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Abstract

Incrementally expanding the capability of an001
existing translation model to solve new domain002
tasks over time is a fundamental and practi-003
cal problem, which usually suffers from catas-004
trophic forgetting. Generally, multi-domain005
learning can be seen as a good solution. How-006
ever, there are two drawbacks: 1) it requires007
having the training data for all domains avail-008
able at the same time, which may be unrealistic009
due to storage or privacy concerns; 2) it re-010
quires re-training the model on the data of all011
domains from scratch when adding a new do-012
main and this is time-consuming and computa-013
tionally expensive. To address these issues, we014
present a semi-supervised contrastive distilla-015
tion framework for incremental neural machine016
translation. Specifically, to avoid catastrophic017
forgetting, we propose to exploit unlabeled data018
from the same distributions of the older do-019
mains through knowledge distillation. Further,020
to ensure the distinct domain characteristics in021
the model as the number of domains increases,022
we devise a cross-domain contrastive objective023
to enhance the distilled knowledge. Extensive024
experiments on domain translation benchmarks025
show that our approach, without accessing any026
previous training data or re-training on all do-027
mains from scratch, can significantly prevent028
the model from forgetting previously learned029
knowledge while obtaining good performance030
on the incrementally added domains. 1031

1 Introduction032

In the real scenario, translating an out-of-domain033

sentence is a common situation while it usually034

cannot work well due to domain discrepancy. An035

effective solution is to incrementally expand the ca-036

pability of the existing translation model, i.e., con-037

tinual learning (Silver et al., 2013). However, the038

biggest challenge is catastrophic forgetting when039

the model learns new knowledge and it would for-040

get the previously acquired knowledge (Goodfel-041

1The code will be released upon acceptance.

low et al., 2013; Gu and Feng, 2020). A theo- 042

retically good technique is multi-domain learning, 043

which usually requires having all the training data 044

available at the same time and re-training the model 045

on all domains from scratch. Nevertheless, in prac- 046

tice, it may be unfeasible because we sometimes 047

cannot access the previous data due to storage or 048

privacy concerns, and re-training would bring more 049

training and resource consumption. 050

To overcome these drawbacks, many efforts have 051

been devoted that fall into three categories, i.e., con- 052

structing pseudo data of previous domains/tasks, 053

adding task-specific adapters, and regularization- 054

based learning. (i) The first category aims to create 055

pseudo data of the previous task and mix them with 056

the new task data for joint training (Kim and Rush, 057

2016; Liu et al., 2021; Ko et al., 2021). Although 058

intuitive and effective, they generally require ob- 059

taining a large training data of previous tasks and 060

are not flexible in practice. (ii) The second cat- 061

egory is to add additional task-specific layers for 062

new tasks and only optimizes these parameters with 063

the new task data, having achieved impressive per- 064

formance (Bapna and Firat, 2019a; Aharoni and 065

Goldberg, 2020; Escolano et al., 2021; Liang et al., 066

2021; Cao et al., 2021; Gu et al., 2019, 2021). How- 067

ever, the task-specific adapters may increase the dif- 068

ficulty of the model to be aware of which tasks the 069

input belongs to and thus neglect the distinct task 070

characteristics, which limits its application in prac- 071

tice. (iii) The third category essentially searches 072

a trade-off between the new task and the previous 073

ones through multi-objective training with an extra 074

penalty item (e.g., L2 or EWC regularization) on 075

the parameters (Khayrallah et al., 2018; Thomp- 076

son et al., 2019). Therefore, previous methods 077

usually lead to under- or over-constraint problems 078

and achieve a suboptimal performance. Besides, 079

they typically require the parallel data of the pre- 080

vious tasks/domains (Gu et al., 2022) and the time 081

and space cost for computing the penalty item is 082
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expansive, especially with new tasks/domains ap-083

pearing (Cao et al., 2021).084

In this paper, to address the above issues, we085

present a Semi-supervised Contrastive Distillation086

(named SCD) framework for incremental neural087

machine translation. Specifically, to memorize088

the learned knowledge from previous domains, we089

propose to exploit unlabeled data from the same090

distributions of the older domains through knowl-091

edge distillation. To this end, we utilize the source-092

side data related to the previous domains, e.g., the093

source-side data of validation set2, which is small-094

scale and easy to obtain compared to requiring095

parallel data. Furthermore, to guarantee distinct do-096

main characteristics in the model as new domains097

appear, we devise a cross-domain contrastive ob-098

jective to enhance the distilled knowledge, which099

encourages the model to learn to keep different do-100

main characteristics and thus benefits translation101

for various domains.102

We validate our proposed SCD framework on103

the commonly-used machine translation bench-104

mark (Aharoni and Goldberg, 2020), which con-105

tains five domains. We incrementally add a single106

domain at each time to simulate the real-world situ-107

ation. Extensive experiments show that our model108

effectively addresses the catastrophic forgetting is-109

sue and significantly outperforms related strong110

methods in terms of BLEU (Papineni et al., 2002)111

scores, demonstrating its effectiveness.112

In summary, our main contributions are:113

• We propose a novel continual learning frame-114

work for incremental neural machine translation115

without accessing any previous training data or116

re-training on all domains from scratch. We also117

propose a cross-domain contrastive objective to118

enhance the distilled knowledge to guarantee dis-119

tinct domain characteristics in the model.120

• We conduct extensive experiments and systemic121

analysis on a more general scenario where m122

streams of data from different domains are fed123

to the model sequentially, and our approach can124

significantly prevent the model from forgetting125

previously acquired knowledge while obtaining126

good performance on the newly added domains.127

• We show that our method can also achieve better128

performance only with a handful of unlabeled129

data than that using a large of parallel data.130

2Note that the target-side data is not used.
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Figure 1: An illustration of incrementally learning three
domains. Stage 1: A model ΘA is trained on a domain
A using labeled data with the cross-entropy loss LA.
Here Ya indicates the reference and Ŷ A

a indicates the
translation in domain A by ΘA. Stage 2: The trained
model from Stage 1 is treated as a frozen teacher model.
A trainable student ΘAB is a copy from ΘA and then
trained with a loss LB for domain B and distillation
loss LKDA

for domain A. To compute LKDA
, a set of

unlabeled data is used: teacher model’s predictions on
such dataset for domain A are treated as soft labels and
are used against the student model’s predictions. In this
way, the ΘAB learns to perform domain B and mean-
while tries to keep domain A’s knowledge by distillation
from the ΘA. Stage 3: The student ΘAB from Stage
2 acts as the frozen teacher, and a student copy ΘABC

is created to add domain C. The rest of the training
process is similar to Stage 2.

