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Abstract

We study the dynamics of gradient flow with small weight decay on general
training losses ' : R* — R. Under mild regularity assumptions and assuming
convergence of the unregularised gradient flow, we show that the trajectory with
weight decay A exhibits a two-phase behaviour as A — 0. During the initial fast
phase, the trajectory follows the unregularised gradient flow and converges to a
manifold of critical points of F'. Then, at time of order 1/, the trajectory enters a
slow drift phase and follows a Riemannian gradient flow minimising the ¢5-norm
of the parameters. This purely optimisation-based phenomenon offers a natural
explanation for the grokking effect observed in deep learning, where the training
loss rapidly reaches zero while the test loss plateaus for an extended period before
suddenly improving. We argue that this generalisation jump can be attributed to
the slow norm reduction induced by weight decay, as explained by our analysis.
We validate this mechanism empirically on several synthetic regression tasks.

1 Introduction

Strikingly simple algorithms such as gradient methods are a driving force behind the success of
deep learning. Nonetheless, their remarkable performance remains mysterious, and a full theoretical
understanding is lacking. In particular: (i) convergence to low training loss solutions on non-convex
objectives is far from trivial, and (ii) it is unclear why the resulting solutions generalise well [Zhang
et al., 2017]. These questions are accompanied by a range of surprising phenomena that arise during
training. One such intriguing behaviour is known as the grokking phenomenon, which we explore
in this work. Coined by Power et al. [2022], this term describes a two-phase pattern in the learning
curves: first, the training loss rapidly decreases to zero, while the test loss plateaus at a certain value.
This is followed by a second phase, where the training loss remains zero, but the test loss steadily
decreases, leading to a final improved generalisation performance, as depicted in Figure 1 (left).

In this paper, we propose a novel theoretical perspective to explain this phenomenon. By examining
the gradient flow dynamics with weight decay, we show that, in the limit of vanishing weight decay,
we can fully describe the trajectory of the model parameters. Specifically, we prove that the training
process can be decomposed into two distinct phases. In the first phase, the gradient flow follows the
unregularised path, converging to a manifold of critical points of the training loss. In the second, the
trajectory enters a slow drift phase, where the weights move along this manifold, driven by weight
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Figure 1: Gradient flow with small weight decay \. (Left) A typical example of grokking: the training
loss rapidly drops to zero, while the test loss plateaus for a long period before eventually decreas-
ing—coinciding with a steady drop in the ¢5-norm of the weights. (Right) Schematic illustration
in parameter space R? of the optimisation behaviour described in Theorem 1. The trajectory w™(t)
initially follows the unregularised gradient flow and converges to a manifold of critical points of F'
(fast dynamics). At time ¢ & 1/, the regularisation term becomes dominant and induces a slow drift
along this manifold toward a lower ¢3-norm solution (slow dynamics).

decay, gradually reducing their {5 norm, as illustrated in Figure 1 (right). We argue that this slow
decrease in the weight norms explains the grokking phenomenon, as smaller weight norms are often
correlated with better generalisation. To convey the main intuition, we state below an informal version
of our result, describing the full trajectory of the gradient flow with small weight decay.

Informal statement of the result. For a generic training loss F : R? — R satisfying some
regularity assumptions, we consider the gradient flow w?* regularised with weight decay: ™ (t)
~VF(w*(t)) — Aw*(t). Under the assumption that the unregularised gradient flow trajectory is
bounded, we prove the following.

Theorem 1 (Main result, informal). As the weight decay parameter \ is taken to 0, the trajectory
w*(t) can be seen as a composition of two coupled dynamics:

1. (Fast dynamics driven by F given by Proposition 1) In a first phase, the weights follow the
unregularised gradient flow and converge to a manifold of critical points of F.

2. (Slow dynamics driven by the weight decay given by Proposition 2) At time t ~ 1/, the
iterates start slowly drifting along this manifold, following a Riemannian gradient flow that
decreases the {5-norm of the weights.

Link with the grokking phenomenon. Note this is a purely optimisation result: no statistical
assumptions are made, and it a priori does not imply any improvement in test loss during the slow
phase. However, it provides a natural explanation for the grokking phenomenon. Indeed, in practice,
for many deep learning models with random initialisation, gradient flow converges to a global
minimiser of the training loss. When this solution generalises poorly—as is often the case with large
initial weights, in the so-called lazy regime [Chizat et al., 2019]—the subsequent slow drift along the
critical manifold, driven by weight decay, decreases the /5-norm of the solution and simplifies it in the
second phase. Since lower weight norms often correlate with better generalisation [Bach, 2017, Liu
etal., 2022c, D’ Angelo et al., 2024], this offers a convincing explanation for the delayed improvement
in test performance. We discuss various settings where this behaviour is observed in Section 5.

2 Related work

Grokking in experimental works. The term grokking was originally coined by Power et al.
[2022], which studied a two-layer transformer trained with weight decay on a modular addition
task. They observed that the network quickly fits the training data while generalising poorly, fol-
lowed much later by a sudden transition to near-perfect generalisation. Following this work, many
studies have investigated modular addition tasks to better understand the mechanisms underlying
this phenomenon [Nanda et al., 2023, Gromov, 2023]. However, grokking has been observed far
beyond this setting. For instance, Barak et al. [2022] showed that training a neural network to learn
parities exhibits a similar delayed generalisation pattern. In Liu et al. [2022c], grokking was induced
across a broad range of tasks, including image classification and sentiment analysis, by using small
datasets, large initialisations, and weight decay. Other settings and architectures where grokking-like



behaviour appears include matrix factorisation [Lyu et al., 2023] and learning XOR-clustered data
with a ReLU network [Xu et al., 2023]. Finally, it is worth noting that this delayed transition in
generalisation was already observed in earlier works, as clearly illustrated in Figure 3 of Chizat and
Bach [2020]. More recently, Jeffares and van der Schaar [2025] argued that grokking may not be so
central to Deep Learning and may only appear in very specific situations. However, we still believe
its a priori counter-intuitive aspect is worth investigating and might lead to theoretical understandings
that go beyond what is currently referred by grokking.

Grokking as the transition between lazy and rich regimes. Several works have framed grokking
as the transition between the lazy and rich regimes. The lazy regime, also called the NTK regime,
was introduced by Jacot et al. [2018]. It typically arises when the network is trained from large
initialisations [Chizat et al., 2019], and corresponds to a setting where zero training loss can be
quickly achieved, but often with poor generalisation performance. In contrast, the rich regime (also
called the feature learning regime) corresponds to a setting where the network actively learns new
internal features during training. In the classification setting, Lyu and Li [2019] show that the rich
regime is always attained for homogeneous parameterisations, and similarly, Chizat and Bach [2020]
provide an analogous result for infinitely wide two-layer networks. In this context, Lyu et al. [2023]
and Kumar et al. [2024], followed by Mohamadi et al. [2024], offer a theoretical perspective on
grokking as the transition from the lazy regime to the rich regime during training: initially, the
predictor quickly converges towards the NTK solution, and later escapes this regime to reach a better
generalising solution, driven by the effects of implicit regularisation and/or weight decay.

The role of weight decay. The role of weight decay in grokking remains somewhat debated. While
many of the original works exhibiting the phenomenon include weight decay [Power et al., 2022, Liu
et al., 2022b], grokking has also been observed without [Chizat and Bach, 2020, Xu et al., 2023], as
strongly emphasised by Kumar et al. [2024]. However, as shown in Lyu et al. [2023], the transition
tends to occur much later and to be less sharp without weight decay. In this context, weight decay can
be interpreted as a factor that triggers or accelerates the transition from the lazy to the rich regime.
While grokking can be observed in classification tasks even without weight decay—thanks to the
algorithm’s implicit bias—to the best of our knowledge, it cannot occur in regression tasks unless
weight decay is used. Of particular relevance to our work, Liu et al. [2022c] propose an intuitive
explanation of grokking that is based on weight decay: during the first phase, the model rapidly
converges to a poor global minimum; during the second, slower phase, weight decay gradually steers
the iterates toward a lower-norm solution with better generalisation properties. While appealing,
this explanation remains informal and lacks rigorous theoretical support. In this work, we provide a
formal analysis of the optimisation dynamics underlying the grokking phenomenon: an initial fast
phase leads to convergence toward the solution associated with the lazy regime, followed by a slower
second phase that drives convergence toward the solution characteristic of the rich regime.

Drift on the interpolation manifold. Many theoretical works in the machine learning community
have studied the training dynamics of gradient methods in overparameterised neural networks, where
the set of zero training loss solutions forms a high-dimensional manifold. In this context, leveraging
results from dynamical systems theory [Katzenberger, 1990], the work of Li et al. [2021] describes
the drift dynamics induced by stochastic noise after stochastic gradient descent (SGD) reaches
the manifold. This analysis was further extended by Shalova et al. [2024]. Leveraging a similar
stochastic differential framework, Pillaud-Vivien et al. [2022] precisely characterises this drift in
the setting of diagonal linear networks, and proves that it leads to desirable sparsity guarantees.
Much in the spirit of our work, although outside the deep learning context, Fatkullin et al. [2010]
derive stochastic differential equations that describe the dynamics of systems with small random
perturbations on energy landscapes with manifolds of minima, illustrating how the system first
converges to the manifold and then drifts along it.

Our analysis builds upon this framework popularized by Li et al. [2021] and tracing back to Katzen-
berger [1990]. Our contribution differs from previous work in both focus and scope. Whereas
previous analyses attribute the second, slower learning phase to stochastic effects, we identify a
deterministic mechanism—namely, a slow drift induced by regularization—and link it directly to the
grokking phenomenon, a connection that, to our knowledge, has not been previously explored. From
a technical perspective, our setting is simpler yet enables a more detailed analysis. Rather than
appealing to results from Katzenberger [1990] as a black box, we provide a simpler, self-contained
proof building on Falconer [1983]. Furthermore, unlike prior analyses that assume initialization
near the interpolation manifold, our framework accommodates arbitrary initialisation. We rigorously



characterise the initial convergence toward the manifold and the subsequent transition to the drift
phase along it, which constitutes the main technical novelty of our analysis.

3 Setting and preliminaries

We consider a loss function F' : R? — R which is sufficiently smooth, as stated in Assumption 1
below. Typical examples include the least square loss over some training dataset, where the parameters
to optimise represent the weights of some neural network architecture. For a given A > 0, we define
the regularised loss F) as:

A
Fa(w) = F(w) + Slwl}, Yo R

Initialising the parameters from wy € RY (independently of \), we then consider the gradient flow
w™ over the regularised loss for any \ > 0, as the solution of the differential equation

W (t) = —VFE\(w*(t)) and w*(0) = wp. (1)

Gradient flow is the limit dynamics of (stochastic) gradient descent as the learning rate goes to 0. For
X = 0, we denote wSF the gradient flow on the unregularised loss:

WO (t) = =VF(w®F(t)) and w“F(0) = wy. )
In the remaining of the paper, we consider the following assumption on the objective function.

