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Abstract

Parallel context extension (PCE) is a line of re-
search attempting to effectively integrate paral-
lel (unordered) contexts, while it still suffers
from in-context hallucinations when adapted to
RAG scenarios. In this paper, we propose De-
PaC (Dehallucinating Parallel Context Exten-
sion), which alleviates the in-context halluci-
nation problem with context-aware negative
training and information-calibrated aggrega-
tion. DePaC is designed to alleviate two types
of in-context hallucination: fact fabrication (i.e.,
LLMs present claims that are not supported by
the contexts) and fact omission (i.e., LLMs fail
to present claims that can be supported by the
contexts). Specifically, (1) for fact fabrication,
we apply the context-aware negative training that
fine-tunes the LLMs with negative supervisions,
thus explicitly guiding the LLMs to refuse to an-
swer when contexts are not related to questions;
(2) for fact omission, we propose the information-
calibrated aggregation which prioritizes context
windows with higher information increment from
their contexts.

1. Introduction
Retrieval-augmented generation (RAG) (Lewis et al., 2020;
Gao et al., 2023) is nowadays a prevalent paradigm for in-
corporating large language models (LLMs) (OpenAI, 2023;
Touvron et al., 2023; Jiang et al., 2023a) with outside knowl-
edge. Parallel Context Extension (PCE) (Hao et al., 2022;
Ratner et al., 2023; Su et al., 2024) is a line of research at-
tempting to effectively integrating parallel contexts through
an aggregation function. PCE is highly compatible with
RAG scenarios, as the candidate retrieved documents of
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RAG are independ of each other.

However, existing PCE approaches still face two types of
in-context hallucination issues (Ji et al., 2023; Rawte et al.,
2023; Yang et al., 2023): fact fabrication and fact omis-
sion. (1) fact fabrication occurs when the model presents
fabricated claims that are inconsistent with the contextual
facts. (2) fact omission refers to windows lacking useful
information may disproportionately affect the aggregation
function, leading it to omit critical information present in
other windows. This will make LLMs fail to present claims
that can be supported by the contexts.

In this paper, we propose DePaC to alleviate the hallucina-
tion issue of parallel context extension on RAG. DePaC
contains two parts: NegTrain (Context-aware Negative
Training) to address fact fabrication and ICA (Information-
Calibrated Aggregation) to address fact omission. (1) Neg-
Train guides the LLMs to refuse to answer when contexts
are not related to the question. (2) ICA prioritizes context
windows with higher information increment from their con-
texts. Specifically, we utilize Kullback-Leibler (Kullback &
Leibler, 1951) divergence to measure the information incre-
ment of with-document compared to non-document. This
approach enhances DePaC’s capability to identify useful
information within parallel windows.

2. Background: Parallel Context Extension
(PCE)

The core idea of PCE involves aggregating information
from multiple context windows into a unified representation
space. Such a representation aggregation can be formalized
on either the probability distributions of output tokens (Su
et al., 2024), or the internal hidden states in attention lay-
ers (Hao et al., 2022; Ratner et al., 2023). Su et al. (2024)
claimed the above two formalizations have similar practical
performances. In this work, we adopt the formalization
in (Su et al., 2024) that takes the aggregation of output
distributions.

Given an question Q, a set of retrieved documents D =
{d1, d2, ..., dn}, and a language model with parameters θ,
PCE first computes the output distribution of each context
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window,

pi,j = pθ( · | dj ⊕Q⊕A1:i−1), (1)

where pi,j is the probability distribution of the i-th token for
output A based on the dj document, and ⊕ represents the
concatenation of sequences. Subsequently, these individual
distributions are aggregated into a single distribution,

pi = AGG(pi,1, pi,2, ..., pi,n), (2)

where AGG(·) represents the aggregation method. Finally,
the output token Ai will be sampled based on the aggregated
distribution pi,

Ai ∼ p̂i, p̂i = pi − α · pi,c, (3)

pi,c = pθ( · | Q ⊕ A1:i−1), (4)

where the p̂i is the calibrated distribution to facilitate gener-
ation. We set α = 0.2 following Su et al. (2024).

The effectiveness of the PCE paradigm is significantly in-
fluenced by the design of the aggregation method AGG(·).
Here, we discuss two aggregation methods used in existing
studies.

