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ABSTRACT

Although LLMs demonstrate strong reasoning capability in such tasks as mathe-
matical problem solving, less is known about their reasoning capability in settings
that require extensive real-world knowledge due to the limited scale and knowledge
coverage of existing benchmarks. To shed more light into this, we propose a
novel pipeline that is capable of programmatically generating realistic knowledge-
intensive question answering benchmarks that require complex reasoning. Lever-
aging open knowledge graphs, the graph query language SPARQL, and LLMs, our
pipeline requires no manual annotation and can therefore scale to unprecedented
benchmark size and knowledge coverage. We evaluate several state-of-the-art
LLMs with benchmarks generated by our pipeline, and find that the LLMs struggle
to recall and leverage world knowledge for reasoning, even for world knowledge
present in their pre-training corpuses. Additionally, retrieval-augmented generation
and chain-of-thoughts prompting does not fully solve the problems. Our bench-
marks further enable us to examine to what extent the confidence of LLMs in the
outcomes of their reasoning transparently reflects their confidence in the underlying
knowledge, a study that is first-of-its-kind to our best knowledge. We find that
the confidence of LLMs in the outcomes of their reasoning reflects poorly their
confidence in the underlying knowledge (poor knowledgeability transparency),
which suggests a direction of future improvement.

1 INTRODUCTION

Existing benchmarks examining how well LLMs can leverage real-world knowledge for reasoning
predominantly rely on human annotations, e.g. |Yang et al.| (2018); [Kwiatkowski et al.|(2019). The
costs of manual annotations limit the scale of these benchmarks even in unspecialized domains
where manual annotations are affordable, let alone domains where shortages of domain experts make
manual annotations prohibitively costly (Hendrycks et al.,|2020). The reliance of existing approaches
on human annotations also limits the coverage of long-tail knowledge by these benchmarks, since
such knowledge is often beyond the expertise of most human annotators. We propose a pipeline for
generating such benchmarks that is fully automated and therefore much more scalable. Given a KG,
our pipeline first samples subgraphs from the KG, masks a subset of entities in the subgraphs, and
encodes the masked subgraphs as SPARQL queries. Our pipeline then translate the SPARQL queries
into natural language questions by an LLLM, and obtain ground truth answers to the LLM-generated
questions by querying the KG.

With benchmarks generated by our pipeline, we further assess to what extent SOTA LLMs can recall
and leverage world knowledge for complex reasoning, in the setting of zero-shot question answering,
retrieval-agumented generation (RAG), and chain-of-thoughts (CoT) prompting. Our assessment
yields the following findings:

1. LLMs have significant room of improvement when it comes to recall and leverage world
knowledge for reasoing, even for world knowledge present in their pre-training corpuses.

2. LLMs cannot avoid reasoning errors even with all required knowledge provided as context.
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Figure 1: Our assessment scheme

Subgraph: User: Please translate the following SPARQL
<Surround SCM> <developer> <Seapine Software>. query into a wh-question:
<Surround SCM> <operating system> <Microsoft SELECT ?x WHERE {

Windows> . 7x <developer> <Seapine Software> .
<Surround SCM> <has use> <version control> 7x <operating system> <Microsoft Windows> .

7x <has use> <version control>
Graph pattern: }
?x <developer> <Seapine Software> . Assistant:  What is developed by Seapine
?x <operating system> <Microsoft Windows> . Software, uses Microsoft Windows as operating
?x <has use> <version control> system, and utilizes version control?

(a) Step 1: Sample a subgraph (above) in the knowl- (b) Step 2: Translate the SPARQL query consisting of
edge graph and turn it into a graph pattern (below) by the graph pattern into a natural language question with
masking some of the entities in it. an LLM.

Figure 2: Our benchmark generation pipeline by example

3. CoT improves performance for complex questions, but such improvement can be unstable,
which can be further worsened by mismatches between the reasoning pattern of demonstra-
tion and test question.

4. LLMs’ confidence (as measured by log-likelihood) in their answers reflects poorly their
confidence in the underlying knowledge (poor knowledgeability transparency).

