9.46 16.27 41.4% 32.96 15.04 13.13 24.04

2
√ √

- - 5.07 09.50 13.59 49.5% 35.47 16.16 9.38 33.71 06.00
2

√
-

√
- 3.82 07.55 13.51 38.4% 35.43 15.55 8.29 29.79 05.83

2
√

- -
√

4.37 09.70 14.79 43.2% 35.33 16.62 9.62 31.72 06.50
2 -

√ √
- 3.17 06.76 19.60 61.2% 31.70 14.89 9.84 35.93 05.83

2 -
√

-
√

3.96 07.64 22.24 31.7% 30.28 13.99 11.28 25.32 10.33
2 - -

√ √
3.27 07.29 21.43 35.8% 29.85 14.62 10.66 26.76 09.00

Best-2 3.17 06.76 13.51 61.2% 35.47 16.62 9.85 36.65

3
√ √ √

- 3.65 07.07 12.79 42.8% 35.47 15.70 7.83 31.32 04.00
3

√ √
-

√
4.42 10.26 13.47 47.4% 35.32 16.62 9.38 33.11 06.50

3
√

-
√ √

4.58 06.99 15.11 59.1% 35.33 16.62 8.89 37.02 05.50
3 -

√ √ √
3.09 06.64 22.80 26.0% 31.90 15.14 10.84 24.35 07.67

Best-3 3.09 06.64 12.79 59.1% 35.47 16.62 9.24 31.45

4
√ √ √ √

3.94 07.28 14.06 57.3% 35.37 16.79 8.43 36.49 04.00

Table 13: Detailed results of incorporating different combinations of audio encoders.
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