Average Aggregation (Hao et al., 2022; Ratner et al., 2023).
The aggregated distribution is computed as the average of n
individual distributions,

pi =
1

n

n∑
j=1

pi,j. (5)

In practice, the size of the retrieved document set D can be
large, potentially containing only a few relevant documents.
Average aggregation treats each context window with equal
importance, makes it unable to seek critical information
when applied to RAG.

Lowest-Uncertainty Aggregation (Su et al., 2024). This
method selects the individual distribution with the lowest
uncertainty as the aggregation result,

pi = argmin
pi,j

H(pi,j), (6)

H(pi,j) = −pi,j(logpi,j)
T . (7)

Lowest-uncertainty aggregation addresses the limitations of
average aggregation by filtering out high-uncertainty win-
dows. However, it remains a sub-optimal solution as it still
suffers from the two types of hallucinations illustrated in
Figure 9 and 10.

3. Dehallucinating Parallel Context Extension
(DePaC)

As shown in Figure 1, we propose two methods to alleviate
the fact fabrication and fact omission hallucinations of PCE

for RAG scenarios. First, we introduce Context-aware
Negative Training to enable the model to refuse to answer
questions when the relevant information is missing in the
context, thereby mitigating fact fabrication. Then, we pro-
pose Information-Calibrated Aggregation to measure the
information increment given by the document, preventing
the model from fact omission.

Context-aware Negative Training (NegTrain). We in-
troduce context-aware negative training to alleviate fact
fabrication, which explicitly train the backbone model to
determine whether a question is answerable based on the
provided document.

Given an RAG example with a question Q, a ground-truth
answer A, and a retrieved document dj , we fine-tune the
backbone model θ according to the following loss function,

Loss(Q,A1:m, dj) = (8){
CE[pθ( · | dj ⊕Q), A1:m], related(Q, dj),
CE[pθ( · | dj ⊕Q⊕A1:i), td], else,

where CE[·] represents the cross-entropy loss, td is a pre-
defined rejection token, m refers to the sequence length
of the ground-truth answer, A1:m refers to the complete
ground-truth answer with all tokens, A1:i refers to the partial
ground-truth answer with the first i tokens. As shown in
Figure 1(1), to prevent DePaC from generating rejection
token only at the beginning of the answer, we also include
the positive answer clauses as input. After context-aware
negative training, we use td to explicitly judge the usefulness
of each context window. We set td as the UNK token to
minimize interference with normal tokens during training.

Information-Calibrated Aggregation (ICA). As dis-
cussed in Section 2, merely measuring the uncertainty of the
final output distribution can be heavily influenced by fact
omission hallucination. We propose to measure the changes
of uncertainty from the non-document output distribution to
the with-document output distribution, reflecting the infor-
mation increment provided by the retrieved document.

Specifically, we apply the Kullback-Leibler (KL) divergence
to measure the information increment,

∆(pi,j,pi,c) = DKL(pi,j || pi,c), (9)

pi,c = pθ( · | Q ⊕ A1:i−1), (10)

where pi,c is the non-document output distribution.

Finally, we integrate the above two methods as two penalty
terms to inject into Equation 6,

pi = (11)

argmin
pi,j

C(pi,j,pi,c)− γ · I(argmax
k

pi,j
k = td),
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Doc1: Alice’s father is Bob. 
Bob’s father is Charlie.

Doc2: Kathy’s mother is Alice. 
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Figure 1: DePaC consists of two key components: (1) a context-aware negative training technique to alleviate fact fabrication,
and (2) an information-calibrated aggregation method to alleviate fact omission.

C(pi,j,pi,c) = H(pi,j)− β ·∆(pi,j,pi,c), (12)

where I[·] represents the indicator function, pi,j
k is the out-

put probability on k-th token in the vocabulary, and β > 0
and γ > 0 are hyper-parameters. Equation 11 and 12 mean
that the selected context window should have low uncer-
tainty and high information increment, and should not be
aligned to the rejection token. Finally, the output token Ai

will be sampled based on the aggregated distribution pi.

4. Experiments
4.1. Tasks

Information seeking. Based on the given question, the
model is required to seek for some textual pieces within the
contexts. The information seeking tasks include: Func-
tion name retrieve (FuncNR) (An et al., 2024), Entity
label retrieve (EntLR) (An et al., 2024), Multi-values
Needle-in-a-Haystack (MVIH) (Hsieh et al., 2024), Ten-
sorHub APIBench(Tens) (Patil et al., 2023), TorchHub
APIBench(Torc) (Patil et al., 2023), and Huggingface
APIBench(Hugg) (Patil et al., 2023). Appendix D shows
the detailed description of information seeking tasks.