The rest of the paper is organized as the following: we introduce the methodology of our assessment
in Section 2] introduce the concept of knowledgeability transparency in Section[3] present the findings
of our assessment in Sectiond}, and review related work in Section 35}

2 ASSESSMENT METHODOLOGY

2.1 BACKGROUND

Question answering is a natural way to assess knowledge-intensive reasoning. Existing approaches
to building complex question answering benchmarks predominantly require significant manual
annotations. The most labor-intensive approach requires human annotators to raise questions about
pieces of text. Although they yield highly diverse questions, such approaches can have prohibitive
costs. The lack of structure in even relatively organized texts such as Wikipedia makes it hard to
quantify the reasoning capabilities that are measured. For example, a study Min et al.| (2019) finds
that a surprisingly large portion of questions in HotpotQA |Yang et al.[(2018)), a popular multi-hop
question answering dataset, can be answered without multi-hop reasoning. Less labor intensive
approaches often rely on customized domain-specific language as intermediate representation (IR).
Constructing such IRs itself can also require significant manual efforts. Additionally, customized
IRs may not generalize well to novel knowledge. Finally, these approaches generally rely on manual
efforts to paraphrase questions expressed IRs into natural language. Those approaches in this category
that does not rely on manual paraphrasing instead rely on manually crafted templates, which can be
costly to construct. This paper demonstrates that graph query languages such as SPARQL can act as
powerful and general IRs readily digestible for LLMs-empowered question answering benchmark



KG Entities Predicates  Triples Alignment

T-REx 2,819,966 658 5,410,928  Wikipedia
Wikidata 11,718,022 1428 50,732,257 N/A

Table 1: Statistics of KGs used for benchmark generation

Dataset Generation Source(s) Size
WikiHop (Welbl et al., [2018)) Template Wikidata 51,318
Natural Questions (Kwiatkowski et al.,[2019) Manual Wikipedia 323,044
HotpotQA (Yang et al.| 2018) Manual Wikipedia 113k
ComplexWebQuestions (Talmor and Berant,2018) Paraphrasing Freebase 34,689
CFQ (Keysers et al., |2020) Template Freebase 865,101
Quest (Malaviya et al.|[2023) Paraphrasing  Wikipedia 3,357
Ours LLM Wikidata/T-REx  1.32M

Table 2: Comparison of datasets. Note that datasets generated from templates may not have realistic
natural language form, and datasets generated manually or by paraphrasing can be hard to scale.

generation that requires no manual efforts. We provide more details of datasets generated by existing
approaches in Table

2.2 LLM-EMPOWERED BENCHMARK GENERATION WITH SPARQL AS IR

Our benchmark generation pipeline takes as input a knowledge graph (KG), which we define as a
collection of semantic triples G = {(s,r,0)} C € x P x (£ UV), where & is a set of entities,
P is a set of predicates, and V is a set of values. To generate a question that requires reasoning,
we first sample a subgraph in the KG by taking a random walk (see Algorithm [I]for the subgraph
sampling procedure and Figure [2a] for an example subgraph in Wikidata). and a subset of the entities
in the subgraph are masked (see Figure [2a] for an example). We mask some of the entities in the
sampled subgraph, and encode the partially masked subgraph as a graph query in SPARQL, a widely
adopted graph query language endorsed by W3C. We then translate the SPARQL query into a natural
language question with an LLM. We choose SPARQL because we find state-of-the-art LLMs, such
as GPT-4, demonstrates strong capabilities of translating SPARQL queries into natural language
questions. Finally, we find the set of ground truth answers to the question by executing the SPARQL
query against the KG. We show an example of this process in Figure 2]

Algorithm 1 Subgraph sampling procedure

Require: Knowledge graph KG = {(s,r, 0)}, subgraph size n, returning probability p

G+ {} > Empty subgraph
s,_,_~(KG) > Start of random walk
while |G| < ndo
s,ry0~ ({(s,r,0) : (s,r,0) € KG}) > Sample a semantic triple
G+ GguU{(s,r,0)} > Add the sampled triple to the subgraph
if rand () < p then > With probability 1 — p stay at s in the next iteration
s+ 8

if nontrivial(G) then return G > Return the masked subgraph only if the query is nontrivial

2.3 CHOICE OF KNOWLEDGE GRAPHS

Apart from scale and quality, our primary concern when choosing KGs is their alignment with the
pre-training corpuses of SOTA LLMs. Based on this, we choose to generate benchmarks from the
T-REx and Wikidata. We report key statistics of Wikidata and T-REx in Table [I] Both KGs can
contain offensive contents. Our pipeline cannot filter such contents.