2 Methods 131

In this section, we first describe the problem defi- 132

nition § 2.1. Secondly, we introduce the proposed 133

semi-supervised distillation method in § 2.2, which 134

prevents the model from forgetting the previously 135

learned knowledge. Then, to further ensure the 136

domain characteristics, we present a cross-domain 137

contrastive objective to enhance the distilled knowl- 138

edge § 2.3. Finally, we elaborate on the training 139

and inference in § 2.4. 140

2.1 Problem Statement 141

Domain-incremental training (Cao et al., 2021) 142

aims to simulate training of the NMT model on 143

real-world time streaming data, where the train- 144

ing domain data come from different times and 145

is fed to the model in chronological order. And 146

we indicate (Xa, Ya) and (Xb, Yb) as the training 147

translation pairs for domain A and B, respectively. 148

For example, as shown in Fig. 1, the model ΘA is 149

firstly trained on a domain A. After a period of 150

time, a new domain data B comes. Then, a model 151

ΘAB , which needs to deal with both domains, is 152

trained incrementally based on Model ΘA without 153

accessing the previous domain data A. The rest of 154

the training process is similar to adding domain B. 155

2



2.2 Semi-supervised Distillation156

Motivation. To continually learn new domains157

for translation, we exploit the knowledge distilla-158

tion (KD) (Hinton et al., 2015) framework. Without159

loss of generality, we assume that we have already160

trained a model ΘA to solve domain A in stage 1161

and we want to update it to learn how to also solve162

a new domain B. As illustrated in Fig. 1, we start163

by creating a copy of ΘA for domains A and B,164

i.e., ΘAB . The original ΘA and ΘAB models act as165

the teacher and the student in the KD framework,166

respectively. During training, we fix the model167

ΘA and only update ΘAB with the objective of (1)168

learning the new domain from the training data of169

domain B and (2) preserving the older domain’s170

knowledge by minimizing the loss function:171

LKD
AB = LB + αLKDA ,

LB = CE(Yb,ΘAB(Xb)),

LKDA = CE(ΘA(Xa),ΘAB(Xa)),

(1)172

where CE denotes the cross-entropy loss and LKDA173

denotes the CE loss between the token probability174

distribution of the student on domain A and the175

soft targets of the teacher ΘA, and α is the balanc-176

ing coefficient. Here LB serves to let the student177

learn how to solve a new domain and LKDA helps178

it in preventing catastrophic forgetting of the old179

one. In the standard application of KD to continual180

learning, LKDA is computed on the new domain181

data (Shmelkov et al., 2017; Cao et al., 2021): this182

assumes that the old and new domains have the183

same data distribution (Dakwale and Monz, 2017).184

However, the assumption does not satisfy the185

real-world machine translation where different do-186

mains are typically defined on extremely different187

data distributions. If we use the new domain data188

to compute the distillation loss, the model will bias189

the translation toward the new domain style when190

translating the sentence of the old domain. There-191

fore, preventing catastrophic forgetting when using192

only the new domain data can be challenging.193

Dealing with Different Domain Distributions.194

To address this issue, we propose to augment the195

KD learning process with a data distribution re-196

sembling the one used to train the teacher model197

to solve domain A. Our assumption is that while198

the original training material for domain A may no199

longer be available, we can still observe a stream200

of unlabeled data (Xa) from the same distribution,201

which is easy to obtain, e.g., the validation set of202

domain A.203
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Figure 2: When incrementally learning a new domain,
we propose cross-domain contrastive learning objectives
to enhance the distilled knowledge to keep distinct do-
main characteristics.

By this way, the loss function LKDA represents 204

the discrepancy between the teacher and student 205

predictions for the old domains on a set of unla- 206

beled data. In practice, the unlabeled data Xa are 207

automatically labeled by the teacher model ΘA to 208

produce the soft targets dataset of domain A. This 209

data will be used to compute the loss LKDA . Mean- 210

while, a new labeled dataset for domain B is used 211

to compute LB. By doing so, the student model 212

should be able to minimize the discrepancy with 213

the teacher on the old domains (i.e., minimizing 214

the catastrophic forgetting) while learning the new 215

domains. 216

This methodology can be trivially extended to 217

the general case where the teacher is already trained 218

on n domains and the student needs to solve a new 219

domain. In this setting, we need to prevent the 220

catastrophic forgetting of n different domains. We 221

assume the availability of an unlabeled stream of 222

data for each of the old domains to compute the 223

individual distillation losses. For example, for three 224

domains as the stage 3 shown in Fig. 1, the total 225

loss is written as: 226

LKD
ABC = LC + α(LKDA + LKDB ),

LC = CE(Yc,ΘABC(Xc)),

LKDA = CE(ΘAB(Xa),ΘABC(Xa)),

LKDB = CE(ΘAB(Xb),ΘABC(Xb)).

(2) 227

In this way, the student model will maintain the 228

relevant knowledge to solve the n domains by dis- 229

tilling it from the teacher on the unlabeled data 230

stream, while also learning how to solve the new 231

domain on the labeled data. 232

2.3 Cross-domain Contrastive Objective 233

In domain-incremental NMT, we require the model 234

to simultaneously handle multiple domains and 235

generate domain-aware translations. To guarantee 236
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the domain characteristics, we further propose a237