Document-based question-answering (DocQA). Given
a document-specific question, we provide the model sev-
eral candidate documents, containing one ground-truth
document and other unrelated documents. The DocQA
tasks include: Qasper (Dasigi et al., 2021), Multi-
fieldQA (MulQA) (Bai et al., 2023), NarrativeQA
(NarQA) (Kočiskỳ et al., 2018). Appendix E shows the
detailed description of DocQA tasks.

4.2. Baselines

We compare DePaC with four baselines: Vanilla, AVP (Hao
et al., 2022; Ratner et al., 2023), NBCE (Su et al., 2024) and
CLeHe (Qiu et al.). The detailed description of baselines is
shown in Appendix F.

4.3. Models

We conduct experiments on three open-source language
models: Mistral-7B (Jiang et al., 2023a), Llama3-
8B (Grattafiori et al., 2024) and Phi3-3.8B (Abdin et al.,
2024). And we use Mistral-7B (Jiang et al., 2023a) as the
default backbone model for the ablation study and analysis.

4.4. Results and Analysis

DePaC consistently achieves promising performances
across nine tasks. As shown in Table 1, DePaC achieves
better performance than baselines across six information
seeking tasks and three DocQA tasks. Since the baselines
do not require additional training, we also compare solely
ICA (DePaC w/o NegTrain) with them in Table 1. The
results indicate that using ICA alone outperforms the base-
lines, and combining ICA with NegTrain further improves
performance. The results also show that AVP performs
much worse than vanilla. This is because AVP averages the
logits across parallel windows, giving equal weight to each
window’s contribution to the final answer. This makes it
underform for RAG scenarios, where it is crucial for the
model to identify and focus on the most relevant information
from the context.

Both information-calibrated aggregation and context-
aware negative training are essential for DePaC perfor-
mance. We compare DePaC with two ablation setting: (1)
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Table 1: Comparison of DePaC with baselines across three models and nine tasks.

Model Method FuncNR EntLR MVIH Tens Torc Hugg Qasper MulQA NarQA Avg

Mistral-7B

Vanilla (Jiang et al., 2023a) 25.4 44.1 21.9 37.1 14.5 1.4 15.0 39.7 10.2 23.3
AVP (Hao et al., 2022) 2.3 0.3 0.3 38.8 3.2 0.2 6.7 16.7 8.6 8.6
NBCE (Su et al., 2024) 36.2 83.1 27.9 43.3 3.8 1.3 11.7 31.0 15.9 28.2
CLeHe (Qiu et al.) 38.4 82.6 28.4 43.6 4.2 3.2 13.4 30.8 15.8 28.9
DePaC (ours) 72.8 87.4 41.6 44.8 16.7 7.5 17.3 40.7 16.4 38.4
ICA (DePaC w/o NegTrain) 69.7 85.1 35.9 44.2 14.5 6.2 16.2 40.1 16.1 36.4
DePaC w/o ICA 64.9 72.6 32.8 44.1 15.0 6.6 15.2 39.8 15.7 34.1

Llama3-8B

Vanilla (Grattafiori et al., 2024) 24.3 42.3 22.3 34.6 12.6 1.6 7.2 9.6 6.4 17.9
AVP (Hao et al., 2022) 2.1 0.4 0.2 36.9 2.9 0.4 6.9 17.3 8.2 8.4
NBCE (Su et al., 2024) 32.8 84.2 24.8 40.3 6.5 2.1 9.9 15.6 13.9 25.6
CLeHe (Qiu et al.) 37.2 84.0 26.2 41.7 13.3 2.7 11.5 19.6 14.3 27.8
DePaC (ours) 69.5 86.6 40.2 43.9 17.4 8.2 17.6 41.0 14.1 37.6
ICA (DePaC w/o NegTrain) 64.8 85.0 33.8 43.2 15.2 6.8 16.4 40.3 14.0 35.5
DePaC w/o ICA 64.2 84.9 34.8 42.4 14.9 7.1 15.8 40.4 13.8 35.4

