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Abstract

Recent studies on software tool manipulation with large language models
(LLMs) mostly rely on closed model APIs. The industrial adoption of these
models is substantially constrained due to the security and robustness risks
in exposing information to closed LLM API services. In this paper, we ask
can we enhance open-source LLMs to be competitive to leading closed LLM

APIs in tool manipulation, with practical amount of human supervision. By
analyzing common tool manipulation failures, we first demonstrate that
open-source LLMs may require training with usage examples, in-context
demonstration and generation style regulation to resolve failures. These
insights motivate us to revisit classical methods in LLM literature, and
demonstrate that we can adapt them as model alignment with programmatic
data generation, system prompts and in-context demonstration retrievers
to enhance open-source LLMs for tool manipulation. To evaluate these
techniques, we create ToolBench

1, a tool manipulation benchmark consisting
of diverse software tools for real-world tasks. We demonstrate that our
techniques can boost leading open-source LLMs by up to 90% success
rate, showing capabilities competitive to OpenAI GPT-4 in 4 out of 8
ToolBench tasks. We show that such enhancement typically requires about
one developer day to curate data for each tool, rendering a recipe with
practical amount of human supervision.

1 Introduction

Table 1: Example of tool manipulation errors.
Errors are highlighted in red.

Goal

# To move the robot to position (x, y)
robot.move_to(x, y)
# To raise the arm by a given height
robot.raise_arm(height)
Task: how to move a robot to (20, 30)?

Expected results robot.move_to(20, 30)
Wrong API robot.raise_arm(20)

Wrong Arguments robot.move_to(30, 20)

Non-executable

You can create a robot with
robot = Robot()
and move it to the target location by
robot.move_to(20, 30)

Tool-augmented large language models
(LLMs) recently emerge as a research fron-
tier. Such augmented LLMs demonstrate
tool manipulation capabilities which auto-
mate software operations through natural
language instructions [1, 2, 3, 4, 5]. De-
spite the fact that open-source LLMs greatly
shrink the quality gap towards proprietary
closed LLMs in tasks such as chatbot [6, 7, 8,
9], recent tool-augmented LLMs still mostly
rely on closed LLM APIs [1, 2, 3, 4]. This
leads to a fundamental barrier for the indus-
trial adoption of these augmented LLMs due to security and robustness risks associated with
exposing enterprise-internal workflows and information to closed LLM APIs [10, 11]. To this
end, we ask can we build on open-source LLMs with practical amount of human supervision

and achieve tool manipulation capabilities competitive to closed LLMs.

In this paper, we first demystify key challenges for tool manipulation using open-source
LLMs; we then leverage the insights to suggest practical recipes for enhancement. Concretely,
we study the setting shown in Figure 1 where LLMs take in a natural language instruction
as the goal and generate API calls to accomplish the goal. Although we expect a quality
gap between the open-source and closed LLMs [12], what we observe is a far more severe
disparity. Specifically, for an on-sale house searching tool, a leading open LLM for code
generation fails every test case while the OpenAI GPT-4 [13] attains 77% success rate across

1Available at https://github.com/neurips2023-userXXX/ToolBench
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Figure 1: Tool manipulation setup. We augment LLMs as action generators with access to
API documentations. In the single-step scenario, an action generator directly generates API
calls to accomplish the goal. A multi-step action generator further iterates with environment
feedback to generates the next-step API calls until hits an exit state.
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the same one hundred examples. This observation motivates us to study the challenges for
open-source LLMs to attain strong tool manipulation capability.

During our investigation, we identify three key challenges listed in Table 1 that impede the
performance of open-source LLMs in tool manipulation. Firstly, open-source models often
struggle to accurately identify API names, whereas closed LLMs demonstrate the capability
to invoke the correct APIs without explicit usage examples or documentation during inference.
Secondly, without demonstration examples, open-source LLMs often fail to populate the
appropriate values for API arguments. Thirdly, we demonstrate that open-source LLMs tend
to produce non-executable generation, such as natural language beyond the desired code.