T-REx ElSahar et al.[(2018) (CC BY-SA 4.0 DEED) is a large scale knowledge graph generated by
aligning Wikipedia paragraphs. Since it is aligned to Wikipedia, it has strong guarantee that all facts
contained by it are contained in the pre-training corpus of LLMs.

Wikidata |Vrandeci¢ and Krotzsch|(2014) (CC BY-SA 4.0 DEED) is a community maintained KG
managing facts in Wikipedia, its sister project. To maximize its overlap with the pre-training corpuses
of LLMs that we evaluate, we only include Wikidata entities with English Wikipedia pages associated
to them. Despite this, there is no guarantee that facts in Wikidata can be backed by any Wikipedia
page. Note that T-REX is not a proper subset of Wikidata.

2.4 METHODOLOGY LIMITATIONS

Exploitable correlations Knowledge graphs usually contain facts that are highly correlated to each
other, which LLMs can exploit to bypass recalling facts. For example, the predicates “country for
sport” and “country of citizenship” in Wikidata are highly likely to co-occur. Consequently, queries
with graph patterns such as “?x0 <country for sport> <United States> . ?x0
<country of citizenship> ?x1” can be answered by LLMs with high accuracy without
recalling any athletes that are member of a US sport team and hold US citizenship. We leave it for
future work to filter such correlated predicates in our benchmark generation pipeline. In this case,
however, the question still requires some commonsense reasoning.

Ground truth incompleteness LLMs can generate answers that are factually correct but may
not be included in the ground truth sets of our benchmarks. We find that LLMs’ performance is
comparable on the benchmark generated from T-REx with that generated from Wikidata, even though
Wikidata contains about 10 times more triples than T-REx and therefore is much less likely to suffer
from ground truth incompleteness. This suggests that ground truth incompleteness may not be a
foundational problem for our methodology. However, it will be worth studying further the impact of
this.

3 KNOWLEDGEABILITY TRANSPARENCY

Definition We consider an LLM M to have knowledgeability transparency if its confidence in its
answers is proportional to its knowledgeability about questions. We define this mathematically as,
given a question ¢ and its answer a,

logPr[a|q,M} X KJW((LU‘) (1)

where K (g, a) denotes the knowledgeability of model M. Since we are primarily interested
in employing LLMs to answer questions generatively, all distributions Pr[-|-] are text generation
distribution. For our benchmarks, where each question covers multiple facts, at least two definitions
of knowledgeability can be considered:

Kam(g,a) = > logPrla|fie, M]  Kmin(g,a) = min logPrlalf, M]
. fe€F(q,a)
fE€F(q,a)
where F'(q,a) denotes the set of facts that are required to conclude that @ is a correct answer
of ¢, and f\, denotes the question for what entities the fact f holds. For example, for the fact

<George Washington> <president> <United States> and the answer <George
Washington>, the question f\, could be “Who was a president of the United States?”

Limitation and alternative The number of correct answers can lead to unexpected fluctuations of
quantities in Definition[I} For example, consider the question “Who participated in both event A and
B?”, and suppose that the event A and B have two participants each and one participant X in common.
Since both events have two participants, an LLM that knows both events well is likely yield

log Pr[“X”|*“Who participated in event A?”, M| ~ log Pr[“X”|“...in event B?”, M| < log 1/2
Since the two events only have one common participant X, the same LLM is likely to yield
log Pr[“X”|“Who participated in both event A and B?”, M| ~ log 1

Consequently, log Prlalg, M] = 1 > Kjy(q,a), making the LLM appear overconfident in its
knowledgeability while it actually is not.