Assumption 1. The function F is C> on R?, its third derivative is locally Lipschitz and F is definable
in an o-minimal structure. Moreover, the solution wSY to the gradient flow ODE (2) is bounded.

The regularity conditions on F' ensure that, for any A > 0, the gradient flow ODE has a unique
solution, which is defined for all ¢ > 0. This is a consequence of the Picard—-Lindel6f theorem and
boundedness of the trajectories. Definability in the o-minimal sense guarantees that bounded gradient
flow trajectories converge to a limit point [Kurdyka, 1998, Thm. 2]. This is a mild assumption
satisfied by most functions arising in applications, such as polynomials, logarithms, exponentials,
subanalytic functions, and finite combinations of those; see Coste [1999], Bolte et al. [2007] for more
details. Overall, Assumption 1 is pretty mild and holds for all architectures (e.g., neural networks or
transformers) that use differentiable activations.

Finally, note that the boundedness assumption on the unregularised flow excludes classification
settings where the network can perfectly separate the data, since in such cases the unregularised
iterates diverge.

3.1 Stationary manifold and Riemannian flow

Assumption 1 guarantees that the gradient flow converges to a limit point wgoF = limy_ o0 wCF (1),
which is a stationary point of F'. In typical scenarios of training overparameterised models, stationary
points are not isolated, but form continuous sets [Cooper, 2021].

Definition (Definition of the manifold M). We define M to be the largest connected component of
VE~Y(0) containing wSY¥, where VF~1(0) corresponds to the set of stationary points of F.

Our key assumption is that M forms a smooth manifold, and that it contains only local minimizers
(and not saddle points). Additionnally, we impose that the non-zero eigenvalues of the Hessian on
M are lower bounded by some constant ; > 0. Following the terminology of Rebjock and Boumal
[2024], this is known as the Morse-Bott property.

Assumption 2. M is a smooth submanifold of R? of dimension k € [d), i.e. for any w € M,
rank(V2F (w)) = d — k. Also, there exists ) > 0 such that for any w € M, all non-zero eigenvalues
of V2F(w) are lower bounded by ).

As stated in Rebjock and Boumal [2024], for C? functions this property is equivalent to the Kur-
dyka—tL.ojasiewicz, also known as Polyak—Lojasiewicz (PL) condition locally around M [Kurdyka,
1998, Bolte et al., 2009]. It implies that (i) every point in M is a local minimiser, and (ii) all gradient
flow trajectories are locally attracted towards M. This stability property is essential for proving
regularity of the flow map ® in Section 4. Let us discuss the relevance of Assumption 2 in the context
of overparameterised machine learning.



+ Convergence to a local minimiser: our assumption rules out the possibility that wSF converges
to a saddle point of F'. This is justified by a large number of works showing that gradient
methods avoid saddle points for almost all initialisations. In particular, Lee et al. [2016, 2019]
prove it under the assumption that all saddle points of F’ are strict. Although their result only
holds for discrete-time gradient descent, the underlying argument can be extended to gradient
flow (the proof relies on the Stable Manifold Theorem for dynamical systems, which also holds
in continuous time [Teschl, 2012, §7]).

¢ Morse-Bott/EL.ojasiewicz property: this is a common assumption in the analysis of gradient
flow dynamics for overparameterised networks [Li et al., 2021, Fatkullin et al., 2010, Shalova
et al., 2024]. Note that for general models, the critical set may not form a manifold everywhere.
However, it is often possible to show that the manifold structure holds locally, i.e., on most of
the space, excluding some degenerate points'; see Section 5 for examples and Liu et al. [2022a]
for a generic result. Moreover, the results derived from such an assumption are generally very
representative of empirical observations, as can be seen in Section 5.

Riemannian gradient flow on M. We endow M with the standard Euclidean metric. For any
differentiable function h : R? — R, we denote by grad , the Riemannian gradient on M of the
function h defined as follows:

M — R?

gradml s Py (Vh(w)),

where Pr, (. is the orthogonal projection on the tangent space to M at w. Under Assumption 2,
typical properties of smooth manifolds imply that T (w) = Ker(V?F(w)) [see e.g., Boumal, 2023,
for a detailed introduction to optimisation on manifolds]. Using this notion of Riemannian gradient,
we study the Riemannian gradient flow for some objective function & and initialization waq € M,
defined as the curve w satisfying,

w(t) = —grad v h(w(t)) and  w(0) = wm. 3)

By construction of the Riemannian gradient, the trajectory of any solution of this ODE necessarily
belongs to VF~1(0), and therefore to M, since M is a maximal connected component. If / is C?
and has compact sublevel sets, Assumptions 1 and 2 guarantee that there exists a unique solution to
Equation (3) and that it is defined on R .

4 Grokking as two-timescale dynamics

This section states our main results, where we characterise the two-timescale dynamics of the
regularised gradient flow (1) in the limit A — 0. In Section 4.1 we describe the first phase, the fast
dynamics, where w” approximates the unregularised gradient flow solution on finite time horizons.
Section 4.2 then identifies the second, slow dynamics happening at arbitrarily large time horizons,
where w™ follows the Riemannian flow of the £, norm on the manifold M of stationary points.

4.1 Fast dynamics

A first simple observation is that as A — 0, F\ — F uniformly on any compact of R?. From there, it
seems natural that w” should converge, at least pointwise, to wCF as A — 0. A Gronwall argument
indeed allows to characterise the first, fast timescale dynamics given by Proposition 1 below.

Proposition 1. If Assumption 1 holds, then for all T > 0, w* = w9 in (CO([0, T),RY), || - [loo)
—

Importantly, uniform convergence only holds on finite time intervals of the form [0,77], but is
not true on R . More precisely, grokking is observed when the two limits cannot be exchanged:
limy o+ limy e w™(t) # limg_ o0 im0+ w™(t) = limy_, oo wS¥ (t). In Figure 1, the endpoint
of the red arrow corresponds to this first limit, while the endpoint of the blue arrow corresponds to the
second. This distinction highlights a key aspect of grokking: the dynamics evolve on two different
timescales. Initially, as described by Proposition 1, the regularised flow tracks the unregularised one.
But at much larger time horizons, the regularised dynamics begin to diverge.

'While our results are stated for such a global Morse-Bott assumption, they could be directly extended to
local Morse-Bott assumptions, provided that the iterates remain in the non-degenerate region.



4.2 Slow dynamics

The second part of the dynamics is harder to capture, since it happens at a time approaching infinity,
when ) approaches zero. It is done using theory of singularly perturbed systems. In the following,
we associate to the unregularised flow function a mapping ¢ : R? x R, — R? satisfying

p(w,t) = w — /O VF(p(w,s))ds,  Y(w,t) € RExRy.

Note that ¢(w, t) simply corresponds to the solution of the gradient flow of Equation (2) at time ¢
when initialised in w. When possible to define—i.e., when the gradient flow admits a limit point in
R?—we define the mapping ® as

O(w) = 1t1g1010 d(w,t). €))

Thanks to Assumption 1, the unregularised flow initialised in wq admits the limit point ®(wq ), which
is necessarily a stationary point of the loss, i.e., VF(®(wp)) = 0. Assumption 2 then ensure that the
mapping ® is defined and C? on some neighbourhood of M, thanks to a result of Falconer [1983].

Lemma 1. If Assumptions 1 and 2 hold, there exists an open neighbourhood U of M such that ® is
defined and C? on U.

Now the mapping @ is well defined on a neighbourhood of M, it can be used to describe the limit of
the slow dynamics. For A > 0, we let @ : t — w™(¢/)\). We indeed have to adequately “speed-up”
time to capture its behaviour. Notably, @™ satisfies the following differential equation:

W) = —i (t) — %VF(u?’\(t)) and  (0) = wo. )

Our goal in this section is to study the limit function limy_,o @™. Intuitively, the %VF term in
Equation (5) will enforce this limit to stay on the stationary manifold M for any ¢t > 0. The slow
dynamics will be shown to approximate the Riemannian flow of the squared Euclidean norm on
the stationary manifold M for ¢ > 0. This limit flow is defined by w°, which is the solution of the
following differential equation on R, for the function £5 : w — |Jwl|3/2,

w°(t) = —grad y, L2(w°(t)) and  @°(0) = D (wp). (6)
Recall that the Riemannian gradient is grad \, f2(w) = Pker(v2r(w))(w) for any w € M. De-
noting D®,, the differential of ® at w, Li et al. [2021, Lemma 4.3] proved that for any w € M,
Pxer(vzr(w)) = Dy, i.e., the differential of @ at w is given by the orthogonal projection onto the
kernel space of the Hessian of F'. In consequence, w® also satisfies the following differential equation:
WO (t) = —D®goyy(W°(t)) and  @°(0) = ®(wy).

Using this alternative description of w°, we can now prove our main result, given by Proposition 2.

Proposition 2. If Assumptions 1 and 2 hold, then for all T,e > 0, we have 0 )i}J w® in
—
(C[e, T],RY), || - |loo ), where w° is the unique solution on R of the differential equation (6).

Proposition 2 states that the slow dynamics ™ converges uniformly to @w° as A — 0 on any compact

interval of the form [, T']. Note that excluding 0 from this interval (i.e., € > 0) is necessary. Indeed,
uniform convergence cannot happen on an interval of the form (0, 7], since ™ (0) = wyp forany A > 0
and 1°(0) = ®(wyp). In particular, Proposition 2 leads to pointwise convergence of 1*: we have

lim @*(0) =
Jig 0(0) = u,

lim @ (t) = @°(t) ift > 0.
A—0

This limit function limy_,o %" is non-continuous at 0. Indeed the whole fast dynamics, which
follows the unregularised flow, happens at that O point in the limit A — 0. On the other hand,
Proposition 2 describes the second phase of the dynamics, starting from the convergence point of
the unregularized flow ®(wy) — at the rescaled time 0" — and following the Riemannian flow on M.

Note that, once the junction between the slow and fast dynamics is carefully handled via Lemma 2
in Appendix A.2, Proposition 2 can be derived from Fatkullin et al. [2010, Theorem 2.2], which
heavily relies on the technical result of Katzenberger [1990]. However, for the sake of completeness
and readability, we provide a concise and self-contained proof of Proposition 2, avoiding the use of
heavyweight methods from Katzenberger [1990] and relying on weaker assumptions.



Sketch of proof. We here provide a sketch of proof with the key arguments leading to Proposition 2.
Its complete and detailed proof can be found in Appendix A.3. We first define the shifted slow
dynamics o for any ¢ > 0 as 9 (t) = @w*(t + t(\)), where t()\) is the “junction point” between
the two dynamics given by Lemma 2 in Appendix A.2, and satisfies limy_,g¢(A) = 0. Using
Lemma 2, 9> then follows the same differential equation as @, with an initial condition now
satisfying limy o *(0) = ®(wg) € M. While the dynamics of ©* might be hard to control as
A — 0, it is easier to control the one of <I>(f;>‘). Using the chain rule, we indeed have

DTN (1)) = ~DPiryy - (7(8) + %VF(@A(t))).

