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Abstract

Iterative dynamic Retrieval-Augmented Gener-
ation (RAG) methods have demonstrated strong
performance on Multi-Hop Question Answer-
ing (MHQA). However, they still suffer from
high inference costs, redundant information
processing, and retrieval decisions that de-
pend heavily on internal states. To this end,
we propose Tree-Organized Active Internal
Knowledge Completion (TAIKC), a novel ap-
proach designed to address two significant chal-
lenges: efficient information aggregation and
active retrieval decision-making. TAIKC hi-
erarchically decomposes multi-hop questions
into a tree of sub-questions. For each sub-
question, the model either extracts confident
internal knowledge based on its perception of
knowledge boundaries or leverages external
knowledge to fill the knowledge gap. This pro-
cess incrementally constructs a knowledge tree
that integrates both internal and external infor-
mation, and knowledge chains are then induced
from the knowledge tree to solve the complex
question. Furthermore, we align the model with
our framework via knowledge distillation and
model bootstrapping. Extensive experiments
on four MHQA datasets demonstrate the effec-
tiveness of our method.

1 Introduction

RAG mitigates the limitations of Large Language
Models (LLMs) (Brown et al., 2020; Ouyang et al.,
2022; Touvron et al., 2023) in handling long-tail
and temporal knowledge (Wang et al., 2025; Li
et al., 2024) by incorporating external information
into the generation process (Xu et al., 2025; Wei
et al., 2025; Asai et al., 2024). This enables LLMs
to maintain high-quality responses in environments
where knowledge is continually evolving.
Traditional methods of RAG typically retrieve
relevant information from external corpora in a
single-pass manner based on the initial query
(Zhuang et al., 2024; Yu et al., 2024), which per-
forms well on relatively simple tasks. However,
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such methods often struggle in multi-hop question
answering due to difficulty integrating multiple rel-
evant passages for reasoning (Chu et al., 2024; V
et al., 2025; Cao et al., 2023). To address this, iter-
ative multi-round retrieval frameworks have been
proposed. These approaches leverage intermediate
outputs in the current step (e.g., reasoning steps
and sub-questions) as queries for the subsequent re-
trieval round (Su et al., 2024; Lyu et al., 2024; Press
et al., 2023), thereby incorporating task-relevant
external information into the generation process
progressively and iteratively (Jin et al., 2025; Yao
et al., 2023b). Furthermore, to improve retrieval ef-
ficiency and generation quality, some studies have
incorporated dynamic retrieval mechanisms. These
methods dynamically determine when and what to
retrieve based on model-internal signals (Su et al.,
2024, Jiang et al., 2023), such as token probabilities
and self-attention weights.

Although iterative dynamic RAG methods
demonstrate strong reasoning capabilities in com-
plex problem solving, they significantly increase
inference overhead due to generating and accumu-
lating extensive intermediate information. As the
context length grows, the model’s ability to locate
key information deteriorates, negatively impacting
generation quality. In addition, their reliance on in-
ternal signals such as attention weights limits their



applicability in proprietary models, where such sig-
nals are typically inaccessible. To address these
challenges, this work focuses on three research
questions: (1) RQ1: How can information be effi-
ciently aggregated to solve complex problems? (2)
RQ2: How can models make effective active re-
trieval decisions? (3) RQ3: How can the proposed
framework better adapt to the model?

To address RQ1, we decompose multi-hop ques-
tions into hierarchical sub-questions, forming a
tree-structured representation where each node cor-
responds to a sub-question. By sequentially solving
all nodes (through the solution for RQ2), we con-
struct a Knowledge Tree supported by both internal
and external knowledge sources. We then sum-
marize the branches of this tree to generate multi-
ple Knowledge Chains, which facilitate reasoning
and the final resolution of complex questions. For
RQ2, for each sub-question, based on the model’s
ability to perceive its knowledge boundaries (i.e.,
to determine whether it knows the answer to a
given question; see Appendix C for details), we
use the Confident QA (see Table 17) approach to
extract high-confidence internal knowledge from
the model, referred to as Confident Knowledge (see
Figure 1). For sub-questions that the model cannot
answer directly, we supplement them with external
knowledge via RAG. Finally, to address RQ3, we
enhance the model’s instruction-following capabil-
ity and knowledge boundary awareness through
knowledge distillation and model bootstrapping,
thereby achieving alignment between the frame-
work and the model.

Our main contributions are as follows: (1) We
propose a hierarchical reasoning framework that
aggregates information and generates high-quality
reasoning chains, thereby improving both the ef-
ficiency and quality of solving complex tasks; (2)
We enable the model to actively determine when to
invoke external knowledge, reducing reliance on in-
ternal signals; (3) We strengthen the model’s ability
to follow instructions and recognize the boundaries
of its knowledge, allowing the framework to be
effectively adapted to different models.

2 Related work

2.1 Multi-hop Question Answering

Multi-hop question answering aims to address ques-
tions that require reasoning over multiple knowl-
edge passages and performing multi-step inference
(Zhang et al., 2024; Yang et al., 2018). Early ap-

proaches leveraged the reasoning capabilities of
LLMs, first generating the reasoning process and
then producing the final answer (Wei et al., 2022;
Yao et al., 2023a). Building on this, subsequent
work introduced multi-turn interactions between
the retriever and the reader, incorporating external
documents into the reasoning process to reduce hal-
lucination and using intermediate reasoning results
to guide subsequent retrieval, thereby enhancing
knowledge completeness and coherence (Xu et al.,
2024b; Trivedi et al., 2023; Khattab et al., 2023).
Additionally, some studies employed the decom-
position ability of LLMs to iteratively break down
complex questions into simpler sub-questions un-
til the final answer was derived (Shi et al., 2024;
Press et al., 2023). More recently, the emergence
of large reasoning models (DeepSeek-Al et al.,
2025; OpenAl et al., 2024b) has introduced a new
paradigm for tackling complex problems, owing to
their strong and sophisticated reasoning capabili-
ties (Jin et al., 2025; Song et al., 2025).

2.2 Retrieval-Augmented Generation

Retrieval-augmented generation improves LLMs
by integrating external knowledge (Yue et al.,
2025; Lewis et al., 2020). Early studies proposed
a retrieve-then-read architecture, in which docu-
ments relevant to the input query are first retrieved
and then used by a generation module to produce
answers (Tan et al., 2024; Asai et al., 2024). To
facilitate better coordination between internal and
external knowledge, some works leverage token
probabilities to decide when to incorporate external
knowledge via retrieval (Su et al., 2024; Jiang et al.,
2023). Subsequently, to further improve retrieval
effectiveness and generation quality, techniques
such as query rewriting (Mao et al., 2024; Wang
et al., 2023) and document re-ranking (Chen et al.,
2024) have been introduced into the RAG pipeline.
Moreover, given that retrievers may return irrele-
vant information, several studies attempt to filter
out unrelated documents by assessing document-
query relevance (Yoran et al., 2024; Liu et al.,
2024), or extract useful information from large
texts via document summarization and compres-
sion methods (Li et al., 2025; Yoon et al., 2024,
Xu et al., 2024a). Other lines of work enhance
RAG performance by improving the quality of the
offline knowledge base through the integration of
knowledge graphs and related techniques during its
construction (Zhang et al., 2025; Gutierrez et al.,
2024; Edge et al., 2025).
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Figure 2: The overview of the framework we proposed. [Action] represents the interaction with the LLM.

3 TAIKC: Tree-Organized Active
Internal Knowledge Completion

Here is an overview of our method. TAIKC decom-
poses multi-hop questions into a sub-question tree
and processes them node by node. The model prior-
itizes the use of internal knowledge for answering,
while dynamically incorporating external knowl-
edge when necessary to fill in gaps. It then con-
structs a logically coherent knowledge chain along
the complete knowledge tree to support reasoning
and answering complex questions. The overall
framework is illustrated in Figure 2.

3.1 Construction of Question Tree

Multi-hop questions often exhibit complex struc-
tures such as bridge, comparison, or their combi-
nations. To effectively represent these structures,
we introduce a tree-based framework to parse and
model complex questions. Specifically, we con-
struct each question Q into a question tree 7,
where the root node gg represents the original com-
plex question, and all intermediate and leaf nodes
correspond to sub-questions:

V={qw q, @}, ESVxV
Following prior work, we adopt the QDMR (Chu
et al., 2024; Wolfson et al., 2020) format to repre-

sent the decomposed questions. In practice, we use
placeholders of the form #queryX to refer to the

(1

answers of preceding sub-questions. These place-
holders are later resolved during a traversal process
by retrieving and substituting the corresponding
sub-question answers, thereby incrementally con-
structing the complete semantic chain of the orig-
inal question. As illustrated in Figure 2, this tree
structure clearly reveals the hierarchical relation-
ships and dependency paths among sub-questions.

