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ABSTRACT

Recently, vision transformer methods have gained significant attention due to their
superior performance in various tasks, whereas their architectures still highly rely
on manual design. Although neural architecture search (NAS) has been intro-
duced to automate the process, it still requires humans to manually specify a fixed
search space. Even allowing search space updates, existing methods tend to lose
control of model size and result in large and complex models for satisfactory
performance. To address these issues, we introduce a constrained optimization
framework to Seeking the Search Space for Size-aware transformer architecture,
named S4, which allows the search space to evolve to neighbor search space under
user-specified constraints (e.g., model size, FLOPS, etc.). With extensive exper-
iments on various benchmarks, including Cifar10, Cifar100, Tiny ImageNet, and
SUN397, the results demonstrate that S4 can consistently find architectures that
align with model size expectations while achieving better performance than those
searched by the original search space or with larger size from compared NAS
methods. Moreover, we demonstrate the plug-and-play characteristic of S4 by
finding effective yet lightweight adapters for well-recognized foundation models
(such as CLIP), achieving excellent performance for downstream tasks.

1 INTRODUCTION

Deep learning models often rely heavily on manual design by experts. Neural Architecture Search
(NAS) improves the way we search for optimal structures by automating the process. However,
the time-consuming and computationally expensive nature of NAS methods poses significant chal-
lenges. Thus, one-shot NAS has addressed this issue by training a single supernet encompassing all
candidate architectures and efficiently sampling the desired architecture as a subnet from it. The au-
tomatically searched architectures using one-shot NAS have demonstrated satisfactory performance
in various tasks.

Besides, vision transformer has recently gained great attention in computer vision (CV) due to their
remarkable ability to capture long-range dependencies in visual data. Several transformer-based
models, including Swin Transformer Liu et al. (2021) and Shunted Transformer Ren et al. (2021)
have demonstrated superior performance in CV tasks compared to CNN models. Consequently,
there is NAS work like Autoformer (Chen et al., 2021b) that introduced the one-shot NAS technique
to search the transformer architecture.

However, conventional one-shot NAS approaches are limited by fixed search space, encountering
difficulties in discovering optimal architectures when the search space is unsuitably defined. A re-
cent work S3 (Chen et al., 2021c) has been proposed to address this issue by updating the search
space guided by expected and top-tier errors. Nevertheless, a main drawback is that it tends to favor
larger architectures to achieve satisfactory performance without taking the model size constraints
into consideration during the exploration of the search space. This results in spending extra effort in
searching the space that does not meet the model-size constraint, and training and sampling effort
on redundant architectures. To tackle the problem, we introduce a constrained optimization frame-
work to size-aware search space exploration for transformer architecture. Our approach ensures the
constraints of model size within the search space, eliminating the need for additional filtering in the
evolutionary search phase as required by methods like S3. This approach enables the search space

1



Under review as a conference paper at ICLR 2024

to evolve to better-performed spaces within specified size constraints, facilitating more effective
architecture exploration compared to previous methods.

Specifically, we develop a size-aware updating process for search space exploration, which adopts
the accuracy gradient ascent to search the overlapped or adjacent search space that satisfies the model
size constraints. Namely, we update the search space along the direction which is one of the legit-
imate directions with the highest cosine similarity to the approximate accuracy gradient. Extensive
experiments on diverse benchmarks such as Cifar10, Cifar100, Tiny ImageNet, and SUN397 have
demonstrated that S4 constantly finds models having both superior performance and satisfactory
size. Furthermore, our approach shows its plug-and-play characteristic by achieving excellent per-
formance with various base models, including ViT Dosovitskiy et al. (2021), Swin Transformer Liu
et al. (2021), Shunted Transformer Ren et al. (2021), and even decoders to adapt the foundation
model, CLIP Radford et al. (2021), to the downstream tasks. The primary contributions of our work
can be summarized as follows:

• We propose S4, a search space exploration strategy for size-aware transformer architecture
search, which controls the updating direction with a predefined size range, avoiding extra
training and sampling efforts on models that do not align with our size expectations.

• Experiments on Cifar10, Cifar100, Tiny ImageNet, and SUN397 show the effectiveness of
S4 in enhancing search space and finding optimal architectures within the desired size.