Then using the fact that for any w in a neighbourhood of M, D®(w) - VF(w) = 0 [Li et al., 2021,
Lemma C.2], this directly rewrites as

(01 (t)) = =Dz - 0 (t).

Now note that this resembles the differential equation satisfied by w°. The two differences being
that (i) the initialisation points differ, but limy_,o @ (0) = @°(0); (ii) the time derivative is on ®(7*)
rather than ¢* directly. To handle the second point, 7* and ®(*) obviously converge to the same
initialisation point as A — 0. One can then use stability of the manifold M, thanks to Assumption 2, to
show that sup, ¢ (o 7 |2 (t) — ®(9*(¢))|| converges to 0 as A — 0. This then allows to conclude. []

Characterizing the limit of the Riemannian flow. By monotonicity of its norm, w® is obviously
bounded over time. Typical optimisation results then guarantee that the limit set of w°(¢) as t — oo
is contained in the set of critical points of the squared Euclidean norm on the manifold M, given by
the KKT points of the following constrained problem:

. 2
. 7
in [[wllz )

The notion of KKT points indeed extend to smooth manifolds [Bergmann and Herzog, 2019], so that
under Assumption 2, the KKT points of Equation (7) are given by the points w* € M satisfying
grad ,, 2 (w*) = 0, where we recall grad , s is the Riemannian gradient.

We are then able to show that w? converges towards the set of KKT points. Note that this does not
follow from Proposition 2 alone, as we also need to show that trajectory of w”* remains bounded
independently of A: we can prove this is true in our case.

Proposition 3. [f Assumptions 1 and 2 hold, then for any sequence (\)ren such that \i, k% 0,
—00

the limit points of (lim;_, oo w* (t))pen are included in the KKT points of Equation (7).

While Proposition 3 guarantees that w™ gets arbitrarily close to KKT points of Equation (7) as A goes
to 0, it does not imply that it has the same limit as w°. It is however guaranteed with the additional
assumption that w° (t) converges to a strict local minimum of the Euclidean norm on the manifold M.

Proposition 4. Let Assumptions 1 and 2 hold and, assume additionally that w° (t) converges towards
a strict local minimum w* of the constrained problem (7). Then limy_,q lim; w)‘(t) = w*.

When the slow limit dynamics on M converges towards a strict local minimum, Proposition 4
guarantees that, for small enough \, w™ gets trapped in the vicinity of this local minimum as ¢t — oo,
allowing us to get a perfect characterisation of lim o lim;_, o w? (t). In particular, this double limit
corresponds to the limit of the slow dynamics w°, while the permuted limit (lim;_, o, limy_,¢ w? (t)
corresponds to the limit of the fast dynamics wS¥, thanks to Proposition 1.

Role of initialisation scale. The initialisation scale strongly influences the behavior of the unreg-
ularised flow and, consequently, the first phase of training under weight decay. This dependence
on scale is well-documented in the literature [Chizat et al., 2019]. While a complete theoretical
understanding remains open, it is widely accepted that small initialisation scales correspond to the rich
regime, in which implicit bias drives the model toward interpolating solutions with smaller weight
norms, typically associated with better generalization. In contrast, large initialisation scales give rise
to the lazy or NTK regime, where features change little during training. This regime behaves similarly
to random feature models and tends to produce interpolators with weaker generalisation performance.

In our framework, this distinction has a direct consequence. With a small initialisation scale, the
point ®(w™(0)) reached after the first phase already exhibits a small norm—possibly corresponding



to a KKT point of Equation (7)-so no second grokking phase occurs, as the system has effectively
converged. Conversely, with a large initialisation scale, ®(w™(0)) retains a large norm, which triggers
substantial movement during the second, grokking phase.

The grokking transition is not sudden! In the literature, grokking is often described as a “sudden
drop” in the validation loss following an extended phase of overfitting. We argue here that this drop
only seems sudden when training time is plotted on a logarithmic scale, whereas in fact it unfolds
over a characteristic duration of order 1/, following a plateau of comparable duration 1/\. Indeed,
Proposition 2 predicts that the drop takes place within the time interval [¢ /A, M /], where ¢ is a small
time independent of \ (think of ¢ as the time it takes for @° to move very slightly away from wSF),
and M corresponds to the typical time required for w®(¢) to approach its limit lim;_, o, w°(¢). Prior
to this interval, the parameters evolve according to the unregularised flow wS¥ (¢). Let M’ denote the
typical time it takes for wGF (¢) to reach wS¥; then the plateau extends over the interval [M’, e/)].
As aresult, on a logarithmic time scale, the drop occurs within an interval of length In(M/¢), while
the preceding plateau spans roughly In(¢/A) on the same scale. This explains why, as A — 0, the
drop appears abrupt compared to the plateau in log-scale plots. In contrast, when viewed in linear
time, the drop actually extends over a duration comparable to that of the preceding plateau, producing
a markedly different visual impression.

Comparison with Lyu et al. [2023]. The work most closely related to ours is that of Lyu et al.
[2023], which provides a theoretical characterization of the grokking phenomenon as a transition from
the NTK regime—i.e., the unregularised flow initialised at large scales—to the rich regime, which
typically converges to KKT points of Equation (7). However, their analysis does not offer a general
optimisation-based perspective on the phenomenon and, in particular, does not account for the slow
drift phase along the solution manifold, which we identify and characterise. Moreover, their setting
is more restrictive: it assumes specific network architectures with homogeneous parameterisation
and requires large initialisation scales. In contrast, our results hold outside the NTK regime and apply
across a broader class of settings. In addition, their theoretical guarantees rely on taking the initial-
isation scale to infinity while simultaneously letting the regularisation strength tend to zero, with both
rates polynomially coupled. Their analysis establishes that, for some sufficiently large time ¢()), the
regularised flow w™> approaches KKT points of Equation (7), but it does not provide guarantees about
the asymptotic behavior beyond this time. By contrast, Proposition 3 characterises the limit points
of the flow w?, offering a stronger and more complete understanding of its long-term dynamics.

5 Examples and experiments

Linear regression. Let F(w) = || Xw — y||2 with X € R"*¢, and assume that min ' = 0. The
problem is convex and the set of critical points is the affine subspace M = {w : Xw = y};
Assumption 2 is satisfied globally.

It is well known that unregularised gradient flow w“¥ converges to P (wj), the projection of the

initial point on M [Lemaire, 1996, Gunasekar et al., 2018]. Then, since M is convex, the Riemannian
flow on M necessarily converges to the minimal £ norm solution w* = X Ty, where X denotes
the pseudo-inverse. Those two points are different (unless wg = 0), which leads to grokking, as
w* is expected to have better generalization properties than P (wq) [Bartlett et al., 2020]. In this
setting, the trajectories of w™ can be computed explicitly to illustrate the two-timescale dynamics;
see Appendix C.

Matrix completion. This is a prototypical non-convex problem which is amenable to theoretical
analysis. The goal is to recover a matrix M* € R™*™_ which is assumed to be low-rank, from a
subset of observed entries in £ C [n] x [m], by solving

. _ T 2
e I FUV) = S ca (OV Ty = M), ®)
where r is the target rank. If the rank of the ground truth M™* is known, one can set 7 accordingly.
However, the true rank is often unknown. An alternative approach is to use overparameterisation and
choose r much higher than needed. Although in this case F' has many minimizers, our results
indicate that the gradient flow trajectories (2) for small ) tend to converge towards low-rank
solutions.



More precisely, we analyse the extreme overparameterised setting when r = m + n. In Appendix C,
we show that the set M™ of stationary points of F' which are nonsingular matrices forms a manifold.
Provided that unregularised gradient flow converges to a nonsingular point, we can apply our results
locally. These results state that, in the second, slow phase of the dynamics, the trajectories minimise
|U|% + [|V||% on M*. Recall that for a given matrix M € R™*™, we have

1
SOOI+ VI),
where || M ||, is the nuclear norm [Srebro et al., 2004, Lemma 1]. Since minimising the nuclear norm
promotes low-rank solutions, this indicates a drift toward low-rank matrices during the slow phase of
the dynamics. In Appendix C, we study the more general class of matrix sensing problems and discuss
an important technical subtlety: the set M* forms a manifold only after excluding degenerate points.
Handling those singularities is highly non-trivial and remains an open direction for future work.

|M]|l« = min
UvT=

Figure 2 below empirically confirms this grokking for matrix completion. We here randomly
generate a rank 3 ground truth matrix M* € R?°%29 with non-zero singular values o7, 03, 05. We
randomly sample 50% of the entries to define the observed entries 2. We then perform gradient
descent with weight decay parameter A = 1073 and stepsize v = 1072 on the loss F(U,V)
defined in Equation (8) and where the weights U,V € R20*10 are initialised with i.i.d. standard
Gaussian entries. We then track the training loss, the unmasked test loss || M* — UV T || ¢, the weight
norms ||w||? = ||U||% + ||V||%, and singular values of the reconstruction matrix UV T. Additional
experimental details can be found in Appendix D.1.
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Figure 2: Low-rank matrix completion. (Left): Grokking phenomenon: the training loss drops
quickly to zero, while the test loss remains high for an extended period before eventually improv-
ing—coinciding with a decrease in the norm of the weights ||w||? = ||U||% + ||V ||%. (Right): Singular
values of UV T over time. Each line corresponds to the i-th singular value of UV T. The singular
values rapidly converge to large positive values at time ¢ ~ 1. However, as grokking starts around

time ¢ ~ 10, all but three begin decay towards zero. The remaining three approach the true singular
values o7, 03, and 03.

Explaining the observed grokking phenomenon. At time t = 0, the weights are randomly initialised
and the training loss is high. Initially, the regularised and unregularised weights follow the same trajec-
tory, and the training loss quickly drops to zero: the regularised iterates converge to the same solution
as the unregularised gradient flow. This early solution has a high norm, large singular values, and poor
generalisation performance. As training continues, around time ¢ = 1/, the weight norms begin
to decrease. By t ~ 10%, the parameters have drifted to a new solution that still achieves zero training
loss but has a much lower norm and actually coincides with the low rank ground truth matrix M*.

Two-layer ReLU network. Although our theoretical framework does not allow for non-smooth
architectures such as ReLU networks, we illustrate in Figure 3 that similar grokking dynamics can be
observed in this case. We train a two-layer ReLU network of the form f,, (x) = Z;nzl uj ReLU(v;x+

b;), with weights w = (u, v, b) where the outer layer is u € R™, the inner weight v € R™ and bias
b € R™. The teacher function f is a sum of 3 ReLUs and is represented in dotted light blue in Figure 3.
We generate a training dataset of n = 10 points by sampling z; uniformly in [—2, 2] and computing
yi = f(x;). These training points are shown as black crosses in Figure 3. We train the student network

with m = 100 by minimising the squared loss F(w) = 5= 37" | (fuw(zi) — y;)? using gradient
descent with weight decay A = 1073 for T = 106 iterations and small step size. The initial weights
are independently sampled from a Gaussian of variance 4. At each iteration, we record the train loss,

the />-norm of the weights, as well as the test loss over a fixed test dataset (plotted Figure 3, left).
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Figure 3: Two-layer ReLU network trained with gradient descent and small weight decay. (Left):
Grokking phenomenon: the training loss drops quickly to zero, while the test loss remains high for an
extended period before eventually improving—coinciding with a slow, steady decrease in the weight
norm. (Right): Snapshots of the network’s prediction function at various training times. The ground
truth teacher function (a sum of three ReLUs) is shown in dotted light blue, and the training samples
are shown as black crosses.