Phi3-3.8B

Vanilla (Abdin et al., 2024) 29.7 43.5 21.2 35.7 12.3 1.3 13.2 30.2 11.3 22.0
AVP (Hao et al., 2022) 3.4 0.3 0.5 37.9 2.3 0.7 6.3 15.9 9.4 8.5
NBCE (Su et al., 2024) 45.4 80.3 28.3 42.2 8.6 2.2 13.8 32.5 14.7 29.8
CLeHe (Qiu et al.) 42.2 81.2 27.6 43.6 10.1 3.8 13.1 33.1 15.7 30.0
DePaC (ours) 71.4 87.0 43.2 45.3 15.5 7.2 17.5 39.1 15.3 37.9
ICA (DePaC w/o NegTrain) 68.6 85.2 36.3 44.5 14.0 6.1 16.5 37.9 15.1 36.0
DePaC w/o ICA 67.9 83.4 35.3 43.6 13.8 4.9 15.3 36.2 14.9 35.0

DePaC w/o NegTrain. We reconstruct a Positive Training
(PosTrain) dataset composed solely of positive samples,
with the sample size as NegTrain dataset, and finetune with
PosTrain dataset. (2) DePaC w/o ICA. We only replace the
information-calibrated aggregation function of DePaC with
lowest-uncertainty aggregation. We conducte ablation study
on the six information seeking datasets. As shown in Table
1, the ablation results indicate that both parts of DePaC are
essential for its performance.

5. Related Work
Retrieval-Augmented Generation (RAG) for LLM. To
address hallucination issue of LLM, Retrieval-augmented
generation (Lewis et al., 2020; Gao et al., 2023; Cheng
et al., 2024; Asai et al., 2023) has been applied in many
fields, including question answering (Zhang et al., 2024),
code generation (Zhou et al., 2022; Ma et al., 2024) and
recommendation (Zeng et al., 2024). The performance of
RAG is limited by the effectiveness of retriever and the in-
formation utilization capability of LLM. Some work focus
on enhancing the retriever’s capabilities (Wang et al., 2023;
Lewis et al., 2020). Shi et al. (2024) compresses the re-
trieved information for LLM. Some work proposes iterative
RAG (Jiang et al., 2023b; Shao et al., 2023; Cheng et al.,
2024) to help the model progressively utilize document in-
formation. Some work (Asai et al., 2023; Dhuliawala et al.,
2023; Feng et al., 2024) utilizes prompt engineer to aggre-
gate information from multiple documents.

LLM with Parallel Context Extension (PCE). Recent re-
search has proposed some PCE approaches to aggregate mul-
tiple context windows into a unified representation space,
extending context length of LLM. Some research (Hao
et al., 2022; Ratner et al., 2023; Li et al., 2024) aggregates
by average aggregation mechanisms. Su et al. (2024) pro-
poses NBCE to aggregates by lowest-uncertainty aggrega-
tion mechanisms. Beyond parallel context extension for ex-
isting LLM, Yen et al. (2024) also proposes encoder-decoder
architecture to implement parallel context.

6. Conclusion
In this paper, we propose DePaC to address two types of
in-context hallucination issues of parallel context extension
on RAG. DePaC consists of two key components: (1) a
context-aware negative training technique to mitigate fact
fabrication, and (2) an information-calibrated aggregation
method to address fact omission issue. Both experiments on
information seeking and DocQA tasks show the effective-
ness of DePaC.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Complexity Analysis
Considering that RAG scenarios have high expectations for execution efficiency and previous PCE-style work lacked analysis
of the execution efficiency, we present the inference complexity of DePaC compared with vanilla inference approach. Figure
2 shows the attention pattern and execution time comparison between DePaC and vanilla inference. As the length of the
question is much smaller than the length of the document, the complexity of processing the question is ignored. Given a
LLM with m layers, we assume that the context consists of k documents, each with n tokens.

Vanilla complexity. Vanilla inference directly concatenates the k documents as the input to LLM, with a sequence length
of kn. The attention of each layer is calculated by Attention(Q,K, V ) = softmax

(
QKT

)
V , where Q,K, V ∈ R(kn)×d is

the query, key and value matrix. The complexity of QKT is O((kn)2 · d). So the complexity of Attention(Q,K, V ) for
m layers is O(k2 · n2 · d ·m).

DePaC complexity. In DePaC, k documents are inputted to LLM in parallel, the sequence length for each input is
n. This is akin to k times Attention(Q,K, V ) computations, but with smaller Q,K, V ∈ Rn×d, so the complexity of
Attention(Q,K, V ) for m layers is O(k · n2 · d ·m).