• We integrate space-searchable NAS with foundation model and showcase S4’s applicability
to architecture search by adapting CLIP to other tasks, revealing its versatility.

2 RELATED WORK

Vision transformer. Transformers are a recent breakthrough in computer vision research, drawing
significant attention. In ViT, Dosovitskiy et al. (2021) first replaces traditional Convolutional Neural
Network (CNN) with self-attention mechanisms, allowing it to capture long-range dependencies of
images. Nevertheless, ViT leads to excessive memory and computational costs dealing with high-
resolution images. Wang et al. (2021) introduce a novel approach that employs a hierarchical archi-
tecture along with a contracting pyramid to significantly decrease computation on extensive feature
maps. In Swin Transformer, Liu et al. (2021) propose a shifted windowing scheme, bringing effi-
ciency by confining self-attention computations to distinct, non-overlapping local windows, while
enabling cross-window connections. Yang et al. (2021) propose Focal Transformer that each token
attends to nearby tokens for fine-grained details and distant tokens for capturing long-range depen-
dencies. On the other hand, Shunted Transformer Ren et al. (2021) injects heterogeneous receptive
field sizes into tokens, handling images with multiple objects in different scales. However, the
sparse attention may impose certain restrictions on model’s capacity to capture extensive contextual
dependencies. To address this limitation, Xia et al. (2022) presents a groundbreaking deformable
self-attention module, that adaptively selects key and value pairs’ positions in the self-attention pro-
cess based on data-specific patterns. Chen et al. (2021a) propose the CrossViT framework utilizing
separate branches for processing small and large patches and allowing them to complement each
other through attention-based fusion modules. Recently, Zhu et al. (2023) proposed BiFormer which
utilizes bi-level routing to implement dynamic sparse attention. They initially filter out irrelevant
image patches and perform patch-to-patch attention on the remaining patches to reduce computa-
tional and memory demands. Without loss of generality, we conduct our experiments on the most
representative architectures, ViT Dosovitskiy et al. (2021), Swin Transformer Liu et al. (2021), and
Shunted Transformer Ren et al. (2021).

NAS of one shot and for vision transformer. We focus on one-shot NAS in this work. The
general idea of one-shot NAS is to train a supernet consisting of all architectures in search space to
avoid training each subnet independently. Pham et al. (2018) select subnets via a controller module
optimized using reinforcement learning. Guo et al. (2020) uniformly sample each path from the
supernet for training. Liu et al. (2019) uses a continuous relaxation of the search space to make it
differentiable. Wan et al. (2020) propose FBNetV2 to include spatial and channel dimensions in
their search approach. Since the booming of ViT, NAS in Transformer has also gained increasing
attention. In Autoformer, Chen et al. (2021b) propose a Weight Entanglement mechanism to train
the supernet. In ViTAS, Su et al. (2021) further proposes a cyclic sampling strategy to improve the
training stability. In UniNet, Liu et al. (2022) introduces a unified search space including convolution
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block, Transformer block and MLP block. In Pi-NAS, Peng et al. (2021) adopt a non-trivial mean
teacher and leverage cross-path learning to reduce feature shifting problems. In PreNAS, Wang
et al. (2023) first employs zero-cost proxies to select preferred architectures from isomers, then
apply One-shot NAS to achieve better convergence. However, the above methods do not take search
space exploration into account, which is an important factor that affects the effectiveness of NAS
methods. In NSENet, Ci et al. (2020) propose an evolutionary framework that iteratively updates
the search space of CNN-based model, while Chen et al. (2021c) propose the search space searching
of Vision Transformer (S3) which evolves the search space of Transformer architecture through a
regression approach. Nonetheless, S3 does not control the size of the final architecture. Thus, we
propose a novel search space exploration method to seek the optimal architecture given a predefined
model size for downstream tasks, which is closer to real application scenarios.

3 PROBLEM FORMULATION

Most NAS tasks can be formulated as a constrained optimization problem as follows to search an
optimal architecture.