Explaining the observed grokking phenomenon. At time t; = 0, the weights are randomly initialised
and the training loss is high. By 5 = 1, the training loss has dropped to nearly zero, and the iterates
closely approximate the solution that would be obtained by unregularised gradient flow, this solution
does not have a low norm and generalises poorly. Subsequently, around time ¢ = 1/, the weight
norms begin to decrease, and by t3 ~ 10°, they have drifted to a zero training loss solution which
has a much lower ¢5-norm and which generalises much better. Such solutions are believed to have a
small number of "kinks" [Savarese et al., 2019, Parhi and Nowak, 2021, Boursier and Flammarion,
2023], as observed in Figure 3 (far right plot).

Diagonal Linear Networks. We also study—both as an application of Theorem 1 and numer-
ically—the architecture of diagonal neural networks in Appendices C and D.2, which serve as a
toy problem for neural network training dynamics. In that case grokking promotes sparse estimators.

6 Conclusion

This work presents a rigorous and general optimisation-based description of the grokking phenomenon
as a two-timescale process. In the fast initial phase, parameters evolve according to the unregularised
flow until reaching a stationary manifold. In the slower second phase, they follow the Riemannian
gradient flow of the norm constrained to this manifold. Grokking naturally emerges from a gradual
simplicity bias: starting from a poorly generalising solution recovered by unregularised gradient
flow, the slow phase driven by weight decay gradually simplifies the model by reducing its norm,
ultimately leading to better generalisation.

While prior work has extensively analysed the first phase via the implicit bias of optimisation
algorithms, the second phase—norm minimisation constrained to the interpolation manifold—has
received little attention. Our framework highlights the critical role of this phase and motivates further
study of optimisation dynamics on interpolation manifolds.

Large initialisations (NTK regime) are known to yield poor generalisation [Chizat et al., 2019, Liu
et al., 2022¢], while small initialisations (rich regime) can lead to slow convergence or convergence
to suboptimal solutions for the training loss [Boursier and Flammarion, 2024a,b]. Grokking may
offer a desirable compromise, achieving fast convergence to an interpolating solution while retaining
strong generalisation.

Note that our analysis is derived in the asymptotic regime A — 0, since this allows for a tractable
analysis. Extending the theory to a fixed A is considerably harder, that said, in Appendix E we
offer a heuristic analysis regarding how small A needs to be for grokking to emerge. Also note
that our analysis can easily be extended to other types of regularisations. In particular, we believe
empirical observations reported for training with Sharpness-Aware Minimization [Andriushchenko
and Flammarion, 2022, p. 7] may also be interpreted through the lens of grokking, albeit driven by
SAM-style regularisation rather than standard weight decay. Lastly, our analysis focuses on regression
settings with bounded dynamics. In classification tasks, by contrast, the stationary manifold lies “at
infinity” once interpolation is achieved. Extending our approach to such settings remains an open and
promising direction for future work, likely requiring techniques tailored to classification losses.

10



Acknowledgments and Disclosure of Funding

E. Boursier would like to extend special thanks to Ranko Lazic for his insightful discussions, which
were instrumental in initiating this project. S. Pesme would like to thank P. Quinton for carefully
reading the paper and providing valuable feedback. R. Dragomir is a chair holder from the Hi! Paris
interdisciplinary research center composed of Institut Polytechnique de Paris (IP Paris) and HEC
Paris.

References

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
mization. In International conference on machine learning, pages 639—-668. PMLR, 2022.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. Journal of Machine
Learning Research, 18(19):1-53, 2017.

Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hidden
progress in deep learning: Sgd learns parities near the computational limit. Advances in Neural
Information Processing Systems, 35:21750-21764, 2022.

Peter L Bartlett, Philip M Long, Gabor Lugosi, and Alexander Tsigler. Benign overfitting in linear
regression. Proceedings of the National Academy of Sciences, 117(48):30063-30070, 2020.

Ronny Bergmann and Roland Herzog. Intrinsic formulation of kkt conditions and constraint qualifi-
cations on smooth manifolds. STAM Journal on Optimization, 29(4):2423-2444, 2019.

Jérome Bolte, Aris Daniilidis, and Adrian Lewis. Tame functions are semismooth. Mathematical
Programming, 2007.

Jérdme Bolte, Aris Daniilidis, Olivier Ley, and Laurent Mazet. Characterizations of Lojasiewicz
inequalities: Subgradient flows, talweg, convexity. Transactions of the American Mathematical
Society, 362(06):3319-3363, December 2009.

Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press,
2023.

Etienne Boursier and Nicolas Flammarion. Penalising the biases in norm regularisation enforces
sparsity. Advances in Neural Information Processing Systems, 36:57795-57824, 2023.

Etienne Boursier and Nicolas Flammarion. Early alignment in two-layer networks training is a
two-edged sword. arXiv preprint arXiv:2401.10791, 2024a.

Etienne Boursier and Nicolas Flammarion. Simplicity bias and optimization threshold in two-layer
relu networks. arXiv preprint arXiv:2410.02348, 2024b.

Emmanuel J Candes. The restricted isometry property and its implications for compressed sensing.
Comptes rendus. Mathematique, 346(9-10):589-592, 2008.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
trained with the logistic loss. In Conference on learning theory, pages 1305-1338. PMLR, 2020.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
Advances in neural information processing systems, 32, 2019.

Yaim Cooper. Global minima of overparameterized neural networks. STAM Journal on Mathematics
of Data Science, 3(2):676-691, January 2021.

Michel Coste. An introduction to o-minimal geometry. RAAG Notes, Institut de Recherche Mathé-
matiques de Rennes, 1999.

Francesco D’ Angelo, Maksym Andriushchenko, Aditya Vardhan Varre, and Nicolas Flammarion.
Why do we need weight decay in modern deep learning? Advances in Neural Information
Processing Systems, 37:23191-23223, 2024.

11



KIJ Falconer. Differentiation of the limit mapping in a dynamical system. Journal of the London
Mathematical Society, 2(2):356-372, 1983.

Ibrahim Fatkullin, Gregor Kovacic, and Eric Vanden-Eijnden. Reduced dynamics of stochastically
perturbed gradient flows. Communications in Mathematical Sciences, 8(2):439—-461, 2010.

Andrey Gromov. Grokking modular arithmetic. arXiv preprint arXiv:2301.02679, 2023.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in terms
of optimization geometry. In International Conference on Machine Learning, pages 1832—-1841.
PMLR, 2018.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Alan Jeffares and Mihaela van der Schaar. Position: Not all explanations for deep learning phenomena
are equally valuable. In Forty-second International Conference on Machine Learning Position

Paper Track, 2025.

Gary Shon Katzenberger. Solutions of a stochastic differential equation forced onto a manifold by a
large drift. The University of Wisconsin-Madison, 1990.

Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking as the tran-
sition from lazy to rich training dynamics. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=vt5mnLVIVo.

Krzysztof Kurdyka. On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier
(Grenoble), 48(3):769-783, 1998.

Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient descent only con-
verges to minimizers. In 29th Annual Conference on Learning Theory, volume 49 of Proceedings
of Machine Learning Research. PMLR, 2016.

Jason D. Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I. Jordan, and
Benjamin Recht. First-order methods almost always avoid strict saddle points. Mathematical
Programming, 176(1-2):311-337, February 2019.

B Lemaire. An asymptotical variational principle associated with the steepest descent method for a
convex function. Journal of Convex Analysis, 3:63-70, 1996.

Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What happens after sgd reaches zero loss?—a
mathematical framework. arXiv preprint arXiv:2110.06914, 2021.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. Applied and Computational Harmonic Analysis, 59:85—
116, 2022a.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. Advances in
Neural Information Processing Systems, 35:34651-34663, 2022b.

Ziming Liu, Eric J Michaud, and Max Tegmark. Omnigrok: Grokking beyond algorithmic data.
arXiv preprint arXiv:2210.01117, 2022c.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
arXiv preprint arXiv:1906.05890, 2019.

Kaifeng Lyu, Jikai Jin, Zhiyuan Li, Simon S Du, Jason D Lee, and Wei Hu. Dichotomy of early and
late phase implicit biases can provably induce grokking. arXiv preprint arXiv:2311.18817, 2023.

Mohamad Amin Mohamadi, Zhiyuan Li, Lei Wu, and Danica J Sutherland. Why do you grok? a
theoretical analysis of grokking modular addition. arXiv preprint arXiv:2407.12332, 2024.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

12


https://openreview.net/forum?id=vt5mnLVIVo

Rahul Parhi and Robert D Nowak. Banach space representer theorems for neural networks and ridge
splines. Journal of Machine Learning Research, 22(43):1-40, 2021.

Scott William Pesme. Deep learning theory through the lens of diagonal linear networks. Technical
report, EPFL, 2024.

Loucas Pillaud-Vivien, Julien Reygner, and Nicolas Flammarion. Label noise (stochastic) gradient
descent implicitly solves the lasso for quadratic parametrisation. In Conference on Learning
Theory, pages 2127-2159. PMLR, 2022.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Quentin Rebjock and Nicolas Boumal. Fast convergence to non-isolated minima: four equivalent
conditions for c¢ 2 functions. Mathematical Programming, pages 1-49, 2024.

Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. How do infinite width bounded norm
networks look in function space? In Conference on Learning Theory, pages 2667-2690. PMLR,
2019.

Anna Shalova, André Schlichting, and Mark Peletier. Singular-limit analysis of gradient descent with
noise injection. arXiv preprint arXiv:2404.12293, 2024.

Nathan Srebro, Jason Rennie, and Tommi Jaakkola. Maximum-margin matrix factorization. In
L. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems,
volume 17. MIT Press, 2004.

Gerald Teschl. Ordinary differential equations and dynamical systems, volume 140. American
Mathematical Soc., 2012.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
Conference on Learning Theory, pages 3635-3673. PMLR, 2020.

Zhiwei Xu, Yutong Wang, Spencer Frei, Gal Vardi, and Wei Hu. Benign overfitting and grokking in
relu networks for xor cluster data. arXiv preprint arXiv:2310.02541, 2023.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In ICLR, 2017.