Our insights suggest us to revisit three simple techniques from LLMs for conventional
NLP tasks. In the context of tool manipulation, we adapt them with practical amount of
supervision and use them to enhance open-source LLMs. Model alignment: To first internalize
API usage knowledge, we perform instruction tuning [14, 15] with programatically generated
data. Specifically, we first write a few dozens of templates on goals and corresponding
API calls. We then pragmatically bootstrap the data volume by instantiating templates
with concrete key word values. In-context demonstration retriever: Inspired by retrieval-
augmented generation [16, 17, 18], we additionally enhance the LLMs with a retriever to
leverage in-context demonstrations during inference. This module selects demonstration
examples with the most semantically similar goals from a human-curated pool of examples.
System prompt: Finally we embed goal descriptions into a pre-defined system prompt which
provides inference-time guidelines to generate executable API calls; such system prompts
were shown to regulate language style in chatbots [19]. We show that these three techniques
only require a small amount of human supervision.

To extensively evaluate the inspired techniques, we present ToolBench, a benchmark suite on
eight diverse tools ranging from Google Sheets manipulation to controlling robots [20]. It
enables the first publicly-available quantitative evaluation test bench among the ones brought
up in the tool-augmented LLM literature [2, 3]. For the software tools in our benchmark,
LLMs need to accomplish a variety of goals by selecting and combining API functions from
up to a hundred candidates.

Using the tools in the ToolBench suite, we first empirically show that leading open-source
LLMs can demonstrate up to 78% lower success rate when compared to the OpenAI GPT-4
APIs. We then demonstrate that these simple techniques can substantially improve the
success rate of open-source LLMs by up to 90%, attaining results competitive or better
than OpenAI GPT-4 models in 4 out of the 8 tools in our benchmark2. To reveal the
impact of different techniques, we provide evidence that aligning model with synthetic data
primarily contributes to the significant improvement of open-source LLMs. The system
prompt and the in-context demonstration retriever further enhance the performance. During
the enhancement process, we observe that, on average, it takes just one day for a developer to
craft the in-context demonstrations and curate the templates for generating model alignment
data. This implies that the recipe requires a practical level of human supervision.

2We apply the same system prompt and in-context example retriever for GPT-4. Model alignment
is not applicable to GPT-4 as there is no publicly available tuning APIs for it during our experiments.
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2 Background

In this paper, we study the scenario where software users intend to translate a natural
language goal description g into a sequence of application programming interface (API) calls
Cg =

�
c0, c1, · · · , cng

 
to accomplish the goal. We study tool manipulation with open-source

LLMs in this specific setting, because APIs serve as the prevalent abstraction for developers
and users in modern software systems.

Large language model Autoregressive language models encode probabilities of the next
word xN+1 given x0, x1, · · · , xN as the context sequence [21]. By sampling from this con-
ditional probability p (xN+1|x0, x1, · · · , xN ) iteratively, it generates language continuations
from given contexts. In the recent wave of scaling up model size and training data volume,
transformer-based language models show unprecedented capability in instruction following
for text and code generation [22, 23, 24]. In the context of tool manipulation, we cast goal
descriptions and optional information as an instruction in the context and task the LLMs to
generate code for API calls as the continuation.

Algorithm 1 API Call Generation
Input: Goal g, API docs D, action generator A
Input: Optional info O

1: procedure ActionGen(g, D, A, O)

2: Dg  R (g,D) . Retrieve API functions

3: Cg  A (g,Dg, O) . API call generation

4: return Cg

5: end procedure

Action generator A key implementation for
tool manipulation is an action generator A which
maps a goal g to a series of API calls Cg to accom-
plish that goal. As open-source LLMs likely have
not seen the information regarding the relevant
APIs, we augment an LLM M into an action
generator by providing access to a pool of m can-
didate API functions D = {d0, d1, · · · , dm}. Due
to the input sequence length limit of LLMs, we provide an optional retriever R to retain a
relevant subset of API documents Dg = R (g,D) 2 D. Thus, the action generator produces
the sequence of API calls Cg = A (g,Dg, O), where O represents the optional information
that can be included in the prompt. This is a naive way of retrieval augmented generation
[18, 25, 26] and we employ an off-the-shelf retriever implementation [27] for our study, but we
also highly encourage the community to explore algorithms tailored for the action generator.