As an alternative, we can replace log Pr[a|g, M] with log Pr[Y'|7,, M|, where g, denotes the
question if a is a correct answer to ¢, and 7' is some token expressing affirmation, such as
“Yes”, e.g. log Pr[“Yes”|“Did X participate in both event A and B?”, M]. We can similarly replace
log Pr[a| f\4, M] with logPr[Y|f,, M], e.g. logPr[“Yes”|“Did X participate in event A?”, M].
This results in the following metrics of knowledgeability:

Ksum(Q7a) = Z IOgPr[Y|fa7M] Kmin(‘]aa) = fer;lilea) 10gPr[Y|fa,M] )
feF(q,a) ’

Importantly, the question ¢, and f, can both be generated by LLMs from underlying SPARQL
queries, similar to the way the question ¢ is generated. This makes these metrics feasible to evaluate.

4 EXPERIMENTS

4.1 SETTINGS

With T-REx and Wikidata, we generate questions from SPARQL queries with 1, 2, and 3 unknowns
in their graph patterns. Queries with 1 unknown have graphs patterns of size from 2 to 6. Queries
with 2 and 3 unknowns have graph patterns of size 4, 5, and 6. For each number of unknowns and
graph pattern size, we generate 100k natural language questions with Llama-3-70B-Instruct.

Data quality To ensure the accuracy of the LLM translations of SPARQL queries, we manually
examined 1,200 questions (400 questions for each number of unknowns). We report the sample and
95% lower confidence bound of the translation accuracies in Table

Answer verification To account for explanatory texts that LLMs often generate when answering
questions, we deem an LLM answer correct if any ground truth answer matches exactly some part of
the answer. We lower-case and remove accents from LLM and ground truth answers before matching.

Nynk = 1 Nunk = 2 Nunk = 3
Acc LCB Acc LCB Acc LCB
94% 89.4% 91% 854% 87% 80.4%

Table 3: Sample and 95% lower confidence bound (LCB) of SPARQL translation accuracy.

4.2 7ZERO-SHOT QUESTION ANSWERING

We first evaluate the zero-shot question answering accuracy of several SOTA LLMs and study the
impact of knowledgeability on their zero-shot accuracy. For questions with one unknown, we report
the zero-shot question answering accuracy in Table 4] (Wikidata) and Table [5](T-REx), grouped by
graph pattern size. For questions with 2 and 3 unknown, we report the zero-shot question answering
accuracy in Table [6] (Wikidata) and Table [7 (T-REx), grouped by the number of unknowns and graph
pattern size. We use 100k questions to compute the accuracy of all models except those in the GPT
family, whose accuracy are computed with 5k questions, sampled randomly from the 100k questions.
We also show in Figure [3]a hallucinative answer from GPT-4. Because all facts in T-REx are aligned

Model IGl=2 |G|=3 |G|=4 |G|=5 |G]=6
Llama-3-70B-Instruct 28.8 21.2 16.6 14.3 14.0
Llama-3-8B-Instruct 19.6 13.6 9.6 7.2 6.3
Mixtral-8x7B-Instruct-v0.1 ~ 22.5 16.5 12.2 9.9 9.4
gpt-3.5-turbo-0125 24.7 18.3 15.0 11.1 10.4
gpt-40-2024-05-13 32.2 23.8 20.0 18.1 17.8

Table 4: Zero-shot question answering accuracy for questions generated from Wikidata with different
graph pattern sizes and one unknown.



Model IGl=2 |G|=3 |G|=4 [G|=5 [G|=6

Llama-3-70B-Instruct 34.8 24.4 23.1 28.4 36.1
Llama-3-8B-Instruct 23.0 14.0 11.7 14.0 18.4
Mixtral-8x7B-Instruct-v0.1 ~ 27.7 18.1 16.2 19.4 25.0
gpt-3.5-turbo-0125 30.3 20.5 20.8 24.8 32.5
gpt-40-2024-05-13 38.7 28.4 28.9 34.8 45.3

Table 5: Zero-shot question answering accuracy for questions generated from T-REx with different
graph pattern sizes and one unknown.

User: What athlete named Karl participated in sailing in the 1980 Summer Olympics?
Assistant: The athlete named Karl who participated in sailing in the 1980 Summer
Olympics is Karl Schifer.

Figure 3: A hallucinative answer from GPT-4 (in red). The only athelete named Karl Schifer that we
find was an Austrian figure skater and swimmer who died in 1976.

with Wikipedia articles, they are also guaranteed to occur in the pre-training corpuses of the LLMs
that we evaluate, which suggests:

Finding 1: LLMs have significant room of improvement when it comes to recall and leverage world
knowledge for reasoing, even for world knowledge present in their pre-training corpuses.