The complexity of Vanilla increases quadratically with k, while DePaC’s complexity grows linearly. Figure 2 shows the
average execution time of DePaC and vanilla inference approach with different context length, DePaC has faster inference
speed than vanilla approach. Moreover, DePaC can place all documents in a single batch for parallel processing, further
enhancing DePaC’s inference speed.
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Figure 2: Attention pattern and execution time comparison between DePaC and vanilla inference. The execution time of
DePaC increases linearly with context length, while vanilla’s complexity grows quadratically.

B. More Formula Details
The Kullback-Leibler (KL) divergence for discrete probability distributions P1 and P2 is defined as:

DKL(P1 || P2) =
∑
i

P1(i) log
P1(i)

P2(i)
(13)

The cross-entropy loss function is defined as:

CE[pθ( · | dj ⊕Q), A] = (14)

−
n∑

i=1

log pθ(Ai | dj ⊕Q⊕A1:i−1)

where Ai is the i-th token in g round-truth answers, n is the sequence length of ground-truth. pθ(Ai|dj ⊕Q⊕A1:i−1) is
the probability of generating Ai given the input dj ⊕Q⊕A1:i−1.
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C. DePaC Simplified Form
Notice that one implicate constraint in Equation 11 is γ ≫ C(pi,j,pi,c) as we hope to directly filter out irrelevant context
windows. To simplify this constraint for implementation, we rewrite Equation 11 as the product of two terms and modify
Equation 12 to make sure Ĉ(pi,j,pi,c) ≥ 0,

pi = (15)

argmax
pi,j

Ĉ(pi,j,pi,c) · I(argmax
k

pi,j
k = td),

Ĉ(pi,j,pi,c) = max
k

pi,j
k + β ·∆(pi,j,pi,c), (16)

where we use maxk pi,j
k to estimate the output certainty, and β > 0 is hyper-parameter. For the output of deep learning

models, a higher maxk pi,j
k always indicates a higher certainty in practice (Ghoshal & Tucker, 2022). We set β = 0.2 by

default and analyze the choice of β in Appendix G.

Implementation Details Following previous work (An et al., 2024), we use the C4 (Raffel et al., 2020) corpus to construct
our context-aware negative training dataset. For a segment of text from C4, we first split it into text fragments with a
maximum length of 4k tokens. We first sample a fragment serves as oracle document, and use GPT-4-Turbo to generate
questions and answers based on the oracle document as positive training data. Then we sample unrelated fragment serves
as distractor document to construct context-aware negative training data based on the positive ones. To prevent the model
from overfitting on td, we control td occurrence to match the average frequency of the 2,000 most frequent tokens in
NegTrain. Finally, we construct 19K samples for context-aware negative training. We fine-tune three open-source models
(introduce in Section 4.3) using 8x80G A100 GPUs, set the global batch size as 128 and trained for two epochs. We use
Flash Attention-2 (Dao, 2023) to enhance the training speed. The entire training process takes about 4 hours.

D. Information Seeking Task Details
Below shows the detailed description of information seeking tasks:

• Function name retrieve (FuncNR) (An et al., 2024). The contexts in FuncNR contain a large number of Python
functions, all of which are sampled from the training data of Starcoder (Li et al., 2023). The questions in FuncNR ask for
retrieving the function names based on the given code snippets. We extend the original context length in An et al. (2024)
from 32K to 128K.

• Entity label retrieve (EntLR) (An et al., 2024). The contexts in EntLR contain a large number of entities, all of which
are sampled from Wikidata. Each entity is a triplet in the form of (id, label, description). The questions in EntLR ask for
retrieving the labels corresponding to the given entity ids from the contexts. We extend the original context length in An
et al. (2024) from 32K to 128K.

• Multi-values Needle-in-a-Haystack (MVIH) (Hsieh et al., 2024). The contexts in MVIH contain multiple values for a
certain key, along with other unrelated text pieces. The questions in MVIH require the model to seek for all the associated
values for the given key.

• APIBench (Patil et al., 2023). The contexts in APIBench consist of many real-world APIs, each of which includes an
API name, an API call and an API description. The questions in APIBench require to retrieve the API calls based on the
given development requirements. Due to the ambiguity in the requirements, APIBench serves as the most challenging
evaluation task for information seeking. We take three sub-tasks from APIBench for evaluations: TensorHub (Tens),
TorchHub (Torc), and Huggingface (Hugg). In each sub-task, we regard all the candidate APIs as the contexts.