3.2 Active Internal Knowledge Completion

Phase 1: Pre-order Traversal and Question
Completion During the problem-solving phase,
we perform a pre-order traversal over the tree struc-
ture 7, excluding the root node ¢y. For each sub-
question node ¢; encountered during traversal, we
first check whether the question is complete. If it
contains a placeholder, we identify the referenced
sub-question based on the index X (e.g., #queryX),
retrieve the answer a, to that sub-question ¢, and
replace the placeholder accordingly:

FH#e € i 4o € Tore = =il g o

where 7T denotes the pre-order traversal sequence
of the tree structure before ¢;.

Phase 2: Active Internal Knowledge Completion
We apply the Confident QA template (see Table 17)
to the question ¢; and feed the concatenated input
into the model to obtain the response 7;. If the
model is sufficiently confident in its ability to an-
swer the current question ¢; based on its internal



knowledge, it directly outputs a high-confidence
answer. Otherwise, if the model determines that
it lacks the necessary information to provide an
accurate response, it outputs a special identifier
RAG_REQUIRED. This triggers the RAG process
f(qi, D;), wherein the retrieval model R searches
an external knowledge base D for a set of doc-
uments D; most relevant to the question. These
retrieved documents, along with the question, are
then passed to the generation model, which pro-
duces the final answer a; by integrating the external
knowledge:

P A S

D; =R(q;) 3
P R(g) 3

0 = {7%
f(ai, Ds),
where S represents the retrieval identifier; f(q;, D;)
represents the generation function based on the
question g; and the retrieved document set D;.

This mechanism enables active knowledge aug-
mentation: when the model’s internal knowledge is
insufficient to answer a given question, the sys-
tem automatically supplements it with external
resources, thereby improving both the question’s
solvability and the answer’s accuracy. Notably, sup-
pose the model believes that the provided text does
not contain the answer. In that case, we instead
apply the Direct QA template to prompt the model
to directly generate an answer, thereby avoiding
interruptions in the reasoning chain. Additional
details are provided in Appendix H.

Phase 1 and Phase 2 are executed alternately
until all sub-questions in the question tree have
been successfully parsed and answered, at which
point the construction of the entire knowledge tree
T™ is complete:

T*=(V,€) ECVxV

4)
V - {q0) (q17a1)7 ey (Qn,an)}

3.3 Knowledge Tree Summarization

In the previous stage, we constructed a knowledge
tree 7 that captures the structural composition
of complex question Q. Building upon this, we
further process the tree by extracting summary in-
formation along each path 7 from the root to a leaf
node to generate corresponding Knowledge Chains
C. This transformation is grounded in the observa-
tion that the sub-questions and their answers along
each path are semantically coherent, exhibiting in-
formational continuity and logical dependency. As
illustrated in the Figure 2, Knowledge Chain One

consists of sub-questions Query 1 and Query 2
along with their respective answers. This chain
not only preserves the decomposition pathway of
the complex question embedded in the tree struc-
ture, but also distills the key information required
to resolve that particular path:

c=¢ | (ma)|reP(T)p 6

(qr,an)em™

where P(7*) denotes the set of all root-to-leaf
paths extracted from the knowledge tree 7*; 7 €
P(T*) denotes a specific path (i.e., a branch)
within the tree; (g, ax) denotes a sub-question and
its corresponding answer on the path.

Finally, the generation model M produces the
final answer A based on the knowledge chains C
and the complex question Q:

A= M(C,Q) (6)

4 Framework-Model Alignment

Instruction-Following (IF) via Knowledge Dis-
tillation. To improve the instruction alignment
ability of models such as Llama-3.1-8B-Instruct
within our framework, we transfer the strengths
of the GPT series in instruction comprehension
and execution. Specifically, we randomly sampled
2,000 examples from the training sets of HotpotQA
and 2WikiMultihopQA, and solved these problems
using GPT-40. We retain intermediate outputs for
the successfully solved cases such as question de-
composition, answers, and summaries generated
during the problem-solving process, thereby con-
structing an instruction-following dataset. This
dataset is then used to enhance the target model’s
instruction-following capabilities.

Knowledge Boundary Awareness Enhancement
(KBAE) via Model Bootstrapping. To enhance
models’ ability to recognize the boundaries of
their own knowledge, we propose a mechanism
based on multiple single-hop QA datasets. When a
model produces a correct answer in the Direct QA
mode, we expect it to output the same answer when
switched to the Confident QA mode. Conversely,
if the model produces an incorrect answer in the
Direct QA mode, it is required to return a special
retrieval indicator in the Confident QA mode, sig-
naling that it has recognized its own knowledge
limitation. This approach results in a knowledge
boundary awareness enhancement dataset, which



Statistic Value
# The data scale 12685
# The data scale of IF 9589
# The average length of input instruction  267.8
# The average length of output 274

# The data scale of KBAE 3096
# The average length of input instruction  148.3
# The average length of output 3.9

Table 1: Statistics of the synthetic dataset.

improves the model’s self-awareness of its knowl-
edge coverage. It is worth noting that the determina-
tion of knowledge boundaries for the same question
may differ due to variations in internal knowledge
among different models. As such, the knowledge
boundary annotations are model-specific.
Objective of Training. The statistics of the syn-
thetic dataset D, are summarized in Table 1. More
details about training data can be found in Ap-
pendix F. Our training objective is to fit the large
language model My to the distribution of the syn-
thetic dataset D;. During model training, we adopt
the commonly used next token prediction task in
language modeling and use cross-entropy loss as
the objective function, as defined below:

0* = arg mein E(z,)~Ds [Lop(Mg(z),y)] (7)

5 Experimental Settings

Datasets and Evaluation Metrics We evaluate
our approach on four widely-used MHQA datasets:
HotpotQA (Yang et al., 2018), 2WikiMultihopQA
(Ho et al., 2020), MuSiQue (Trivedi et al., 2022),
and Bamboogle (Press et al., 2023). For Bam-
boogle, we use all 125 examples from its test set.
For the other datasets, we randomly sample 500
examples from their respective development sets.
Evaluation is conducted using three metrics: F1,
Exact Match (EM), and Semantic Accuracy (Acct).
The F1 score measures the token-level overlap be-
tween the model’s prediction and the ground truth.
Exact Match requires the predicted answer to match
the ground truth exactly. Semantic Accuracy lever-
ages an LLM to assess whether the predicted an-
swer is semantically correct with respect to the
ground truth. Further details about semantic accu-
racy evaluation can be found in Appendix G.

Baselines We compare our approach against both
Generation w/o Retrieval and Generation w/ Re-
trieval methods. Here, w/ stands for with and w/o

for without. Generation w/o Retrieval methods in-
clude: (1) Direct QA, which directly prompts the
model to generate the final answer; (2) CoT (Wei
et al., 2022), which first generates intermediate
reasoning steps before producing the final answer.
Generation w/ Retrieval methods include: (1)
One-time Retrieval (OneR), where the model an-
swers the question based on documents retrieved
in a single step; (2) RetGen (Shao et al., 2023),
which integrates iterative retrieval conditioned on
previously generated text and queries; (3) Self-Ask
(Press et al., 2023), which decomposes the original
question into sub-questions and builds the final an-
swer step by step; (4) FLARE (Jiang et al., 2023),
which dynamically adjusts the retrieval timing and
content based on token probabilities of intermedi-
ate reasoning; (5) DRAGIN (Su et al., 2024), which
uses internal model signals to determine when and
what to retrieve; (6) GenGround (Shi et al., 2024),
which alternates between answer generation and
answer revision stages; (7) CompAct (Yoon et al.,
2024), which dynamically retains key information
and integrates content across multiple documents;
(8) DyPlan (Parekh et al., 2025), which dynami-
cally selects strategies based on the input question
and perform internal verification after generating
the answer; (9) Search-R1 (Jin et al., 2025), which
trains LLMs via reinforcement learning to perform
autonomous retrieval during reasoning.
Implementation Details We employ GPT-40 (Ope-
nAl et al., 2024a) and Llama-3.1-8B-Instruct
(Grattafiori et al., 2024) (Llama-3.1 for short) as
the backbone models for our framework and all
baselines. For the knowledge source, we use the
Wikipedia dump provided by KILT (Petroni et al.,
2021), dated August 1, 2019. BM25 (Robertson
and Walker, 1994) is adopted as the retrieval model,
while e5-base-v2 (Wang et al., 2024) is used for
reranking. When retrieval is required for a given
question, we return the top 5 passages with the high-
est reranking scores. For model training, we set the
learning rate to Se-5 and adopt the LoRA (Hu et al.,
2022) method for efficient parameter fine-tuning.
The models are trained for three epochs using the
AdamW (Loshchilov and Hutter, 2019) optimizer.