α∗
A = argmin

α∈A
L(W ∗

α;Dval)

s.t. W ∗
α = argmin

Wα

L(Wα;Dtrain), m(α) ≤ M,
(1)

where A is a predefined search space, Wα denotes the weights of candidate network architecture α,
L(·) is a loss function, Dtrain and Dval represent train and validation datasets. m(·) is a function
calculating the resource consumption of a model and M is a given resource constraint. Inspired
by one-shot NAS (Chen et al., 2021b;c; Su et al., 2021), we solve this constrained optimization
problem of Eq. 1 in three stages: (1) exploring the search space satisfying the given constraint, (2)
representing the search space by a supernet and optimizing its weights, and (3) searching the optimal
architecture from the well-trained supernet by Evolutionary Search. Our focus is on the first stage
while the second and third stages follow the standard procedures in one-shot NAS for transformers.

The search space A would encompass all possible architectures, forming an infinite space Ω. How-
ever, because of the extensive computational overhead, A is often a smaller subset of Ω in practice.
To ensure finding a resource-efficient architecture satisfying our constraint, we consider the search
space range an important factor. To alleviate the issue of a limited search space, we introduce a size-
aware approach for the first stage. Though this paper primarily focuses on model size, our approach
can be extended to consider other resource factors such as FLOPs and power consumption.

4 SIZE-AWARE SEARCH SPACE EXPLORATION

The ultimate goal of our research is to find the model with the best performance given predefined
model size. To achieve this, we first acquire the desired model size range from users, and then
establish the upper and lower bounds of each search dimension. This will determine the initial search
space w. r. t. the supernet, which is the union of all candidate architectures initially. Instead of a fixed
search space, we introduce a constrained optimization framework to update the search space for
transformer architectures, which allows the search space to gradually evolve from its neighborhood
while adhering to size constraints. The detailed procedure is described as follows.

4.1 PRELIMINARY

First, we define An as a set of search spaces composed of n search dimensions. For example,
A ∈ A4 implies that A is one of the search space with defined range for each search dimension in
the four-dimensional search space set A4. A is represented by a 4 × 2 matrix indicating the lower
and upper bounds of each dimension in its first and second columns, respectively. Given a search
space Ai ∈ R4×2, the space Aj is its neighbor space if

Aj −Ai =


τ1
τ2
...
τn

⊙ (


γij
1

γij
2
...

γij
n

 [1 1]), γij
k ∈ {−1, 0, 1},Ai,Aj ∈ An, (2)
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Figure 1: The pipeline of our proposed S4. Please refer to Sec. 4 for more details.

where τk is the predefined step size and γij
k is the step direction of the kth search dimension (γij

k = 0
means remain stationary); ⊙ denotes element-wise multiplication; [1 1] is applied to ensure the
same increments of the lower- and upper-bound values of each dimension, so as to make the search
space associated with the same-scale supernet. The search space Aj updated within an iteration
is at most one step away from Ai in each search dimension. We use Aj ∈ Ni to express that the
search space Aj is one of the neighbors of Ai. For each Aj in Ni, the compiled vector −→γ ij =[
γij
1 γij

2 . . . γij
n

]
is known as the relative direction from Ai to Aj . Step size τk relies only on

the kth dimension and remains invariant in the search-space updating process. Its value is set to
allow Ai and Aj to be immediately adjacent or have a slight overlap, so that there is no gap between
the neighbor search spaces.

4.2 EXPLORATION PROCEDURE

Our method starts from an initial search space A0 containing the respective model of target archi-
tectures (eg., the original ViT Dosovitskiy et al. (2021)). Assume that we have trained a supernet
corresponding to the search space At in the tth iteration. During the search-space evolving, every
space (say, At) fulfills the desired model-size constraint pre-specified by the users. Thus, the search
space is compact; no time will be wasted searching for redundant parts of the search space that vio-
late model size constraints. We leverage the property that the resource consumption (such as model
size) often has analytic forms to compute or estimate. Let m(·) denote the model size; eg., consider
the target architecture ViT, the model size function w. r. t. the n = 4 search dimensions a, b, c, d is

m(a, b, c, d) = 1, 539d+a(4d+256cd+192c+5d+7, 680+2bd2+bd+d)+2d+#class×(d+1),
(3)

with a, b, c, d representing the values of depth, MLP ratio, number of head, and embedding dimen-
sion, respectively. #class is the number of classes when doing classification task in ViT. Similar
model size functions can be calculated according to the task currently conducting. Functions of
Swin Transformer, Shunted Transformer and CLIP, are given in Appendix C.

