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ABSTRACT

The polarised regime—the capacity of variational autoencoders (VAEs) to discard
superfluous latent variables—is well-studied in the context of “classical” VAEs
with a standard Gaussian prior. In this paper, we extend these results to the case
of identifiable VAEs (iVAEs).

Motivation for this study The polarised regime of VAEs gives them a signature behaviour with
specific strengths and weaknesses which are well-studied (Dai et al., 2017; Rolinek et al., 2019; Dai
et al., 2020; Bonheme & Grzes, 2021). In this paper, we show that iVAEs also behave in a polarised
regime and are thus likely to exhibit the same behaviour.

1 BACKGROUND

Variational Autoencoders VAEs (Kingma & Welling, 2014) are non-identifiable deep probabilis-
tic generative models which maximise L(θ,φ; x) = Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x) ‖ p(z))
where p(z) = N (0, I).

Identifiable Variational Autoencoders iVAEs (Khemakhem et al., 2020) are identifiable ver-
sions of VAEs with a conditionally factorial prior pθ(z|u) where u is observed. They maximise
L(θ,φ; x,u) = Eqφ(z|x,u)[log pθ(x|z)]−DKL(qφ(z|x,u) ‖ pθ(z|u)). Their natively disentangled
latent representations are semantically meaningful, fair, and beneficial for abstract reasoning (Lo-
catello et al., 2019; van Steenkiste et al., 2019), which makes them attractive for downstream tasks.

The polarised regime The polarised regime is the capacity of any well-behaved VAE to discard
superfluous (passive) latent variables while learning the remaining active variables with high preci-
sion (Rolinek et al., 2019; Dai & Wipf, 2018; Dai et al., 2018). When this is extended to multiple
inputs, variables can be mixed, active, or passive (Bonheme & Grzes, 2021). Mixed if they are active
for some inputs and passive for others, active (or passive) if they are active (or passive) for all inputs.

Notation Given ε sampled from N (0, I), the mean, variance and sampled representations of the
encoder are defined as µ , µ(x,u;φ), σ , diag[Σ(x,u;φ)], and z , µ + εσ1/2, such that
qφ(z|x,u) = N (µ, diag[σ]). The prior representations are denoted by †, such that pθ(z|u) =

N (µ†, diag[σ†]). Specific samples of the observations X , {x(i)}ni=1 and U , {u(i)}ni=1 will be
indicated by (i) such that µ(i) , µ(x(i),u(i);φ), and the jth dimension of a vector by j (e.g., µj).

2 EXTENSION OF THE POLARISED REGIME TO IVAES

Assumptions We consider iVAEs with a Gaussian prior and posterior, similarly to Khemakhem
et al. (2020), where the mean and variance of the prior are learned (e.g., by a deep neural network).
We also assume that the number of samples n is sufficiently large for sample mean and variance to
be good approximations of the true mean and variance.

The proofs and an empirical verification of this section can be found in Appendices A and B.
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2.1 IVAES LEARN IN A POLARISED REGIME

Extending the work of Dai et al. (2018) to iVAEs, we have:
Theorem 1 (Polarised regime of iVAEs). Any well-behaved iVAE learns in a polarised regime.

Given Theorem 1, one can then readily extend the definition of Rolinek et al. (2019) to iVAEs.

Proposition 1 (Polarised regime ofµ(i), σ(i), and z(i)). When an iVAE learns in a polarised regime,
its mean, variance, and sampled representations, µ, σ, and z, are composed of a set of passive and
active variables, V(i)

p ∪ V(i)
a such that, for each pair of x(i) and u(i):

(i) µ(i)
j ≈ µ

†(i)
j , σ(i)

j ≈ σ
†(i)
j , and z

(i)
j ≈ z

†(i)
j ∀ j ∈ V(i)

p ,

(ii) σ(i)
j � 1 and z

(i)
j ≈ µ

(i)
j ∀ j ∈ V(i)

a ,

where µ† , µ†(u;θ), σ† , diag[Σ†(u;θ)], and z†(i) = µ†(i) + ε(i)
(
σ†(i)

)1/2
.