6 Experimental Results

6.1 Overall Performance

The experimental results are presented in Table 2.
We observe that for GPT-40, a powerful proprietary
model, the gain from single-turn retrieval is rela-



Methods HotpotQA 2WikiMultihopQA MuSiQue Bamboogle Average
FI EM Accf F1I EM Acet F1I EM Accf Fl1 EM  Acct
generation w/o retrieval based on GPT-4o
Direct QA 48.0 36.2 522 425 342 418 209 8.0 208 404 304 392 34.5
CoT 55.1 412 638 556 458 60.6 30.0 164 316 726 544 744 50.1
generation w/ retrieval based on GPT-4o
OneR 524 396 584 429 352 440 170 70 176 36.8 25.6 40.8 34.8
CompAct 549 408 622 442 362 476 192 106 21.6 39.7 28.8 44.0 37.5
RetGen 522 378 67.6 442 330 554 257 132 296 412 328 552 40.6
Self-Ask 50.6 38.0 61.8 525 444 574 256 134 288 57.8 432 592 44 .4
FLARE 53.1 406 592 517 424 550 246 128 252 683 544 712 46.5
GenGround 61.3 46.8 68.8 61.6 474 654 324 174 338 709 584 700 529
TAIKC 58.1 442 642 642 538 67.2 339 202 358 739 656 76.0 54.8
generation w/o retrieval based on Llama-3.1-8B-Instruct
Direct QA 305 23.0 342 292 244 282 90 26 80 163 112 16.0 19.4
CoT 33.0 226 402 235 180 21.8 114 3.8 11.2 494 384 488 26.8
generation w/ retrieval based on Llama-3.1-8B-Instruct
OneR 437 334 500 265 206 270 98 3.8 86 235 152 240 23.8
CompAct 456 342 510 319 242 324 11.6 48 102 228 176 224 25.7
RetGen 40.0 280 502 322 242 366 13.0 64 144 206 120 344 26.0
Self-Ask 40.5 30.0 48.0 359 306 402 139 72 164 382 272 424 30.9
FLARE 373 270 424 325 270 334 13.6 52 128 50.1 312 50.0 30.2
GenGround 41.3 302 48.6 345 290 382 125 52 114 263 176 248 26.6
DRAGIN 48.6 372 534 439 366 458 185 9.0 166 504 40.8 49.6 37.5
DyPlan 49.7 38,0 550 498 424 524 187 8.0 156 467 368 464 38.3
Search-R1 529 41.0 588 456 392 504 195 112 184 474 33.6 464 38.7
TAIKC 49.7 382 548 577 498 598 221 114 214 505 424 504 4.3

Table 2: Experimental results on four open-domain multi-hop question answering datasets. The best and second-best

results are highlighted in bold and underlined.

tively small (34.5 — 34.8). In contrast, the open-
source Llama-3.1 model benefits more significantly
from retrieval (19.4 — 23.8), which we attribute
to the larger knowledge gap between the two mod-
els. Compared to single-turn retrieval, iterative dy-
namic retrieval leads to substantial improvements,
as the model can acquire more external knowledge
in an iterative manner based on its specific needs,
thereby enabling better problem-solving.

As shown in Table 2, our method achieves
the best results on three datasets: 2WikiMulti-
hopQA, MuSiQue, and Bamboogle. On average,
our approach outperforms previous state-of-the-art
(SOTA) methods GenGround and Search-R1 by
significant margins (+1.9 and +3.6). We attribute
these improvements to the following factors: (i)
hierarchical knowledge integration enhances the
relevance of information aggregation, effectively
mitigating the interference from redundant context
through structured knowledge tree construction;
(i) the knowledge-boundary-based active retrieval

mechanism enables efficient coordination between
internal and external knowledge sources, reducing
ineffective retrievals and improving information
utilization; (iii) the enhanced instruction-following
and boundary-awareness capabilities improve the
adaptability between the model and the framework.

Further analysis in Figure 3 shows that our
framework achieves notable gains on complex rea-
soning types such as bridge comparison and 4-hop
questions. These tasks typically involve indirect
associations among multiple entities or information
chains spanning multiple paragraphs, demanding
stronger capabilities in knowledge organization and
deeper reasoning. We attribute the performance
gains to our proposed hierarchical question model-
ing and knowledge chain construction mechanisms,
which enable more effective organization and uti-
lization of knowledge in complex reasoning sce-
narios. In contrast, existing approaches often lack
structured organization when handling intermediate
information, which can lead to the accumulation of



HotpotQA 2WikiMultihopQA MuSiQue Bamboogle
Methods Average
Fl1 Acct Fl1 Acct Fl1 Acct Fl1 Acct

TAIKC (GPT-40) 58.1 64.2 64.2 67.2 339 35.8 73.9 76.0 59.2
Internal Only 51.7(e) 5747 5727 60.0(d7) 298 {a) 3224 787(1s) 80.0(T4) 559 (Is%)
External Only 54.6(ly) 61.6(3) 6123 644Us) 300{a) 3204 602({1a) 624 ({1a) 53.3 {1on)
Based on Prob 495(9) 542(l10) 5579 560(1) 295(l4) 296e) 7192 73.6(l2) 525 (niy)
TAIKC (Llama-3.1) 49.6 54.2 57.4 59.6 22.7 21.8 49.7 48.8 45.5
w/o IF 456 (l4)  498(4) 47610 498w 175(s) 160Ue) 415Us)  40.0(le)  38.5 (l15%)
w/o KBAE 376 (J12) 412(l1z) 43.6 (J1a) 432(le) 151(s) 13.2(9) 43.8(e) 4246 350 (22%)
w/o IF & KBAE 347(l15) 382(le) 348 (l23) 354(l2s) 127(l10) 108 (1) 4059  36.8(l12) 30.5 (I30%)

Table 3: Results of ablation study. The upper part of the table presents ablation settings for different knowledge
collaboration strategies, while the lower part reports ablation settings for various training modules.

redundancy and the overshadowing of critical infor-
mation, thereby hindering the stable construction
of complete reasoning paths.

6.2 Ablation Study

Effect of Knowledge Collaboration Strategy We
designed three sets of experiments: one using only
internal knowledge, one using only external knowl-
edge, and one leveraging model output probabili-
ties to determine when to perform retrieval. The
results show that, except for Bamboogle, models
experience a more substantial performance drop
when relying solely on internal knowledge (Inter-
nal |35 vs. External |21), suggesting that inter-
nal knowledge alone is insufficient for task com-
pletion and highlighting the critical role of ex-
ternal knowledge. Interestingly, internal knowl-
edge yields the best performance on Bamboogle,
likely because the dataset was constructed in 2023,
whereas the external knowledge base is outdated
(last updated in 2019) and offers limited support.
Overall, using a single source of knowledge sig-
nificantly degrades performance (Internal |5% &
External | 10%), while combining internal and ex-
ternal knowledge (Unified Knowledge) achieves
the best results, validating the effectiveness of the
integration strategy. Moreover, using output proba-
bility to decide whether to retrieve knowledge leads
to a performance drop (}.11%), further demonstrat-
ing the superiority of our Confident QA approach.
Effect of Model Modules To investigate the con-
tribution of key modules, we performed ablations
on the IF and KBAE modules. The results indicate
that removing the KBAE module causes a greater
performance drop ({22%) compared to removing
the IF module (] 15%), suggesting that KBAE plays
a critical role in boundary recognition and coordi-
nation between internal and external knowledge.
Removing both modules results in the most signifi-
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Figure 3: Performance comparison of various methods
across the four question types in 2WikiMultihopQA and
the 4-hop question type in MuSiQue.

cant performance degradation ({30%), indicating
a synergistic effect: the IF module enhances the
understanding and response to user instructions,
while KBAE improves knowledge boundary aware-
ness. Together, they support the model’s reasoning
and knowledge retrieval capabilities.

7 Analyses and Discussions

7.1 Knowledge Collaboration

We conducted a systematic analysis of the mod-
els’ performance in coordinating the use of internal
and external knowledge, with the results presented
in Figure 4. The analysis reveals the following
findings: (1) There are significant differences in
collaboration patterns across datasets. Specifi-
cally, on the Bamboogle dataset, the model tends
to exhibit high confidence in its self-generated an-
swers and primarily relies on internal knowledge
to complete the task. In contrast, on the HotpotQA
dataset, the model more frequently leverages ex-
ternally retrieved information to support reason-
ing. This suggests that the task characteristics of
a dataset influence the extent to which a model
depends on external knowledge. (2) Models also
differ in their knowledge coordination strategies.
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Figure 4: Distribution of knowledge collaboration in
reasoning. Unified represents collaboration between
internal and external knowledge sources, while the two
ends indicate reliance on a single source of knowledge.