4.3 QUESTION ANSWERING WITH RAG

We further evaluate the question answering performance of LLMs when given relevant knowledge.
We only use the benchmark generated from T-REx for this experiment, because all facts in T-REx
are aligned to Wikipedia articles. (Facts in Wikidata are not guaranteed to be aligned to any sources
available publicly, even though they frequently are.) This eliminates the need of stand-alone retrievers,
which can introduce cascading errors.

We consider two retrieval settings. In the first setting, we only supply LLMs with Wikipedia articles
about entities explicitly mentioned in questions. This setting corresponds to a simple retriever that
leverages entity linking and basic information retrieval. In the second setting, in addition to Wikipedia
articles supplied in the first setting, we also supply LLMs with Wikipedia articles containing all
facts necessary for answering the questions. This setting corresponds to an oracle retriever that
always supplies necessary knowledge. In both settings, we use 5k questions with 1 unknown. For
gpt-3.5-turbo, we use 1k questions with 1 unknown. We report the results in Tabel [§] (basic retriever)
and Tabel [9] (oracle retriever). Despite improvements, a gap persists between the LLMs’ performance
and its upper bound, which suggest that:

Finding 2: LLMs can still make reasoning mistakes even with all knowledge necessary for reasoning.

Model 1G] =4 Gl =5 Gl =6
Tunk = 2 Nunk = 3 Nunk = 2 Nunk = 3 Munk = 2 Tunk = 3
Llama-3-70B 4417477 27.7/321 47.0/54.3 27.3/29.8 47.7/53.0 27.2/31.9
Llama-3-8B 40.2/34.0 23.1/18.6 43.4/37.0 23.5/9.5 44.3/45.0 23.2/11.4

Mixtral-8x7B-v0.1  44.7/429 25.3/24.9 48.1/46.7 25.2/21.2 50.3/46.0 25.0/21.7
gpt-3.5-turbo-0125 36.0/47.9 23.4/29.5 40.7/51.8 23.4/28.3 42.4/53.2 22.2/29.1

Table 6: Zero-shot and 8-shot CoT accuracy for questions with 2 and 3 unknowns generated from
Wikidata. All open-source models are instruction-finetuned version.



G| =4 G| =5 Gl =6

Model
Nunk = 2 Nunk = 3 Nunk = 2 Nunk = 3 Nunk = 2 Nunk = 3
Llama-3-70B 47.3/59.3 34.4/35.1 46.7/66.4 34.0/36.5 43.9/63.9 35.0/32.6
Llama-3-8B 46.8/55.4 27.7/11.8 48.0/55.1 27.1/16.2 45.8/50.9 27.6/11.5

Mixtral-8x7B-v0.1  46.9/58.9 30.3/27.8 479/64.5 30.1/289 45.8/66.5 30.8/26.7
gpt-3.5-turbo-0125 38.0/60.0 28.1/31.2 37.3/63.0 28.6/34.7 36.3/70.2 30.3/34.9

Table 7: Zero-shot and 8-shot CoT accuracy for questions with 2 and 3 unknowns generated from
T-REx. All open-source models are instruction-finetuned version.

Model Gl=2 [G]=3 [G|=4 |d|=5 |G]=6
Llama-3-70B-Instruct 38.8 27.5 28.4 34.9 43.1
Llama-3-8B-Instruct 27.9 20.3 19.9 25.7 33.1
Mixtral-8x7B-Instruct-v0.1  32.5 23.9 23.0 27.7 36.2
gpt-3.5-turbo-0125 34.9 24.4 23.8 27.7 34.1

Table 8: Question answering accuracy with basic retrieval, grouped by graph pattern size |G|.

