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Abstract

Concept Bottleneck Models (CBMs) have emerged as a promising interpretable
method whose final prediction is based on intermediate, human-understandable
concepts rather than the raw input. Through time-consuming manual interventions,
a user can correct wrongly predicted concept values to enhance the model’s down-
stream performance. We propose Stochastic Concept Bottleneck Models (SCBMs),
a novel approach that models concept dependencies. In SCBMs, a single-concept
intervention affects all correlated concepts, thereby improving intervention ef-
fectiveness. Unlike previous approaches that model the concept relations via an
autoregressive structure, we introduce an explicit, distributional parameterization
that allows SCBMs to retain the CBMs’ efficient training and inference procedure.
Additionally, we leverage the parameterization to derive an effective intervention
strategy based on the confidence region. We show empirically on synthetic tabular
and natural image datasets that our approach improves intervention effectiveness
significantly. Notably, we showcase the versatility and usability of SCBMs by
examining a setting with CLIP-inferred concepts, alleviating the need for manual
concept annotations.

1 Introduction

In today’s world, machine learning plays a crucial role in making important decisions, from healthcare
to finance and law. However, as these algorithms become more complex, understanding how
they arrive at their decisions becomes increasingly challenging. This lack of interpretability is a
significant concern, especially in situations where trustworthiness, transparency, and accountability
are paramount (Lipton, 2016; Doshi-Velez & Kim, 2017). Recent studies have focused on Concept
Bottleneck Models (CBMs) (Koh et al., 2020; Havasi et al., 2022; Shin et al., 2023), a class of models
that predict human-understandable concepts upon which the final target prediction is based. CBMs
offer interpretability since a user can inspect the predicted concept values to understand how the
model arrives at its final target prediction. Moreover, if they disagree with a concept prediction, they
can intervene by adjusting it to the right value, which in turn affects the target prediction.

For example, consider the yellow warbler in Figure 1 (a), where a user might notice that the binary
concept ‘yellow primary color’ is mispredicted. Upon this realization, they can intervene on the CBM
by setting its value to 1, which increases the probability of the class yellow warbler. This way of
interacting allows any untrained user to engage with the model to increase its predictive performance.

However, if the user input is that the primary color is yellow, should not the likelihood of a yellow
crown increase too? This adaptation would increase the predicted likelihood of the correct class even
more, as yellow warblers are characterized by their fully yellow body. Currently, vanilla CBMs do
not exhibit this behavior as they do not use the intervened-on concepts to update their remaining
concept predictions. This indicates that they suboptimally adapt to the additional knowledge gained.
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Figure 1: Overview of the proposed method for the CUB dataset. (a) A user intervenes on the
concept of ‘primary color: yellow’. Unlike CBMs, our method then uses this information to adjust
the predicted probability of correlated concepts, thereby affecting the target prediction. (b) Schematic
overview of the intervention procedure. A user’s intervention c′S is used to infer the logits η\S of
the remaining concepts. (c) Visualization of the learned global dependency structure as a correlation
matrix for the 112 concepts of CUB (Wah et al., 2011). Characterization of concepts on the left.

To this end, we propose to extend the concept predictions with the modeling of their dependencies, as
depicted in Figure 1.

The proposed approach captures the concept dependencies by modeling the concept logits with a
learnable non-diagonal normal distribution, which enables efficient, scalable computing of the effect
of interventions on other concepts. By integrating concept correlations, we reduce the time and
effort of having to laboriously intervene on many correlated variables and increase the efficacy of
interventions on the downstream prediction. Thanks to the explicit distributional assumptions, the
model is trained end-to-end, retaining the training and inference speed of classic CBMs as well as the
benefits of training the concept and target predictor jointly. Moreover, we show that our method excels
when querying user interventions based on predicted concept uncertainty (Shin et al., 2023), further
highlighting the practical utility of our approach as such policies spare users from manually sifting
through the concepts to identify necessary interventions. Lastly, based on the distributional concept
parameterization, we propose a novel approach for computing dependency-aware interventions
through the likelihood-based confidence region.

Contributions This work contributes to the line of research on concept bottleneck models in
several ways. (i) We propose to capture and model concept dependencies with a multivariate normal
distribution. (ii) We derive a novel intervention strategy based on the confidence region of the
normal distribution that incorporates concept correlations. Using the learned concept dependencies
during the intervention procedure allows for stronger interventional effectiveness. (iii) We provide
a thorough empirical assessment of the proposed method on synthetic tabular and natural image
data. Additionally, we combine our method with concept discovery where we alleviate the need
for annotations by using CLIP-inferred concepts. In particular, we show the proposed method
(a) discovers meaningful, interpretable patterns in the form of concept dependencies, (b) allows for
fast, scalable inference, and (c) outperforms related work with respect to intervention effectiveness
thanks to the proposed concept modeling and intervention strategy.