The bars represent the original discrete distribution, and
the curve denotes the kernel density estimation (KDE).
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Figure 5: Comparison of knowledge boundary aware-
ness performance on two datasets w/o and w/ KBAE.

For instance, comparing GPT-40 and Llama-3.1,
the latter tends to rely more heavily on external
information sources in most scenarios. This result
aligns with our expectations: compared to large pro-
prietary models like GPT-40, Llama-3.1 has more
limited internal knowledge coverage and thus de-
pends more on external knowledge to compensate
for internal deficiencies.

7.2 Effectiveness of the KBAE Module

To validate the effectiveness of the KBAE module
in enhancing the model’s awareness of knowledge
boundaries, we conducted a comparative analysis
of the model’s performance before and after incor-
porating the KBAE module. The detailed results
are shown in Figure 5. First, the model’s answer
accuracy in the Confident Knowledge domain sig-
nificantly improved (42.5—59.0, 35.4—53.5), indi-
cating that the KBAE module effectively enhances
the model’s ability to utilize known knowledge.
Second, the accuracy gap between the Confident
Knowledge and Knowledge Gap domains also in-
creased notably (18.5—23.4, 20.5—32.3), suggest-
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Figure 6: Results are averaged over four datasets. The
upper-left quadrant indicates higher efficiency and better
performance. The blue icons indicate that the backbone
model is GPT-40, while the red represent Llama-3.1.

ing a strengthened capacity to distinguish between
knowledge within and beyond the boundary. Com-
bined with the conclusion from the pilot study in
Appendix C (accuracy should be high, and accuracy
gap between Confident Knowledge and Knowledge
Gap should be large), we infer that the KBAE mod-
ule helps improve the model’s awareness of its
knowledge boundaries, allowing it to better judge
whether it possesses sufficient knowledge to an-
swer a question, and thus make more appropriate
decisions regarding external information retrieval.

7.3 Analysis of Reasoning Cost

We compare our framework with previous SOTA
methods in terms of both performance and effi-
ciency, as shown in Figure 6. Whether based on
the GPT-40 model or the Llama-3.1 model, our
framework demonstrates superior overall perfor-
mance and higher efficiency. We attribute this to
the fact that our approach avoids the accumulation
and iterative processing of intermediate outputs and
employs active retrieval decision-making, which
significantly reduces the inference costs.

8 Conclusions

This paper introduces TAIKC for knowledge-
intensive multi-hop question answering. TAIKC de-
composes complex questions into a tree structure of
interrelated sub-questions addressed via pre-order
traversal. It leverages LLMs’ knowledge boundary
perception capabilities to actively select strategies
for solving each sub-question. The completed tree
structure is then used to generate coherent knowl-
edge chains to solve the complex question. Overall,
TAIKC facilitates multi-hop reasoning through ef-
ficient information aggregation and active retrieval
decision-making. Extensive experiments on four
multi-hop datasets demonstrate its effectiveness.



Limitations

The effectiveness of our method can be attributed to
the groundbreaking advances made by the research
community in mitigating hallucinations in LLMs,
which have enabled current LLMs to develop a
clear awareness of their own knowledge boundaries.
Specifically, our approach functions optimally only
when the model can accurately determine whether
it knows the answer to a given query; conversely, its
performance may decline when the model exhibits
uncertainty about its own knowledge state (i.e., suf-
fers from significant hallucination). We conducted
preliminary experiments and analyses on the adapt-
ability of our framework to several popular models,
as presented in Appendix D. In brief, we do not rec-
ommend applying our framework to models with
7B parameters or fewer, as such models typically
exhibit more severe hallucinations and struggle to
determine when to retrieve based on their inter-
nal knowledge state. Although we have proposed
aligning the framework with smaller models (e.g.,
Llama-3.1-8B-Instruct) through techniques such
as knowledge distillation and model bootstrapping,
we argue that these efforts are insufficient to over-
come the fundamental limitations faced by models
with fewer than 7B parameters. We further posit
that, as large language models continue to evolve,
the synergistic effect between our method and these
models will demonstrate even greater potential.

Ethics Statement

In this study, we strictly adhered to ethical guide-
lines to ensure the fairness and reliability of our re-
search. All experimental designs and measurement
tools were based on publicly available standards
and validated resources, ensuring high transparency
and reproducibility. Furthermore, all foundation
models, retrieval models, and datasets used in this
work are publicly accessible, primarily sourced
from open-access academic repositories and public
data platforms. This approach minimizes data bias
and promotes research fairness. We have carefully
considered the potential impact of our research on
individuals and communities, avoided any harm
to persons or organizations, and ensured that nei-
ther the research process nor its outcomes involve
misleading information or data misuse.
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A  Overview

For readers seeking to explore additional questions
or gain further details, we provide a comprehen-
sive appendix with dedicated sections addressing
specific topics. The correspondence between each
appendix and its contents is as follows:

(1) In Appendix B, we list the models and
datasets used in our study along with their respec-
tive licenses. According to the details of these
licenses, all resources are permitted for academic
research use.

e What are the license terms for the models,
datasets, and other resources used in this
work?

(2) We also present the single-hop and multi-hop
datasets employed in our experiments in Appendix
E.1.

* Which datasets are used in this study?

* What are the characteristics of the data con-

tained in these datasets?

(3) Appendix C provides an analysis of the
knowledge boundary awareness of the GPT-4o0
model.

* What is knowledge boundary awareness?

* Does the model truly possess this capability?

* How can we investigate whether a model is
able to perceive its knowledge boundaries?

(4) To investigate whether our framework can be
adapted to other popular models beyond GPT-4o,
we conducted a preliminary test and evaluation of
their knowledge boundary awareness capabilities,
as detailed in Appendix D.

* Do models of different series and scales also

exhibit knowledge boundary awareness?

(5) Appendix F provides detailed information
about training.

* How is the augmented training data con-

structed for the model?

* What hyperparameters are used for model
training?

(6) Appendix G presents the details of the seman-
tic evaluation, as well as the rationale for selecting
the Llama-3.1-8B-Instruct model over the GPT-40
model for evaluation, due to its highly consistent
decision outcomes and lower resource consump-
tion.

* What prompts are used to assess semantic ac-

curacy?

* Is it feasible to use Llama-3.1 as a substitute
for the GPT-series models commonly used in
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prior work for semantic evaluation?

(7) Appendix H presents the details of the rea-
soning continuation mechanism.

* How is inference continuation implemented?

* Approximately how much of the data triggers
this continuation mechanism?

* What is the impact on framework performance
when this mechanism is disabled?

(8) Furthermore, despite the strong overall per-
formance of our framework, we identify several
scenarios where its effectiveness decreases. A de-
tailed error analysis of these cases is provided in
Appendix I.

* What types of errors may arise within the
framework, and how do they affect its per-
formance?

(9) To facilitate a deeper understanding of our

proposed framework, we provide additional mate-
rials in Appendix J.

B Licenses

The large language models, including the Qwen-
2.5 (Qwen et al., 2025) series, are released un-
der the Apache License 2.0, while the Llama-3.1
(Grattafiori et al., 2024) series is distributed under
the LLAMA 3.1 COMMUNITY LICENSE. The
retrieval model e5-base-v2 (Wang et al., 2024) is
licensed under the MIT License. Detailed informa-
tion can be found on their respective GitHub pages.
These licenses permit users to freely use, modify,
and distribute the data. The GPT series models
used in our work are developed and released by
OpenAlL

For single-hop datasets, Natural Questions
(Kwiatkowski et al., 2019) and TriviaQA (Joshi
et al., 2017) are released under the Apache Li-
cense 2.0, WebQuestions (Berant et al., 2013) un-
der the CC-BY 4.0 License, and PopQA (Mallen
et al., 2023) under the MIT License. Regarding
multi-hop datasets, HotpotQA (Yang et al., 2018)
is licensed under CC BY-SA 4.0, 2WikiMulti-
hopQA (Ho et al., 2020) under Apache License
2.0, MuSiQue (Trivedi et al., 2022) under CC-BY
4.0, and Bamboogle (Press et al., 2023) under MIT
License. In summary, all of these licenses permit
academic use.

C Pilot Study

For a given question, the model is clearly aware of
whether it knows the correct answer. We refer to
this ability as knowledge boundary-awareness.



Natural Questions TriviaQA

PopQA WebQuestions

Methods Avg
Num Fl1 EM Accf Num F1I EM Accf Num F1 EM Accf Num F1 EM  Acct
DirQA 100 53.0 340 680 100 91.8 900 90.0 100 61.1 540 580 100 408 18.0 60.0 59.9
ConfQA 67 687 463 821 93 946 925 946 57 795 737 754 78 513 256 654 708
DirQA§ 33 220 212 333 7 357 28,6 429 43 358 302 326 22 98 00 364 274

Table 4: Performance comparison across different datasets. The § symbol denotes that the model responds in the
DirQA setting but returns RAG_REQUIRED in the ConfQA scenario (Knowledge Gap). We present the accuracy
results of Confident Knowledge (outputs in the ConfQA scenario) and Knowledge Gap in Figure 9 for visualization.

g ] When is the world consumer
right day celebrated?