2.2 POLARISED REGIME OF IVAES FOR MULTIPLE DATA EXAMPLES

Based on Proposition 1 and Bonheme & Grzes (2021), we will now consider the properties of the
latent representations of iVAEs over multiple data examples. As for VAEs, the passive variables of
the mean representation are always close to the mean of their corresponding prior.
Proposition 2 (Polarised regime of µ overX and U ). When an iVAE learns in a polarised regime,
its mean representationµ ≈ µ(X,U ;φ) is composed of a set of passive, active and mixed variables
Vp ∪ Va ∪ Vm such that, overX and U :

(i) µ̄j ≈ µ̄†j and V ar(µj) ≈ V ar(µ†j) ∀ j ∈ Vp,
(ii) If the mean of the prior is fixed to some vector µ† and only its variance is learned, then

µ̄j ≈ µ†j and V ar(µj)� 1 ∀ j ∈ Vp,

where µ† ≈ µ†(U ;θ), µ̄j , Ep(x,u)[µj ], µ̄
†
j , Ep(u)[µ

†
j ], and V ar(·) denotes the variance.

Moreover, the variance representation will be close to zero for active variables and to the prior’s
variance for passive variables to respectively maintain high precision and low KL divergence.
Proposition 3 (Polarised regime of σ overX and U ). When an iVAE learns in a polarised regime,
its variance representation σ ≈ diag[Σ(X,U ;φ)] is composed of a set of passive, active and
mixed variables Vp ∪ Va ∪ Vm such that, overX and U :

(i) σ̄j ≈ σ̄†j and V ar(σj) ≈ V ar(σ†j ) ∀j ∈ Vp,
(ii) σ̄j � 1 and V ar(σj)� 1 ∀j ∈ Va,

where σ† ≈ diag[Σ†(U ;θ)], σ̄j , Ep(x,u)[σj ], and σ̄†j , Ep(u)[σ
†
j ].

Using Propositions 2 and 3, we can now show that passive variables of the sampled representation
follow the prior distribution while active variables are close to their corresponding mean representa-
tion, which extends the corresponding proof for standard VAEs (Bonheme & Grzes, 2021).
Theorem 2 (Polarised regime of z overX and U ). When an iVAE learns in a polarised regime, its
sampled representation z is composed of a set of passive, active and mixed variables Vp ∪Va ∪Vm
such that, overX and U :

(i) p(zj) ≈ p(z†j) ∀ j ∈ Vp,
(ii) p(zj) ≈ p(µj) ∀ j ∈ Va,

(iii) p(zj) = c p(z†j) + (1− c) p(µj) ∀ j ∈ Vm, where 0 < c < 1.

3 CONCLUSION

We have shown that the polarised regime of standard VAEs can be seen as a specific case of the
polarised regime of iVAEs where the mean and variance of the prior are fixed to 0 and I . Thus, as
for standard VAEs, the mean representations of iVAEs should be pruned of their passive variables
when used on downstream tasks (Bonheme & Grzes, 2021). Furthermore, iVAEs are likely to be
sensitive to posterior collapse when the pressure on the KL divergence is too high (Dai et al., 2020).
While these results can be generalised to VAEs with any Gaussian prior and posterior with diagonal
covariances, extending this work to other prior and posterior distributions is left for future work.
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A PROOFS

A.1 PROOF OF THEOREM 1

We want to show that a well-behaved iVAE—an iVAE converging to the lowest reconstruction error
and KL divergence possible—learns in a polarised regime. That is, any superfluous (passive) latent
dimension is discarded and relevant (active) variables are learned with high precision. Specifically,
passive variables will only depend on the prior while active variables will have very low variance.
Based on Dai & Wipf (2018, Theorem 5), we will show that iVAEs similarly behave in a polarised
regime.