13



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: An informal version of our main results is provided in the introduction.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of each of our assumptions are discussed after stating these
assumptions. Additional limitations are also discussed in the experiments and discussion
section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: all assumptions are clearly stated and theoretical results are proved in the
appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: experimental details are given in Section 5. Additional details are given in
Appendix D for reproducibility.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: code is provided in the supplementary material and will be publicly released
(via the author github) after publication.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: see 4.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: the impact of randomness is very small in our experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:
Justification: the experiments are small and run on a personal laptop.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: no societal impact
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: the paper poses no such risks
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: the paper does not use existing assets
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: the paper does not release new assets
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Main proofs

A.1 Proof of Proposition 1

Proposition 1. If Assumption 1 holds, then for all T > 0, w* = wG in (CO([0, T),RY), || - [loo)

—0

Proof. We first need to restrict the dynamics of (w™(t)) to some compact of R?. Without loss of
generality we can inflate the compact in Assumption 1, so that we can assume there is some compact
K of R such that for all t > 0, B(w%F(¢),1) C K, where B(w®F(t),1) is the ball of radius 1
centered at wSY (t). We also define for any A\ > 0, T = inf{t € Ry | w*(t) € K}.

Thanks to the continuity of V2F,VFis c-Lipschitz on K, i.e.,
|[VF(w) — VF (') < ¢|lw—w'|| for any w,w’ € K.

We then derive the following inequalities for all ¢ € [0, T)),

/t W (s) — wEF (s)ds
0

/Ot VE W (5)) = VF(w(s)) — Aw?(s)ds

)~ w0 = |

! GF A Y
S/O HVF(w (s)) — VF(w (s))Hds—i—)\/o lw™(s)||ds

¢
< c/ ||w>‘(s) - wGF(s)H ds + At sup |Jw]|.
0 weK
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The integral form of Gronwall inequality® — also called Gronwall-Bellman inequality — then leads to
the following inequality for any ¢ € [0, T)):

[ () = w ()] < Ate sup [w]. ©)
weK

In particular for a fixed T' € R, there is a A* > 0 small enough such that for any A < \*,
vt € [0,T], Me sup |Jw|| < 1.
weK

Given the definition of 7T’y Equation (9) and the fact that {J,cp, B (wSF(t),1) C K, this then implies
that for any A < \*, T, > T. In particular, for any A < A\*, Equation (9) becomes
sup |‘w>‘(t) - wGF(t)H < ATeT sup ||w|.
t€[0,T) weK
Proposition 1 then directly follows. O

A.2 Junction between fast and slow dynamics

In the limit A — 0, the whole fast dynamics described by Proposition 1 is crushed into the ¢ = 0
point of the slow timescale. While Sections 4.1 and 4.2 respectively provide descriptions of the fast
and slow timescale dynamics, one needs to control the junction of these two dynamics. This junction
is made possible by Lemma 2 below, as well as a timeshift argument in the proof of Proposition 2.

Lemma 2. If Assumption 1 holds, there exists a function t(\) such that limy_,o t(\) = 0 and

. ~\ T GF
)1\1_>mow (t(N)) —tlirrolow (t).

Lemma 2 states that for a well chosen timepoint ¢(), which is of order —A In()), the slow dynamics
solution 1> will be close to the limit of the unregularised flow at that timepoint. This result will then
be key in showing that lim_,o @ admits a right limit in 0, which is given by lim;_, o, w¥ (¢).

Note that this order —A In(\) for ¢(\) is necessary: a smaller value of ¢(A) would not allow enough
time for the flow to approach the limit of the unregularised gradient flow; while a larger value would
correspond to a time where the regularised flow significantly drifted from the unregularised one.

This time —\ In(\) can indeed be seen, in the fast timescale, as the point where the dynamics transition
from mimicking the unregularised flow, to the slow dynamics that minimises the regularisation term
within some manifold.

Proof. Equation (9) in the proof of Proposition 1 yields that for any t € [0,7)],
|[w(t) — wO ()| < Ate sup,,cx [|w]|. We can then define ¢(A) = =222 > 0 and observe

2c
that for any ¢ < min(7}, @)

t(N)
[w(t) = wE (@) < H(N)e” 5 sup [uwl|
weK

—VAln())
=—5.— sup [l
c weK

Since v/ A In()\) )\—6 0, we have for A small enough that the above term is smaller than 1. In particular
—

for A small enough, T, > @ From there, Equation (9) yields at @ for any small enough A > 0

tN) (N

=\ R GF < [l _ ,,GF GF ERT GF
[0 (#(N) = lim w9 (1)) < 02 (1(N) = wF (S + [0S (222 = Jim wOF (1)
—VAIn(A t(A
< 2P gup o 4 " () — i w0
Now note that our choice of ¢(\) is such that both the first and second term in the last inequality
converge to 0 — indeed, t()\)ecw = w — O and @ — 400 — which concludes the
A—0 A—=0
proof. O

The more classical form of Grénwall inequality cannot be directly used here, since ||w>‘(t) — w9 (1) I
might be non-differentiable at some points.
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A.3 Proof of Proposition 2

The main element to prove Proposition 2 is Lemma 4 below. We first need to state another auxiliary
lemma, given by Lemma 3 below, and proven in Appendix B.5.

Lemma 3. Consider Assumptions 1 and 2. Let (u*)xso be a family of solutions of the following
ODE forany A > 0andt > 0,

W) = —u (t) — %VF(uA(t)).

If also u™(0) — ug € M, then there exists a neighbourhood U of M such that ® is C*> on U and for
every € > 0, there exists a family of neighbourhoods (U )c>o of M such that

1. U. CU., CcUforanye < é€’;

2. there exists \(€) > 0 such that for any X < \(¢), the trajectory (u™(t));>o is contained in
Ue;

3 Mooy Us = M.

Note that the existence of a neighbourhood U in Lemma 3 is guaranteed by Lemma 1. We can now
state our key lemma.

Lemma 4. Consider Assumptions 1 and 2. Let (u*)zso be a family of solutions of the following
ODE forany A > 0andt > 0,

1
aMt) = —ut(t) — XVF(M(t)).
If also u*(0) — ug € M, then u* converges uniformly, as \ — 0, on any interval of the form [0, T
to the function u defined as the solution of the following ODE:
u(0) = ug
W(t) = —DPy ) (u(t)).

Proof. First consider a neighbourhood U of M such that ® is C? on U and Lemma 3 holds. From
there thanks to Lemma 3, we can assume that A > 0 is chosen small enough so that u*(¢) € U for
any t € R,. We can now compute the time derivative of ®(u*(t)), using the chain rule for any
t € R4 and A small enough:

. 1
fID(uA(t)) = —D(I)ux(t) : (’U,A(t) + )\VF(UA(t))) .
Then using the fact that for any w € U, D®(w) - VF(w) = 0 [Li et al., 2021, Lemma C.2],
D(ur(t)) = =D,y - ur (). (10)

It now remains to show that u* () — M as A — 0, to guarantee that ®(u*(¢)) and u*(¢) have the
same limit, which will be done using Lemma 3.

Thanks to Lemma 3, we can consider a family of neighbourhoods (U ).~o of M and a function
A R% — R satisfying Lemma 3. As we can always take a smaller choice for any value A(e), we
can also choose the function A so that

* it is non-decreasing;

¢ lim. 9 A(e) = 0.
For the remaining of proof, define the function H : w — —D®,, - w and take e(A) = inf{e > 0 |
A < A(e)}. We consider in the following A small enough so that £(\) is defined and finite. Since

lim._,o A(¢) = 0, e(A) > 0 for any A > 0. The function ¢ is non-increasing, so it admits a limit at 0.
Moreover for any 6 > 0, (A(d)) < § by definition, so that limy_,g £(\) = 0.
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Thanks to Lemma 3, (u*(t));>0 is contained in U.(y). By monotonicity of ||ul|s, the trajectory
(u(t))¢>0 is bounded. Moreover, the trajectory of u™(¢) is also bounded independently of \ thanks to

Lemma 7. We can thus consider a compact K of R4 such that for anyt > 0and A > 0, u(t) € K
and u(t) € K.

Recall that ® is the identity function on M and is C? on U. In consequence, we have’
SUPwe KNU, (5 [®(w) — wll2 g*) 0.

Summing over Equation (10) yields for any ¢ > 0:
t
uMt) = / H(u(s))ds + u*(t) — ®(ur(t)) + &(u(0)).
0

Since ® is C? on U, H is c-Lipschitz on K, for some ¢ > 0. A comparison with u then yields for any
t>0

lu*(t) = w(®)] < /0 1H (u?(5)) = H (u(s))llds + [[u*(t) = @(u*(0)]| + [ @(u*(0)) — uo]

SC/O [ut(s) —u(s)[ds +  sup  [[@(w) — w] +[|®(u*(0)) — uo].-

weKNUg(x)

Similarly to the proof of Proposition 1, an integral form of Gronwall inequality yields for any ¢ > 0

lu*(#) = u(®)|| < ( sup || @ (w) — wl| + [|@(u?(0)) —u0|> e, (11)

weKNUc(x)

Noting that the multiplicative term sup,,c gy, |®(w) — w]|| + [|@(u*(0)) — upl|| goes to 0 as A

goes to 0 allows to conclude on the uniform convergence of u* to u on [0, 7). O

A = w° in
5
(C°(e, T),RY), || - |00 ), where ° is the unique solution on R . of the differential equation (6).

Proposition 2. If Assumptions I and 2 hold, then for all T,e > 0, we have w

Proof. Consider the shifted slow dynamics 9* for any ¢ > 0 as 9*(t) = @*(¢t + t(\)) with t(\)
given by Lemma 2. Using Lemma 2, 7* then follows the following ODE:

oMt) = —oM(t) — %VF(@A(t)),

with an initial condition satisfying limy_,o 9*(0) = ®(wy).

We can then direct apply Lemma 4 above on 9, which yields that 7 converges uniformly on any
interval of the form [0, T'] to @°.

Proposition 2 is then obtained by observing that lim_, ¢(A) = 0, so that for any ¢ > 0 and A small
enough such that ¢(\) < ¢, it holds for any ¢ € [¢, T

[2 () = @° ()| = |9 (¢ — t(X)) — @°(#)]
< [0 (= #(A) = @° (¢ — tN) | + [[@°(t) — @°(t = t(A))]-

The first term converges to 0 uniformly for ¢ € [¢,T] by uniform convergence of * towards °;
and the second term also goes uniformly to 0 by (uniform) continuity of w° on the considered
interval. O

A.4 Proof of Proposition 3

Proposition 3. If Assumptions 1 and 2 hold, then for any sequence (\;)ren such that \i, k—> 0,
s de el

the limit points of (lim;_, oo w* (t))ken are included in the KKT points of Equation (7).

3This is a direct consequence of the fact that & is the identity on M, locally Lipschitz and limy 0 £(\) = 0.
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Proof. By definition [see e.g., Bergmann and Herzog, 2019], the KKT points of Equation (7) are the
points w* € M satisfying
grad yl2(w*) = 0.