>
( o Who played raquel in
only fools and horses? aas

9

Sue Holderness 6 @

- 8 JWho played raquel in
only fools and horses? If
you are uncertain or
unable to provide an
exact answer directly,
please respond with

"RAG_REQUIRED".

(a) first example

Q

== When is the world consumer
right day celebrated? If you
are uncertain or unable to
provide an exact answer
directly, please respond with
“RAG_REQUIRED".

15th October 6

(b) second example

Figure 7: Two examples illustrating inconsistent model
outputs under the DirQA and ConfQA settings.

C.1 Hypotheses

To investigate whether large language models pos-
sess an awareness of their own knowledge bound-
aries, we designed and conducted an experiment.
Specifically, we randomly sampled 100 instances
from each of four widely used single-hop question
answering datasets, constructing a test set of 400
samples. We evaluated the performance of the GPT-
40 model under two different prompting settings:

* Direct QA: The model answers each question
in the conventional manner, prompted using
the Prompt for Direct QA.

Confident QA: The model provides an
answer only when it is very confident
in its response; otherwise, it outputs
"RAG_REQUIRED." This is implemented
using the Prompt for Confident QA. For an-
swers provided by the model under the Con-
fident QA setting, we refer to them as Confi-
dent Knowledge, and for questions where the
model opts to perform RAG, we refer to them
as Knowledge Gap, as illustrated in Figure 1.

The prompts used for Direct QA and Confident QA
in our study can be found in Table 17. The objective
of the experiment is to validate the following two
core hypotheses:

* Consistency Hypothesis: When the model
exhibits high confidence in its answers, such
as in the case of simple arithmetic questions
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(e.g., "What is the capital of France?"). These
questions are assumed to fall well within the
model’s knowledge boundaries. In such cases,
the model’s responses should remain consis-
tent across both the Direct QA (DirQA) and
Confident QA (ConfQA) settings. Specifi-
cally, regardless of whether the model is asked
to respond under normal conditions or only
when it is "very confident" in its answers,
the outputs should be highly consistent. It
should not produce entirely different answers
in the ConfQA setting compared to those in
the DirQA setting.

* Reliability Hypothesis: (1) First, under the
ConfQA setting, the samples that the model
chooses to answer should have a high accu-
racy rate, indicating that the model provides
high-quality outputs only when it is genuinely
confident. (2) Furthermore, the model’s accu-
racy in the ConfQA setting should be signif-
icantly higher than in the DirQA setting. If
the accuracy is roughly the same in both set-
tings, it suggests that the model lacks aware-
ness of its own knowledge boundaries and is
unable to discern when it knows or does not
know something. (3) Next, for instances la-
beled as "RAG_REQUIRED" that the model
chooses to answer in the ConfQA setting, the
corresponding accuracy in the DirQA setting
should be relatively low. This would indicate
that the model is indeed unfamiliar with such
information, supporting the idea that these
samples lie outside its intrinsic knowledge.
(4) To summarize, points (2) and (3) suggest
that there should be a significant accuracy gap
between Confident Knowledge and the Knowl-
edge Gap.

C.2 Results and Analyses

As shown in Figure 7 (a), the model produced an
incorrect answer under the DirQA setting and then
altered its response under the ConfQA setting for



EF1 ®Acct
100.0

98.0
96.0
94.0
92.0
90.0
88.0
86.0
84.0
82.0
80.0

Natural
Questions

TriviaQA PopQA WebQuestions Average

Figure 8: Results of model output consistency compari-
son based on GPT-40.

the same question, resulting in a different but still
incorrect answer. Furthermore, as illustrated in
Figure 7 (b), the model provided a correct answer
under the DirQA setting but changed to an incorrect
answer under the ConfQA setting. These behaviors
are undesirable. We do not expect the model to
change its answers simply due to variations in the
prompt’s content or tone, as such inconsistency
reflects a lack of confidence in its own knowledge.

Therefore, for Consistency Hypothesis, we eval-
uate the consistency of model outputs under two set-
tings: DirQA and ConfQA. Specifically, we mea-
sure the degree of consistency between the answers
generated by the model for the same question under
different prompting strategies, using F1 score and
semantic accuracy as evaluation metrics. As shown
in Figure 8, the model achieves an average F1 score
of 94.1 and a semantic consistency score of 93.1
across the two settings, indicating a high degree of
agreement in model outputs under varying prompts.
These results support our proposed consistency hy-
pothesis, which posits that when the model has
high confidence in its answer to a question, it tends
to produce consistent responses regardless of the
prompting strategy.

For Reliability Hypothesis (1) and (2), we fur-
ther compare the answer accuracy between the
DirQA and ConfQA settings. Results are shown
in Table 4. In the ConfQA approach, the model
outperforms the DirQA method across all four
datasets. Specifically, the average score of the
ConfQA method reaches 70.8, significantly higher
than the 59.9 achieved by DirQA, indicating that
the ConfQA strategy contributes to improved an-
swer accuracy. Within the ConfQA framework,
the model’s output is referred to as a Confident
Knowledge. Notably, when the model encoun-
ters questions for which it is uncertain or lacks
sufficient knowledge, it returns a special token,
RAG_REQUIRED, rather than generating an an-
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Figure 9: Accuracy Comparison of Confident Knowl-
edge and Knowledge Gap Based on GPT-4o.

swer forcibly. Although the model is not explicitly
trained to recognize "I don’t know" scenarios, the
incentives introduced in the ConfQA setup encour-
age a form of knowledge boundary awareness.

For Reliability Hypothesis (3) and (4). We
constructed a knowledge gap subset by extract-
ing from the DirQA setting those questions for
which the model output RAG_REQUIRED un-
der the ConfQA setting. Another subset is the
Confident Knowledge obtained under the ConfQA
setting. Results are shown in Figure 9. On the
knowledge gap subset, the model’s average accu-
racy under the DirQA setting drops to just 25.8,
significantly lower than the 73.5 accuracy of the
Confident Knowledge and there’s a significant ac-
curacy gap of 47.7 points. This finding provides
further support for our hypothesis regarding the
model’s epistemic awareness: the model achieves
higher accuracy when it self-identifies as confident
in its answer, whereas responses generated in the
presence of knowledge gaps tend to be less accu-
rate and more error-prone. Moreover, the accuracy
gap between these two conditions is substantial.

In summary, our empirical evidence suggests
that current models exhibit a certain level of knowl-
edge boundary awareness and can actively identify
the scope of their certainty under the ConfQA strat-
egy. We argue that this capability is highly valuable
for downstream tasks, especially in the context of
the RAG framework. By combining internally con-
fident knowledge with external sources, it is pos-
sible to achieve more reliable and higher-quality
question answering.

D Generalization Study

To evaluate the adaptability and generalization
ability of our proposed framework across lan-
guage models of varying scales, we further con-
duct knowledge boundary awareness experiments
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Figure 10: Accuracy comparison of different models on Confident Knowledge and Knowledge Gap samples. The
vertical axis represents the F1 score, and the horizontal axis corresponds to the different models.

on multiple large language models. Given that
our framework relies on a model’s ability to per-
ceive its own knowledge boundaries in order to
actively decide whether to retrieve external infor-
mation, we aim to investigate whether models other
than GPT-4o0 also possess this capability, enabling
effective integration with the framework. The ex-
perimental settings were kept consistent with those
described in the previous section to ensure com-
parability. Specifically, we evaluated the output
consistency of different models under the ConfQA
and DirQA configurations, with the results sum-
marized in Figure 11. Furthermore, we measured
the models’ accuracy on two distinct types of sam-
ples, namely Confident Knowledge and Knowl-
edge Gap, as shown in Figure 10. In both figures,
G1 corresponds to GPT-40, G2 to GPT-40-mini,
Q1 to Qwen-2.5-14B-Instruct, L1 to Llama-3.1-
8B-Instruct, Q2 to Qwen-2.5-7B-Instruct, L2 to
Llama-3.2-3B-Instruct, and Q3 to Qwen-2.5-1.5B
Instruct.