2 Background & Related Work

Concept bottleneck models (Koh et al., 2020; Lampert et al., 2009; N. Kumar et al., 2009) are typically
trained on data points (x, c, y), comprising the covariates x ∈ X , target y ∈ Y , and C annotated
binary concepts c ∈ C. Consider a neural network fθ parameterized by θ and a slice ⟨gψ, hϕ⟩ (Leino
et al., 2018) s.t. ŷ ··= fθ (x) = gψ (hϕ (x)). CBMs enforce a concept bottleneck ĉ ··= hϕ(x) such
that the model’s final output depends on the covariates x solely through the predicted concepts ĉ.
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While Koh et al. (2020) propose the soft CBM, where the concept logits parameterize the bottleneck,
Havasi et al. (2022) argue that such a representation leads to leakage, where additional unwanted
information in the concept representation is used to predict the target (Margeloiu et al., 2021;
Mahinpei et al., 2021). Thus, they parameterize the bottleneck by binarized concept predictions
and call it the hard CBM. Then, Havasi et al. (2022) equip the hard CBM with an autoregressive
structure of the form ci|x, c<i, which is supposed to learn the concept dependencies. As such, the
implicit autoregressive modeling of concept dependencies by Havasi et al. (2022) is the most related
to the current work. Complementary to our work, Heidemann et al. (2023) analyze how a CBM’s
performance is affected by concept correlations. Unlike approaches that restrict the bottleneck to
prevent leakage, Concept Embedding Models (CEM) (Espinosa Zarlenga et al., 2022) represent each
concept with an embedding vector from which the concept probabilities can be inferred. E. Kim et
al. (2023) model the embedding with a normal distribution, assuming a diagonal covariance matrix,
which prevents them from capturing concept dependencies. Therefore, their intervention performance
is not expected to differ from that of CEMs. Recent works explored how a CBM-like structure can
be enforced even without a concept-annotated training set. Yuksekgonul et al. (2023) transform a
pre-trained model into a CBM via a concept bank from concept activation vectors and multimodal
models (B. Kim et al., 2018), while Oikarinen et al. (2023) query GPT-3 (Brown et al., 2020) for the
concept set C and assign the values of the concept activations to each datapoint x with CLIP (Radford
et al., 2021) similarities. Similarly, Panousis et al. (2023) uses CLIP to probabilistically discover
a sparse set of concepts for each input, which could be used in our model for a fully probabilistic
pipeline. Lastly, Marcinkevičs et al. (2024) instead relax the need for a concept labeled training set to
a smaller validation set by fine-tuning a pre-trained model.

Intervenability (Marcinkevičs et al., 2024) is a crucial element of CBMs as it allows the user to
correct wrongly predicted concepts ĉ to c′, which in turn affects the target prediction of the model
ŷ′. If multiple concepts are intervened on sequentially, the order of interventions is important. To
this end, Sheth et al. (2022) and Shin et al. (2023) explore multiple policies according to which
the order of concepts is determined. Chauhan et al. (2023) propose to combine predefined policies
with learnable weighting parameters, while Espinosa Zarlenga et al. (2024) learn the policy itself.
Concurrently, Singhi et al. (2024) learn a realignment module to align concept predictions. Steinmann
et al. (2023) argue that instance-specific interventions are costly and store previous interventions in a
memory to automatically reapply them for similar data points. Lastly, Collins et al. (2023) explore
the advantages of including uncertainty rather than treating humans as oracles.

Our work models concept dependencies by parameterizing the bottleneck with a distribution. In a
similar vein, Variational Autoencoders (Kingma & Welling, 2014) parameterize the bottleneck with a
normal distribution to model and generate new data. Stochastic Segmentation Networks (Monteiro
et al., 2020) parameterize the logits of a segmentation map with a non-diagonal normal distribution
to capture the spatial correlations of pixels and model the aleatoric uncertainty. The modeling of
uncertainty with a distribution is also explored by Bayesian Neural Networks (Neal, 1995) that learn
a probability distribution over the neurons of a neural network.

3 Methods

We propose Stochastic Concept Bottleneck Models1 (SCBM), a novel concept-based method that
relaxes the implicit CBM assumption of independent concepts. SCBM captures the concept dependen-
cies by learning their multivariate distribution. As a result, interventions become more effective and
scalable, as a single intervention can influence multiple correlated concepts. A schematic overview of
the proposed method is depicted in Figure 1 (b).

3.1 Model Formulation

To capture the concept dependencies, we model the concept logits η with a learned multivariate
normal distribution. Modeling logits with a normal distribution has proven to be effective in the
context of segmentation (Monteiro et al., 2020). While Monteiro et al. (2020) use it to capture the
spatial dependencies of pixels, we, instead, model the relations between concepts, where the properties
of the normal distribution will prove useful. A neural network is trained to predict the distribution’s
parameters η | x ∼ N (µ(x)),Σ(x)), where µ(x) ∈ RC , and Σ(x) ∈ RC×C . Thus, the traditional

1The code is available here: https://github.com/mvandenhi/SCBM.
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assumption of independent concepts ci ⊥⊥ cj | x, ∀i ̸= j is relaxed to ci ⊥⊥ cj | η, ∀i ̸= j, where
the assumed normal distribution induces linear concept dependencies. The inductive bias of linearity
is useful in practice as it is more robust to overfitting and computationally more scalable with respect
to C compared to its nonlinear alternative (Havasi et al., 2022), as we will show in Section 5.