3
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Proof. Let us consider the following multivariate Gaussian distributions with diagonal covariance
qφ(z|x,u) = N (µ,Σ), (1)

pθ(z|u) = N (µ†,Σ†), (2)

pθ(x|z) = N (µ‡, γI), (3)

where µ‡ def
= µ‡[z; θ] and γ > 0. Given k latent dimensions, the learning objective to minimise is
−L(θ,φ; x,u) = −Eqφ(z|x,u)[log pθ(x|z)] +DKL(qφ(z|x,u) ‖ pθ(z|u)). (4)

Plugging Equation 3 into Equation 4, and dropping the dependencies on model parameters for read-
ability we get

−L(θ,φ; x,u) =
1

2γ
Eqφ(z|x,u)

[
‖x− µ‡[z]‖22

]
+
k

2
log(2πγ) +DKL(qφ(z|x,u) ‖ pθ(z|u))

(5)

>
1

2γ
Ep(ε)

[
‖x− µ‡[µ+ εσ1/2]‖22

]
+
k

2
log(2πγ). (6)

Now suppose that the reconstruction is highly precise (i.e., γ → 0), and we have

lim
γ→0

Ep(ε)

[
‖x− µ‡[µ+ εσ1/2]‖22

]
= ∆.

If ∆ 6= 0, we have limγ→0−L(θ,φ; x) > limγ→0
∆
2γ + k

2 log(2πγ) = +∞ which contradicts the
fact that −L(θ,φ; x) converges to −∞ (i.e., the model is not well-behaved). Thus we must have
∆ = 0 and, given that ‖x− µ‡[µ+ εσ1/2]‖22 > 0, it means that

lim
γ→0

µ‡[µ+ εσ1/2] = x.

Furthermore, if ε = 0, this becomes
lim
γ→0

µ‡[µ] = x. (7)

We will now see that this is achieved by setting σ to very low values on active variables.

Recalling Equation 7, let us derive the Taylor approximation of µ‡[z] at z = µ

µ‡[z] ≈ µ‡[µ] + µ‡
′
[µ](z− µ) ≈ x + µ‡

′
[µ](z− µ). (8)

Plugging Equation 8 into Equation 5, and letting C def
= k

2 log(2πγ) + DKL(qφ(z|x,u) ‖ pθ(z|u)),
we get

−L(θ,φ; x,u) ≈ 1

2γ
Eqφ(z|x,u)

[
‖x− x− µ‡′[µ](z− µ)‖22

]
+ C,

=
1

2γ
Eqφ(z|x,u)

[(
µ‡
′
[µ](z− µ)

)T
µ‡
′
[µ](z− µ)

]
+ C,

=
1

2γ
Eqφ(z|x,u)

[
Tr
(

(z− µ)T (µ‡
′
[µ])Tµ‡

′
[µ](z− µ)

)]
+ C,

=
1

2γ
Tr
(
Eqφ(z|x,u)[(z− µ)T (z− µ)](µ‡

′
[µ])Tµ‡

′
[µ]
)

+ C,

=
1

2γ
Tr
(
Σ(µ‡

′
[µ])Tµ‡

′
[µ]
)

+ C. (9)

Plugging Equations 1 and 2 into the KL divergence term of Equation 5, we get

−L(θ,φ; x,u) =
1

2γ
Tr
(
Σ(µ‡

′
[µ])Tµ‡

′
[µ]
)

+
1

2
Tr(Σ†

−1
Σ) +

k

2
log(2πγ)+

1

2

(
(µ† − µ)TΣ†

−1
(µ† − µ)− k + log |Σ†| − log |Σ|

)
,

=
1

2
Tr

(
Σ

(
Σ†
−1

+
1

γ
(µ‡
′
[µ])Tµ‡

′
[µ]

))
+
k

2
log(2πγ)+

1

2

(
(µ† − µ)TΣ†

−1
(µ† − µ)− k + log |Σ†| − log |Σ|

)
. (10)
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The optimal value of Σ must thus satisfy