4.4 QUESTION ANSWERING WITH COT PROMPTING

We next study if CoT prompting |Wei et al.| (2022) can improve the performance of the LLMs. We only
use questions with 2 or 3 unknowns for this experiment, since they are harder to answer without chain
of reasoning. To generate CoT demonstrations, we employ LLMs to translate semantic triples that
encode necessary reasoning steps into natural language statements. An example CoT demonstration
thus generated can be found in Figure [d] We use 10k questions except for gpt-3.5-turbo, for which
we use 1k questions. We report the question answering accuracy of the LLMs with CoT prompting
in Table [ (Wikidata) and Table[7] (T-REx). We additionally study if the CoT performance can be
affected by mismatch between the reasoning pattern of demonstrations and test questions. We report
the result in Table [10[ (Wikidata) and Table |1 1| (T-REx). The results suggest:

Finding 3: CoT improves performance for complex questions, but it can be unstable, and can be
worsened by mismatches between the reasoning pattern of demonstration and test question.

4.5 KNOWLEDGEABILITY TRANSPARENCY

We plot in Figure the quantities log Pr[a|q, M] and K;(q, a) (both Ky, and Ky ) for Llama-
3-70B-Instruct as defined in Equation[I} We use 1k question-answer pairs for the plot™. Although
the two quantities are positively correlated, the plot suggests that such metrics indeed struggle from
the effect. Further, the correlation may arise from other factors. For example, longer answers may
generally have lower log-likelihoods, regardless of questions. We therefore also plot the alternative
metrics log Pr[Y|Ga, M] and Ky and Ky in Figureand Figure These plots indicate very
poor correlation between the quantities.

We further study the impact of the knowledgeability of LLMs about questions on their zero-shot
question answering accuracy. We sample 10k questions with 1 unknown. We plot the distribution
of knowledgeability K, (Equation [2)) of Llama-3-8B-Instruct and Llama-3-70B-Instruct about

Model IGl=2 1G|=3 [G]|=4 |G|=5 [G]=6
Llama-3-70B-Instruct 74.6 74.4 76.3 78.3 79.8
Llama-3-8B-Instruct 66.8 67.8 70.9 73.7 76.5
Mixtral-8x7B-Instruct-v0.1  73.1 717 72.0 74.0 74.3
gpt-3.5-turbo-0125 64.1 64.4 65.3 67.9 70.7

Table 9: Question answering accuracy with advanced retrieval, grouped by graph pattern size |G|.



‘gdemo‘ynunk,demo 47 2 5~, 2 6-,2 47 2 473 5-,2 533

Model

|G|, Tunk 4,3 5,3 6,3 5,2 5,3 6,2 6,3
Meta-Llama-3-70B 29.8/29.8 27.5/30.7 31.5/30.4 50.6/51.9 31.4/31.6 53.4/56.3 29.1/30.5
Llama-3-8B 16.3/18.0 14.4/17.1 20.9/21.4 33.3/37.8 21.7/189 30.1/39.0 8.0/9.3
Mixtral-8x7B-v0.1 23.8/23.9 22.8/21.4 23.4/20.8 47.4/47.3 26.1/24.8 48.7/50.0 17.4/20.8

Table 10: 4-shot and 8-shot CoT accuracy for questions generated from Wikidata with mismatched
reasoning patterns between demonstrations and test questions (the graph pattern size, |Ggemo| Vs. |G,
and the number of unknowns, Nynk_demo VS. unk)- All open-source models are instruction-finetuned
version.

Model ‘gdemo‘a Tbunk_demo 47 2 57 2 67 2 4«, 2 4~, 3 5a 2 57 3
|G|, Tunk 4,3 5,3 6,3 5,2 5,3 6,2 6,3
Llama-3-70B 32.8/33.7 37.0/37.9 38.4/37.5 58.7/60.2 33.8/34.5 51.7/66.5 38.4/37.1
Llama-3-8B 241/241 19.4/241 23.6/21.5 56.4/571 11.2/11.9 37.4/56.0 13.1/16.4
Mixtral-8x7B-v0.1 29.3/27.0 31.7/31.2 31.1/30.3 63.7/61.6 27.2/26.6 53.8/65.6 29.8/30.1

Table 11: 4-shot and 8-shot CoT accuracy for questions generated from T-REx with mismatched
reasoning patterns between demonstrations and test questions (the graph pattern size, |Ggemo| Vs. |G
and the number of unknowns, 7ynk_demo VS- Munk)- All open-source models are instruction-finetuned
version.