To learn the distribution, we minimize the negative log-likelihood

− log p(c | x) = − log

∫
p(c | η)pϕ(η | x)dη, (1)

where ϕ are the parameters of a neural network that predicts the distribution η | x ∼
N (µ(x)),Σ(x)). This integral is intractable due to the softmax operation applied in p(c | η).
Thus, the integral is approximated by M Monte Carlo samples

− log

∫
p(c | η)pϕ(η | x)dη ≈ − log

1

M

M∑
m=1

p(c | η(m)), η(m) | x ∼ N (µ(x)),Σ(x)) . (2)

In order to learn ϕ, we make use of the parameterization as normal distribution and employ the
reparameterization trick η(m) | x = µ(x) +L(x)ϵ(m), L(x)L(x)T = Σ(x), ϵ(m) ∼ N (0, I)
such that gradients can be computed with respect to the parameters. Lastly, we incorporate the new
relaxed conditional independence assumption

log p(c | η) = log

C∏
i=1

p(ci | ηi) =
C∑
i=1

log p(ci | ηi), (3)

where p(ci | ηi) describes a Bernoulli distribution parameterized by the sigmoid-transformed logits
σ(ηi). Combining the above considerations results in the following reformulation of the negative
log-likelihood:

− log p(c | x) ≈− log
1

M

M∑
m=1

p(c | η(m))

∝− log

M∑
m=1

exp

C∑
i=1

log p(ci | η(m)
i )

=− log

M∑
m=1

exp

C∑
i=1

[
−BCE(ci, σ(η

(m)
i ))

]
,

(4)

where BCE stands for Binary Cross Entropy, and the logsumexp trick is used for numerical stability.

The distribution-based modeling procedure allows for efficient sampling, thus, enabling SCBM to train
concept and target predictors jointly, sequentially, or independently. In contrast, the autoregressive
alternative (Havasi et al., 2022) requires independent training due to the computational complexity.
We adopt a joint training scheme to obtain the benefits of end-to-end learning where concept and
target predictors can adjust to each other. To prevent leakage, we follow Havasi et al. (2022) and train
the model with the hard {0, 1} concept values as bottleneck rather than the logits used in the original
CBM (Koh et al., 2020). To this end, we employ the straight-through Gumbel-Softmax trick (Jang et
al., 2017; Maddison et al., 2017) that approximates Bernoulli samples while being differentiable. The
target predictor gψ is then learned by minimizing the negative log-likelihood

− log p(y | x) =− log
∑
c∈C

pψ(y | c)p(c | x)

≈− log
1

M

M∑
m=1

pψ(y | c(m)), c(m) ∼ p(c | x).
(5)

Lastly, the learned dependencies are regularized by following Occam’s razor and to prevent overfitting.
We take inspiration from the Graphical Lasso (Friedman et al., 2008) and penalize the off-diagonal
elements of the precision matrix Σ−1.

By combining concept, target, and precision loss with weighting factors λ1 and λ2, we arrive at the
final loss function

− log

M∑
m=1

exp

C∑
i=1

−BCE
(
ci, σ(η

(m)
i )

)
+ λ1CE

(
y,

1

M

M∑
m=1

gψ(c
(m))

)
+ λ2

∑
i ̸=j

Σ(x)−1
i,j . (6)
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3.2 Covariance Learning

The introduced amortized covariance matrix Σ(x) provides the flexibility to tailor its predicted
concept dependencies to each data point, making it adaptable to many data-generating mechanisms.
For example, in the commonly used CUB (Wah et al., 2011; Koh et al., 2020), it can learn the
class-wise concept structure present in the dataset. The explicit dependency representation inferred
by the learned covariance matrix is useful as it provides insights into the learned correlations among
the concepts, which is important for understanding and interpreting the model behavior.

However, an amortized covariance matrix comes at the price of not being able to visualize and
interpret a unified concept structure on a dataset level. Depending on the need of the application,
such a global structure might be preferable. Thus, we propose a variation of SCBM, where the
covariance matrix is not amortized (Σ(x)), but learned globally (Σ). An example of the global
concept structure learned on CUB is shown in Figure 1 (c). This variation has the inductive bias
of assuming a constant covariance matrix, whose utility depends on the underlying data-generating
mechanism. We recommend using the more flexible, amortized version by default and only utilizing
a global covariance if the strong assumption of fixed dependencies is reasonable. We will explore this
empirically in more detail in Section 5.

3.3 Interventions

A distinguishing property of CBM-like methods is the user’s capacity to correct wrongly predicted
concepts, which in turn affects the target prediction (Marcinkevičs et al., 2024). For a big concept
set, this intervention procedure can become quite laborious as a user has to inspect and manually
intervene on each concept separately. SCBMs are designed to alleviate this need by utilizing the
learned concept dependencies such that a single intervention affects all related concepts as modeled
by the multivariate normal distribution.

The parameterization as a multivariate normal distribution allows for a quick, scalable intervention
procedure. Given a set S ⊂ {1, . . . , C} of concept interventions, the effect on the remaining concepts
c\S is computed via their logits η\S by conditioning on the intervention logits η′

S , utilizing the
known properties of the normal distribution

η\S | x,η′
S ∼ N

(
µ̄(x),Σ(x)

)
,

µ̄ = µ\S +Σ\S,SΣ
−1
S,S(η

′
S − µS),

Σ = Σ\S,\S −Σ\S,SΣ
−1
S,SΣS,\S .

(7)

In standard CBMs, an intervention affects only the concepts on which the user intervenes. As such,
Koh et al. (2020) set η′i to the 5th percentile of the training distribution if ci = 0 and the 95th
percentile if ci = 1. While this strategy is effective for SCBMs too, see Appendix C.5, the modeling
of the concept dependencies warrants a more thorough analysis of the intervention strategy. We
present two desiderata, which our intervention strategy should fulfill.

i) p(ci | η′i) ≥ p(ci | µi)

The likelihood of the intervened-on concept ci should always increase after the intervention.
If SCBMs used the same strategy as CBMs, it could happen that the initially predicted µi

was more extreme than the selected training percentile. Then, the interventional shift η′i−µi

in Eq. 7 would point in the wrong direction. This would cause η\S to shift incorrectly.

ii) |η′i − µi| should not be “too large”.
We posit that the interventional shift should stay within a reasonable range of values.
Otherwise, the effect on η\S would be unreasonably large such that the predicted µ\S would
be completely disregarded.