The pipeline of search space exploration is shown in Fig. 1. It can be divided into three steps:

Step 1. The first step is to identify legal neighboring search spaces in Nt for the current search space
At. Specifically, we limit the size of the largest model in the updated search space to at most M.
Only neighboring search spaces that adhere to this constraint are considered as legal candidates. We
denote Ct as the set containing all candidate search spaces (i.e., the legal ones) in Nt,

Ct = {Aj |M(Aj) < M, Aj ∈ Nt}, (4)

where M(·) is a function that calculates the largest model size (i.e, the size corresponding to the
model established by the upper-bound values of all search dimensions) in the supernet encoded
from the candidate search space. Then, let Γt be the set of corresponding relative directions from
search space At to the candidate search spaces.

Step 2. Secondly, we aim to update to an improved search space that yields enhanced performance
in downstream tasks. Let y = f(β) denote the performance measurement of the model specified
by β = (β1, β2, . . . , βn), where βk is the value chosen in the kth search dimension and y is the
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predicted accuracy of the architecture specified by β. However, we cannot directly obtain the exact
function f(·). Instead, we estimates the optimal gradient-ascent direction −→z ≈ ∇f . First, We
sample two architectures β1 and β2 from the trained supernet, where only the values in the kth

search dimension are different and in the other dimensions are the same. Then, we evaluate their
performance using the inherited accuracy obtained from the trained supernet. By using the two
obtained accuracy values y1 and y2, we calculate the slope of the kth search dimension by computing
slopek = (∆y

∆β )k = y2−y1

β2
k−β1

k
. We conduct this sampling and calculating process for each search

dimension. Finally, the approximate gradient of accuracy can then be computed as the averaging
outcome of N sampled pairs for each search dimension; N is 40 in our experiments.

−→z =
1

N

[
ΣN

j=0(
∆yj

∆βj
)1 ΣN

j=0(
∆yj

∆βj
)2 . . . ΣN

j=0(
∆yj

∆βj
)n
]

(5)

Step 3. After estimating the desired gradient ascent direction −→z , our aim is to find a legal search
direction most coherent with it. Thus, we calculate the cosine similarities between −→z and all the
legal search directions ∈ Γt, and determine the optimal update direction −→γ ∗ as the one with the
smallest angle to the accuracy gradient −→z as follows:

−→γ ∗ = argmax
−→γ ∈Γt

−→γ · −→z
||−→γ || · ||−→z ||

(6)

After evolving the search space with −→γ ∗, we obtain a new search space not only adheres to our
constraints but also improves downstream task performance. When finishing the search space ex-
ploration above, we follow the same process as Autoformer (Chen et al., 2021b). We encode the
search space into a supernet and optimize it. The process continues until reaching the maximum
iterations or when no feasible update directions exist (all cosine similarities are negative). The al-
gorithm detail be referred to Appendix A. Then, we utilize the Evolutionary Search algorithm to
search for the best architecture within the supernet. Finally, we perform a retraining process from
scratch. This allows us to obtain the best architecture given the predefined size constraints.

5 DISCUSSION

We discuss and compare our proposed method with S3 (Chen et al., 2021c), another search space
exploration approach. While S3 estimates the updating direction by fitting a linear function for
each search dimension based on the expected and top-tier error of sampled architectures, it does
not impose model size constraints in the search space. Hence, the method does not ensure whether
the supernet required to be trained in the current step has legal solutions or not. Instead, S3 leaves
the model size constraint to be addressed after supernet training, and then discard any sampled
architecture exceeding this constraint. Therefore, both the training and sampling efforts spent on
unqualified and redundant parts of the supernet are wasteful. The un-controlled resource consump-
tion in the search space of S3 makes it difficult to find solutions fulfilling the model size constraint.
We always need several times of trial-and-error to get a satisfied solution.