Σ =

(
Σ†
−1

+
1

γ
(µ‡
′
[µ])Tµ‡

′
[µ]

)−1

. (11)

As µ‡′[µ] is a tangent space of the r-dimensional manifold X at µ‡[µ], it has a rank of r. It
follows that (µ‡

′
[µ])Tµ‡

′
[µ] can be decomposed asU ‡S‡S‡TU ‡T where the first r elements of the

diagonal matrix S‡S‡T ∈ Rk×k are nonzero, such that diag[S‡S‡
T

] = [λ‡1, λ
‡
2, · · · , λ‡r, 0, · · · , 0].

If r = k, given that Σ and (µ‡
′
[µ])Tµ‡

′
[µ] are k-by-k symmetric matrices, by Golub & Van Loan

(2013, Theorem 8.1.5), we have

1

1

λ†
min

+
λ‡
i

γ

6 λi 6
1

1

λ†
max

+
λ‡
i

γ

∀i = 1, · · · , k. (12)

We can directly see that as γ → 0, both sides of the inequality converge to 0, thus the eigenvalues
of Σ become arbitrarily small at a rate proportional to γ. Thus similarly to Dai & Wipf (2018),

1√
γΣ1/2 ≈ O(1) under mild conditions and around the optimal solution, we have

−2Eqφ(z|x,u)[log pθ(x|z)] = 2Eqφ(z|x,u)

[
1

γ
‖x− µ‡[z]‖22

]
+ k log(2πγ), (13)

≈ Eqφ(z|x,u) [O(1)] + k log(2πγ), (14)

= O(1) + k log γ. (15)

Moreover, because 2Eqφ(z|x,u)[log pθ(x|z)] > 0, one can see that the lower bound provided
by Equation 15 cannot be further decreased. Thus, any additional variables introduced by increasing
k will not improve the reconstruction but may have a negative impact on the KL divergence when
γ → 0. Thus, similarly to VAEs, any superfluous variable of iVAEs will seek to lower the cost of
the KL divergence by remaining close to the prior.

A.2 PROOF OF PROPOSITION 1

Proof. Let us consider the classical case where the prior is a standard Gaussian distribution. Fol-
lowing Rolinek et al. (2019); Bonheme & Grzes (2021), we have

Definition 1 (Polarised regime of VAEs). When a VAE learns in a polarised regime, its mean,
variance, and sampled representations, µ(i), σ(i), and z(i), are composed of a set of passive and
active variables, V(i)

p ∪ V(i)
a such that, for each data example x(i):

(i) µ(i)
j ≈ 0, σ(i)

j ≈ 1, and z
(i)
j ≈ ε

(i)
j ∀ j ∈ V(i)

p ,

(ii) σ(i)
j � 1 and z

(i)
j ≈ µ

(i)
j ∀ j ∈ V(i)

a ,

where ε(i) ∼ N (0, I), and j is the jth variable of a representation.

Statement (i) comes from the fact that the prior is N (0, I) and passive variables are as close as
possible of the prior to decrease the KL divergence, while statement (ii) shows that active variables
have high precision (i.e., low variance) while increasing the KL divergence. For iVAEs, statement
(ii) remains unchanged but statement (i) needs to be updated to take into account the new prior
distribution N (µ†, diag[σ†]).

Because the prior distribution isN (µ†, diag[σ†]), z† = µ†+ ε
(
σ†
)1/2

where ε ∼ N (0, I). Thus,
for passive variables to be as close as possible to the prior, we needµ(i)

j ≈ µ
†(i)
j andσ(i)

j ≈ σ
†(i)
j for

all j ∈ V(i)
p . We can thus generalise statement (i) to µ(i)

j ≈ µ
†
j , σ

(i)
j ≈ σ

†
j , and z

(i)
j ≈ z

†(i)
j ∀ j ∈

V(i)
p , as required.
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A.3 PROOF OF PROPOSITION 2