To fulfill these desiderata, we take advantage of the explicit distributional representation: the
likelihood-based confidence region of µi provides a natural way of specifying the region of possible
η′
S that fulfill our desiderata. Informally, a confidence region captures the region of plausible values

for a parameter of a distribution. Note that the confidence region takes concept dependencies into
account when describing the area of possible η′

S . To determine the specific point within this region,
we search for the values η′

S , which maximize the log-likelihood of the known, intervened-on concepts
cS , implicitly focusing on concepts that the model predicts poorly:
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η′
S = argmax

ηS

log p(cS | ηS)

s.t.− 2 (log p(ηS | µS ,ΣS,S)− log p(µS | µS ,ΣS,S)) ≤ χ2
d,1−α

η′i − µi ≥ 0 if ci = 1, ∀i ∈ S
η′i − µi ≤ 0 if ci = 0, ∀i ∈ S,

(8)

where d = |S|. The first inequality describes the confidence region. It is based on the logarithm of the
likelihood ratio, which, after multiplying with −2, asymptotically follows a χ2 distribution (Silvey,
1975). The last two inequalities restrict the region to the desired direction. Note that η′

S is computed
to determine the conditional effect of the interventions on η\S using Equation 7. When predicting ŷ′

under interventions, the logits η\S are then used for sampling the binary concept values c\S while
the intervened-on concepts c′S are directly set to their known, binary value.

4 Experimental Setup

Datasets and Evaluation We perform experiments on a variety of datasets to showcase the validity
of our method. Inspired by Marcinkevičs et al. (2024), we introduce a synthetic tabular dataset with a
data-generating mechanism that contains fixed concept dependencies we can regulate. In particular,
the concept logits η are sampled from a randomly initialized positive definite covariance matrix
and generate x. Binary concept values c are inferred from η and generate the target y. We refer to
Appendix A.1 for a more detailed description.

As a natural image classification benchmark, we evaluate on the Caltech-UCSD Birds-200-2011
dataset (Wah et al., 2011), comprised of bird photographs from 200 distinct classes. It includes 112
concepts, such as wing color and beak shape, shared across the same class instances as revised in the
original CBM work (Koh et al., 2020). Additionally, we explore another natural image classification
task on CIFAR-10 (Krizhevsky et al., 2009) with 10 classes. To mitigate the concept annotations
requirement, the concepts are synthetically acquired in a similar fashion to the concept discovery
literature. We adopt the 143 concept classes generated via GPT-3 (Brown et al., 2020) in prior work
(Oikarinen et al., 2023). To obtain the binary concept values, we use the CLIP model (Radford et
al., 2021) to compute the similarity between each instance of an image with the text embedding of
a specific concept and compare it to the similarity of its negative counterpart, i.e. not the concept.
Appendix A.2 contains further details about the natural image datasets.

To compare methods, we evaluate the model performance based on the concept and target accuracy.
We compute test performance before and after intervening on an increasing number of concepts. The
order of concepts in the intervention is determined by an uncertainty-based policy (Shin et al., 2023)
that selects the concept whose predicted probability is closest to 0.5. We also show results for a
random policy in Appendix C.3. Additionally, we evaluate the calibration of the predicted concept
uncertainties that are being used for the uncertainty-based policy, with the Brier score (Brier, 1950)
and the Expected Calibration Error (Naeini et al., 2015; A. Kumar et al., 2019).

Baselines We evaluate the performance of our method in comparison with state-of-the-art models.
Namely, we focus on the vanilla concept bottleneck model (CBM) by Koh et al. (2020) in its hard
version (Havasi et al., 2022), trained jointly using the straight-through Gumbel-Softmax trick (Jang
et al., 2017; Maddison et al., 2017), as a sensical baseline to our binary modeling of concepts.
Additionally, we explore the concept embedding model (CEM) by Espinosa Zarlenga et al. (2022)
that learns two concept embeddings, ĉ+i and ĉ−i . These representations are used to predict the final
concept probability with a learnable scoring function p̂i = s(ĉ+i , ĉ

−
i ) = σ(Ws[ĉ

+
i , ĉ

−
i ]

T + bs)
and are then combined into a final concept embedding ĉi = (p̂iĉ

+
i + (1− p̂i)ĉ

−
i ) that is passed to

the target predictor. Interventions are modeled by altering the concept probabilities p̂i. Note that
Espinosa Zarlenga et al. (2022) optimize for intervention performance during training, which we omit,
to ensure a fair comparison where no method was explicitly trained for intervention performance.
Finally, we evaluate the autoregressive CBM structure proposed by Havasi et al. (2022), where
concept dependencies are learned with an autoregressive structure. Here, each concept ci is predicted
with a separate MLP that takes as input a latent representation of the input fθ(x) and all previous
concepts c1, ..., ci−1. To obtain a good initialization of the autoregressive structure, it is pretrained
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Table 1: Test-set concept and target accuracy (%) prior to interventions. Results are reported as
averages and standard deviations of model performance across ten seeds. For each dataset and metric,
the best-performing method is bolded and the runner-up is underlined.