Furthermore, unlike our approach that moves a fixed step-size to the neighbor space, the movement
control within the search space in S3 is irregular and requires extensive human labor of tuning. In the
experiments, we have shown the performance comparison with S3. However, it requires extensive
offline tuning to obtain the results, making it difficult to use in practice.

Our S4 guarantees that the model size stays within the predefined range by controlling the explo-
ration direction of the search space in the first stage. Since our approach has constrained the model
size in the search-space level, we ensure all models sampled in the Evolutionary Search stage being
qualified, making it able to fully employ the power of Evolution Search without constraints. Our ap-
proach uses a regular movement step for each dimension, which can easily control that no gap exists
between the current and new search spaces and a consistent rate of neighbor-space overlapping is ap-
plied. Conversely, the uncontrollable model size and the irregular step-size movement of S3 makes
it inconvenient and contradict to the principle of NAS, which aims to eliminate manual involvement.
Our method enables exploring an improved search space within the given model constraint, avoiding
the need for extensive tuning, which offers better convenience in practical applications.
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Table 1: Initial search space of ViT, Swin Transformer, Shunted Transformer and CLIP.

Models Embed Dim Depth Num Head Num MLP Ratio Params Range

ViT (336, 384, 24) (12, 14, 1) (2, 14, 2) (3.5, 4.0, 0.5) 23M∼35M
Swin (72, 96, 12) (10, 14, 2) - (3.5, 4.0, 0.5) 14M∼35M
Shunted (36, 60, 12) (15, 19, 4) - (6, 8, 1) 5M∼21M
CLIP (336, 384, 24) (3, 4, 1) (2, 14, 2) (3.5, 4.0, 0.5) 16M∼35M

6 EXPERIMENTS

To validate the effectiveness of our method, we apply it to different Vision Transformer architectures
for evaluation, including ViT Dosovitskiy et al. (2021), Swin Transformer Liu et al. (2021), and
Shunted Transformer Ren et al. (2021). Moreover, we integrate our approach with foundational
models like CLIP (Radford et al., 2021), where we search for decoders architecture to complement
the fixed encoder of CLIP to downstream tasks.

6.1 IMPLEMENTATION DETAILS

Space Searching. The initial search space is given in Tab. 1. ViT. For ViT, the search space is
defined as number of blocks, embedding dimension, number of heads and MLP ratio (the expan-
sion ratio of the hidden layer dimension to the embedding dimension). The number of blocks and
embedding dimension are set to {12, 13, 14} and {336, 360, 384}, respectively, and the number of
heads and MLP ratio are set to {2, 4, 6, 8, 10, 12, 14} and {3.5, 4.0}, respectively. Note that the
number of heads and MLP ratio can be different between blocks.
Swin Transformer and Shunted Transformer. Different from ViT, Swin and Shunted Transform-
ers possess hierarchical architecture (multiple stages) as illustrated in Fig. 2. In each stage, it may
contain different numbers of encoder block. We design the search dimensions to be the number of
blocks in each stage, MLP ratio and embedding dimension, with the number of heads remaining
constant. In Swin Tranformer, We adopt 3, 6, 12 and 12 heads for the blocks in 4 stages respectively
and they are fixed. The number of blocks in each stage is set as 2, 2, x, 2, respectively, where x is
one of the search dimensions that we will explore, which is set as {4, 6, 8}. The embedding dimen-
sion and MLP ratio are {72, 84, 96} and {3.0, 3.5, 4.0} respectively. In Shunted Transformer, the
number of stages is also 4, and we set the number of blocks in each stage to 2, x, 3x, 1, respectively,
where x is set as {3, 4}. The number of heads are fixed and set as 2, 4, 8, 16 associated with the 4
stages. The embedding dimension and MLP ratio are set to {36, 48, 60} and {6, 7, 8} respectively.
CLIP. Recently, the decoder architecture introduced in LST (Sung et al., 2022) and EVL (Lin et al.,
2022) allows user to efficiently adapt the popular foundation model, CLIP Radford et al. (2021), to
downstream tasks with superior performance when resources are limited. We further explore the
search dimensions of the decoder design for better performance and resource usage, including the
number of decoder blocks, the number of heads, embedding dimension, and the MLP ratio as il-
lustrated in Fig. 3. The model size constraint is set as 30M. In addition, the search dimensions are
defined as {3.5, 4.0} for MLP ratio, {2, 4, 6, 8, 10, 12, 14} for number of heads, {3, 4} for number
of decoder blocks and {336, 360, 24} for embedding dimension.
All the model-size constraint are set according to the original model (30M for ViT, 30M for Swin
and 22M for Shunted Transformer, as the CLIP-based decoders constraint is referred to EVL (Lin
et al., 2022) and set to 30M.) More details can be found in Appendix B. Let T to be the maxi-
mum number of iterations of search space exploration, and we set T = 3 in our experiments, which
follows the setting in S3. Every supernet is trained for 500 epochs.