E. DocQA Task Details
Below shows the detailed description of DocQA tasks:

• Qasper (Dasigi et al., 2021). The documents in Qasper are academic research papers and the questions in Qasper are
written by NLP practitioners. Specifically, after reading only the title and abstract of each paper, the annotators are
required to ask an in-depth question which need the information from the full text to get a comprehensive answer.
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• MultifieldQA (Bai et al., 2023). The MultifieldQA task aims to test long-document understanding of the model on
across diverse fields. The contexts in MultifieldQA are collected from various data sources, including legal documents,
government reports, encyclopedias, and academic papers.

• NarrativeQA (Kočiskỳ et al., 2018). The NarrativeQA task evaluates how well the model understands the entire long
books or movie scripts. Answering the questions in NarrativeQA requires the understanding of the underlying narratives
in the given document.

F. Baseline Details
Below shows the detailed description of baselines:

• Vanilla refers to directly using the vanilla inference approach for a context-limited model (Bai et al., 2023), i.e.,
concatenating all candidate contexts into input sequence and applying the middle truncation strategy to meet the maximum
context length of the model.

• AVP (Hao et al., 2022; Ratner et al., 2023) takes the average aggregation (defined in Equation 5) to aggregate the parallel
context windows.

• CLeHe (Qiu et al.) ensemble the logits of multiple windows to aggregate the parallel context windows.

• NBCE (Su et al., 2024) employs the lowest-uncertainty aggregation (defined in Equation 6) to aggregate the parallel
context windows.

G. Hyperparameter Settings
We conducted β ablation study on the EntLR dataset. The result in Figure 3 indicates that β ∈ [0.2, 0.3] achieves better
trade-off between information entropy and KL divergence. We set β = 0.2 in our experiments.
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Figure 3: DePaC performance with different beta

H. Analysis on NegTrain
Context-aware Negative training can improve the ability of refusing to answer questions with unrelated documents.
We constructed an additional 4.4K positive samples (PosEval) and negative samples (NegEval), using the same data
construction method as NegTrain, but with different seed documents. PosEval represents the situation that documents are
related to the question, while NegEval represents the opposite. We compare the rejection token td prediction loss on PosEval
and NegEval datasets with different NegTrain steps. Figure 4 shows that NegTrain can increase the probability difference
between refusing to answer questions with unrelated document and related document.
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Figure 4: Rejection token prediction loss on PosEval and NegEval over context-aware negative training steps.

Table 2: Comparison results between DePaC and aggregation approaches for RAG.

Method NaturalQuestions TriviaQA RGB

SelfRAG (Asai et al., 2023) 28.67 74.33 75.33
CoVe (Dhuliawala et al., 2023) 26.67 68.67 76.33
COMPETE (Feng et al., 2024) 22.67 69.00 74.00
DePaC (ours) 33.67 88.33 94.33

I. More Evaluation Results
DePaC performs better than aggregation approaches for RAG. We also compare DePaC with previous aggregation
approaches specific to RAG (Asai et al., 2023) or can be applied to RAG (Dhuliawala et al., 2023; Feng et al., 2024), the
results in Table 2 show that DePaC outperforms other aggregation approaches on different datasets (Kwiatkowski et al.,
2019; Joshi et al., 2017; Chen et al., 2024).

DePaC maintains promising performance with candidate documents number increases. On DocQA tasks, as
the number of documents increases, more redundant information in the context. As shown in Table 3 DePaC still
achieves promising performance. DePaC’s performance with k=20 even surpasses NBCE with k=5 (23.9 vs. 19.5), further
demonstrating DePaC’s capability to identify key information from redundant context.

DePaC also outperforms baselinse on summarization tasks. We also compare DePac on Mistral-7B with baselines on
summarization tasks (GovReport (Huang et al., 2021), QMSum (Zhong et al., 2021), and MultiNews (Fabbri et al., 2019)),
which better assess the ability of LLMs to integrate information across entire documents. The results in Table 4 demonstrate
that DePaC consistently outperforms the baselines on these summarization tasks.