Single and multi-step tool manipulation As shown in Figure 1, an action generator
may interact with software in either a single-step or a multi-step scenario. In a single-step
scenario, action generator directly produces an API call sequence Cg = A (g,Dg, ;). In a
multi-step scenario, the action generator produces a series of API calls Cg,i at i

th iteration,
where Cg,i is used to interact with a predefined environment E and generates the observation
Oi = E(Cg,i). The observation is then used to generate Cg,i+1 = A (g,Dg, Oi). The process
stops at an exit state Sg. During evaluation, the execution results of Cg from the single-step
scenario and the Sg from the multi-step version are compared against the ground-truth label.
Note that, the main difference between the two scenarios lies in whether or not to interact
with environment E ; while both Cg and Cg,i can individually be a series of more than one
API calls to accomplish a given task.

3 Challenges for open-source LLMs

Table 2: Categorized typical tool manipu-
lation error types on a weather query tool.

GPT-4 LLaMA StarCoder CodeGen
Failure rate 19% 61% 68% 93%

API selection 0% 22% 22% 30%
Args. populating 14% 32% 23% 63%
Non-executable 5% 7% 23% 0%

To demystify key challenges, we study the behav-
iors of open-source LLMs in tool manipulation.
By analyzing common mistakes in a weather
query task, we discover three challenges to at-
tain strong tool manipulation capabilities. As
shown in Table 1, we observe that open-source
LLMs often face difficulty in (1) API selection,
(2) API argument population, and (3) generat-
ing legitimate and executable code 3. These insights are described in detail in this section
and inspire the techniques to alleviate the challenges in Section 4.

3If a failure case has multiple errors, we categorize it by the first triggered category in the
following order: non-executable generation, wrong API selection, wrong argument populating
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Figure 2: On calling OpenWeather APIs,
(left) without any API documentation expo-
sure during inference, closed LLMs attain
high accuracy in selecting APIs , implying po-
tential example usage exposure during train-
ing. However, (right) hand-picked oracle one-
shot demonstration improves success rate over
zero-shot, showing the roofline impact of in-
context demonstrations.
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Difficulty in API selection We observe
that API selection failures often involve us-
ing incorrect APIs and even hallucinating
non-existent API names. To quantitatively
understand the intrinsic capability in API
selection, we compare open-source LLMs to
GPT-4 without providing any documentation
or in-context demonstrations during inference.
The results, as shown in Figure 2 for the
weather query tool OpenWeather, reveal that
GPT-4 can choose the right API without ad-
ditional information beyond the goal, while
open-source models struggle. Such capability
disparity entails that closed LLMs potentially

internalize knowledge of API usage during

training.

Confusion in populating arguments After the action generator selects the appropriate
APIs, the subsequent challenge lies in parsing the goal description and populating the API
arguments. At this stage, we observe that open-source models often provide wrong values
for the required API arguments. The confusion in argument populating contributes to
up to 63% of the failures in open-source models, as shown in Table 2. In an attempt to
mitigate this issue, we provide the LLMs with a hand-picked oracle in-context demonstration
which achieves the same goal with different argument values. We show in Figure 2 that the
hand-picked oracle examples improve success rates by up to 45%. It is important to note
that oracle examples are not intended as a solution for argument populating confusion, as
they are hand-picked on a per-test-case basis. Nonetheless, these observations suggest that
in-context demonstrations can substantially enhance open-source LLMs for tool manipulation.