Supernet training. We train the supernets using the technique referred to AutoFormer (Chen
et al., 2021b). Data augmentation techniques such as random erasing, Cutmix (Yun et al.,
2019), Mixup (Zhang et al., 2018) and RandAugment (Cubuk et al., 2019) are used for training.
AdamW (Loshchilov & Hutter, 2017) is adopted as our optimizer, where the initial and minimum
learning rates are set as 5 × 10−4 and 1 × 10−5, respectively in a cosine scheduler with 5-epoch
warmup. The weight decay, batch size, label smoothing, and drop rate for stochastic depth are set to
0.05, 128, 0.1, and 0.2, respectively.

Model Retraining. After Evolutionary Search, the models are retrained for 300 epochs, and the
other settings are all same as supernet training.
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Figure 2: The architecture of ViT, Swin Transformer, and Shunted Transformer. (PE: Patch Embed-
ding, SA: Self-attention, MLP: Multi-layer perceptron.)

Figure 3: The architecture of CLIP with a Ladder-side decoder (Sung et al., 2022; Lin et al., 2022).

6.2 RESULTS ON IMAGE CLASSIFICATION

Vision Transformer Tab. 2 shows the performance of different NAS methods searching ViT ar-
chitecture for the Cifar10, Cifar100, Tiny ImageNet, and SUN397 datasets. Note that the former
two datasets are the representative datasets in image classification tasks and the latter two are large
datasets having 100, 000 images of 200 classes and 100,000 images of 397 classes, respectively.
Since the original papers did not include the results on above datasets, we reproduced the compared
methods ourselves. All the experiments are conducted by training from scratch without using any
pretrained model, following similar setting as Chen et al. (2021b) except the resolutions of input
images are scaled to 224× 224 instead of 384× 384 for the purpose of quick proof of concept. We
compare our method with pure ViT and Transformer-based NAS methods, Autoformer and S3.

It can be observed that by using the proposed S4 the performance can be boosted on all datasets.
Moreover, the model sizes of the architectures found by our method (ViT + S4) is smaller compared
to other methods. Further experiments about the comparison of S3 and our method will be shown
in Sec. 7. To sum up, the results of Tab. 2 reveal that our method can find highly performing
architectures with constrained model size.

Swin Transformer, Shunted Transformer and CLIP-based model Tab. 3 shows the performance
of Swin Transformer, Shunted Transformer and the CLIP-based model on the four datasets (Cifar10,
Cifar100, Tiny ImageNet and SUN397). As can be seen, our S4 method is also effective on search-
ing better Swin Transformer, Shunted Transformer architecture and adaptive decoders for CLIP,
where all the performances are improved with our design. On the other hand, our approach con-
sistently identifies relatively lightweight models in each case, demonstrating its ability to discover
effective and lightweight models. In summary, the results highlight the generality and effectiveness
of our method on size-constrained exploration of the search space for NAS when leveraging both
transformer variants and foundation model.

7 EXPERIMENTAL ANALYSIS BETWEEN S3 AND S4

Detailed analysis of search iterations Here, we delve into the detailed performance and model size
obtained from each search iteration and conduct comparative analyses between S3 and our method.
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Table 2: Top-1 Accuracy of S4 on Cifar10, Cifar100, Tiny ImageNet, and SUN397 compared with
other methods searching Vision Transformer architecture. For S3 and S4, we set the model size
constraint as 30M for the fair comparison purpose with the original ViT and AutoFormer-S. (We
train each NAS method using Cifar10, Cifar100 and evaluate them with images scaled to 224×224
input resolution.)