cross-domain contrastive objective to enhance the238

distilled knowledge. Particularly, as the stage 2239

shown in Fig. 2, we use the output feature of the240

student model as an anchor feature HAB
a,i , and push241

it close to its original domain representation HA
a,i242

provided by the teacher model. In contrast, we243

push apart the irrelevant pairs, e.g., the random244

one in the mini-batch HAB
a,j , j ̸= i. However, the245

simple negative sample cannot work well in distin-246

guishing domain characteristics because they are247

different instances but come from the same domain.248

Therefore, we design a hard negative that is the249

same instance but encoded with another model for250

domain B. In this way, the only difference is that251

they are encoded by different domain models and252

thus we can distinguish the domain characteristics253

between domain A and B. That is, our negative254

samples include two parts: 1) Easy Negatives Xj
a255

(j ̸= i) randomly sampled and encoded by domain256

model ΘB; 2) Hard Negative Xi
a encoded with do-257

main model ΘB . This forces the model ΘAB to258

capture and distinguish well domain A and domain259

B. Formally, the cross-domain contrastive training260

objective is defined by (N is the batch size):261

LCCO
AB = − log

esim(HAB
a,i ,HA

a,i)/τ

esim(HAB
a,i ,HA

a,i)/τ +
N∑

j=1

esim(HAB
a,i ,HB

a,j)/τ

,

(3)262

where sim(·, ·) is the cosine similarity and τ de-263

notes a temperature hyperparameter.264

Similarly, as the number of domains increases,265

we can easily extend Eq. 3 to a general setting. For266

example, for three domains as the stage 3 shown267

in Fig. 2, we require two cross-domain contrastive268

objectives LCCO
AC and LCCO

BC for domains A&C and269

B&C, respectively.270

2.4 Training and Inference271

At training, we train our model with the following272

objective at stage 2:273

J = LKD
AB + βLCCO

AB , (4)274

where β is the balancing hyper-parameter.275

Note that when training model ΘAB , the model276

ΘA and ΘB are frozen. During inference, only277

the model ΘAB is used to generate translations for278

domains A and B. The rest of the training process279

is similar to the stage 2.280

3 Experiments 281

3.1 Datasets 282

We use the domain translation dataset proposed 283

by Koehn and Knowles (2017) to simulate the 284

incremental multi-domain setting. The dataset 285

mainly covers five diverse domains: IT, Koran, 286

Law, Medical, and Subtitles, which are available in 287

OPUS (Aulamo and Tiedemann, 2019). Following 288

previous work (Gu and Feng, 2020; Gu et al., 2022), 289

we use the new data splitting released by Aharoni 290

and Goldberg (2020), and perform German to En- 291

glish translation (De→En). Please refer to Tab. 7 292

of Appendix C for detailed data statistics. 293

3.2 Metric 294

For a fair comparison, we follow previous 295

work (Gu et al., 2022) and adopt the 4-gram case- 296

sensitive BLEU with the SacreBLEU tool3 (Post, 297

2018) and report the statistical significance 298

test (Koehn, 2004). 299

3.3 Implementation Details 300

Following Gu et al. (2022), we use the mBART50- 301

nn (Tang et al., 2020) as our baseline model. Please 302

refer to Appnedix A for detailed settings. 303

3.4 Comparison Models 304

Our comparison models consist of two parts: non- 305

continual learning methods and continual learning 306

methods. Please refer to Appendix B for details. 307

3.5 Main Results 308

3.5.1 Adding a Second Domain 309

We investigate different methods for adding a new 310

domain to a model already trained on one domain. 311

In detail, we first fine-tune the mBART50-nn model 312

on one domain. Then, we add another domain to 313

the model through the proposed approach without 314

accessing any training labels for the first domain. 315

The results of all models are shown in Tab. 1. 316

As hypothesized, when adding the Koran domain 317

to a model fine-tuned on the IT domain, in the 318

regularization-based setting (mBART50-nn (L2- 319

Reg or EWC)) the models are not able to learn the 320

IT domain by only adjusting the model weights 321

with constraint (the BLEU of old domain is about 322

4 points below the single-domain fine-tuning). Al- 323

ternatively, the mBART50-nn (TKD) method also 324

cannot prevent the catastrophic forgetting of the 325

3BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+
version.1.4.13
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Setting IT Koran Law Medical Subtitles Avg.

Scratch 39.87 18.80 53.96 53.88 27.71 38.84
mBART50-nn 35.65 16.41 41.81 37.21 27.14 31.64
mBART50-nn (Adapter) 37.15 19.38 55.01 56.13 30.89 39.71
mBART50-nn (FT) 39.48 24.04 59.49 58.95 30.78 42.54
mBART50-nn (MDL) [Five Domains] 39.01 23.37 59.37 59.18 30.18 42.22

mBART50-nn (MDL) [IT + Koran] 38.77 23.53 - - - 31.15
mBART50-nn (L2-Reg) [IT→Koran] 35.67 23.52 - - - 29.60
mBART50-nn (EWC) [IT→Koran] 35.55 23.54 - - - 29.55
mBART50-nn (TKD) [IT→Koran] 36.69 23.57 - - - 30.13
mBART50-nn (LFR-OM) [IT→Koran] 37.47 23.55 - - - 30.51
SCD [IT→Koran] 39.87† 22.03 - - - 30.95
mBART50-nn (L2-Reg) [Koran→IT] 38.78 16.57 - - - 27.88
mBART50-nn (EWC) [Koran→IT] 38.71 17.04 - - - 27.88
mBART50-nn (TKD) [Koran→IT] 39.40 19.40 - - - 29.40
mBART50-nn (LFR-OM) [Koran→IT] 39.21 20.13 - - - 29.67
SCD [Koran→IT] 39.28 23.15† - - - 31.22†

mBART50-nn (MDL) [IT + Law] 39.45 - 59.92 - - 49.68
mBART50-nn (L2-Reg) [IT→Law] 29.47 - 59.12 - - 44.30
mBART50-nn (EWC) [IT→Law] 29.35 - 59.05 - - 44.20
mBART50-nn (TKD) [IT→Law] 30.70 - 59.26 - - 44.98
mBART50-nn (LFR-OM) [IT→Law] 31.74 - 59.07 - - 45.41
SCD [IT→Law] 37.70† - 57.33 - - 47.52†

mBART50-nn (L2-Reg) [Law→IT] 38.61 - 50.71 - - 45.16
mBART50-nn (EWC) [Law→IT] 38.67 - 50.15 - - 44.41
mBART50-nn (TKD) [Law→IT] 38.69 - 51.55 - - 45.12
mBART50-nn (LFR-OM) [Law→IT] 38.42 - 53.02 - - 45.72
SCD [Law→IT] 37.89 - 56.90† - - 47.40†

mBART50-nn (MDL) [IT + Medical] 38.91 - - 59.63 - 49.27
mBART50-nn (L2-Reg) [IT→Medical] 30.87 - - 58.87 - 44.87
mBART50-nn (EWC) [IT→Medical] 30.13 - - 59.01 - 45.57
mBART50-nn (TKD) [IT→Medical] 31.35 - - 59.07 - 45.21
mBART50-nn (LFR-OM) [IT→Medical] 32.59 - - 58.91 - 45.75
SCD [IT→Medical] 37.70† - - 57.14 - 47.42†

mBART50-nn (L2-Reg) [Medical→IT] 38.95 - - 49.23 - 44.09
mBART50-nn (EWC) [Medical→IT] 38.83 - - 49.01 - 43.92
mBART50-nn (TKD) [Medical→IT] 39.72 - - 50.24 - 44.98
mBART50-nn (LFR-OM) [Medical→IT] 39.08 - - 51.04 - 45.06
SCD [Medical→IT] 38.05 - - 56.96† - 47.51†

mBART50-nn (MDL) [IT + Subtitles] 39.66 - - - 30.48 35.07
mBART50-nn (L2-Reg) [IT→Subtitles] 29.97 - - - 30.33 30.15
mBART50-nn (EWC) [IT→Subtitles] 30.25 - - - 30.28 30.27
mBART50-nn (TKD) [IT→Subtitles] 31.54 - - - 30.41 30.94
mBART50-nn (LFR-OM) [IT→Subtitles] 32.18 - - - 30.71 31.45
SCD [IT→Subtitles] 38.52† - - - 31.00 34.76†

mBART50-nn (L2-Reg) [Subtitles→IT] 38.38 - - - 24.77 31.58
mBART50-nn (EWC) [Subtitles→IT] 38.75 - - - 24.71 31.73
mBART50-nn (TKD) [Subtitles→IT] 38.89 - - - 25.19 32.04
mBART50-nn (LFR-OM) [Subtitles→IT] 38.91 - - - 25.48 32.19
SCD [Subtitles→IT] 39.04 - - - 30.01† 34.52†