DePaC significantly alleviates fact fabrication and fact omission hallucinations. We analyze the proportion of
hallucinations produced by different approaches on three information seeking tasks (FuncNR, EntLR and MVIH). As
shown in Figure 5 and Figure 6, DePaC significantly reduces the occurrence of both types of hallucinations. DePaC even
completely avoids fact omission on EntLR and fact fabrication on MVIH. The detailed hallucination evaluation setup is
shown in Appendix J.

DePaC with CoT maintains performance advantage on multi-hop DocQA. We evaluate on 2WikimQA (Ho et al.,
2020) and HotPotQA (Yang et al., 2018) datasets using Mistral-7B. The results in Table 5 show that DePaC still maintains
its performance advantage on multi-hop QA datasets. We make the prompt for multi-hop QA datasets end with "Let’s think
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Table 3: DocQA results with different candidate document numbers.

Method
Qasper MulQA NarQA

k=5 k=10 k=20 k=5 k=10 k=20 k=5 k=10 k=20

Vanilla (Jiang et al., 2023a) 15.0 13.3 8.6 39.7 33.4 31.6 10.2 9.1 9.6
AVP (Hao et al., 2022) 6.7 6.6 6.7 16.7 15.3 15.4 8.6 8.5 8.3
NBCE (Su et al., 2024) 11.7 9.9 9.8 31.0 29.0 26.9 15.9 15.8 15.1
CLeHe (Qiu et al.) 13.4 10.3 10.1 30.8 28.8 26.2 15.8 15.5 14.9
DePaC (ours) 17.3 16.0 14.8 40.7 40.6 40.9 16.4 16.3 16.0

Table 4: Comparison results on summarization tasks.

Method GovReport QMSum MultiNews

Vanilla (Jiang et al., 2023a) 12.4 14.8 17.5
NBCE (Su et al., 2024) 22.3 19.6 21.3
CLeHe (Qiu et al.) 22.2 20.4 21.7
DePaC (ours) 29.1 25.7 28.4

step by step, ", this Chain-of-Thought (CoT) prompt (Wei et al., 2022) helps DePaC first seeks useful information across
different contexts before generate the final answer. Figure 7 shows a multi-hop example, where DePaC perform context
window switching and successfully locate relevant information spread across multiple documents.

J. Hallucination Definition and Evaluation Setup
Previous work (Weng, 2024) categorizes hallucination into two types: (1) extrinsic hallucination, where the output of LLM
is not grounded by the pre-training dataset or external world knowledge. (2) in-context hallucination, where the output of
the model is inconsistent with the source content in context. In this work we focus on two types of in-context hallucination:
(1) fact fabrication, where LLMs present claims that are not supported by the contexts. (2) fact omission, where LLMs fail
to present claims that are supported by the contexts. Figure 9 shows an example for fact fabrication, and Figure 10 shows an
example for fact omission.

We done in-context hallucination evaluation on three information seeking tasks (FuncNR, EntLR and MVIH), as they are
evaluated by exact-match score, makes them easier to analyze than QA tasks. Since these tasks have clear answers in the
document and all incorrect outputs are hallucinations, we manually analyzed the data to define 27 fact omission phrases
(shown in Figure 8), counted the incorrect outputs that appeared with these phrases as fact omission, and classified other
errors as fact fabrication.

K. Window Number Analysis
To analyze DePaC’s performance with different numbers of windows, we conduct experiments on the FuncNR dataset,
keeping the total number of candidate functions constant while varying the number of windows into which the context is
divided. The results in Figure 11 show that as the number of windows increases (form 4 to 128), DePaC’s information-
seeking ability improves; however, when the number of windows becomes too large (larger than 256), there may be a slight
performance decline. All DePaC with split-window outperforms the single-window, further validating the effectiveness of
DePaC with parallel context windows.

L. Effectiveness of NegTrain
As shown in Table 6, to further show the effectiveness of NegTrain, we compare NegTrain-Llama2-13B with SlefRAG-
Llama2-13B (Asai et al., 2023) (which enhance model’s ability of abstaining irrelevant information from context) on
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Figure 5: Fact Omission percentage in responses for the information seeking tasks.