Since grad y(l2 = Pker(v2F(w+))» KKT points of Equation (7) are the points w* € M satisfying
w* € Ker(V2F(w*))*t. (12)
Thanks to Lemma 7, the trajectories (w™(t));>o are all bounded and w2, = lim;_,o w(t) exists
for any A > 0. In particular, this limit is a stationary point of the regularised loss F}, i.e.,
VF(w)) + Mwl, = 0.
In particular, w), = — 3 VF(w),).
Let (Ax)ren be a sequence in R’ such that A k*> 0. Let w* be a limit point of the sequence
—00

(w3)x- Thanks to Lemma 3, w* € M. Moreover, the equality w}} = —-V F(w}}) first implies
that || VF(w*)|| = O (A\x). Rebjock and Boumal [2024, Proposition 2.8] then also implies that

d(wik, M) = O (\y).

Moreover, noting wy, € arg min ¢ 4||w* — w||, a Taylor expansion yields

1 1 1 Ak _
LoR@) = LR + V2R (2 — ) + o 1l
Ak Ak Ak Ak
1 d(wlt, M
= )\—kV2F(wk)(wg‘§ — wg) +0(7( " ))
1
= )\kaQF(wk)(wg‘o"’ —wyg) + o(1).
The equality wi* = —x-VF(w}¥) then implies for the subsequence k;, associated to the limit point
w* that
9 wé}'f" — Wk
— lim V*F(wy, ) ——= = w™. (13)
n—oo >\]€

n

Ap
Let uy, = PKer(v2F(wk))L w°°>\k Y Note that

Ao
Poo “ Tk _ VQF(wk)Uk
Ak

and  |[|[V2F (wp)url| > nlul,

V2F(wk)

thanks to Assumption 2. In consequence, (uy )y is bounded. In particular, it admits an adherence
point us, € RY.

Since wg, — w*and V2 F is continuous,
- n—oo

V2F(wy,)—V?F(w*)|| — 0. So that Equation (13)
n— oo
becomes
~V2F(w* )t = w*.
In particular, it yields that w* € Im(V2F(w*)). By symmetry of the Hessian, Im(V2F (w*)) =
Ker(V2F (w*))* so that w* € Ker(V2F(w*))1, i.e., it satisfies the KKT conditions of Equation (7).
O

A.5 Proof of Proposition 4

Proposition 4. Let Assumptions 1 and 2 hold and, assume additionally that w° (t) converges towards
a strict local minimum w* of the constrained problem (7). Then limy_,q lim;_ w)‘(t) = w*.

Proof. For this proof, denote w* = lim;_, o, w°(t) and F* = F(w*). w* is a strict local minimum
of the Euclidean norm on M. Moreover using the Morse Bott property [Assumption 2 and see
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Rebjock and Boumal, 2024], we can consider an arbitrarily small § > 0 such that the following
conditions simultaneously hold in B(0, d) for some 5 > 0:

Yw € M N Bw*,26),w #w* = ||w*|?* < ||w|?
vweBmmame—ﬁ”zgan@% (14)
Vw € B(w*,d), B(F(w) — F*) > |[VF(w)|3 = n(F(w) — F*).

First observe that the strict minimality assumption implies, through Lemma 8, that there exists g > 0
(independent of \) such that for a small enough A > 0
[[w*||?

inf  Fy\(w) > F*+\
OB(w*,8) 2

+ Aeo. (15)
Now fix an arbitrarily small §" € (0,9). Let to € R* such that ||@°(tg) — w*| < %/. By pointwise
convergence of W (tg) to w° (tg), we then have that for A > 0 small enough, ||@*(¢y) — w*|| < %.
Without loss of generality, we can even choose ¢ large enough and A small enough so that for some
arbitrarily fixed € > 0,

Fy (@ (tg)) < F* +e. (16)
From there, we define for this proof T,\ = inf{t > tq | @*(t) € B(w*,§')}. Similarly to the proof

of Lemma 7, we have for any ¢ € ( A(’ )5 2):

dFy\(w (¢

WD) < p(mwA0) ~ ) + MR+ TR2)
where R1 = sup,cp(u+ o) [[W[|[|VF(w)[| and R = supe g+ o) [|wl]|. Again, a Gronwall argu-
ment implies that for any ¢ € [%2, L],

, t R? R
nmwmgthfw—m+A(2+nj
ln;)‘) , TT) we have similarly to the proof of Lemma 7 that

In particular, if we define ¢ = min(% —
forany t € [%2,¢']:

WD) = (2

)| < ovE2 - ovamo,

for some constant C' independent of € and A. In particular, we can choose € and A small enough so
that this quantity is smaller than 6—. It then implies that ¢’ < Q and
R2

Fx(w(t ))<F*+/\(7+7+5)

From there, by monotonicity of the loss, for any ¢ > ¢:

R0 <Pl g

* (12
Also note that L R —>0 M So we can choose ¢’ and € small enough so that
' —

R B )?
n 2 2
From there, the previous inequality implies that for any ¢ > ¢,

]2

+ 9.

Fy(uw?(t)) < F* 4+ X( + €0).
By continuity, Equation (15) then implies that for any ¢ > ¢/, w*(t) € B(w*,§).

To summarise, we have shown that for any small enough 6 > 0, there exists A*(J) such that for any
A < A(8), limy_y 00 w (t) € B(w*, 6).

This means that limy o lim;_, o, w* () = w*, which proves Proposition 4. O
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B Auxiliary proofs

B.1 Proof of Lemma 1

Lemma 1. If Assumptions 1 and 2 hold, there exists an open neighbourhood U of M such that ® is
defined and C? on U.

Proof. First, we restrict ourselves to a bounded open set B of R? and consider ¢(-,¢) as a function
B — R? for any t.

The main point of the proof is to show that M N B is geometrically stable in the sense of Falconer
[1983], i.e., that there exists a neighbourhood (in B) U of M N B, t > 0 and k < 1 such that for any
w e U,

d(p(w,t), M N B) < kd(w, M N B) and d(w,t) € U,
where d(w, M N B) = inf e mnp [|[w — z|]2.*
Let x € M N B. The Morse-Bott property (Assumption 2) implies that there exists a neighbourhood

U(z) C B of z, such that F satisfies the Polyak-E.ojasiewicz (PL) inequality with constant i, thanks
to the equivalences between both conditions [Rebjock and Boumal, 2024]

IVE(w)[3 = n(F(w) - F(z)) Yw € U(a). (17)
In the following, we define F* = F'(x), which is the value of F' on the manifold M (the definition
does not depend on the choice of x).

In particular, there is some do(2) > 0 such that B(x, do(x)) C U(z). Thanks to Rebjock and Boumal
[2024, Propositions 2.3 and 2.8, Remark 2.10], we can even choose do () small enough so that there
are some «, /3 such that

IVF(w)|l2 < By/F(w) — F* forany w € B(x,dp), (18)
gd(w,./\/l)2 < F(w) — F* < ad(w, M)?for any w € B(x, &). (19)

By boundedness of B, « and 8 can be chosen independently of x € M N B here.
Now let w € B(z,dp(z)) and define T'(w) = inf{t > 0 | ¢p(w,t) € B(z,do(x))}. Necessarily,
T(w) > 0 and for any ¢ € [0, T(w)), Equation (17) applies to ¢(w, t), so that for any t € [0,T(w))
d(F(p(w, 1)) — F*)
dt

= —[[VF(¢(w,t))]
< —n(F(o(w, 1)) — F7).

A

So that, for any ¢ € [0, T'(w)):
F(p(w,t)) — F* < (F(w) — F*)e .

Moreover for any ¢ € [0,T(w)), Equation (18) also applies, so that

HM%ﬂ—wHSAHVFWWJ»M®

< | oy = Feas
s%M@MfP»

By continuity of F, let §(z) > 0 be small enough so that for any w € B(x,d(x)), 6(x) +
% (F(w) — F*) < @. The previous inequality then implies that for any w € B(z,d(z))

“The definition of Falconer [1983] is stated differently but is implied by our notion of geometric stability,
when taking f(w) = ¢(w,t).
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and t € [0,T(w)):
[p(w, t) — 2| < flw =zl + [[p(w, ) — w]|

< 8(a) + 22 () - )

< (5()(.%)
- 2

In particular, for any w € B(x,d(z)), T(w) = oo and ¢(w, t) € B(z, do(x)) for any ¢ > 0.

Also, note that ||¢p(w,t) — z|| < ‘;OT(JU) and B(z,d¢(x)) C B implies that d(¢(w,t), M N B) =

d(¢(w,t), M). From there, Equation (19) implies for any ¢ > 0 and w € B(zx,d(x)):

dWWJ%MﬁBﬁggwwww»—Fﬂ
8 —nt w) — F*
< 56 (F( ) F )

8
< ?ae_"td(w,/\/l N B)?.

In particular, for any & > 0, we can choose a sufficiently large ¢ such that d(¢(w,t), M N B) <
kd(w, M N B).

By compactness of M N B, there is a finite family of (7;);cjx) € M N B such that
Uiex) B, 16(z;)) 2 M N B. We then define U(B) = Uierx) B(@i, 6(;)), which is also
a finite covering of M N B. We then take ¢ large enough such that for any w € U(B),
d(¢p(w,t), M N B) < kd(w,M N B) for k < % In particular, our choice of k is

such that, for f : w — ¢(w,t), U(B) is invariant by f. Indeed, note that for any w € U(B),

d(f(w), M N B) < kd(w, M N B)
minie[K] 5(931)
~ max;e[x] 0(;)

1

<~ mi ).
<3 kit

d(w, M N B)

In other words, there is € M N B such that || f(w) — || < § min;e(x) d(x;). Moreover since
Uiex) B, $6(x;)) is a covering of MNB, thereis j € [K] such that ||z —z; | < 3 min;e(x) 0(x;)
and by triangle inequality:

lw = 5| < (),

ie., w e U(B).

Since U(B) is invariant by f and k& < 1, M N B is geometrically stable, so that we can apply Falconer
[1983, Theorem 6.3 and Theorem 5.1]. It then implies that ® is C2 on U (B). Taking an increasing
sequence of open bounded sets B,, covering whole R?, we can then define U = U,, U(B,) and
conclude that ® is C? on U.

O

B.2 Minimality of F' on neighbourhood

Lemma 5. Consider Assumptions 1 and 2. Let U be an open neighbourhood of M such that ® is
continuous on U, then necessarily for any w € U\ M, F(w) = sup,c o F(2).

Proof. By definition of M, F' is constant on M so that sup,c\ F(z) = infpepm F(x) = F*.
Moreover ®(M) = M and by continuity, ®(U) C M.
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For any w € U \ M, note that
w — B(w) = —/ VE(é(w, t))dt,
0

F(w) - F* = F(¢(w,0)) - F(®(w)) = — / IV F((w, 1))]dt.

The first equality is the definition of ®(w), while the second comes from deriving over time the
function ¢ — F(¢(w,t)) and noting that ®(w) € M.

In particular, for any w € U \ M, w — ®(w) # 0, so that the second integral is also non-zero. In
particular, F'(w) > F* for any w € U \ M. O

B.3 Alternative equation for w°

Lemma 6. If Assumption 2 holds, the unique solution of Equation (6) also corresponds to the unique
solution of the following equation:

Wo(t) = —D®gory(W°(t)) and ©°(0) = (wp).