Table 1: Comparison of different continual learning
strategies to learn two domains in different orders. “[IT
+ Koran]” means we mixed both training data to jointly
train the model. “[IT→Law]” means Law is added
to an IT model. The “SCD” indicates the proposed
semi-supervised contrastive distillation method. The
best results are in bold. “†” indicates that statistically
significant better than “mBART50-nn (LFR-OM)” with
t-test p < 0.01. The results of the other orders (e.g.,
[Law→Medical]) are shown in Tab. 8 of Appendix.

previous domain, as demonstrated by the drop of326

about 2.5 points in terms of the BLEU score. This327

is happening to various degrees to all the old do-328

mains in all the pairs. We note that the same pattern329

can also be found for the other domain pairs (e.g.,330

[IT→Law]). Compared with them, the mBART50-331

nn (LFR-OM) method, to some extent, can keep the332

performance of the previous domain because they333

only update these parameters which does not harm334

the performance of the previous domain. How-335

ever, this method first needs some parallel data to336

search such parameters. Given that the drop we ob-337

serve for mBART50-nn (L2-Reg)&mBART50-nn338

(EWC)&mBART50-nn (TKD) is generally higher339

than mBART50-nn (LRF-OM), we will not report340

their results in the following sections.341

Setting IT Koran Law Medical Avg.

Scratch 39.87 18.80 53.96 53.88 41.63
mBART50-nn 35.65 16.41 41.81 37.21 32.77
mBART50-nn (Adapter) 37.15 19.38 55.01 56.13 41.92
mBART50-nn (FT) 39.48 24.04 59.49 58.95 45.49
mBART50-nn (MDL) IT + Koran + Law 38.85 23.63 59.19 - 40.55

+ Medical 38.75 23.83 59.49 58.75 45.21

mBART50-nn (LFR-OM) IT→Koran→Law 33.78 19.12 54.25 - 35.71
→Medical 31.50 18.52 41.55 53.37 36.24

SCD IT→Koran→Law 37.88 21.06 56.89 - 38.61†
→Medical 34.01 22.93 45.53 55.56 39.51†

mBART50-nn (LFR-OM) IT→Law→Koran 31.72 21.27 56.91 - 36.63
→Medical 32.85 15.90 42.56 53.56 36.22

SCD IT→Law→Koran 39.35 21.33 52.31 - 37.66†
→Medical 37.91 21.19 46.48 56.30 40.47†

mBART50-nn (LFR-OM) Koran→IT→Law 32.56 18.43 54.66 - 35.21
→Medical 31.37 18.05 41.67 53.56 36.16

SCD Koran→IT→Law 37.97 21.58 57.32 - 38.96†
→Medical 34.46 23.10 45.58 56.01 39.79†

mBART50-nn (LFR-OM) Koran→Law→IT 38.19 17.74 51.74 - 35.89
→Medical 35.46 16.67 44.23 54.45 37.70

SCD Koran→Law→IT 38.47 21.10 56.42 - 38.66†
→Medical 36.67 22.31 46.71 56.88 40.64†

mBART50-nn (LFR-OM) Law→IT→Koran 31.72 21.27 51.91 - 34.97
→Medical 31.24 20.78 45.78 54.78 38.14

SCD Law→IT→Koran 38.35 21.33 52.31 - 37.33†
→Medical 37.22 20.83 47.90 56.92 40.72†

mBART50-nn (LFR-OM) Law→Koran→IT 38.19 17.74 51.74 - 35.89
→Medical 35.52 16.56 50.15 54.69 39.23

SCD Law→Koran→IT 38.47 23.10 56.42 - 39.33†
→Medical 38.69 21.16 53.49 56.88 42.56†

Table 2: mBART50-nn (LFR-OM) and SCD perfor-
mances when incrementally learning three and four do-
mains. “D1→D2→D3” means the mBART50-nn model
was fine-tuned for D1 first. Then D2 and D3 were added
incrementally. “→Subtitles” rows show the result after
further adding the Subtitles domain.

In sum, computing the distillation loss with our 342

proposed semi-supervised distillation and cross- 343

domain contrastive objective largely mitigates the 344

catastrophic forgetting issue and keeps the capabil- 345

ity of the model to learn the new domain. When 346

adding Koran to an IT-trained model, our model 347

even surpasses the MDL or single-domain fine- 348

tuning methods after the second stage when we 349

use the unlabeled development set (we only use 350

source-side data) of IT domain for distillation (the 351

drop of mBART50-nn (LFR-OM) is about 1.3%). 352

Additionally, the BLEU scores of all models on the 353

Koran when added as a new domain are compara- 354

ble with each other. 1) This means that the model 355

is able to retain the general linguistic knowledge 356

required to learn the new domain, while also pre- 357

serving its knowledge of the older domain. Mean- 358

while, we observe a similar trend in the reverse 359

setting, where we add IT to a model fine-tuned on 360

the Koran. Finally, this pattern is consistent in other 361

domain pairs as well (e.g., adding IT to Medical or 362

Subtitles). 363

3.5.2 Adding Third and Fourth Domains 364

We further investigate the effectiveness of SCD by 365

incrementally learning three and four domains, and 366
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IT Koran Law Medical Subtitles Avg.

Scratch 39.87 18.80 53.96 53.88 27.71 38.84
mBART50-nn 35.65 16.41 41.81 37.21 27.14 31.64
mBART50-nn (Adapter) 37.15 19.38 55.01 56.13 30.89 39.71
mBART50-nn (FT) 39.48 24.04 59.49 58.95 30.78 42.54

Stage 2: Koran added to IT
mBART50-nn (MDL) 38.77 23.53 31.15
mBART50-nn (LFR-OM) 37.47 23.55 30.51
SCD 39.87 22.03 30.95

Stage 3: Law added to [IT→Koran]
mBART50-nn (MDL) 38.85 23.63 59.19 40.56
mBART50-nn (LFR-OM) 33.78 19.12 54.25 35.75
SCD 37.88 21.06 56.89 38.61†

Stage 4: Medical added to [IT→Koran→Law]
mBART50-nn (MDL) 38.75 23.83 59.49 58.75 45.21
mBART50-nn (LFR-OM) 31.50 18.52 41.55 53.37 36.24
SCD 34.01 22.93 45.53 55.56 39.51†

Stage 5: Subtitles added to [IT→Koran→Law→Medical]
mBART50-nn (MDL) 39.01 23.37 59.37 59.18 30.18 42.22
mBART50-nn (LFR-OM) 30.33 16.98 40.41 50.44 28.72 33.38
SCD 33.15 22.60 44.68 53.21 28.78 36.48†

Other orders: Stage 5: IT added to [Koran→Law→Medical→Subtitles]
mBART50-nn (MDL) 39.01 23.37 59.37 59.18 30.18 42.22
mBART50-nn (LFR-OM) 38.03 16.17 39.12 50.19 23.88 33.48
SCD 38.21 20.10 42.39 52.94 26.41 36.01†

Other orders: Stage 5: Koran added to [Law→Medical→Subtitles→IT]
mBART50-nn (MDL) 39.01 23.37 59.37 59.18 30.18 42.22
mBART50-nn (LFR-OM) 30.33 22.82 38.54 49.87 25.66 33.44
SCD 33.15 22.96 42.19 51.93 27.93 35.63†