As illustrated in Figures 11 and 10, models with
7B parameters or more exhibit a clear sense of
knowledge boundary awareness, demonstrating ca-
pabilities comparable to those of GPT-40. For
instance, Qwen-2.5-14B-Instruct and Llama-3.1-
8B-Instruct show relatively stable performance un-
der both the ConfQA and DirQA settings, with
consistency rates exceeding 80%. This indicates
their ability to maintain reliable knowledge judg-
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Figure 11: Comparative results of output consistency
across different models under the DirQA and ConfQA
settings. The vertical axis represents the semantic accu-
racy score, and the horizontal axis corresponds to the
different datasets.

ments despite variations in question formulation.
Moreover, their accuracy on Confident Knowledge
instances approaches or exceeds 50% (with GPT-
40 reaching approximately 70%), suggesting that
these models can provide reliable responses when
encountering familiar knowledge, while tending to
express uncertainty when facing unfamiliar content.
Such behavior is crucial for the effectiveness of our
proposed framework, as basic knowledge boundary
awareness is a prerequisite for the model to proac-
tively trigger the retrieval module when necessary,
thereby enabling more effective incorporation of
external information.

However, models with fewer than 7B parameters
exhibit several significant limitations.



* First, as illustrated in Figure 11, their out-
put consistency under both the ConfQA and
DirQA settings remains relatively low, with
average semantic accuracy scores below 70.
This indicates a strong sensitivity to prompt
variations, often resulting in inconsistent re-
sponses, which is an undesirable characteristic
for robust knowledge reasoning.

* Second, as shown in Figure 10, these models
achieve low accuracy on Confident Knowl-
edge samples, with mean F1 scores falling
below 40, suggesting that responses produced
with high confidence are frequently incorrect.

* Third, the difference in accuracy between Con-
fident Knowledge and Knowledge Gap sam-
ples is minimal, implying that these models
struggle to distinguish between known and
unknown information.

In summary, we conclude that language mod-
els with 7B parameters or more are well-suited to
our framework, exhibiting emerging capabilities
in knowledge boundary awareness and behavioral
patterns that align with those of GPT-40. In con-
trast, models below the 7B parameter scale suffer
from severe hallucination phenomena and possess
an imprecise understanding of their own knowl-
edge boundaries, thereby limiting their ability to
collaborate effectively within the proposed frame-
work.

E Datasets

E.1 Multi-hop Question Answering Datasets

HotpotQA (Yang et al., 2018) is a large-scale
dataset featuring complex, multi-hop questions that
require reasoning across multiple documents. It
aims to improve question answering systems’ multi-
hop inference and answer interpretability.
2WikiMultiHopQA (Ho et al., 2020) includes
complex multi-hop questions constructed from
Wikidata. Models are required to integrate and rea-
son over information from multiple Wikipedia doc-
uments to answer questions related to Wikipedia
entities.

MuSiQue (Trivedi et al., 2022) constructs high-
difficulty, multi-hop questions by compositing mul-
tiple single-hop questions. It aims to facilitate re-
search and evaluation of multi-hop reasoning in
question answering models.

Bamboogle (Press et al., 2023) is a small, manually
curated dataset designed to evaluate language mod-
els’ ability to handle compositional reasoning. It

Statistic Value
# The data scale 9589
# The data scale of Decomposition 1900
# The average length of input instruction  252.4
# The average length of output 77.6
# The data scale of Question Answering 4821
# The average length of input instruction  358.4

# The average length of output 8.5

# The data scale of Summarization 2868
# The average length of input instruction  125.9
# The average length of output 259

Table 5: Statistics of the instruction-following synthetic
dataset.

consists of two-hop questions that require effective
combination and reasoning over disparate pieces
of information.

Examples of these datasets could be found in Table
9.

E.2 Single-hop Question Answering Datasets

Natural Questions (Kwiatkowski et al., 2019)
comprises real user queries submitted to Google
Search, primarily focused on content from
Wikipedia pages and covering domains such as
news and general knowledge.

TriviaQA (Joshi et al., 2017) dataset contains real-
world trivia questions accompanied by support-
ing documents retrieved from Wikipedia and web
search results. It is designed to enhance the ca-
pabilities of machine reading comprehension and
question answering systems.

PopQA (Mallen et al., 2023) leverages fact triples
derived from Wikidata to generate natural language
questions spanning various relation types. It serves
to evaluate question answering systems on their
ability to understand and reason over entity-centric
information.

WebQuestions (Berant et al., 2013) consists of nat-
ural language questions posed by real users, with
answers grounded in the Freebase knowledge base.
It is widely used for tasks in knowledge base ques-
tion answering and semantic parsing.

Examples of these datasets could be found in Table
10.

F Training Data and Training

F.1 Training Data

To enhance the capabilities of models in com-
plex instruction following and knowledge boundary



Statistic Value
# The data scale 3096
# The data scale of Confident Knowledge 1267
# The average length of input instruction 150.1
# The average length of output 39

# The data scale of Knowledge Gap 1829
# The average length of input instruction 147.1
# The average length of output 4.0

Table 6: Statistics of the knowledge boundary-
awareness synthetic dataset.

awareness, we design and construct two targeted
datasets. These datasets are respectively aimed at
improving the model’s instruction-following ability
and its capacity to recognize the limits of its own
knowledge.

Given the current limitations of models in in-
struction execution accuracy and task comprehen-
sion, we constructed a set of training samples
specifically designed to strengthen their instruction-
following capabilities. The construction process is
as follows: we randomly sampled 2,000 training
examples each from the HotpotQA and 2WikiMul-
tihopQA datasets, and processed these examples
using our framework. If a model achieved a perfect
prediction on a question (i.e., F1 = 1.0), the key
intermediate outputs generated during reasoning
were retained as training data. These include de-
composed sub-instructions, question-answer pairs
grounded in the provided documents, and extracted
summaries from tree-structured reasoning steps.
Importantly, to avoid injecting excessive factual
knowledge into the model, we excluded data re-
lated to answers derived from the model’s internal
knowledge and retained only the parts that reflect
task understanding and procedural execution. Ta-
ble 5 presents the statistics of the training data.
Table 12 presents several representative training
examples constructed through this process.

Specifically, both in the training data and dur-
ing inference, we use the same prompt format
for two types of reasoning steps: answering sub-
questions based on the provided documents, and
answering complex questions using the summa-
rized tree-structured information produced in the
final step of our framework. This is because both
types of questions are answered solely based on
given information.

In addition, to improve the model’s ability to
recognize knowledge gap, we built a separate set of
training samples focused on developing knowledge
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Figure 12: Training loss.

boundary awareness. Specifically, we randomly
sampled 1,000 examples each from the training
sets of the Natural Questions, PopQA, and We-
bQuestions datasets. Using the DirQA setting, the
model was prompted to answer each question di-
rectly. When the model produces a correct answer,
we combine the question with the ConfQA tem-
plate and prompt the model to continue answering.
If the model gives an incorrect answer, we still com-
bine the question with the ConfQA template, but in-
struct the model to output a specific retrieval indica-
tor, RAG_REQUIRED. These two types of training
samples generated in this manner are used for fine-
tuning the model’s knowledge boundary-awareness
capability. This approach aims to equip the model
with the ability to accurately detect and articu-
late its knowledge limitations when faced with
potentially underspecified or out-of-scope queries,
thereby enhancing its robustness and trustworthi-
ness. Table 6 presents the statistics of the training
data. Table 13 shows several concrete examples of
the generated training samples.

F.2 Training

We conduct model training using the LLaMA-
Factory (Zheng et al., 2024) framework. Based
on prior empirical insights, the LoRA-related hy-
perparameters are set as follows: the LoRA rank is
set to 16 and the LoRA alpha to 32. During train-
ing, the learning rate is set to 5e-5, with 3 epochs
and a batch size of 2. Gradient accumulation is ap-
plied with an accumulation step of 8. The training
is performed on an NVIDIA RTX A6000 GPU and
lasts approximately four hours. The training loss
over time is illustrated in Figure 12.



G Semantic Accuracy Evaluation

Semantic accuracy is widely used in the evaluation
of RAG systems. Consistent with existing work,
we employ LLMs to assess semantic accuracy. The
task is defined as follows: given a question, the
model’s predicted answer, and the reference answer,
the LLM must determine whether the predicted
answer can imply the reference answer and output
only Yes or No. The prompt we used is shown
below.

Prompt for Semantic Accuracy Evaluation

In the following task, you are given a
Question, a model Prediction for the
Question, and a Ground-truth Answer to the
Question. You should decide whether the
model Prediction implies the Ground-truth
Answer.

Question
{question}

Prediction
{prediction}

Ground-truth Answer
{answer}

Does the Prediction imply the Ground-truth
Answer? Output Yes or No and do not
output any other words:

Unlike previous studies that employed GPT-
series models for semantic accuracy evaluation, we
utilized Llama-3.1-8B-Instruct as an alternative to
GPT-4o for this task due to computational resource
constraints. The significant performance gap that
once existed between GPT-series models and other
models has notably diminished, with major LLMs
now demonstrating increasingly comparable capa-
bilities. This observation led us to hypothesize that
for relatively simple and well-defined tasks, evalu-
ation decisions should be largely consistent across
different models.