Non-executable generation The third common failure of open-source LLMs is non-
executable generation. Such failures encompass issues such as language verbosity around API
calls and adherence to natural language based guidelines, as shown in Table 1. Open-source
models exhibit such errors in 23% of one hundred weather query cases. These observations
underscore the necessity of regulating open-source LLMs to exclusively generate code.

4 Boosting Open-source LLMs for Tool Manipulation

The insights from Section 3 emphasize the importance of tuning with API usage examples,
in-context demonstration and generation regulation in the domain of tool manipulation.
In this section, we revisit three techniques from the LLM literature and adapt them to

address the aforementioned challenges, using a practical amount of human supervision.
We first introduce model alignment with programatically curated data to internalize API
usage knowledge in Section 4.1. We then discuss augmenting open-source LLMs with an
in-context demonstration retriever in Section 4.2. Lastly, we apply a system prompt to
regulate generation in Section 4.3. These techniques collectively serve as a strong baseline
for alleviating the challenges presented in Section 3 and inspiring further innovations.

4.1 Multi-tool model alignment with programmatic data curation

Model alignment, through tuning LLMs with usage examples, plays a vital role in improving
LLMs for capabilities such as instruction following and conversation [14, 19, 28]. In light
of our insights from in Section 3, we recognize the potential of model alignment with API
usage examples to improve API selection capability. To practically leverage such alignment
for tool manipulation, it requires a data curation strategy without massive manual example
writing. Towards this end, we prototype a method which generates usage examples from
human-curated templates.

Figure 3 depicts our flow to generate alignment data. We create a handful of templates
consisting of goal descriptions and corresponding API calls. These templates contain one
or more placeholder pairs. Each of these pairs maps to a key word in the goal and an
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argument in the corresponding API calls. We also provide a pool of candidate values for
each keyword and randomly choose values to fill in the placeholders within the template.

Figure 3: Programmatic training data
generation using templates and ran-
dom values

Task:
Move the robot to
{position}, and {move}
the arm by {height}.

API Calls:
robot.move_to({x}, {y})
robot.raise_arm({h})

Task:
Move the robot to
location (20, 30),
and raise the arm by
5cm.

API Calls:
robot.move_to(20, 30)
robot.raise_arm(5)

Random Value Pool
position: location (20, 30)

move: raise
height: 5cm

x: 20
y: 30
h: 5

Training Data

Templates

position: the corner
move: raise

height: 0.5 meter
x: 0
y: 0

h: 50

...

position: (0, 40)
move: drop

height: 10cm
x: 0

y: 40
h: -10

Given a tool with n candidate APIs, we only require
O(n) human-curated templates to ensure practical
human supervision. Specifically we use a principle
where each of the n APIs is encouraged to appear in
at least one template. In practice, we find it takes
on average one day for one developer to curate the
data for one software tool in our benchmark; this
includes writing the goal templates, providing the
pool of argument values and generate the data. We
provide example templates we use for different tools
in Appendix C. With data curated for all the tools,
we perform model alignment tuning jointly for all

tools and produce a single model.

4.2 Demonstration retrieval

In Section 3, we demonstrate the efficacy of hand-
picked oracle examples in improving argument pop-
ulating. However, extending from oracles to practi-
cal in-context demonstration poses two challenges.
First, given n API function candidates, there are exponentially many combinations of API
calls associated with different goals. Thus, LLMs should be capable of generalizing to a
wide variety of goals based on a limited number of examples. Second, to ensure effective
demonstration, it is important to provide LLMs with only the relevant examples without
human interventions. To fulfill the above two desiderata, we augment open-source LLMs with
a demonstration retriever module4. During action generation, top-k (ĝ, Ĉg) pairs that are the
closest to a given g, are retrieved from the demonstration examples pool and prepended in
the prompt for few-shot in-context learning. We also make sure the size of the demonstration
examples pool grows linearly with the total number of API functions.