Proof. Let us first consider statement (i) of Proposition 2, where the mean of the prior is learned. We
know from Proposition 1 that for all j ∈ V(i)

p ,µ(i)
j ≈ µ

†(i)
j . Thus, 1

n

∑n
i=1 µ

(i)
j ≈ 1

n

∑n
i=1 µ

†(i)
j and

µ̄j ≈ µ̄†j . Similarly 1
n

∑n
i=1(µ

(i)
j − µ̄

(i)
j )2 ≈ 1

n

∑n
i=1(µ

†(i)
j − µ̄†(i)j )2 and V ar(µj) ≈ V ar(µ†j),

as required.

In statement (ii), the prior has a fixed mean µ†. Thus, 1
n

∑n
i=1 µ

(i)
j ≈ 1

n

∑n
i=1 µ

†
j = µ†j and

µ̄j ≈ µ†j . Similarly 1
n

∑n
i=1(µ

(i)
j − µ̄

(i)
j )2 ≈ 1

n

∑n
i=1(µ†j − µ

†
j)

2 � 1 and V ar(µj) � 1, as
required.

A.4 PROOF OF PROPOSITION 3

Proof. Let us first consider statement (i) of Proposition 3 which concerned the passive variables of
the variance representation. We know from Proposition 1 that for all j ∈ V(i)

p , σ(i)
j ≈ σ

†(i)
j . Thus,

1
n

∑n
i=1 σ

(i)
j ≈ 1

n

∑n
i=1 σ

†(i)
j and σ̄j ≈ σ̄†j . Similarly 1

n

∑n
i=1(σ

(i)
j − σ̄

(i)
j )2 ≈ 1

n

∑n
i=1(σ

†(i)
j −

σ̄
†(i)
j )2 and V ar(σj) ≈ V ar(σ†j ), as required.

Statement (ii) of Proposition 3 is concerned with the active variables of the variance representation.
We know from Proposition 1 that for all j ∈ V(i)

a , σ(i)
j � 1. Thus, 1

n

∑n
i=1 σ

(i)
j � 1 and σ̄j � 1.

Similarly 1
n

∑n
i=1(σ

(i)
j − σ̄

(i)
j )2 � 1 and V ar(σj)� 1, as required.

A.5 PROOF OF THEOREM 2

Proof. Let zj be the sampled representation variable at index j. There are three cases:

(i) If j ∈ Vp, then, from statement (i) of Proposition 2, µj ≈ µ†j . Moreover, from statement

(i) of Proposition 2, σj ≈ σ†j . Thus, zj ≈ µ†j + εj

(
σ†j

)1/2

. Recall from Proposition 1

that z†j is distributed according to N(µ†, diag[σ†]). It follows that p(zj) ≈ p(z†j), which
proves statement (i).

(ii) If j ∈ Va, then, from statement (ii) of Proposition 3, σj is almost constant with a value
close to 0. Thus, zj ≈ µj . It follows that p(zj) ≈ p(µj), which proves statement (ii).

(iii) If j ∈ Vm, we know that zj is composed of a subset of active components and a subset
of passive components. Thus, zj is distributed according to a mixture distribution. Using
step (i) and (ii) of the proof, we know that p(zj) ≈ p(z†j) for passive variables and p(zj) ≈
p(µj) for active variables. It follows that for mixed variables p(zj) = c p(z†j) + (1 −
c) p(µj) where 0 < c < 1. This concludes the proof.

B EMPIRICAL VERIFICATION

In this section, we provide an empirical verification of the propositions and theorems presented
in the main paper. The source code is available at https://github.com/bonheml/VAE_
learning_dynamics, the architecture and hyperparameters used are described in Table 1 and 2.
We use the dSprites dataset1 (Higgins et al., 2017). Note that all the histograms presented below are
computed using 10000 input examples and the latent space is set to a larger number of dimensions
than usual (30 instead of 10) to ensure the presence of superfluous (passive) variables. In line with
the original implementation of Khemakhem et al. (2020), we do not learn the mean representation

1Licensed under an Apache 2.0 licence.
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and fix it to 0. Note that as with VAEs, we did not observe any mixed variables when training iVAEs
on this dataset.