Models #Search Space Update Backtrack #Params.(M) Cifar10 Cifar100 Tiny ImageNet SUN397

ViT - 29/29/29/30 93.59 76.45 67.16 68.33
ViT + AutoFormer-S 0 - 28/28/30/30 93.89 77.83 67.43 68.54
ViT + S3 3 ✓ 29/29/27/27 94.23 78.02 67.36 68.42

ViT + S4 (ours) 3 × 25/26/27/29 94.32 78.68 67.92 68.82

Table 3: Comparison of Transformer variants and CLIP-based architecture with or without S4 on
Cifar10, Cifar100, Tiny ImageNet and SUN397.

Models #Params.(M) Cifar10 Cifar100 Tiny ImageNet SUN397 searched block

Swin (Liu et al., 2021) 27/28/28/28/28 94.39 79.03 71.9 73.55 -
Swin+S4 (ours) 25/26/28/28 95.65 80.31 73.09 74.32 encoder

Shunted (Ren et al., 2021) 22/22/22/23/23 97.39 84.36 74.07 76.03 -
Shunted+S4 (ours) 20/21/21/21 97.67 85.66 75.59 78.19 encoder

CLIP (Radford et al., 2021)+LSD 31/31/31/32/32 97.21 86.44 79.81 83.35 -
CLIP+LSD+S4 (ours) 20/26/28/30 97.23 87.63 81.35 85.87 decoder

We have applied both methods to ViT and the results are presented in Tab. 4 for Tiny ImageNet, and
more results can be found in Appendix D. As indicated by Tab. 4 , we observe that S3 struggled
to discover models that adhere to the model-size constraints after several iterations of search space
updates. This issue persisted despite our repeated attempts to tune the quantization hyperparameter
in S3. Note that tuning the hyperparameter posed significant challenges. When the hyperparamter
increased, the quantized factor often resulted in a zero value due to the floor function, leading to
a stable search space that did not update. Conversely, decreasing the hyperparameter value could
lead to dramatic changes in the search space since it serves as the denominator of the slope term.
Consequently, model sizes could easily grow excessively and become uncontrollable. In short, the
hyperparameter of S3 needs to be carefully adjusted and is specific for each type of models and
datasets, which is labor-intensive and violate the main idea of NAS, aiming to reduce the manual
design efforts. Conversely, due to relatively slow and controlled updating process inherited from
our method, the proposed method is able to gradually evolve to a better search space. In addition,
the model with appropriate size can be consistently found and achieves superior performance as the
number of search iterations increases.

Since S3 failed to find models adhering the model size constraint, making the discovery of qualified
models in the Evolutionary stage impossible, we have adjusted the searching procedure for S3, in
order to conduct further comparisons with our method on the same level. We retroactively backtrack
to the search space found in the (T − 1)th update iteration and verify whether any feasible solutions
exist by using our derived model size function. If we still fail to find the solution in the (T − 1)th

search space, we then go back to the (T − 2)th search space, and so on. The performance is shown
in Tab. 5 on Tiny ImageNet and SUN397 (tables for Cifar10 and Cifar100 are in Appendix D). Take
the results on Tiny ImageNet for example, we needed to backtrack the S3 method twice to find the
suitable models for ViT, Swin and Shunted Transformers. Even with the backtracking, our method
still consistently outperforms S3, with accuracy improvements of 0.66, 0.79, and 0.88, while retain-
ing smaller model size in most cases.

Table 4: Comparison of S3 and S4 under model constraint in each exploration iteration on Tiny
ImageNet. We report the retrained accuracy of architectures sampled from the tth search space.

Model Exploring approach Search iteration #Params.(M) Tiny ImageNet Accuracy

ViT (Dosovitskiy et al., 2021) S3 1 27.88 67.36
ViT S3 2 - -
ViT S3 3 - -

ViT S4 (ours) 1 26.14 67.39
ViT S4 (ours) 2 26.19 67.55
ViT S4 (ours) 3 27.45 67.92
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Table 5: Comparisons of search space exploration of ViT, Swin Transformer, and Shunted Trans-
former using S3 and S4. It is worth noting that S3 could not find any architecture satisfying the
specified constraints after search space evolution and require to backtrack to the previous search
space for accomplishing the architecture search. In contrast, the proposed S4 finds a better perform-
ing architecture under the constraint without carefully tuning steps.