Proof. This is a direct consequence of the two following equalities for any w € M:
grad v £2(w) = Pker(v2 F(w)) (W)
= DP,(w).
The first one is a consequence of the definition of the Riemannian gradient and the fact that T\ (w) =

Ker(V2F(w)) [see e.g., Boumal, 2023, Theorem 3.15 with V F being the local defining function of
M]. The second one is given by Li et al. [2021, Lemma 4.3]. O

B.4 Bounding the trajectories

Lemma 7. If Assumptions 1 and 2 hold, there exists a compact K of R? such that for any A\ > 0 and
t >0, w(t) € K. In particular, lim;_, o, w(t) exists for any X > 0.

Proof. Similarly to the proof of Lemma 1, we can consider a neighbourhood U of M where the PL
inequality holds:

IVEw)II3 = n(F(w) - F*) Vw e U.
Additionally, we can consider § > 0 such that B(®(wy),d) C U and

IVF(w)|l2 < 8y/F(w) — F* forany w € B(®(wy),d).

1) For some fixed € > 0, Lemma 2 then implies there is a A* > 0 and times ¢() such that for any
A € (0, A*) both hold

t(\) t(A)

\\wA(T) — ®(wo)| < g and FA(wA(T)) — F(®(wp)) <e.

Moreover, the proof of Lemma 2 also implies that there is some compact K of R such that for any
A< Atandt < TN A1) € K.

2) Now fix A < A\* and define Ty = inf{t > % | w(t) & B(®(wp), )}. By continuity, Ty > .
. . . t
The PL inequality then applies for any ¢ € [%, Ty):
IVE @ (@6)]3 = n(F(w(1) — F*).

In particular, this allows to derive the following inequalities for any ¢ € [@, Ty):

PO _ o w)l3
< ~IVE@A)I + Al Ol V@ 0
< —(F(A ) ~ F*) + Mo
< —n(F(w (1) = F*) + ARy + S R2),
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where Ri = SUD,e p(a(wp),0) W IVF(w)| and B = sup,c (o (wp),s) [[wll- In particular, Gron-

wall inequality implies that for any ¢ € [t()‘) Ty)

t 1
R 0) -7 < (R D) - ) e i
n
< gent=Kh) 4 A(& + %Rz). (20)
n

Define t’ = mln(f()\) + _12(’\) Ty). Using Equation (18) for any ¢ € (@,t’]:
t(\ t
w(t) —w (%) = o VFy\(w*(s))ds

t

|- ) < / IV (s))[ds + A / (5 s

<o f, F(wk(s))F*ds”j;(”quwo)nw»
From there, Equation (20) yields for an; te (M ).
ot - <5 [0 et - 1)y A 2y = 28 o) + 0
< BvE2 - VA - 22 (o) + ),

for some constant C', which is independent of both e and A. In particular, we can choose € and \*
small enough, so that ||w* (t) — w* (*Q)|| < & forany ¢ € (XX, #]. By definition, this implies that
t' < Ty, ie., foranyt € [@,t’], w(t) € B(®(wp), ).

t(A)

3) Since t' < Ty, t' = =% + 71n(

A) by definition and
1
Fx(w*(t')) < F* + )\(71 + 5B+ o).
By monotonicity of the objective, we then have for any ¢ > ¢’
R 1
Fx(uw?(t) < F*+)\(71+§R2+5). Q1)
Now define T = inf {t > @ | w(t) & U}. Since M minimizes F' on U, Equation (21) implies
by continuity that for any ¢ € [t/, T)]:
1
Sl <

In particular, for Ky = B(0, % + R? +3¢)and any t € [t/, Ty, w*(t) € Ko. By continuity and
compactness, inf ¢ v, F(w) > F™* thanks to Lemma 5. In consequence, we can choose A

R
=1y R2+5
n

small enough so that Equation (21) implies that for any ¢ € [t/, T3],

F(uw(t inf  F(w).
(w ())<we(éi}m<2 (w)

Assume now that Ty < oc. Since w (T~,\) € Ko, the previous inequality implies by continuity that
wN(Ty) € OU, ie., w (T,\) € U. This however contradicts the definition of T}, so that T = oo. In
particular forany t > t/, w*(t) € Ko.

To summarize, we have showed that there exists a small enough A\*, such that for any A < A\*:
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1. w?(t) is included in some compact K of R? for t < @;

2. w(t) is included in B(®(wy),d) ort € (X, 1);
3. w?(t) is included in some compact K5 of R? for t > t/;

where K| and K, are both independent of ). In particular, there exists a compact K of R? independent
of A such that for any A < \*, the trajectory of (w*(t));> is included in K.

For A > \*, we directly have by monotonicity of the objective that for any ¢t > 0

S @I < SO + £ (Fu(0) - FwA())

1 1
< S (O)]7 + 5 F(w?(0),
2 A*
so that the trajectory (w™(t))¢>0 is also included in a compact independent of \.
As a consequence, the definability assumption of I\ along with the boundedness implies that
limy 00 w’\(t) exists thanks to Kurdyka [1998, Theorem 2].

O

B.5 Proof of Lemma 3

Lemma 3. Consider Assumptions 1 and 2. Let (u*)xso be a family of solutions of the following
ODE forany A > 0andt > 0,

u%@:-ﬁ@-%vHMQ»

If also u™(0) — ug € M, then there exists a neighbourhood U of M such that ® is C*> on U and for
every € > 0, there exists a family of neighbourhoods (U )<~o of M such that

1. U. CU. CUjforanye < é¢';

2. there exists \(€) > 0 such that for any X < \(¢), the trajectory (u™(t));>o is contained in
Ue,

3 Neso Ue = M.
Proof. We consider the neighbourhood U defined as in Lemma 7. By definition, F' is constant on the
manifold M and denote its value F™*, i.e., F* = sup,,c o F'(w) = inf,e pm F(w).

For any ¢ > 0, we define U, as U, = {w € U | F(w) < F* + ¢} and show that it satisfies these
three conditions. By continuity of F', U, is a neighbourhood of M and the first condition is obviously
satisfied.

Thanks to Lemma 5, for any w € U \ M, F(w) > F*. This implies the third condition,
() U- =M.
e>0

The arguments of Lemma 7 extend to any family of solutions (u*),~¢ satisfying the assumptions of
Lemma 3. In consequence, we can consider a compact K of R? such that for any ¢ > 0 and A > 0,
u*(t) € K. From there, note again that inf,,¢ (91 )i F(w) > F*.

Since u*(0) — ug € M, we can then choose A(¢) > 0 small enough, so that for any A € (0, A(¢)],

FOANO) + 5[0 O <min(F e, it F(w),

By monotonicity of the objective over time, F(u*(t)) + AJu*(®)]2 < min(F* +

g,inf e ouynix F(w)) for any ¢ > 0. Since u*(t) is continuous, it implies that u*(t) € U, for
any ¢ > 0, which concludes the proof of Lemma 3.
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B.6 Strict Minimality

Lemma 8. Under the same assumptions than Proposition 4 with w* = lim;_, o, w° (t), there exists a
8% > 0 such that for any § € (0, 6*), there exists € > 0 and \* > 0 such that for any A € (0, \*)

w2

inf  Fy(w) > F* + A

+ e (22)
OB(w*,d)

Proof. Let 6* > 0 be such that for any w € M N B(w*,26*), w # w* = |w||* > ||Jw*|? and
such that Equation (14) holds. Now let § € (0,¢*). We now fix A* > 0 arbitrarily small, choose
A € (0, \*) and define
1 .
e=7 o nf [l = w3
$<|lu—w||<25

By strict minimality, compactness and continuity, € > 0.

Let now w € 9B(w*, §). We can decompose w as w = u + v, where u € arg min . ¢ [|w — w’||.

Necessarily, ||v|| = d(w, M) < § and ||jw — w*|| = d. In particular, we also have 2§ > |Ju — w*|| >
d — ||v||. From there, using the quadratic growth property (Equation 14):

(lull = flvl)>

A
w, M) + 5 (lull® = 2[jullo])

Fy\(w) > F(w) +

| >

n
>F"+-d
=z +4

—~

" « A
> Fy(w*) + d(w, M)* = A([[w*|| + 20) o] + 5 (lull* = [w*]?)-
Let c(e, §) = min($; %) > (. There are two cases.

> Jw*

1) Either ||v|| < ¢(e, 6), in which case 26 > ||ju — w*|| > 2, so that by definition of ¢
A
Fx(w) 2 Fx(w”) = A(lw*[| + 20)[[vll + 5 (llull* = [lw*]*)

A
2 Bx(w®) = AlJw™|| +20)e(e, &) + 5 - 4e
> F,\(w*) + €.
2) Or ||v|| > ¢(e,0), in which case we simply have, also using that ||v|| < d:
n
Ex(w) = Fa(w”) + 2 [[v]* = A(lw* ]| + 20)|lv]
> Fy(w') + e(e,6) = Aljw*]| + 26)5.

In particular, choosing A* small enough — depending on 7, € and § — we have for any A < A\* that

Zc(s, 8)2 — A(|Jw*|| +26)5 > Ae.

So that in both cases, F)(w) > F* + )\M + Ae. O
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C Applications

In this section, we provide additional details to the examples discussed in Section 5, and specify how
our theoretical results can be applied in various settings.

Linear regression. We consider F'(w) = || Xw — y||3 with X € R"*¢ and n < d; assume for
simplicity that X is full rank. In this setting, the dynamics can be computed explicitely to illustrate
our result.

Denote the solution of minimal £» norm with w* = X+, where X is the Moore-Penrose pseudoin-
verse of X. The problem is convex and the critical set of F'is the affine subspace M = w* +Ker(X),
which is a manifold: Assumption 2 is satisfied.

Consider the singular value decomposition X = ULV T where U € R™*?, V € R%*? are orthogonal

and ¥ = diag(oy,...,04) with 0,41 = --- = 04 = 0. We make the change of coordinates
z = V Tw, and notice that in this basis the minimum norm solution z* = V T w* is of the form
2" = (2%,...2%,0,...,0). Then, we can compute the trajectory of the gradient flow on F) initialized

at z(0) = V Twy:

e forl1 <i<n,

A P W) —(oZ+N\)t ( ) _ )\,oo) . Moo i *
M) = 2 ;0 . th 2z = », 23
2 (t)=2""+e zi(0) — z; with  z; e (23)
o for(n+1) <i<d,

20M(t) = e Mz(0). (24)

Eq. (23) describes the dynamics along the directions orthogonal to M, and Eq. (24) along those
parallel to M. When A — 0, the first is much faster than the second. In the first phase, the

. A—0 .
iterates converge to (27", ... 23, 2,.1(0), ..., 24(0)) "~ (2F,...2%, 2n41(0), ..., 24(0)); this
is the limit of unregularised gradient flow 2F (which is also here the projection of the initial point
onto M). In the second phase, the iterates converge slowly towards the mimimum norm solution
(z7,...25,0,...,0).