Dataset Method Concept Accuracy Target Accuracy

Hard CBM 61.42 ± 0.07 58.38 ± 0.39
CEM 61.42 ± 0.12 58.01 ± 0.49

Synthetic Autoregressive CBM 62.17 ± 0.11 59.60 ± 0.62
Global SCBM 61.57 ± 0.05 58.39 ± 0.53
Amortized SCBM 62.41 ± 0.20 58.96 ± 0.38

Hard CBM 94.97 ± 0.07 67.72 ± 0.57
CEM 95.12 ± 0.07 69.60 ± 0.30

CUB Autoregressive CBM 95.33 ± 0.07 69.24 ± 0.44
Global SCBM 94.99 ± 0.09 68.19 ± 0.63
Amortized SCBM 95.22 ± 0.09 69.87 ± 0.56

Hard CBM 85.51 ± 0.04 69.73 ± 0.29
CEM 85.12 ± 0.14 72.24 ± 0.33

CIFAR-10 Autoregressive CBM 85.31 ± 0.06 68.88 ± 0.47
Global SCBM 85.86 ± 0.04 70.74 ± 0.29
Amortized SCBM 86.00 ± 0.03 71.66 ± 0.25

for 50 epochs. As the Monte Carlo sampling from the autoregressive structure is time-consuming, the
target predictor gψ is trained independently using the ground-truth concepts as input. At intervention
time, a normalized importance sampling algorithm is used to estimate the concept distribution.

Implementation Details The model architectures comprise a backbone for concept prediction
followed by a linear layer as head for an interpretable target prediction. More details can be found in
Appendix B. To ensure the positive definiteness of the concept covariance matrix Σ, we parameterize
it via its Cholesky decomposition Σ = LL⊤. Thus, we directly predict the lower triangular Cholesky
matrix L. We will evaluate two options for SCBMs: using a global (Σ) or an amortized covariance
matrix (Σ(x)). For the amortized version, we set the weighting terms λ1 and λ2 of Equation 6 to 1.
For the global version, we initialize it with the estimated empirical covariance matrix and set λ2 = 0,
as we did not observe big differences when varying λ2. In Appendix C.4, we provide an ablation
study, demonstrating that SCBMs are not very sensitive to the choice of λ2. At intervention time, we
solve the optimization problem based on the 99%-confidence region with the SLSQP algorithm (Kraft,
1988). In Appendix C.6, we provide an ablation with different confidence levels.

5 Results

Table 2: Relative time it takes for one epoch in the
CUB dataset when training on the training set, or
evaluating on the test set, respectively.

Method Training Inference

Hard CBM 5x 1x
CEM 5x 1x
Autoregressive CBM 5x 15x
Global SCBM 5x 1x
Amortized SCBM 5x 1x

Test performance In Table 1, we report the re-
sults of the concept and target accuracy prior to
interventions. Overall, SCBM performs on par
with the baseline methods, with no clear outper-
forming or underperforming technique through-
out the datasets. In Appendix C.7, we show
that other metrics lead to the same interpreta-
tion. This shows that the additional overhead of
learning the concept dependencies does not neg-
atively affect the predictive performance. We
note that the amortized covariance variant con-
sistently surpasses the globally learned matrix due to its ability to adjust the predicted concept
dependency structure and uncertainty on an instance level. On the other hand, the global variant
offers a unified understanding of the concept correlations, an example of which is presented in
Figure 1 (c). Notably, in CIFAR-10, even though the concept performance of CEM is the worst of all
methods, it has the best target performance. This might suggest the presence of leakage in CEM’s
embeddings, as in CIFAR-10, the concept set alone is not sufficient to predict the target, and learning

7



additional information might be useful. In Table 2, we show the time it takes for training and testing
of the methods. It is evident that the autoregressive CBM of Havasi et al. (2022) suffers from a slow
sampling process due to its autoregressive structure, while SCBMs retain the efficiency of CBMs.
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Figure 2: Performance after intervening on concepts in the order of highest predicted uncertainty.
Concept and target accuracy (%) are shown in the first and second rows, respectively. Results are
reported as averages and standard deviations of model performance across ten seeds.

Interventions In this paragraph, we analyze the intervention performance of SCBMs and their base-
line models, focusing on their effectiveness in modeling concept dependencies and improving target
accuracy. Figure 2 shows the intervention curves across ten seeds, where the performance is measured
based on the concept and target accuracy. The order of concepts to intervene on is determined by an
uncertainty-based policy that makes use of the predicted probabilities. In Appendix C.3, we present
the intervention performance if concepts were selected randomly. The intervention curves in the first
row show that SCBMs are superior in modeling the concept dependencies, as evidenced by their
significantly steeper intervention curves compared to the baseline methods. Furthermore, the second
row of Figure 2 indicates that the strong concept modeling translates to a significant improvement in
downstream performance, partly thanks to the intervention strategy introduced in Section 3.3. We
note that especially for the most practical scenario of only a small number of interventions, SCBMs
outperform their counterparts. Comparing the SCBM variants, the natural image datasets show an
overall better intervention performance with the amortized covariance matrix, following the trend of
Table 1, as it can capture the instance-wise correlation structure of the data. Only in the synthetic
dataset, where the data-generating covariance matrix is fixed, does the global SCBM slightly outper-
form the amortized one. Thus, we advocate for the usage of the global variant only if the underlying
assumption of a fixed covariance is reasonable. Lastly, the success of SCBMs on CIFAR-10, with
CLIP-based concepts, shows our proposed method can work without human-annotated concepts. To
strengthen this point and also showcase the scalability of our method, in Appendix C.1, we provide
results on CIFAR-100 with 892 concepts, where our SCBMs also strongly outperform baselines.