Table 3: Results of incrementally learning five domains.
We first fine-tune a mBART50-nn model on IT. Then we
incrementally add Koran, Law, Medical, and Subtitles
to that model. The last two groups are the results of
other orders.

we report the results with different domain orders367

in Tab. 2. Results show that our SCD is able to368

provide useful information to retain the knowledge369

in the model. For instance, when adding Law to370

IT and Koran (i.e., It→Koran→Law setting), the371

BLEU score of IT drops about 5.70% with the372

mBART50-nn (LFR-OM), while using SCD the373

drop is only about 1.60% compared to the single-374

domain fine-tuning model. Notice that this pattern375

is consistent in almost every domain combination376

we experimented with.377

When adding the fourth domain, we also observe378

a similar trend to adding the third domain. Besides,379

we find that 2) the performance of the first domain380

gets lower with the domain increases, including all381

methods. This shows that there is much room for382

further improvement using other more advanced383

continuing learning methods.384

3.5.3 Incremental Addition of Five Domains385

In this section, we explore the effectiveness of SCD386

by incrementally adding five domains. We also list387

the results of adding the second, third, and fourth388

domains for comparison in Tab. 3.389

The results show a similar pattern that we ob-390

served in Tab. 1 and Tab. 2. That is, our SCD still391

outperforms mBART50-nn (LFR-OM) in this set-392

Setting: Stage 2 IT Koran

mBART50-nn (MDL) [IT + Koran] 38.77 23.53
SCD [IT→Koran] 39.87 22.03
w/o semi-supervised distillation 36.69 23.57
w/o LCCO

AB 37.94 21.82
SCD [Koran→IT] 39.28 23.15
w/o semi-supervised distillation 39.40 19.40
w/o LCCO

AB 38.93 22.12

Table 4: Ablation Study. “w/o semi-supervised distil-
lation” denotes that we do not use unlabeled data of
the same distribution of previous domains, i.e., vanilla
knowledge distillation.

ting. Incrementally adding a new domain gradually 393

contributes to the forgetting of older domains for 394

both mBART50-nn (LFR-OM) and SCD methods, 395

especially for mBART50-nn (LFR-OM). For exam- 396

ple, IT performance drops at each stage, resulting, 397

at the last stage, in a total drop of about 9% drop in 398

BLEU. The reason may be that 3) it is difficult for 399

the mBART50-nn (LFR-OM) method to search such 400

regions that can be freely updated for the previous 401

four domains. That is the updatable parameters 402

for several domains may be conflicting or none. 403

Even for our proposed SCD, the drop still is 6% 404

BLEU scores, showing that incrementally learn- 405

ing many domains still remains a challenge and is 406

worth studying in the future. 407

Besides, we report the results of two additional 408

task ordering in the last two blocks of Tab. 3, 409

i.e., [Koran→Law→Medical→Subtitles→IT] and 410

[Law→Medical→Subtitles→IT→Koran]. We ob- 411

serve that despite changing the order of the domain, 412

the outcome is the same. We also find a similar pat- 413

tern when we experimented with another domain 414

order different from the mentioned ones. Our pro- 415

posed model has the ability to limit catastrophic 416

forgetting happening to some extent in the contin- 417

ual learning setting. 418

4 Analysis 419

4.1 Ablation Study 420

We conduct ablation studies to investigate how well 421

semi-supervised distillation and cross-domain con- 422

trastive objective of SCD works. We conclude two 423

findings from the results in Tab. 4. 424

(1) “w/o semi-supervised distillation”: i.e., with- 425

out using the unlabeled data of the same distribu- 426

tion of the previous domain and using the data of 427

the current domain, the model performance greatly 428
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Models xx→En En→xx El→En En→El Sk→En En→Sk

mBART50-nn (MDL) 18.96 5.88 30.56 26.42 33.21 33.75
mBART50-nn (LFR-OM) 26.94 19.16 28.41 19.98 35.88 30.37
SCD (Ours) 27.33 19.82 29.15 20.87 36.81 31.96

Table 5: Results of Language Adaption. xx→En denotes other languages (i.e., 49 languages supported by mBART50-
nn) to English translation.

Figure 3: Effect of using different scales of unlabeled
data with the same distribution of the previous domain.

Setting: Stage 2 IT Koran

mBART50-nn (MDL) [IT + Koran] 38.77 23.53
FT [IT → Koran] 30.26 23.49
VKD [IT→Koran] 35.68 23.45
VCL [IT→Koran] 36.72 23.08
SCD [IT→Koran] (Ours) 39.87 22.03

FT [Koran→IT] 39.76 19.15
VKD[Koran→IT] 39.55 21.23
VCL[Koran→IT] 39.79 21.46
SCD [Koran→IT] (Ours) 39.28 23.15

Table 6: Effect of different model variants.

degrades on the older domain and slightly improves429

the result of the current domain. It shows the neces-430

sity of using the data of the same distribution of the431

previous domain to prevent catastrophic forgetting.432

Besides, we also find that there is a performance433

trade-off between older domains and new domains,434

where the phenomenon is introduced by the hyper-435

parameter α in Eq. 1. We investigated it in Tab. 9436

of the Appendix and actually different hyperparam-437

eters have different impacts, which mainly affect438

the trade-off between older and new domains.439

(2) “w/o LCCO
AB ”: the model performance be-440

comes worse on both domains. This shows that441

our cross-domain contrastive learning indeed can442

enhance the distilled knowledge and guarantee the443

distinct domain characteristics, which thus benefits 444

the model performance on both domains. 445

4.2 Analysis of Adaptation to New Languages 446

To investigate whether our approach can apply to 447

new language pairs, we follow Gu et al. (2022) and 448

conducted such experiments on introducing new 449

language pairs, i.e., Greek (El)↔English (En) and 450

Slovak (sk)↔English (En). The results are shown 451

in Tab. 5. 452

The results show that our approach can signifi- 453

cantly surpass the continual learning method, i.e., 454

mBART50-nn (LFR-OM), demonstrating the effec- 455

tiveness and generality of our method. 456

4.3 Analysis of Model Variants 457

In our work, the additional domain model on Nk+1 458

is used to provide a hard sample representation 459

for cross-domain contrastive learning. In this set- 460

ting, we have tried additional three settings: 1) fine- 461

tuning on the Nk+1 domain with the previously 462

learned domain model (denoted as FT); 2) utilizing 463

vanilla knowledge distillation (VKD), i.e., using 464

the arbitrary unlabeled data; 3) using vanilla con- 465

trastive learning (VCL; i.e., only using the sample 466

in the batch as the negative). 467

The results in 6 show that directly fine-tuning 468

on the target domain without considering previous 469

domains (FT), using vanilla knowledge distillation 470

(VKD) or vanilla contrastive learning (VCL) can- 471

not fully exert their advantage for domain trans- 472

lation. In comparison, cross-domain contrastive 473

distillation has a positive impact on the model per- 474

formance. 475

4.4 Effect of Using a Little Unlabeled Data 476

To further find out how much unlabeled data can 477

achieve a good performance, we randomly sample 478

10, 50, 100, 500, 1000, and 2000 unlabeled exam- 479

ples from the validation set and use the remaining 480

validation data to choose model checkpoints for 481

evaluating on the test set. In Fig. 3, we observe 482

that the model performance gradually improves 483
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and reaches stability as the used unlabeled data484