Figure 4: In-context demonstration
can improve both closed and open-
source models on Home Search, a
tool for browsing houses on sale.
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Validation To verify the effectiveness of demonstra-
tion examples in practice, we empirically show that
the retrieved demonstrations can improve the success
rate on goals requiring API combinations unseen in
the example repository. In particular, we evaluate
this approach on the home search task which exposes
15 API functions and requires multiple functions to
accomplish each goal. With only 10 human-curated
demonstrations that do not precisely match any of
the 100 test cases in terms of API combinations, the
retrieved demonstrations can boost the success rate
by up to 79% across open-source LLMs and make
GPT-4 nearly perfect, as shown in Figure 4. This
shows that the demonstration examples can improve
tool manipulation for unseen types of goals with a repository of size O(n) only.

4.3 Generation regulation with system prompts

The use of system prompts is a well-established technique in chatbots powered by LLMs [19].
By incorporating into human-chatbot conversations, system prompts can effectively control
the natural language style of the generated responses. In the context of tool manipulation, our
system prompt first defines a format that combines text sections containing goals, retrieved
API functions, and demonstration examples. It then provides explicit guidelines in natural
language, instructing the LLMs to generate code exclusively. The exact system prompt is
presented in Appendix B. Constructing the system prompt is a one-time effort for each task,
which requires minimum human development effort.

4We used the BM25 retriever in all our experiments
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Table 3: Tasks in the ToolBench. We provide demonstration examples for few-shot in-context-
learning while test cases are for quantitatively evaluation. We develop API complexity, a
metric to quantify the challenge level in generalizing to unseen API combinations; higher
complexity indicates more challenging tasks. We package the challenges beyond API com-
plexity as advanced reasoning. We refer to Appendix A for more details on these tasks.

Single Step Multi-Step
Open The Cat Home Trip Google WebShopTask Weather API Search Booking Sheets VirtualHome Long / Short Tabletop

Data

API functions 9 6 15 20 108 40 2 32
Demonstration examples 18 12 10 11 10 83 1533 / 200 74

Test cases 100 100 100 120 70 100 100 105
Level of challenges

API complexity 2.2 1.4 7.3 11.1 8.4 12.3 0.0 4.6
Advanced reasoning X X X

5 ToolBench: A New Tool Manipulation Benchmark

To evaluate open-source LLMs in the domain of tool manipulation, we curate a benchmark
suite from both existing datasets and newly collected ones. This benchmark stands out
as the first open-source test bench with predefined test cases for quantitative evaluation,
distinguishing it from recent tool manipulation research using closed LLMs [2, 3]. In
this section, we introduce the software tools and the evaluation infrastructure. We also
demonstrate the level of challenges posed by each tool, in terms of the ability to generalize
to unseen API combinations and the requirement for advanced reasoning.

5.1 Software tools and evaluation infrastructure

As shown in Table 3, our benchmark consists of five tasks we collected and three tasks
derived from existing datasets, including VirtualHome[29, 30], Webshop[31] and Tabletop[20].
They cover both single-step and multiple-step action generation, which requires selecting
and combining from 2 to 108 API functions to accomplish the goals. Each task consists of
approximately 100 test cases, including goal descriptions and the ground truth API calls.
We also provide a limited number of demonstration examples to aid model predictions5. We
include a comprehensive introduction and analysis of each task within the benchmark in
Appendix A.

We use success rate as the primary evaluation metric for most tasks, except for the WebShop
where we report rewards, as well as for VirtualHome where we use executability and Longest
Common Subsequence (LCS), following the original metrics proposed by the respective
authors. To facilitate evaluation, we build an infrastructure that executes the API calls
generated by the action generators and assess the final outcome. This process enables reliable
evaluation of tool manipulation capabilities without restricting the action generators to
perfectly match the ground truth API calls.

5.2 Level of challenges

To assess the level of challenge, we examine ToolBench tasks based on their API complexity
and the requirement for advanced reasoning. Intuitively, API complexity indicates the
challenges in generalizing to unseen API combinations and non-default argument values.
Challenges beyond API complexity then involve advanced reasoning.