Analyzing the performance of the autoregressive CBM, which also captures concept dependencies, we
observe that they expectedly have a better intervention performance than the hard vanilla CBM, which
does not take correlations into account. However, it becomes evident that, compared to the concept
performance of SCBMs, their autoregressive structure does not capture the dependencies to the full
extent. This shows in the target accuracy, where they only match or outperform SCBMs towards the
full set of intervened concepts. We attribute the better performance on the full intervention set to the
independent training procedure utilized by autoregressive CBMs, which comes at the cost of lower
test performance in CIFAR-10. Arguably, in a realistic use-case, such a high number of instance-level
interventions is not sensible, and if it were, SCBMs could also be trained independently. Finally,
the CEM shows reduced intervention performance as the expressive concept embeddings, which are
prone to information leakage, seem to suboptimally adapt to the injected concept information.
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Table 3: Test-set calibration (%) of concept predictions. Re-
sults are reported as averages and standard deviations of model
performance across ten seeds. For each dataset and metric, the
best-performing method is bolded and the runner-up is underlined.
Lower is better.

Dataset Method Brier ECE

Hard CBM 28.79 ± 0.09 22.38 ± 0.15
CEM 29.32 ± 0.08 23.55 ± 0.09

Synthetic Autoregressive CBM 24.84 ± 0.32 13.54 ± 0.49
Global SCBM 27.73 ± 0.09 20.10 ± 0.14
Amortized SCBM 25.58 ± 0.20 15.57 ± 0.55

Hard CBM 3.93 ± 0.05 2.44 ± 0.06
CEM 4.04 ± 0.05 3.25 ± 0.07

CUB Autoregressive CBM 3.75 ± 0.05 2.73 ± 0.05
Global SCBM 3.87 ± 0.06 2.33 ± 0.09
Amortized SCBM 3.64 ± 0.07 1.85 ± 0.08

Hard CBM 10.42 ± 0.05 4.93 ± 0.17
CEM 11.06 ± 0.16 7.11 ± 0.39

CIFAR-10 Autoregressive CBM 10.70 ± 0.05 6.07 ± 0.10
Global SCBM 9.95 ± 0.02 2.88 ± 0.11
Amortized SCBM 9.84 ± 0.02 2.22 ± 0.12

Figure 3: Intervention perfor-
mance of SCBMs measured
in concept and target accuracy
(%) on CUB for random and
uncertainty-based policy.
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Modeling the concept distribution A cornerstone of SCBMs is the explicit, distributional parame-
terization of concepts. This helps in understanding the data correlations and allows for visualization,
as the example seen in Figure 1 (c). The explicit probabilistic modeling results in improved concept
uncertainty estimates compared to the baseline CBM counterparts, as shown in Table 3, where
lower metrics imply better estimates. This proves useful for interventions, where the uncertainty
estimates can be leveraged for the choice of concepts to intervene on, improving the target prediction
more effectively and reducing the need for manual user inspection. In Figure 3, we compare the
performance of randomly intervening versus intervening based on the predicted uncertainty. We
observe that there is a big gap between the two policies, indicating the usefulness of the estimated
probabilities. Nevertheless, note that intervening at random remains successful and supports the
observations made in the previous paragraph, as shown in Appendix C.3.

6 Conclusion

In this paper, we introduced SCBMs, a new concept-based method that models concept dependencies
with a multivariate normal distribution. We proposed a novel, effective intervention strategy that
takes concept correlations into account and is based on the confidence region inferred from the
distributional parameterization. We showed that our modeling approach retains CBMs’ training
and inference speed, thus, being able to harness the benefits of end-to-end concept and target
training. Additionally, the explicit parameterization offers the user a clearer understanding of the
learned concept dependencies, providing deeper insights into how predictions and interventions are
made. Empirically, we demonstrated that by modeling the concept dependencies, SCBMs offer a
substantial improvement in intervention effectiveness, in concept as well as target accuracy, compared
to related work. We showed that our method excels when iteratively intervening on the most uncertain
concept predictions, sparing users from having to manually search through the concept set to identify
necessary interventions. Additionally, our results indicate that learning the concept correlations does
not decrease performance prior to interventions, in many cases even improving the performance over
the baselines. Finally, the versatility of SCBMs is highlighted through their superior performance on
CIFAR-10 and CIFAR-100, where concept values are CLIP-based rather than human-annotated.
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Limitations & Future Work This work opens multiple new research avenues. A natural extension
is to go beyond binary concepts, such as continuous domains with their corresponding adaptations of
modeling the concept distribution. Additionally, addressing the quadratic memory complexity of the
covariance matrix is essential for scaling to larger concept sets. Our proposed intervention strategy
accounts for model uncertainty, but further research is needed to accommodate user uncertainty, as
human interventions are not always the ground truth. This work allows the editing of the learned
dependency structure by adjusting the entries of the predicted covariance matrix, which could be
explored. Lastly, to model additional information and reduce leakage, Koh et al. (2020); Havasi et al.
(2022) propose the adoption of a side channel. The complementary effectiveness of incorporating the
side channel in the covariance structure could be explored in the context of SCBMs.
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A Dataset Details

In this section, we provide additional details on the datasets that are being used in the experiments.