)

questions that they answer correctly and incorrectly in Figure[5}] We find that although both LLMs
tend to be more knowledgeable about questions that they answer correctly than those they answer
incorrectly, a considerable overlap exists between the distributions. Overall, these results suggest that

Finding 4: LLMs’ confidence (as measured by log-likelihood) in their answers reflects poorly their
confidence in the underlying knowledge (as measured by log-likelihood).

In practice, LLMs’ completions may not start with entity names or “Yes”/“No” immediately, making
it hard to extract the necessary log-likelihoods. To solve the problem, we use system prompts and
few-shot demonstrations to make LL.Ms utter the tokens immediatetly.

5 RELATED WORK

LLMs for Data Generation LLMs have been widely used for data generation and augmentation.
Self-Instruct [Wang et al.| (2022) and Evol-Instruct |Xu et al.| (2024) utilizes a small set of human-
written tasks and instructions to seed LLMs for generating a large number of samples for new
tasks. Orca Mitra et al.| (2023)); IMukherjee et al.| (2023)) incorporates rich reasoning signals, such as
explanation traces and step-by-step thought processes, to enhance the model’s reasoning capability.
GLANLi et al.|(2024) and LAB [Sudalairaj et al.|(2024) leverage taxonoy-guided data generation by
decomposing human knowledge and capabilities into hierarchical structures.

LLM reasoning LLMs have demonstrated strong reasoning abilities. Many works Wei et al.[ (2022);
Yao et al.[(2023)); Zhou et al.|(2023)); [Luong et al.|(2024)); Hao et al.|(2023) have proposed various
methods to enhance the reasoning capabilities of LLMs, incorporating finetuning, in-context learning
and advanced prompt engineering techniques. In addition to these methods, there are numerous
benchmarks [Cobbe et al.|(2021); [Hendrycks et al.[(2021); [Zellers et al.|(2019); [Sawada et al.| (2023)
specifically designed to evaluate different aspects of LLMs, such as math reasoning and commonsense
reasoning.

What is the headquarters location of the employer of someone who was born in Sacramento
and educated at Occidental College?

Answer: Joe Rohde, born in Sacramento, educated at Occidental College, works at Walt
Disney Imagineering, which is headquartered in Glendale. So the answer is Glendale.

Figure 4: Example chain-of-thougts demonstration (green) generated by Llama-3-70B-Instruct.
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Figure 6: Knowledgeability transparency: the correlation between the LLM’s confidence in its
answers, and its knowledgability about the questions with different measures.

Knowledge probes Probing techniques have enabled numerous studies on the storage, retrieval,
and editing of knowledge within LLMs. They play an important role in studying the internal
representations and behavior of LLMs, helping in building more interpretable LLMs. These studies,
as documented in references |[Zhang et al.| (2024); |Allen-Zhu and Li (2024)); Meng et al.| (2023));
Gurnee and Tegmark| (2024), enhancing our understanding of LLMs.

Uncertainty quantification. Uncertainty quantification |Abdar et al.| (2021)); He and Jiang| (2024)
has been an active research area for developing more robust, reliable and trustworthy LLMs. Typical
uncertainty quantification methods include confidence-based methods Hu et al.|(2023) and conformal
prediction [Ye et al.| (2024); |Quach et al.| (2023)), showing significant promise in enhancing model
reliability and interpretability.

6 CONCLUSION

To address the limited understanding of LLMs’ reasoning capability in domains requiring substantial
real-world knowledge, we introduce a novel pipeline designed to automatically generate realistic,
knowledge-intensive question-answering benchmarks that necessitate intricate reasoning skills. By
leveraging open knowledge graphs, the graph query language SPARQL, and LLMs, our pipeline
eliminates the need for manual annotation, enabling scalability to unprecedented benchmark sizes
and knowledge coverage. The benchmarks generated by our pipeline are then used to evaluate
several state-of-the-art LLMs, revealing their susceptibility to errors and even hallucinations. Despite
attempts to mitigate these issues through techniques such as retrieval-augmented generation and
chain-of-thoughts prompting, their effectiveness remains limited. Our unique benchmarks also
facilitate an examination of how well LLMs’ confidence in their reasoning outcomes aligns with
their confidence in the underlying knowledge - a pioneering study in this field, to the best of our
knowledge.
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