increases. Interestingly, we find that the model485

rapidly achieves a higher result only with a hand-486

ful of unlabeled data, i.e., 50 and 100 instances487

for Koran and IT, respectively. It even surpasses488

the mBART50-nn (LFR-OM) which uses all la-489

beled data in the Koran→IT setting. This shows490

the superiority of using unlabeled data of the same491

distribution of the older domain, which can largely492

help the model retain the learned knowledge of the493

older domain and prevent catastrophic forgetting.494

It again indicates the effectiveness of our approach.495

We also provide a case study to intuitively show496

how it works in Appendix F.497

5 Related Work498

Continual Learning of Translation. Recent stud-499

ies on continual learning of machine translation500

mainly includes data memory-based method, task-501

specific adapters, and regularization-based method.502

Specifically, (1) the data memory-based meth-503

ods (Chu et al., 2017; Bapna and Firat, 2019a; Xu504

et al., 2020; Liu et al., 2021) usually require main-505

taining part or all of the training data of the previous506

domains/task, which is not flexible in practice and507

maybe not realistic in the real world due to data pri-508

vacy. For example, Liu et al. (2021) produce many509

mixed-language sentences via a bilingual dictio-510

nary. (2) The task-specific adapter methods (Bapna511

and Firat, 2019a; Zeng et al., 2018, 2019; Gu et al.,512

2019; Cao et al., 2021; Gu et al., 2021; Liang et al.,513

2021) typically require assigning additional model514

parameters to different domains/tasks, which re-515

quires the model to know which task the input516

comes from. (3) The regularization-based meth-517

ods (Khayrallah et al., 2018; Thompson et al., 2019;518

Dakwale and Monz, 2017) reduce forgetting by in-519

troducing an additional penalty term in the learning520

objective, which may suffer from under- or over-521

constraint issues. For example, Gu et al. (2022)522

firstly utilize the previous parallel data to search523

the low forgetting risk regions and then only up-524

date these parameters within the region to largely525

maintain the performance of the previous domain.526

Unlike the above work, our method is flexible and527

free to the requirement of parallel data of the previ-528

ous domains compared with (1) and (3). Besides,529

our model does not explicitly lead to model separa-530

tion against (2).531

Knowledge Distillation. KD (Hinton et al., 2015)532

is to transfer the knowledge (e.g., soft targets out-533

puts) of the stronger model (aka. the teacher 534

model) to the small model (aka. the student model), 535

which has achieved impressive results in the litera- 536

ture (Kim and Rush, 2016; Wu et al., 2020; Wang 537

et al., 2021; Lee et al., 2019). In neural machine 538

translation, the KD-related work mainly focuses 539

on how to effectively distill the knowledge of the 540

teacher to the student. For example, Zhang et al. 541

(2023) investigate where the knowledge comes 542

from and then carefully design a method to contra- 543

puntally distill the target knowledge. In this work, 544

we aim to utilize the unlabeled development data 545

of the previous domain to prevent catastrophic for- 546

getting of the previous tasks via KD. 547

Contrastive Learning. The idea of contrastive 548

learning aims to learn effective representation 549

by pulling semantically close neighbors together 550

and pushing apart non-neighbors (Hadsell et al., 551

2006), which has verified its superiority in many 552

fields, such as model compression (Sun et al., 553

2020), sentence embedding (Gao et al., 2021), sum- 554

mary (Liu and Liu, 2021; Liang et al., 2023), pre- 555

training (Zhou et al., 2023), and translation (Pan 556

et al., 2021; Lee et al.; Cheng et al., 2022). For ex- 557

ample, in neural machine translation, Cheng et al. 558

(2022) propose a contrastive translation memory 559

to enhance the model performance and Pan et al. 560

(2021) utilize the contrastive learning to improve 561

the multilingual neural machine translation. Dif- 562

ferently, we introduce a cross-domain contrastive 563

objective to enhance the distilled knowledge, which 564

further guarantees the distinct domain characteris- 565

tics and thus improves the model performance for 566

several domains. To our knowledge, we are the first 567

that introduce it to prevent catastrophic forgetting. 568

6 Conclusion 569

In this paper, we propose a new continual learning 570

framework for incremental neural machine transla- 571

tion without accessing any previous training data or 572

re-training on all domains from scratch. To main- 573

tain the performance of the previous domain, we 574

propose to utilize small-scale source-side develop- 575

ment data of the previous domain via knowledge 576

distillation. To further ensure distinct domain char- 577

acteristics in a model, we devise a cross-domain 578

contrastive objective to enhance the distilled knowl- 579

edge. Extensive experiments on a more general sce- 580

nario show that our method can achieve significant 581

improvements over several strong baselines. 582
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Limitations583

While we show that the SCD achieves significant584

performance in continual learning of domain adap-585

tion translation, there are some limitations worth586

considering to study in future work: (1) In this587

study, we only conduct experiments on sequen-588

tially five domains, and future work could extend589

our method to more domains; (2) This work does590

not conduct experiments on more real-world appli-591

cations, e.g., sequentially adding different transla-592

tion tasks (first sentence-level machine translation593

and then document-level machine translation and594

more) or multilingual translation task.595
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A Implementation Details875