API Complexity To quantify the challenge in generalizing to unseen API combinations, we
develop a task-agnostic complexity score S 2 R+

0 , where S(T ,X ,D) = Et2T mine2X d(t, e).
It averages over all the test samples in the test set T on the minimum distance between
t and any demonstration example e from the example pool X . In particular, the distance
d(t, e) between each test sample t and a demonstration example e is negatively proportional

5For WebShop, we find that more than O(n) demonstration examples can improve the success
rate. Nonetheless, these examples can be acquired from programmatic software operations without
heavy human curation.
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to the probability of transforming the API combination of e to match that of t, by randomly
dropping the API functions irrelevant to t and inserting the uncovered API functions required
by t from the API pool D. We refer to the details of the complexity score to Appendix D and
list their values in Table 3. The score is non-negative and the higher the score is, the more
complex a task is. Despite the fact that this complexity score reflects the challenge level of
API selection, it does not capture all the difficulties of a task. A task with low complexity
score can still be very challenging as it might require advanced reasoning. For instance, even
though Webshop is challenging, the API selection complexity of it is zero. This is because
there are only two API functions requiring only one argument each in Webshop, and they
are both covered by the examples, so there is no API selection complexity.

Table 4: A typical task of Google
Sheets manipulation. It requires
advanced reasoning on populating
correct arguments.

Product Cost Price
beef 1 3
pork 5 4

chicken 10 11

Task: Update beef’s price to 10.
Action:
worksheet.update("C2", 10)

Advanced reasoning Within our benchmark, ad-
vanced reasoning encompasses challenges beyond gen-
eralizing to unseen API combinations. These challenges
include non API-based coding for tasks such as Google
Sheets and Tabletop, as well as decision-making based on
observations returned from the WebShop environment.
For instance, in the Google Sheets example shown in
Table 4, the coordinate of the beef price’s cell ("C2")
cannot be easily derived from either the goal or the ta-
ble itself. The action generator needs to understand the
content or write additional python code to derive this
coordinate before calling the API function. In the similar
scenario, WebShop task requires the action generator to
extract the exact button ID to click on the webpage given the description. These challenges,
categorized as advanced reasoning, complement the API complexity category.

6 Experiment

In this section, we leverage the ToolBench to empirically validate the techniques introduced
in Section 4. First, to concretize the capability gap between open-source and closed LLMs,
we demonstrate that OpenAI GPT-4 API can have substantially higher success rate than
representative open-source LLMs in Section 6.2. We then show in Section 6.3 that the simple
techniques in Section 4 can boost open-source LLMs to achieve success rates competitive
to in-context-learning with GPT-4 APIs6 in four out of the eight tasks. Through ablation
studies in Section 6.4, we additionally show that model alignment does the heavy lifting for
boosting open-source LLMs, while system prompt and in-context learning robustify LLMs
for further improvement.

6.1 Experiment Setup

To establish strong baselines, we use GPT-4 API as the representative closed LLM in our
study because it attains the leading accuracy in mainstream NLP tasks. In our study, we
compare LLAMA-30B [32], StarCoder [33] and CodeGen-16B-mono [34] to GPT-4. LLAMA
represents open research models, while StarCoder and CodeGen are publicly available
for both research and commercial purposes. We choose these three models due to their
superior performance on ToolBench among open-source models as shown in Table 87. In
our experiments, we consider the zero-shot setting as the out-of-the-box configuration where
only API documentation is provided without any demonstration examples. We use this
configuration to understand the initial gap in capabilities among models. We then incorporate
all available techniques on top of this initial configuration to assess their benefits. For the
original Tabletop dataset [20], which includes examples in a few-shot setting without explicit
API definitions, we only evaluate settings with in-context demonstrations. More detailed
setup information is included in Appendix C. We run each job 3 times with different random
seeds and report average accuracy. The variation is minimal, so we ignore them in the main
paper but report them in appendix.