A.1 Synthetic Data-Generating Mechanism

Here, we describe the data-generating mechanism of the synthetic dataset in more detail. Let N , p,
and C denote the number of independent data points {(xn, cn, yn)}Nn=1, covariates, and concepts,
respectively. We set N = 50,000, p = 1,500, and C = 100, with a 60%-20%-20% train-validation-
test split. The generative process is as follows:

1. Randomly sample W ∈ RC×10 s.t. wi,j ∼ N (0, 1) for 1 ≤ i ≤ C and 1 ≤ j ≤ 10.

2. Generate a positive definite matrix Σ ∈ RC×C s.t. Σ = WW T +D. Let D ∈ RC×C s.t.
D = δI , where δi ∼ U[0,1] for 1 ≤ i ≤ C.

3. Randomly sample logits H ∈ RN×C s.t. ηn ∼ N (0,Σ) for 1 ≤ n ≤ N .

4. Let cn,i = 1{ηn,i≥0} for 1 ≤ n ≤ N and 1 ≤ i ≤ C.

5. Let h : RC → Rp be a randomly initialised multilayer perceptron with ReLU nonlinearities.

6. Let xn = h (ηn) + ϵn s.t. ϵn ∼ N (0, I) for 1 ≤ n ≤ N .

7. Let g : RC → R be a randomly initialized linear perceptron.

8. Let yn = 1{(g(cn)≥ymed)} for 1 ≤ n ≤ N , where ymed denotes the median of g (cn).

A.2 Natural Image Datasets

Caltech-UCSD Birds-200-2011 We evaluate on the Caltech-UCSD Birds-200-2011 (CUB)2 dataset
(Wah et al., 2011). It comprises 11,788 photographs from 200 distinct bird species annotated with
312 concepts, such as belly color and pattern. In this manuscript, we follow the original train-test
split and revised the proposed dataset in the initial CBM work (Koh et al., 2020). Here, only the 112
most widespread binary attributes are included in the final dataset, and concepts are shared across
samples in identical classes. The images were resized to a resolution of 224 × 224 pixels. Finally,
following the original proposed augmentations, we applied random horizontal flips, modified the
brightness and saturation, and applied normalization during training.

CIFAR-10 CIFAR-103 (Krizhevsky et al., 2009) is a natural image benchmark with 60,000 32x32
colour images and 10 classes. We kept the original train-test split, with 50,000 samples in the train
set and a balanced total of 6,000 images per class. We generated 143 concept labels as described
in Section 4 using large language and vision models. At training time, as for CUB, we applied
augmentations including modifications to brightness and saturation, random horizontal flips and
normalisation. Images were rescaled to a size of 224 × 224 pixels.

B Implementation Details

This section provides further implementation details of SCBM and the evaluated baselines. All
methods were implemented using PyTorch (v 2.1.1) (Ansel et al., 2024). All models are trained
for 150 epochs for the synthetic and 300 epochs for the natural image datasets with the Adam
optimizer (Kingma & Ba, 2015) with a learning rate of 10−4 and a batch size of 64. For the
independently trained autoregressive model, we split the training epochs into 2/3 for the concept
predictor and 1/3 for the target predictor. For the methods requiring sampling, the number of Monte
Carlo samples is set to M = 100. We provide an ablation for M = 10 in Appendix C.2. Note that
since the predictor head is very simple, the MC sampling of SCBMs is extremely fast and does not
influence computational complexity by more than 0.1%. For the synthetic tabular data, we use a fully
connected neural network as backbone, with 3 non-linear layers, batch normalization, and dropout.
For the CUB dataset, we use a pretrained ResNet-18 (He et al., 2016), and for the lower-resolution

2https://www.vision.caltech.edu/datasets/cub_200_2011/, no license available
3https://www.cs.toronto.edu/~kriz/cifar.html, no license available
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CIFAR-10 a simple convolutional neural network with 2 convolutional layers followed by ReLU,
Dropout, and a fully connected layer. For fairness in the comparisons, all baselines have the same
model architecture choices and all experiments are performed over 10 random seeds.

Resource Usage For the experiments of the main paper, we used a cluster of mostly GeForce RTX
2080s with 2 CPU workers. Over all methods, we estimate an average runtime of 8h per experiment,
each running on a single GPU. This amounts to 5 methods × 3 datasets × 10 seeds × 8 hours =
1200 hours. Adding to that, the Ablation Figures required another 40 runs, amounting to a full total
of 1520 hours of compute. Please note that we only report the numbers to generate the final results
but not the development time, which we roughly estimate to be around 10 times bigger.

C Further Experiments

In this section, we show additional experiments to provide a more in-depth understanding of SCBM’s
effectiveness. We ablate multiple hyperparameters to provide an understanding of how they influence
the model performance, as well as show the performance of our model in other settings.
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Figure 4: Performance after intervening on
concepts in the order of highest predicted un-
certainty in CIFAR-100 with 892 concepts.
Concept and target accuracy (%) are shown
in the first and second rows, respectively. Re-
sults are reported as averages and standard
deviations of model performance across 3
seeds.
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Figure 5: Intervention performance in the or-
der of highest predicted uncertainty in CUB.
Concept and target accuracy (%) are shown in
the first and second rows, respectively. Results
are reported as averages and standard devia-
tions of model performance across 3 seeds.