Following Gu et al. (2022), we use the mBART50-876

nn (Tang et al., 2020) as our baseline model.877

The mBART50-nn is a many-to-many multilingual878

NMT model that can support the translation among879

50 different languages. The layer number of its880

encoder and decoder are both 12, whose attention881

heads are set as 16. The size of the embedding layer882

and hidden states is set as 1024, while the layer size883

of the feed-forward network is 4096. Please refer884

to Tang et al. (2020) for more details.885

At training, we employ the Adam optimizer886

with β1 = 0.9 and β2 = 0.98. We use the in-887

verse square root learning scheduler and set the888

warmup_steps = 4000. We set lr = 5e − 5889

and train the model 10k steps. All the systems are890

trained on 8 V100 GPUs with the update frequency891

2. The max token is 1024 for each GPU. Besides,892

we use beam search with the size of 4 and length893

penalty as 0.6 during decoding. We investigate the894

factor α and β in Appendix D, which are both set895

to 0.5.896

B Comparison Models897

Our comparison models consist of two parts: non-898

continual learning methods and continual learning899

methods.900

1) non-continual learning methods :901

• Scratch: We train a vanilla transformer (Vaswani902

et al., 2017) from scratch only with the training903

data from the new domain task.904

• mBART50-nn (Tang et al., 2020) is a large scale905

pre-trained NMT model. All the following systems906

are implemented based on this model.907

• mBART50-nn (FT) (Luong and Manning, 2015):908

We fine-tune the mBART50-nn model only on in-909

dividual domain training data.910

• mBART50-nn (MDL) fine-tune the mBART50-911

nn model with all domain training data, which is912

considered the upper bound in the field of con-913

tinual learning. We use the temperature-based914

sampling function to oversample the validation915

datasets (Arivazhagan et al., 2019).916

2) Continual learning methods , which aim to917

get a good balance between previous and new do-918

mains.919

• mBART50-nn (TKD) (Dakwale and Monz,920

2017): Besides minimizing the training loss of921

the new domain, this method also minimizes the922

distillation loss for the previous domain, which is923

computed on the new domain’s training data, i.e., 924

without using any previous data. The training ob- 925

jective based on the mBART50-nn model is: 926

LTKD
AB = LB + αCE(ΘA(Xb),ΘAB(Xb)). (5) 927

• mBART50-nn (L2-Reg) (Barone et al., 2017) 928

adds an L2-norm regularization on the mBART50- 929

nn model to alleviate the catastrophic forgetting 930

when adding a new domain. 931

• mBART50-nn (EWC) (Thompson et al., 2019) 932

first models the importance of the parameters of the 933

mBART50-nn model with Fisher information ma- 934

trix (Ly et al., 2017) and then puts more constraints 935

on the important parameters to let them stay close 936

to the original values. 937

• mBART50-nn (Adapter) (Bapna and Firat, 938

2019b) inject the domain-specific adapter layers 939

into the mBART50-nn model and only update the 940

adapters for different domains. 941

• mBART50-nn (LFR-OM) (Gu et al., 2022) aims 942

to update the parameters within the low forgetting 943

risk regions with the output-based method, which 944

requires the parallel data of the previous domain to 945

search the low forgetting risk regions first. 946

C Additional Results of Adding a Second 947

Domain 948

In Tab. 8, we find the same trend as observed 949

in Tab. 1. Besides, we also find that our model 950

always achieves the best results on the older do- 951

mains while sometimes performing slightly worse 952

on the newly added domain compared with some 953

baselines, e.g., mBART50-nn (TKD). The reason 954

may be that our proposed method (knowledge distil- 955

lation on the unlabeled data with the same distribu- 956

tion as previous domains and contrastive learning) 957

aims to prevent catastrophic forgetting and does 958

not obtain a better trade-off between previous and 959

new tasks to some extent. Through tuning differ- 960

ent hyper-parameters, α and β in the training loss, 961

we observe a further improvement on previous do- 962

mains without sacrificing the performance on new 963

domains (see Tab. 9). Actually, with more domains 964

added, the advantages of our approach are more ev- 965

ident (Tab. 2 and Tab. 3). Anyway, our method can 966

always achieve the best average results, showing 967

its effectiveness. 968

D Effect of Hyperparameters α and β 969

We have investigated the impact of hyperparame- 970

ters, i.e., α and β. Indeed, different hyperparam- 971
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Train Valid Test

Domain
Translation
Dataset
(De→En)

IT 0.22M

2000 2000
Koran 18K
Law 0.47M

Medical 0.25M
Subtitles 0.5M

Language
Adaptation
Dataset

xx↔En /
997 1012El↔En 1M

Sk↔En 1M

Table 7: The data statistic of the domain translation
dataset and language adaptation dataset. The number
in Train/Valid/Test columns denotes the number of sen-
tence pairs in each domain/language pair.

eters have different impacts, which mainly affect972

the trade-off between older and new domains. For973

example, in IT→Koran direction, the results are974

shown in Tab. 9. In our experiments, we choose975

α = 0.5 and β = 0.5 to achieve a better trade-off976

performance between older and new domains.977

E Training Efficiency978

All our experiments are conducted on 8 V100979

GPUs. The average running time is listed as fol-980

lows (corresponding to different models in the981

Koran→IT setting of Table 1 with 10 epochs).982

The results show that our method consumes983

slightly more time to train our model while achiev-984

ing a significantly better performance. The infer-985

ence time of all models costs the nearly same time986

due to the same model architecture.987

F Case Study988

We listed an example here and will add more case989

studies in the new version. In the IT→Koran set-990

ting, we first trained a model on the IT domain991

denoted as model-1. Then, we fine-tune model-1992

on the Koran domain denoted as Model-2. Model-993

3 and Model-4 indicate mBART50-nn (LFR-OM)994

and our proposed method, respectively. The in-995

stance below is from the test set of the IT domain.996

We can observe that model-1 can translate the997

domain word “Speicher” well after training on998

the IT domain. Unfortunately, after further fine-999

tuning on the Koran domain, the model forgets1000

the previously learned domain knowledge and in-1001

correctly translates “Speicher” to “storage”. Be-1002

sides, Model-3, which aims to update the param-1003

eters within the low forgetting risk regions with1004

Setting IT Koran Law Medical Subtitles Avg.

Scratch 39.87 53.96 53.88 27.71 18.80 38.84
mBART50-nn 35.65 41.81 37.21 27.14 16.41 31.64
mBART50-nn (Adapter) 37.15 19.38 55.01 56.13 30.89 39.71
mBART50-nn (FT) 39.48 59.49 58.95 30.78 24.04 42.54
mBART50-nn (MDL) [Five Domains] 39.01 59.37 59.18 30.18 23.37 42.22

mBART50-nn (MDL) [Koran + Law] - 23.92 59.97 - - 41.94
mBART50-nn (L2-Reg) [Koran→Law] - 16.51 59.21 - - 37.86
mBART50-nn (EWC) [Koran→Law] - 17.41 59.33 - - 38.37
mBART50-nn (TKD) [Koran→Law] - 17.90 59.39 - - 38.64
mBART50-nn (LFR-OM) [Koran→Law] - 18.55 59.41 - - 38.98
SCD [Koran→Law] - 22.71† 58.63 - - 40.67†

mBART50-nn (L2-Reg) [Law→Koran] - 22.95 54.74 - - 38.85
mBART50-nn (EWC) [Law→Koran] - 23.12 55.39 - - 39.25
mBART50-nn (TKD) [Law→Koran] - 23.28 55.88 - - 39.58
mBART50-nn (LFR-OM) [Law→Koran] - 23.09 56.11 - - 39.60
SCD [Law→Koran] - 22.07 58.87† - - 40.47†

mBART50-nn (MDL) [Koran + Medical] - 23.96 - 58.94 - 41.45
mBART50-nn (L2-Reg) [Koran→Medical] - 15.44 - 58.93 - 37.19
mBART50-nn (EWC) [Koran→Medical] - 16.05 - 58.99 - 37.52
mBART50-nn (TKD) [Koran→Medical] - 16.60 - 59.13 - 37.87
mBART50-nn (LFR-OM) [Koran→Medical] - 17.38 - 59.01 - 38.20
SCD [Koran→Medical] - 22.97† - 58.04 - 40.51†