Diagonal linear networks (DLNs). DLNs serve as a toy example to understand the influence of
the architecture on the training dynamics of neural networks [Pesme, 2024]. The corresponding
optimization problem writes
min X(w, ®wy) — 2
i X © wa) =y,
where © denotes the componentwise product, and X € R™*d ig the feature matrix with n < d, which
we assume to be full rank. It is usually convenient to perform a rotation of the coordinates and rewrite
the problem as
min  F(u,v) = || X (u? — 0?) — yl|?
Lmin P o) = X =) =y,
where u2, v? denotes the componentwise square. The critical set of F' is composed of the couples
(u,v) satisfying

u® [XT(X(u?—0?) —y)] =0,
VO [XT(X(W?—2v?) —y)] =0

This set has singularities for points who have null coordinates; if we exclude those problematic points,
we can show that it is a manifold.

Proposition 5. The set M* = VF~1(0) N (R*)2? is a smooth manifold of dimension 2d — n.

(25)

Proof. Let (,v) € M*. Denote W a neighborhood of (%, ©) such that U C (R*)2?. The function
H :R?? — R4 with H(u,v) = X T (X (u? — v?) — y) is a local defining function for M*, in the
sense that for (u,v) € W, we have (u,v) € M* < H(u,v) =0.

The differential of H at (u, ?) is the linear map satisfying for (Au, Av) € R??
DH (u,9)[Au, Av] = 2X "X (20 Au — 5 © Av).
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It is clear that, since all coordinates of (&, ¥) are nonzero, the map (Au, Av) — 4O Au— 5 © Av
is a surjection on R?, and therefore rank(D H (u, 7)) = rank(X " X) = n. This proves that M* is a
manifold of dimension 2d — n [Boumal, 2023, §3.2]. O

Because of the singular points in M, the function F’ does not satisfy Assumption 2 globally. However,
our results can still be applied locally: see the paragraph below for details.
Noting that, for a vector w € R?, we have
|w|i = min ||ul|3 + ||v]|3 subjectto u? —v* = w,
u,vER

we conclude that in the second, slow phase of the dynamics, the Riemannian gradient flow which
minimizes ||u||? + ||v||?> on M* tends to drift towards solutions of low ¢; norm.

Low-rank matrix sensing/completion. Let .4 :S™ — R™ be a linear map on symmetric matrices
with m < n? and y € R™. For a given target rank 7 < n, the matrix sensing problem is
. T 2
min F(W) = [AWW ") -y (26)
WERTL Xr
A typical example is symmetric matrix completion, where the goal is to recover an unknown matrix
M* € R™ ™ from a subset of observed entries with coefficients in Q2 € {1...n}?: the objective

. . 2 .
function writes F(W) = 32, jycq (WWT);; — M;;)". Note that the asymmetric case presented
in Section 5, Equation (8), can also be written as a symmetric matrix completion problem, by setting

— U (n+m)xr
W = {V} eR ,

and choosing a new mask € that selects only the off-diagonal blocks of WV T .

Usually, one looks for a low-rank solution to Problem (26), by setting r to a small value. Here, we
choose to rather study the overparameterised setting where » = n. Our results imply that, even
though we do not explicitly impose a low rank structure, the gradient flow trajectories W~ are driven
towards a low-rank solution in the second phase of the dynamics.

Similarly to the example of diagonal linear networks, we show that, in the overparameterised setting,
the critical set of F' is a manifold if we exclude singular matrices.

Proposition 6. Let I be the matrix sensing function defined in (26), and denote R7*™ the set of
invertible matrices of size n x n. If r = n, the set M* = VF~1(0) N R™*" is a smooth manifold.

Proof. The gradient of F'is
VEW) =44 (AWWT) —y) W, VW € R™™,
where A* : R™ — S™ is the adjoint of \A.

Let W € M*,andletUf a neighborhood of W such that i/ C R?*™, For W € U, W is invertible and
we have W € M* if and only if A*(A(WW T)—y) = 0. The function H(W) = A*(A(WW T)—y)
is therefore a local defining function for M*. Its differential at W satisfies for U € R**™,

DH(W)[U] = A*AWUT +UW ).
Since W is invertible, the map ¢ : U — WU + UW ' is a surjection from R™*" onto S™:

indeed, note that for any Z € S™, we have ¢ (U) = Z withU = 17 (W™ ")T. Therefore, the rank

of DH(W) is equal to the rank of A*A for any W € M?*, which proves that M* is a smooth
manifold. O

Dealing with singularities. In the last two examples, the set VF~1(0) has singular points, and so
Assumption 2 does not hold globally. However, we showed that it holds on “most of the space”, as
there exists a negligible set S such that M* = VF~1(0) \ S is a smooth manifold.

Our results can still be applied locally, assuming that the unregularised gradient flow wSF converges

to a point wS$F € M*. Indeed, in that case there exists a neighborhood U of wSF such that
VF~1(0) N is included in M*. Then, the Morse-Bott property holds in this neighborhood.
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Consider then the Riemannian gradient flow w® of the £5 norm on M* initialized at wSF. For any
time horizon T such that the trajectory of w® stays in I/ on the interval [0, T'], we can restrict our
analysis to this local region, where our assumptions are satisfied. We can then invoke Proposition 2
to conclude that @ converges to w°® uniformly on intervals of the form [e, T'].

However, a key limitation arises when analyzing the long-time behavior: the results characterizing
the limit points ( Proposition 4) do not apply if w® converges to a singular point outside M*. This
situation can occur, as singular points might correspond to points that minimize the {5 norm on M*
(e.g., sparse vectors for diagonal networks, or low-rank matrices for matrix sensing). Establishing
convergence of w™ to such singular points remains an open and challenging problem, which we leave
for future work.

In summary, our results capture the grokking dynamics near nonsingular points in M*, but do
not yet account for potential convergence toward singular points, which represents an important
open challenge.
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D Additional experiments

D.1 Additional Experimental Details
In all our figures and to align with the continuous-time analysis, training iterations refers to the

rescaled "training time" t;, = vk, where k is the number of gradient steps and - the gradient descent
stepsize. We run gradient descent 107 iterations for Figure 2 and 106 iterations for Figure 3.

D.2 Diagonal linear networks.

_ 5
0 2.0 ts =10
Q
I 39
S1s
i i 21
Lo N -1
° 0
©
c 0.5 N
°
F o0 - 14
4+ 100 102 104 + 0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
t Training time t X ~—- Teacher function === Learnt function f,; X

Figure 4: Gradient flow with small weight decay A on a two-layer diagonal linear network. Regression
dataset. (Left): Empirical observation of the grokking behaviour. The training loss rapidly drops
to zero, while the test loss remains flat for an extended period before eventually decreasing. This
transition coincides with a slow but steady decrease in the /5-norm of the weights. (Three plots on
the right): Visualisation of the model predictions throughout training. The dotted light blue curve
represents the teacher function, and the crosses indicate the training data. Snapshots of the model’s
prediction function at various training times (shown in increasing colour intensity) illustrate how
generalisation is affected before and after the transition at ¢ = 1/\.

Experimental setup (Figure 4). We train a two-layer diagonal linear network of the form f,,(x) =
(u ® v,¢(x)), where w = (u,v) € R?? and ® denotes element-wise multiplication, on a 1D
toy dataset. The input x € R is mapped to a high-dimensional feature space via the feature map
o) = [1,005 (%£),...,cos (ﬂdex) ,sin (Z£),...,sin <$)} , with df = 30. The teacher
function is a sparse Fourier series f(z) = 1 + cos (GWT”) + sin (me) and is shown as a dotted light
blue curve in Figure 4. The training dataset consists of n = 12 input-output pairs (z;, y;), where

x; are sampled uniformly in [—1, 1] and y; = f(x;). These training points are shown as crosses in

Figure 4. We optimise the squared loss F'(w) = 2% S Wi — fw (z:))? using gradient descent
with weight decay A = 10~*. Finally, the initial weights are sampled from a centered Gaussian of

variance 0.1.

Explaining the observed grokking phenomenon. At time t; = 0, the weights are randomly initialised
and the training loss is high. By t, = 102, the training loss has dropped to nearly zero, and the iterates
closely approximate the solution that would be obtained by unregularised gradient flow. This solution
is fully characterised by the implicit regularisation result of [Woodworth et al., 2020], and it does not
have a low norm.> Subsequently, around time ¢ = 1/, the weight norms begin to decrease, and by
t3 &~ 10°, they converge to the minimum-norm solution (u*,v*) = argminp(, )= |[u[|3 + ||v||3.
A straightforward calculation shows that the elementwise product 5* := u* ® v* solves the problem
argmingg ,,y—y,v; [|8][1. This is an £;-minimisation problem, which (under RIP conditions) is
known to recover the sparsest solution [Candes, 2008], explaining the zero test loss after the grokking
phenomenon.

3One could also reach the solution observed at time ¢3 = 10® without using weight decay by employing a
much smaller initialisation scale [Woodworth et al., 2020], but at the cost of longer training time.
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E Heuristic analysis on how small )\ needs to be for grokking to emerge

Note that our theoretical results are derived in the asymptotic regime A — 0, since this setting allows
for a tractable and general analysis. Extending the theory to obtain explicit results for a fixed A > 0 is
considerably more challenging. That said, we can offer some intuition regarding how small A needs
to be for grokking to emerge.

Grokking depends on a clear separation between two phases: an initial phase where the iterates
converge and stagnate at the solution of the unregularised gradient flow, and a second phase driven by
weight decay, during which test performance improves. For grokking to be observable, the regularised
gradient flow should approach the unregularised limit before weight decay begins to significantly
influence the dynamics.

To formalize this intuition, we can define two characteristic times: tgr, the convergence time of
the unregularized gradient flow, measured as the time at which the gradient norm substantially
decreases relative to its initial value; and a second time ¢twp of order 1/, associated with the
onset of the regularization effects. When A is small enough that tgr < 1/, we expect to observe
grokking-like behavior. Specifically, for some threshold ¢ < 1 (e.g., € = 0.01): let tgr such that
IVE (wigp)|| = e||VE (wp)]|. Now let twp denote the time when weight decay kicks in: i.e. when
the magnitude of the unregularised gradient becomes comparable to the magnitude of the weight
decay term: ||V F(wiyp)|l & Allwiyp |- Since at time ¢wp, the solution is close to the gradient
flow solution wSF, we can consider [|wyy,,, || = |[wSF||. The condition for grokking to occur (i.e., a
plateau in test loss followed by an improvement of the test loss) is thus that tgr < twp. Translating
this condition in terms of gradients, we obtain: |V F(wiy, )|l > [[VF (weyp )|, which, using the
approximations above, implies: ¢||V F (wp)|| > A||w“F||. Simplifying further (absorbing ¢ into a

constant), we have the practical guideline: A < %. Hence, grokking occurs when the weight

decay parameter A is sufficiently small compared to the ratio between the initial gradient magnitude
and the norm of the unregularised gradient flow solution.
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