6GPT-4 tuning APIs were not released by the time this work is done.
7Surprisingly, we observe that for tool manipulations, open-source LLMs instruction-tuned for

conventional NLP tasks do not outperform their base models before tuning.
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Table 5: Capability gap in tool manipulation is substantial between closed API and open-
source LLMs in the out-of-the-box zero-shot setting. Using model alignment, the in-context
demonstration retriever and the system prompt, open-soured LLMs attain significant boost
in success rate. GPT-4 is enhanced with the retriever and system prompt. Tabletop is only
evaluated in the few-shot fashion.

Open The Cat Home Trip Google WebShopTask Weather API Search Booking Sheets VirtualHome Long Short Tabletop

Zero-shot Baseline

GPT-4 81.3 97.4 76.6 91.5 5.7 40.8 / 8.0 0.0 -
LLaMA-30b 39.0 49.0 0.0 0.0 0.0 78.0 / 0.3 0.0 -
StarCoder 32.0 71.0 7.0 13.3 5.9 22.0 / 3.7 0.0 -

CodeGen-16B-mono 7.0 78.0 0.0 0.0 1.4 4.0/ 1.0 0.0 -
Enhanced w/ techniques

GPT-4 99.0 98.0 98.0 99.2 68.6 29.0 / 21.7 0.0 0.0 83.8
LLaMA-30b 100.0 94.0 87.0 85.8 2.9 16.0 / 24.3 0.0 0.0 7.5
StarCoder 99.0 97.0 83.0 80.8 21.2 31.0 / 18.4 0.0 0.0 13.9

CodeGen-16B-mono 97.7 99.0 82.0 77.5 19.8 29.0 / 17.2 0.0 3.5 16.2

6.2 Capability Gap

Table 5 exhibits significant disparities in tool manipulation between the closed GPT-4 API
and open-source models in the out-of-the-box zero-shot setting. For simpler tasks, namely
Open Weather and the Cat API, which require only one API call for each goal, the open-
source models exhibit success rates up to 74% lower than GPT-4. Furthermore, on all
the remaining tasks other than the Webshop, none of the LLAMA, the StarCoder and the
CodeGen model can reach meaningful accuracy or compare with GPT-4. These results
highlight an opportunity to enhance open-source LLMs.

6.3 Boosting open-source LLMs

To boost the open-source LLMs, we first perform model alignment using programmatially
generated data. We then apply a system prompt and a 3-shot demonstration retriever during
inference. Given GPT-4 does not provide tuning APIs, we enhance the out-of-the-box GPT-4
with the same system prompt and demonstration retriever as the baseline. The improvements
from the combined enhancement techniques are shown in Table 5, where the success rates of
the open-source LLMs can improve up to 90%. As a result, the open-source models achieve
competitive or better success rates on 4 out of 8 tasks, including Open Weather, the Cat
API, VirturalHome and WebShop. Moreover, on Home Search and Trip Booking, the gap
between the LLAMA model and the GPT-4 API is reduced to 11% and 13.4% respectively,
compared to the initial gap of up to 91%. Despite the fact that open-source models are
still lagging behind on the Google Sheets and Tabletop, these observations show that our

recipe can significantly improve the performance of open-source LLMs and attain success

rates comparable to GPT-4 API on many of the ToolBench tasks.

Human supervision To identify the practicality of an enhancement recipe, the amount
of required human supervision is a crucial factor. In our approach, human supervision is
primarily in the form of in-context demonstration examples and alignment data templates.
Regarding the demonstration examples, we provide 10 to 83 examples for each task as
shown in Table 3, except for WebShop given its difficulty in advanced reasoning. As shown
in Table 9, the number of templates for alignment data is typically less than 100 for each
task. We observe that providing these supervisions takes one developer day on average,
making it practical in terms of the time cost on human supervision.