Table 1: Model architecture

Encoder

Input: (R64×64×channels,R5)
Conv, kernel=4×4, filters=32, activation=ReLU, strides=2
Conv, kernel=4×4, filters=32, activation=ReLU, strides=2
Conv, kernel=4×4, filters=64, activation=ReLU, strides=2
Conv, kernel=4×4, filters=64, activation=ReLU, strides=2
FC, output shape=261, activation=ReLU
FC, output shape=2x30

Decoder

Input: R30

FC, output shape=256, activation=ReLU
Deconv, kernel=4×4, filters=64, activation=ReLU, strides=2
Deconv, kernel=4×4, filters=32, activation=ReLU, strides=2
Deconv, kernel=4×4, filters=32, activation=ReLU, strides=2
Deconv, kernel=4×4, filters=channels, activation=ReLU, strides=2

Prior variance

Input: R5

FC, output shape=50, activation=Leaky ReLU
FC, output shape=50, activation=Leaky ReLU
FC, output shape=50, activation=Leaky ReLU
FC, output shape=30

Table 2: Model hyperparameters

Parameter Value
Batch size 64
Latent space dimension 30
Optimizer Adam
Adam: β1 0.9
Adam: β2 0.999
Adam: ε 1e-8
Adam: learning rate 0.0001
Reconstruction loss Bernoulli
Training steps 300,000
Train/test split 90/10

Illustration of Proposition 2 We can see in Figure 1a that the empirical distribution of a pas-
sive variable of the mean representation consistently takes values very close to zero, which con-
firms Proposition 2 for the configuration where the mean is fixed. Moreover, the active variables of
the mean representation tend to have higher variance as they encode more information, as illustrated
in Figure 2a.

Illustration of Proposition 3 Figure 2b shows that the active variables of the variance represen-
tation will remain close to zero. Moreover, when compared to Figure 2c, we can see that the active
variables of the variance representation also depart from their prior distribution, as their objective
is to maximise the reconstruction by reducing the noise during the reparametrisation. On the other
hand, the passive variables of the variance representation stay close to the variance representation
of the prior to minimise the KL divergence, as seen in Figures 1b and 1c. Both observations con-
firm Proposition 3. Interestingly, in the case of passive variables, the variance representation of the
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Figure 1: Empirical distributions of a passive variable of an iVAE trained on dSprites. (a) and (b)
correspond to the mean and variance of the posterior, and (c) is the variance of the prior. The same
passive variable is used for all plots in this figure.
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Figure 2: Empirical distributions of an active variable of an iVAE trained on dSprites. (a) and (b)
correspond to the mean and variance of the posterior, and (c) is the variance of the prior. The same
active variable is used for all plots in this figure.

prior stays close to zero. Thus, iVAEs seems to behave in a near-deterministic way as the variance
is maintained low for both types of variables.
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Figure 3: Empirical distributions of an active variable of an iVAE trained on dSprites. (a) and (b)
correspond to the sampled representation of the posterior and the prior. (c) is the mean representation
of the posterior. The same active variable is used for all plots in this figure.
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Figure 4: Empirical distributions of a passive variable of an iVAE trained on dSprites. (a) and (b)
correspond to the sampled representation of the posterior and the prior. The same passive variable
is used for all plots in this figure.

Illustration of Theorem 2 Figure 3 confirms that the sampled representations of active variables
are very close to the corresponding mean representation, as illustrated by the very similar empirical
distributions of Figures 3a and 3c. We can also observe a strong difference between the sampled
representation of the posterior and the prior in Figures 3a and 3b. The second point of Theorem 2 is
confirmed by Figure 4 where we can see that the sampled representations of the prior and posterior
are very similar.
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