To test this hypothesis, we designed a compara-
tive experiment: First, we randomly sampled 100
instances from each of the four test sets generated
by the model (400 samples in total). These samples
were then evaluated for semantic accuracy by three
distinct models: GPT-40, Qwen-2.5-7B-Instruct,
and Llama-3.1-8B-Instruct. Subsequently, we em-
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ployed statistical analysis to measure the agreement
between the two open-source models and GPT-4o0.

The experimental results presented in Table 7
demonstrate a high degree of consistency between
the open-source models and GPT-40, with Qwen-
2.5-7B-Instruct achieving 96.75% agreement and
Llama-3.1-8B-Instruct reaching 96.25%. These re-
sults strongly support our initial hypothesis, demon-
strating that under resource-constrained conditions,
replacing GPT-40 with an open-source model for
semantic accuracy evaluation is both a feasible and
effective solution. Considering the minimal perfor-
mance gap between the two open-source models
and aiming to maintain consistency with the model
used in our main experiments, we employed Llama-
3.1-8B-Instruct for the evaluation.

Dataset Data Size GPT-Qwen GPT-Llama
HotpotQA 100 97.00 97.00
2WikiMultihopQA 100 97.00 96.00
MuSiQue 100 95.00 94.00
Bamboogle 100 98.00 98.00
Average 100 96.75 96.25

Table 7: The results of the consistency comparison in
semantic accuracy evaluation among the Llama, Qwen,
and GPT models.

H Reasoning Continuation Mechanism

H.1 Details

To prevent interruptions in the reasoning chain dur-
ing the question-answering process, we introduce
a Reasoning Continuation Mechanism. When the
model fails to identify the answer to a sub-question
within the retrieved context, this mechanism acti-
vates a direct inquiry strategy based on a Direct QA
template (see Table 17), prompting the language
model to provide an answer directly. Specifically,
we define a set of trigger words, including "found",
"mention", "provide" and so on. If the model’s
response contains a negation (e.g., "not") alongside
any of these trigger words, it indicates that relevant
information for the sub-question is not found in
the current document. In such cases, the system
bypasses the current retrieval content and directly
queries the model using the Direct QA template to
generate an alternative answer, thereby preserving
the continuity of the reasoning chain.

According to our statistics (see Figure 13), this
mechanism is triggered in approximately 5% of
the samples. Although the resulting answers are



Models 2WikiMultihopQA
F1 EM Acct F1 EM Accf

64.2 53.8 67.2 73.9 65.6 76.0
60.9 (I3) 498 (1) 628(la) 71.7(l2) 632(2) 72.8(s)

Bamboogle

w/
w/o

Table 8: The results of the ablation study for reasoning
continuation mechanism.

not supported by external retrievals, they serve as
a suboptimal yet effective strategy in scenarios of
information absence, significantly enhancing the
robustness of the system and ensuring the continu-
ity of multi-step reasoning.

H.2 Ablation Study

To evaluate the specific impact of the Reasoning
Continuation Mechanism on system performance,
we conducted an ablation study by removing this
module from the experimental framework. In this
setting, when the model determines that the re-
trieved documents do not support answering the
question, the system no longer performs any fur-
ther processing or generates an answer based on
the model’s own knowledge; instead, it terminates
the current reasoning process.

We tested the ablated system on two multi-hop
question answering datasets: 2WikiMultihopQA
and Bamboogle. The experimental results indicate
a slight performance degradation: a drop of 11
points on 2WikiMultihopQA and 7 points on Bam-
boogle (see Table 8). Although the performance
decline is relatively modest, the results suggest that
the Reasoning Continuation Mechanism plays a
supportive role in maintaining overall system effec-
tiveness.

We argue that while current models tend to adopt
a RAG approach under the Confident QA setting,
there are scenarios in which the model’s internal
knowledge may already contain the correct answer.
Therefore, when external documents fail to provide
the necessary information for a sub-question, lever-
aging the model’s internal knowledge to continue
generating an answer helps preserve the integrity
of the reasoning chain and contributes to improved
system stability and robustness.

I Error Analyses

Although the framework proposed in this study
demonstrates strong performance in most scenarios,
failures may still occur under certain conditions.
Internal Knowledge Error: Despite the high
accuracy exhibited by large language models such
as GPT-40 in most tasks, they are still prone to
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Figure 13: The proportion of iterations the model uses
to solve each sub-question. An iteration count of 1 indi-
cates that the model chooses to answer using confident
knowledge; an iteration count of 2 indicates that the
model opts for a RAG-based response; and an iteration
count of 3 indicates that the model, unable to answer
through RAG, resorts to a direct response.

factual errors in their generated outputs. When in-
ternal knowledge is misrepresented or flawed, the
model may produce inaccurate content, thus com-
promising the reliability of the overall framework.
For instance, as shown in Table 15, when address-
ing the question "How did Nora Brockstedt die?",
the model generated an incorrect answer, leading
to a failure in solving the problem.

Overall, due to Internal Knowledge Error, our
framework may still produce errors.

J Additional Details

To facilitate a deeper understanding of our pro-
posed framework, we provide additional materials
as follows.

Table 11 offers a comprehensive comparison be-
tween our approach and the baselines, summarizing
the key characteristics of each method to highlight
the distinctions and advantages of our design.

Table 14 presents a representative inference ex-
ample of our framework on the 2WikiMultihopQA
dataset, illustrating how the model processes multi-
hop reasoning in a real scenario.

Table 16 presents several examples of decom-
posed questions.



Dataset Type Num Question Answer
HotpotQA bridge 386  Geoff LaTulippe is an American writer whose best- Nanette Burstein
P known work was directed by whom?
comparison 114 ‘Which lake is located further south, Dal Lake or Dal Lake
Waterton Lake?
comparison 123 Which film came out earlier, Watermark (Film) or Sofia’S Last Ambu-
Sofia’S Last Ambulance? lance
2WikiMultihopQA .. .
ikiMultihopQ compositional 201 Where was the performer of song Feelin® Myself Crenshaw
(Nipsey Hussle Song) born?
inference 69 Who is Duke Siegfried August In Bavaria’s maternal  Princess Clémentine
grandmother? of Orléans
bridge comparison 107 ~ Which film has the director who was born earlier, Buck And The
Hostage For A Day or Buck And The Preacher? Preacher
2-hop 283  Who is the spouse of the creator of Absolutely Fabu- Adrian Edmondson
MuSiQue lous?
3-hop 150  Who is the owner of the record label that the per- Warner Music Group
former of Trojans belongs to?
4-hop 67 What is the capital of the county that shares a border Green Bay
with the county where KRSU is licensed to broad-
cast?
Bamboogle 2-hop 125 Who was president of the United States in the year james madison
that Citibank was founded?
Table 9: Details for multi-hop QA datasets used for evaluation.
Dataset Question Answer
Natural Questions how many seasons of prison break are on netflix five
TriviaQA Which Scotsman became the first European to reach the Mungo Park
River Niger in 1796?
PopQA Who was the screenwriter for A Teacher? Hannah Fidell
WebQuestions who does ronaldinho play for now 2011? Clube de Regatas do Flamengo
Table 10: Examples for single-hop QA datasets.
Method Iterative Dynamic Retrieval Strategy Retrieval Query
Direct QA No No - -
CoT No No - -
OneR No No - -
RetGen Yes No - -
Self-Ask Yes No - -
FLARE Yes Yes Token probability in model output sentence  Tokens with probability above threshold
CompAct Yes No - -
GenGround Yes No - -
DRAGIN Yes Yes Real-time information needs Query generation based on self-attention
DyPlan Yes Yes Strategy selection based on question Complex input question
Search-R1 Yes No - -
TAIKC Yes Yes Model’s knowledge boundary awareness Sub-questions decomposed from complex questions

Table 11: Overview of methods and their use of iterative and dynamic retrieval strategies.
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Input: You are an Al assistant adept at dissecting intricate queries into a series of straightforward,
logically interlinked questions, and adeptly representing each of these as discrete objects within a JSON
structure. Decompose the following complex question into smaller, logically connected queries. Each
query should be represented as a separate object in a JSON format. For questions that require further
follow-up (e.g., sub-queries about the results), nest those queries under the parent query. Rules: 1. Each
question should be split into logical, simpler questions. 2. Use "queryl," "query2," etc., for the main and
sub-queries. 3. If a sub-query depends on the answer to a previous query, use a reference in the form of
"#queryX" (e.g., "What is the birth year of #query1?") to indicate the dependency. The number should
correspond to the query being referenced. 4. When decomposing a multi-hop question, only generate
essential factual sub-questions needed to answer the main query, and avoid any comparison, intersection,
or synthesis questions. Decompose the following question without any additional explanation or words.
Are Han Sai Por and Gabriele Oettingen of the same nationality?