Remaining challenges We observe that the boosted open-source LLMs still have relatively
low success rates on tasks that require advanced reasoning, such as Google Sheets, WebShop
and Tabletop tasks. This implies the need to further enhance the reasoning capabilities of
open-source models. We are excited to further improve the model quality with the community
to address those challenges. However, we can point out some potential directions based on
our comprehensive benchmark of different open-source models on the ToolBench in Appendix
B Table 8. We found that larger models always have better performance on tool using when
the training data is fixed and code generation capability directly correlates with tool using.
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6.4 Ablation Study

Table 6: The number of ToolBench tasks
improved (+N) or hurt (-N) over the
baselines when adding or dropping tech-
niques.

LLaMA StarCoder CodeGen
Zero-shot - - -
+ Sys. Prompt +4 +4 +4
+ 3-shot +8 +8 +8
+ Alignment +7 +7 +7
Full system - - -
- Sys. Prompt -0 -2 -3
- 3-shot -3 -4 -5
- Alignment -5 -5 -7

We break down the contribution of the techniques
in two ways. First, we apply each technique in-
dividually on top of the out-of-the-box zero-shot
configuration and evaluate its impact. As shown
in Table 6, both the 3-shot in-context demonstra-
tion and model alignment techniques bump up
the success rates across all tasks, while the sys-
tem prompt only benefits simple tasks that involve
relatively fewer API calls for each goal.

Next, we consider the combination of all techniques
and remove them one at a time to evaluate their
relative contributions within the full system. As
shown in in Table 6, solely removing model align-
ment triggers success rate degradation in up to 7
tasks, while removing either in-context demonstration up to 5 tasks and dropping system
prompt up to 3. We notice that the tasks that are not significantly impacted when removing
techniques are typically the ones with relatively low success rate (usually <20% even in the
full system). Thus, those accuracy changes are hypothetically subject to high variance and
fluctuation. The full results from the experiments in this section can be found in Table 11.

7 Related work

Our work establishes a strong connection to the LLM-driven program synthesis. In contrast
to the conventional rule-based code generation in popular compilation frameworks [35], recent
auto-regressive LLMs such as CodeGen[34], SantaCoder[36] and StarCoder[33] treat the
problem as a sequence generation task and demonstrate superior capabilities in emitting
semantically correct computer programs. We use CodeGen as a representative from these
models in our study for API call generation.

Tool manipulation are also known as tool augmented learning [3, 37]. Some of the works seek
to augment generations with the execution results from various tools[1, 38, 39, 26, 40, 41, 42],
while another line of works focus on executing the tools themselves, including embodied
robotic learning [20, 30, 43, 44, 45], and automation for other tools [31, 46, 47, 48]. We focus
on the study of the second stream with different models and techniques.

Recent works in tool manipulation with LLMs mostly study techniques to enhance in-context-
learning with closed LLMs APIs [1, 2, 3, 4, 5]. In contrast, we study simple techniques to
allow for developers to practically build on top of open-source LLMs. The three techniques
we mention in this paper [19, 22, 26, 49] are well studied in the conventional NLP tasks.
We revisit and adapt them in the context of tool manipulation on open-source models with
a practical amount of human supervision. In the recent LLM literature, there are several
works presenting tool manipulation benchmarks [2, 3]. Compared to these benchmarks, the
ToolBench is the first one providing predefined test cases to evaluate real execution results.

8 Conclusion

In this paper, we answer the question can we enhance open-source LLMs to compete with

leading closed LLM APIs in tool manipulation, with practical amount of human supervision.
Drawing from our observations of the common tool manipulation failures and insights from
the literature on conventional NLP tasks with LLM, we propose to instantiate model align-
ment with programmatical data generation, system prompts, and in-context demonstration
retrievers to improve the tool manipulation capability of open-source models. To compre-
hensively evaluate the impact of these techniques, we create the ToolBench, a benchmark
consisting of diverse software tools for real-world tasks. Our results demonstrate that these
techniques can make the leading open-source LLMs competitive with the OpenAI GPT-4 in
4 out of 8 ToolBench tasks, all achieved with a practical amount of human labeling effort.
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