Vanilla NBCE DePaC0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0

Ha
llu

cin
at

io
n 

Pe
rc

en
ta

ge
 (%

)

39.2

32.0
25.9

FuncNR

Vanilla NBCE DePaC0.0

10.0

20.0

30.0

40.0

50.0

Ha
llu

cin
at

io
n 

Pe
rc

en
ta

ge
 (%

)

51.5

19.5
12.1

EntLR

Vanilla NBCE DePaC0.0

5.0

10.0

15.0

20.0

25.0

Ha
llu

cin
at

io
n 

Pe
rc

en
ta

ge
 (%

)

27.7

10.9

0.0

MVIH

Figure 6: Fact Fabrication percentage in responses for the information seeking tasks.

FactCheckQA (Bashlovkina et al., 2023) benchmark (which requires LLM to answer the question based on the provided
context). The results show that NegTrain outperforms SelfRAG and original Llama2 model on FactCheckQA dataset.

M. Limitations
Data generation cost. We rely on GPT-4-Turbo to generate our training data, which cost around 90$ for API calling. Future
work should attempt to generate data using cheaper models without compromising data quality.

Training cost. Our training process consumes some computational resources, but it’s a one-time effort. Given the advantages
of our method in terms of inference efficiency and accuracy, we believe these offline costs are justified.
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Table 5: Comparison results on multi-hop DocQA tasks.

Method 2WikimQA HotPotQA

Vanilla (Jiang et al., 2023a) 19.04 12.01
NBCE (Su et al., 2024) 17.45 10.52
CLeHe (Qiu et al.) 18.32 14.64
DePaC (ours) 29.72 30.95

Doc1: 
... One of the special magic numbers for 
muddy-tolerance is: 8962302.....

Q: What are all the special magic 
numbers for zonked-ordinary 
mentioned in the provided text?

Information
Calibrated

Aggregation

A: 8962302, 1447065 and 
5454861.

NegTrained
LLM

P1

P2

P3

Pc

DKL(Pi||Pc)
Doc2: 
... One of the special magic numbers for 
muddy-tolerance is: 1447065.....

Doc3: 
... One of the special magic numbers for 
muddy-tolerance is: 5454861.....

Q: What are all the special magic 
numbers for zonked-ordinary 
mentioned in the provided text?

Q: What are all the special magic 
numbers for zonked-ordinary 
mentioned in the provided text?

Q: What are all the special magic 
numbers for zonked-ordinary 
mentioned in the provided text?

Figure 7: DePaC can switch context window for multi-hop questions.

not provided, not mentioned, not given,
not stated, not available, not included,
not specified, not reported, not
recorded, not found, not applicable,
not clear, not known, not indicated,
not listed, not present, not provided,
not reported, not shown, not tested,
not directly provided, not explicitly
mentioned, not explicitly given,
cannot be determined, not have a
specific, not been mentioned, not
contain, not include, not explicitly
stated

Fact Omission Phrases

Figure 8: Fact omission phrases.
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Bob’s father is Charlie.

Doc2: Kathy’s mother is Alice. 
Alice’s mother is Wendy.

LLM
Charlie Unkown Wendy

Q: Who is Alice’s 
grandfather?

Q: Who is Alice’s 
grandfather?

AGG

0.5

0.2
0.1

A: Wendy.

Doc1: Alice’s father is Bob. 
Bob’s father is Charlie.

Doc3: George’s father is 
Harry. Harry’s father is Ian.

LLM

Q: Who is Alice’s 
grandfather?

Q: Who is Alice’s 
grandfather?

AGG A: Unknown.

(1) Fact Fabrication Example

(2) Fact Omission Example

… …

Charlie Unkown Wendy

0.1
0.3

0.6

… …

Charlie Unkown

0.2
0.3

0.5

… …
Wendy

Charlie Unkown

0.2

0.5

0.1… …
Wendy

Charlie Unkown Wendy

0.5

0.2
0.1

… …

Charlie Unkown

0.1

0.6

0.1
… …

Wendy

Figure 9: Fact fabrication example. Doc2 is useless to answer the question. The higher confidence in "Wendy" on Doc2
caused PCE to fabricate the answer "Alice’s grandfather is Wendy."
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Figure 10: Fact omission example. Doc3 is useless to answer the question. The higher confidence in "unknown" on Doc3
caused PCE to omit the fact on Doc1, resulting an incorrect final answer after aggregation.
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Figure 11: DePaC performance at different degrees of context window parallelism.

Table 6: FactCheckQA results.

Model FactCheckQA

Llama2-13B-Chat (Touvron et al., 2023) 73
SlefRAG-Llama2-13B (Asai et al., 2023) 76.5
NegTrain-Llama2-13B 78.5
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