Output: { "queryl": { "question": "What is the nationality of Han Sai Por?", "children": { "query2": {
"question": "What is the nationality of Gabriele Oettingen?" } } }}

Input: You will receive a question and several documents. The following are given documents: passage:
Princess Gabriele of Oettingen-Oettingen and Oettingen-Spielberg, known professionally as Gabriele
Oettingen, (born Gabriele Elisabeth Aloisia Notgera Prinzessin zu Oettingen-Oettingen und Oettingen-
Spielberg; July 22, 1953, Munich) is a German academic and psychologist. She is a professor of
psychology at New York University and the University of Hamburg. Her research focuses on how
people think about the future, and how this impacts cognition, emotion, and behavior. passage: Oettingen-
Spielberg is a noble family and former principality in modern-day eastern Baden-Wiirttemberg and western
Bavaria, Germany. passage: Oettingen was born on July 22, 1953 in Munich, Germany to Alois Philipp
Joseph Maria Notger, 9th Prince of Oettingen-Oettingen and Oettingen-Spielberg and Countess Elisabeth
Gabriele zu Lynar. She is a member of the German princely House of Oettingen-Spielberg. passage:
Alexander Konstantin von Oettingen ( — ) was a Baltic German Lutheran theologian and statistician.
passage: Oettingen lives and works in New York City and Munich. On August 10, 1990 she married Peter
Gollwitzer. They had a religious ceremony on January 22, 1994. They have two children, Anton and
Jakob. Question: What is the nationality of Gabriele Oettingen? Please provide the answer directly and do
not output any other words:

Output: German

Input: Summarize the information provided in the json text, which consists of several query-and-answer
pairs. Please do not omit any information in the question-and-answer pairs. Summarize the following
query-and-answer pairs into a sentence: {"queryl": {"question": "What is the nationality of Han Sai
Por?", "answer": "Singaporean", "children": {"query2": {"question": "What is the nationality of Gabriele
Oettingen?", "answer": "German"}}}} Output your summary below:

Output: Han Sai Por is Singaporean, while Gabriele Oettingen is German.

Input: You will receive a question and several documents. The following are given documents: Han
Sai Por is Singaporean, while Gabriele Oettingen is German. Question: Are Han Sai Por and Gabriele
Oettingen of the same nationality? Please provide the answer directly and do not output any other words:
Output: No.

Table 12: Examples for instruction following training data. The red text indicates the core requirements of the task,
the blue text represents the data to be processed, and the teal text denotes the resulting output.
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Input: Next, [ will provide a question. Please output only the exact answer to the question directly, without
adding any additional explanations, guiding phrases, or background information. If you are uncertain
about the answer or unable to provide an exact answer directly, please respond with "RAG_REQUIRED"
so that I can proceed with further information retrieval (RAG). If there is any uncertainty about the
correctness of your answer, even slightly, you must respond with "RAG_REQUIRED." Only provide an
answer if you are absolutely certain it is correct. Here is the question you need to handle: secretary of
state for communities and local government of the united kingdom Please provide the answer directly and
do not output any other words:

Output: RAG_REQUIRED

Input: Next, I will provide a question. Please output only the exact answer to the question directly, without
adding any additional explanations, guiding phrases, or background information. If you are uncertain
about the answer or unable to provide an exact answer directly, please respond with "RAG_REQUIRED"
so that I can proceed with further information retrieval (RAG). If there is any uncertainty about the
correctness of your answer, even slightly, you must respond with "RAG_REQUIRED." Only provide an
answer if you are absolutely certain it is correct. Here is the question you need to handle: who played tom
cruises wife in the firm Please provide the answer directly and do not output any other words:

Output: Jeanne Tripplehorn

Input: Next, I will provide a question. Please output only the exact answer to the question directly, without
adding any additional explanations, guiding phrases, or background information. If you are uncertain
about the answer or unable to provide an exact answer directly, please respond with "RAG_REQUIRED"
so that I can proceed with further information retrieval (RAG). If there is any uncertainty about the
correctness of your answer, even slightly, you must respond with "RAG_REQUIRED." Only provide an
answer if you are absolutely certain it is correct. Here is the question you need to handle: what countries
are located in the netherlands? Please provide the answer directly and do not output any other words:
Output: RAG_REQUIRED

Input: Next, I will provide a question. Please output only the exact answer to the question directly, without
adding any additional explanations, guiding phrases, or background information. If you are uncertain
about the answer or unable to provide an exact answer directly, please respond with "RAG_REQUIRED"
so that I can proceed with further information retrieval (RAG). If there is any uncertainty about the
correctness of your answer, even slightly, you must respond with "RAG_REQUIRED." Only provide an
answer if you are absolutely certain it is correct. Here is the question you need to handle: what type of
cancer did donna summer died from? Please provide the answer directly and do not output any other
words:

Output: Lung cancer

Table 13: Examples for knowledge boundary recognition training data. The red text indicates the core requirements
of the task, the blue text represents the data to be processed, and the teal text denotes the resulting output.
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An Example of Reasoning on 2WikiMultihopQA Dataset

Question:
Which film has the director who is older than the other, The Carousel Of Death or Nameless Star?

Decompose:
{
"queryl": {
"question": "Who directed the film The Carousel Of Death?",
"children": {
"query2": {
"question": "What is the birth year of #query1?"
}
}
),
"query3": {
"question": "Who directed the film Nameless Star?",
"children": {
"query4": {
"question": "What is the birth year of #query3?"
}
}
}
}
Answer:

Queryl: Who directed the film The Carousel Of Death?
Confident QA: RAG_REQUIRED

RAG: Heinz Paul

Query2: What is the birth year of Heinz Paul?
Confident QA: RAG_REQUIRED

RAG: 1918

Query3: Who directed the film Nameless Star?
Confident QA: Mihail Kozakov

Query4: What is the birth year of Mihail Kozakov?
Confident QA: 1934

Summarize:
The film "The Carousel Of Death" was directed by Heinz Paul, who was born in 1918.
The film "Nameless Star" was directed by Mihail Kozakov, who was born in 1934.

Predict:
The Carousel Of Death v/

Ground truth:
The Carousel Of Death

Table 14: An example of reasoning on 2WikiMultihopQA dataset.
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An Example of Internal Knowledge Error for Error Analyses

Question:
Why did the performer of song Sommer I Palma die?

Decompose:
{
"queryl": {
"question": "Who is the performer of the song Sommer I Palma?",
"children": {
"query2": {
"question": "How did Nora Brockstedt die?"
}
}
}
}
Answer:

Queryl: Who is the performer of the song Sommer I Palma?
Confident QA: RAG_REQUIRED

RAG: Nora Brockstedt

Query2: How did Nora Brockstedt die?

Confident QA: Natural causes. X

Summarize:
Nora Brockstedt is the performer of the song "Sommer I Palma" and she died of natural causes.

Predict:
natural causes X

Ground truth:
illness

Table 15: An example of internal knowledge error for error analyses. The red text indicates that an error has
occurred with the problem and the module.
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Demonstrations of Question Decomposition

Which magazine was started first Arthur’s Magazine or First for Women?

{
"queryl": {
"question": "When was the magazine Arthur's Magazine started?"
%,
"query2": {
"question": "When was the magazine First for Women started?"
}
}

What nationality was James Henry Miller’s wife?

{
"queryl": {
"question": "Who was James Henry Miller's wife?",
"children": {
"query2": {
"question": "What is the nationality of #query1?"
}
}
}

Which film whose director is younger, Charge It To Me or Danger: Diabolik?
{

"queryl": {
"question": "Who directed the film Charge It To Me?",
"children": {
"query2": {
"question": "What is the birth year of #query1?"
}
}
),
"query3": {
"question": "Who directed the film Danger: Diabolik?",
"children": {
"query4": {
"question": "What is the birth year of #query3?"
}
}

}
}

Table 16: Demonstrations of question decomposition.
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Prompt for Direct QA and Confident QA

Prompt for Direct QA:

Next, I will provide a question. Please output only the exact answer to the question di-
rectly, without adding any additional explanations, guiding phrases, or background information.

Here is the question you need to handle:
{question}

Please provide the answer directly and do not output any other words:

Prompt for Confident QA:

Next, I will provide a question. Please output only the exact answer to the question di-
rectly, without adding any additional explanations, guiding phrases, or background information.

If you are uncertain about the answer or unable to provide an exact answer directly,
please respond with "RAG_REQUIRED" so that I can proceed with further information retrieval
(RAG).

If there is any uncertainty about the correctness of your answer, even slightly, you must
respond with "RAG_REQUIRED." Only provide an answer if you are absolutely certain it is

correct.

Here is the question you need to handle:
{question}

Please provide the answer directly and do not output any other words:

Table 17: Prompt for Direct QA and Confident QA.
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