C.1 Intervention Performance on CIFAR-100

We present the result on the CIFAR-100 dataset with 892 concepts obtained from Oikarinen et al.
(2023) in Figure 4 to showcase the scalability of SCBMs. The results underline the efficiency of
our method. Notably, the Autoregressive baseline has a negative dip, which is likely due to the
independently trained target predictor not being aligned with the concept predictors in this noisy
CLIP-annotated scenario. Note that they need to train independently to avoid the sequential MC
sampling during training, which would otherwise increase training time significantly. Our jointly
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trained SCBMs do not have this issue and surpass the baselines. We use the same configuration as for
CIFAR-10, with the exception that we set M = 10 to reduce the memory requirement.

C.2 Number of Monte Carlo Samples

To showcase that SCBMs do not rely on a huge number of Monte Carlo samples, we provide an
ablation of M in Figure 5. It shows that even for M = 10, SCBMs thrive. Note, however, that since
M is not a driving factor of SCBMs computational cost, one can leave it at a high number.

C.3 Random Intervention Policy
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Figure 6: Performance after intervening on concepts in random order. Concept and target accuracy
(%) are shown in the first and second rows, respectively. Results are reported as averages and standard
deviations of model performance across ten seeds.

In Figure 6, we present the intervention performance of SCBM and baseline methods. Compared
to the uncertainty-based intervention policy of Figure 2, the intervention curves of all methods are
less steep, confirming the usefulness of Shin et al. (2023)’s proposed policy. Following the previous
statements, SCBMs still outperform baseline methods with the amortized beating the global variant
for real-world datasets. We observe that in CIFAR-10 for the first interventions, an improvement in
concept accuracy is not directly reflected in improved target prediction for SCBMs, which is likely
due to the low signal-to-noise ratio of the CLIP-inferred concepts.

C.4 Regularization Strength

In Figure 7, we analyze the impact of the strength of λ2 from Equation 6. Due to environmental
considerations, we conducted experiments using only 5 seeds and limited the number of interventions
to 20. Our findings indicate that SCBMs are not sensitive to the choice of λ2, except that the
unregularized amortized variant exhibits slight patterns of overfitting.
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Figure 7: Performance on CUB after intervening on concepts in the order of highest predicted
uncertainty with differing regularization strengths. Concept and target accuracy (%) are shown in the
first and second columns, respectively. Results are reported as averages and standard deviations of
model performance across five seeds. For each SCBM variant, we choose a darker color, the higher
the regularization strength of λ2.

C.5 Intervention Strategy

In Figure 8, we analyze the effect of the intervention strategy. Our findings indicate that while SCBMs
are still effective with the proposed strategy from Koh et al. (2020), that sets the logits to the 5th (if
ci = 0) or 95th (if ci = 1) percentile of the training distribution, our proposed strategy based on the
confidence region results in stronger intervenability.
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Figure 8: Performance on CUB after intervening on concepts in the order of highest predicted
uncertainty, comparing the proposed intervention strategy to Koh et al. (2020)’s intervention of setting
the logits to the 5th or 95th empirical percentile of the training distribution. Concept and target
accuracy (%) are shown in the first and second columns, respectively. Results are reported as averages
and standard deviations of model performance across five seeds.

C.6 Confidence Region Level

In Figure 9, we analyze the effect of the level 1− α of the likelihood-based confidence region. Our
findings indicate that the SCBMs are not sensitive to the choice of 1− α, with higher levels being
slightly better in performance.

C.7 Jaccard Index

Panousis et al. (2024) propose to interpret the interpretation capacity of concepts with the Jaccard
Index (Jaccard, 1901). As such, in Table 4, we extend Table 1 with this metric. It is evident that the
interpretation does not change, indicating that the performance is robust to the choice of evaluation
metric.
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Figure 9: Performance on CUB after intervening on concepts in the order of highest predicted
uncertainty with differing levels 1− α of the confidence region. Concept and target accuracy (%) are
shown in the first and second columns, respectively. Results are reported as averages and standard
deviations of model performance across three seeds.

Table 4: Test-set performance before interventions. Results are averaged across ten seeds.
Dataset Method Concept Accuracy Concept Jaccard Target Accuracy

Hard CBM 61.42 ± 0.07 43.80 ± 1.32 58.38 ± 0.39
CEM 61.42 ± 0.12 44.84 ± 1.36 58.01 ± 0.49

Synthetic Autoregressive CBM 62.17 ± 0.11 45.30 ± 1.29 59.60 ± 0.62
Global SCBM 61.57 ± 0.05 44.53 ± 1.02 58.39 ± 0.53
Amortized SCBM 62.41 ± 0.20 45.85 ± 1.45 58.96 ± 0.38

Hard CBM 94.97 ± 0.07 77.22 ± 0.33 67.72 ± 0.57
CEM 95.12 ± 0.07 78.20 ± 0.28 69.60 ± 0.30

CUB Autoregressive CBM 95.33 ± 0.07 79.21 ± 0.21 69.24 ± 0.44
Global SCBM 94.99 ± 0.09 76.83 ± 0.47 68.19 ± 0.63
Amortized SCBM 95.22 ± 0.09 78.29 ± 0.28 69.87 ± 0.56

Hard CBM 85.51 ± 0.04 81.54 ± 0.08 69.73 ± 0.29
CEM 85.12 ± 0.14 81.06 ± 0.21 72.24 ± 0.33

CIFAR-10 Autoregressive CBM 85.31 ± 0.06 81.31 ± 0.10 68.88 ± 0.47
Global SCBM 85.86 ± 0.04 81.81 ± 0.19 70.74 ± 0.29
Amortized SCBM 86.00 ± 0.03 81.97 ± 0.20 71.66 ± 0.25
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