Model Exploring approach backtrack time Model Constraint(M) #Params.(M) Tiny ImageNet SUN397

ViT - - 30 28.91/29.56 67.16 68.33
ViT S3 2/2 30 27.88/27.39 67.36 68.42
ViT S4 (ours) 0/0 30 27.45/28.73 67.92 (+0.56) 68.82(+0.4)

Swin - - 30 27.67/27.82 71.9 73.55
Swin S3 2/1 30 27.58/29.75 72.4 74.05
Swin S4 (ours) 0/0 30 28.43/28.43 73.09 (+0.69) 74.32(+0.27)

Shunted - - 22 21.99/22.09 74.07 76.03
Shunted S3 2/2 22 21.32/21.38 75.16 77.64
Shunted S4 (ours) 0/0 22 21.27/21.47 75.59 (+0.43) 78.19(+0.55)

Table 6: Comparisons of search space exploration of ViT, Swin Transformer, and Shunted Trans-
former using S3 and S4 in the scenario without model size constraints. It is worth noting that under
the same unconstrained conditions, the proposed method can find not only better performing but
also more lightweight architectures than S3. Moreover, our constrained version can also find much
more compact architecture with better or comparable performances than S3.

Model Exploring approach w/ constraint #Params.(M)(Cifar10/Cifar100) Cifar10 Cifar100

ViT (Dosovitskiy et al., 2021) S3 (un-constrained) 44.65/44.88 94.35 78.24
ViT S4 (ours) ✓ 25.39/26.45 94.32 78.68
ViT S4 (un-constrained) (ours) 35.41/38.72 94.49 79.11

Swin (Liu et al., 2021) S3 (un-constrained) 52.81/56.2 95.91 80.86
Swin S4 (ours) ✓ 25.37/26.24 95.65 80.31
Swin S4 (un-constrained) (ours) 37.45/38.2 96.03 81.15

Shunted (Ren et al., 2021) S3 (un-constrained) 37.44/42.2 97.82 85.83
Shunted S4 (ours) ✓ 20.18/21.56 97.67 85.66
Shunted S4 (un-constrained) (ours) 33.38/34.94 97.85 85.92

Based on the experiments conducted, we conclude that our method possesses a plug-and-play char-
acteristic, exhibiting compatibility with various transformer-based models. Furthermore, it consis-
tently demonstrates superior performance across several benchmarks, including large datasets with
hundreds of classes. This reaffirms the effectiveness of our approach in identifying excellent models
within the specified size constraints.
Unconstrained Scenario. We are also interested in how our updating design performs when there
is no model size constraints. Thus, we conducted an experiment that enables the search space to
evolve in a favorable direction without imposing any model size constraints. The results are shown
in Tab. 6. For the unconstrained S4, we outperform S3 0.14%/0.12%/0.03% on Cifar10 for ViT,
Swin and Shunted Transformers, respectively. Similarly, we achieve 0.87%/0.29%/0.09% improve-
ments on Cifar100. It’s worth noting that all the unconstrained models we searched for are smaller
than those obtained from unconstrained S3. From this observation, it can be inferred that even with-
out an explicit size constraint, our neighboring updating design makes the model gradually update
to a better search space, rather than dramatically changes to a new search space with a large size.
Consequently, our approach results in a smaller architecture sampled then the S3 method.

8 CONCLUSION

In this paper, we introduce a constrained optimization framework for transformer architecture search
with search space exploration. Our approach combines accuracy gradient ascent with discrete
neighboring search space evolution while adhering to strict model size constraints. Unlike previ-
ous methods, our approach ensures the discovery of the optimal architecture within a predefined
model size range. Extensive experiments demonstrate its plug-and-play characteristic and superior
performance. We aim to extend its applicability to a wider range of tasks (object detection, semantic
segmentation) and model backbones (CNN-based) as our future work.
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