mBART50-nn (L2-Reg) [Medical→Koran] - 23.11 - 54.96 - 39.04
mBART50-nn (EWC) [Medical→Koran] - 23.24 - 55.05 - 39.15
mBART50-nn (TKD) [Medical→Koran] - 23.65 - 55.59 - 39.62
mBART50-nn (LFR-OM) [Medical→Koran] - 23.50 - 55.91 - 39.70
SCD [Medical→Koran] - 21.57 - 58.17† - 39.87

mBART50-nn (MDL) [Koran + Subtitles] - 23.84 - - 30.61 27.23
mBART50-nn (L2-Reg) [Koran→Subtitles] - 16.71 - - 30.18 23.45
mBART50-nn (EWC) [Koran→Subtitles] - 16.26 - - 30.21 23.24
mBART50-nn (TKD) [Koran→Subtitles] - 15.14 - - 30.68 22.91
mBART50-nn (LFR-OM) [Koran→Subtitles] - 18.11 - - 30.54 24.33
SCD [Koran→Subtitles] - 21.85† - - 30.91 26.38†

mBART50-nn (L2-Reg) [Subtitles→Koran] - 22.75 - - 21.19 21.97
mBART50-nn (EWC) [Subtitles→Koran] - 22.87 - - 21.47 22.12
mBART50-nn (TKD) [Subtitles→Koran] - 23.78 - - 19.23 21.51
mBART50-nn (LFR-OM) [Subtitles→Koran] - 23.45 - - 24.58 24.02
SCD [Subtitles→Koran] - 22.44 - - 30.09† 26.27†

mBART50-nn (MDL) [Law + Medical] - - 59.21 58.50 - 58.85
mBART50-nn (L2-Reg) [Law→Medical] - - 46.87 58.67 - 52.77
mBART50-nn (EWC) [Law→Medical] - - 47.92 58.79 - 53.34
mBART50-nn (TKD) [Law→Medical] - - 45.71 59.09 - 52.40
mBART50-nn (LFR-OM) [Law→Medical] - - 49.88 59.03 - 54.46
SCD [Law→Medical] - - 55.02† 56.90 - 55.96†

mBART50-nn (L2-Reg) [Medical→Law] - - 59.45 47.94 - 53.70
mBART50-nn (EWC) [Medical→Law] - - 59.39 49.23 - 54.31
mBART50-nn (TKD) [Medical→Law] - - 59.58 46.42 - 53.05
mBART50-nn (LFR-OM) [Medical→Law] - - 59.31 49.19 - 54.25
SCD [Medical→Law] - - 57.37 54.05† - 55.71†

mBART50-nn (MDL) [Law + Subtitles] - - 59.49 - 30.70 45.09
mBART50-nn (L2-Reg) [Law→Subtitles] - - 49.48 - 30.37 39.92
mBART50-nn (EWC) [Law→Subtitles] - - 49.87 - 30.39 40.13
mBART50-nn (TKD) [Law→Subtitles] - - 47.90 - 30.65 39.28
mBART50-nn (LFR-OM) [Law→Subtitles] - - 51.06 - 30.41 40.74
SCD [Law→Subtitles] - - 56.33† - 30.65 43.49†

mBART50-nn (L2-Reg) [Subtitles→Law] - - 58.83 - 24.38 41.61
mBART50-nn (EWC) [Subtitles→Law] - - 59.01 - 24.84 41.92
mBART50-nn (TKD) [Subtitles→Law] - - 59.34 - 22.18 40.76
mBART50-nn (LFR-OM) [Subtitles→Law] - - 59.11 - 25.02 42.06
SCD [Subtitles→Law] - - 57.80 - 29.59† 43.70†

mBART50-nn (MDL) [Medical + Subtitles] - - - 58.67 30.51 44.59
mBART50-nn (L2-Reg) [Medical→Subtitles] - - - 48.03 30.46 39.25
mBART50-nn (EWC) [Medical→Subtitles] - - - 47.92 30.62 39.27
mBART50-nn (TKD) [Medical→Subtitles] - - - 46.18 30.67 38.42
mBART50-nn (LFR-OM) [Medical→Subtitles] - - - 51.23 30.51 40.87
SCD [Medical→Subtitles] - - - 56.04† 30.60 43.32†

mBART50-nn (L2-Reg) [Subtitles→Medical] - - - 58.14 23.15 40.65
mBART50-nn (EWC) [Subtitles→Medical] - - - 58.16 23.61 40.88
mBART50-nn (TKD) [Subtitles→Medical] - - - 58.48 21.69 40.08
mBART50-nn (LFR-OM) [Subtitles→Medical] - - - 58.31 25.12 41.72
SCD [Subtitles→Medical] - - - 57.17 29.24† 43.21†

Table 8: Comparison of different continual learn-
ing strategies to learn two domains in different or-
ders. “[Law + Medical]” means we mixed law
and medical training data to jointly train the model.
“[Law→Medical]” means Medical is added to a Law
model. The best results are in bold. “†” indicates that
statistically significant better than “mBART50-nn (LFR-
OM)” with t-test p < 0.01.
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α β IT Koran

0.1 0.1 38.98 23.31
0.3 0.3 39.21 22.96
0.5 0.5 39.87 22.03
0.7 0.7 39.91 21.88
0.9 0.9 39.97 21.65
1.0 1.0 39.94 21.72

Table 9: Effect of Hyperparameters.

Models Training Time (h: hour; m: minute)

mBART50-nn (MDL) 8h36m
mBART50-nn (L2-reg) 9h6m
mBART50-nn (EWC) 9h31m
mBART50-nn (TKD) 9h10m
mBART50-nn (LFR-OM) 8h55m + 20m preprocessed search time.
SCD (Ours) 9h22m

Table 10: Training time of different models.

Setting: Stage 2 IT Koran

mBART50-nn (MDL) [IT + Koran] 38.77 23.53
baseline [IT→Koran] 33.45 23.33
w/ semi-supervised distillation 37.94 21.82
w/ LCCO

AB 36.69 23.57
w/ both 39.87 22.03
baseline [Koran→IT] 38.82 17.23
w/ semi-supervised distillation 38.93 22.12
w/ LCCO

AB 39.40 19.40
w/ both 39.28 23.15

Table 11: Ablation Study. We add our approach one by
one to show their performance.

the output-based method to prevent forgetting, still 1005

cannot address this case. However, our model can 1006

accurately translate it, which demonstrates that our 1007

model indeed can prevent from forgetting of previ- 1008

ously learned domain knowledge and alleviate the 1009

forgetting problem compared to other methods. 1010
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Source (German) Wenn der optionale Parameter small TRUE ist, wird ein alternative Dekomprimierungsalgorithmus verwendet,
der weniger Speicher benötigt, jedoch nur halb so schnell läuft.

Reference (English) If the optional parameter small is TRUE, an alternative decompression algorithm will be used which uses less
memory (the maximum memory requirement drops to around 2300K) but works at roughly half the speed.

Model-1 If the optional parameter is small TRUE, an alternative decompression algorithm is used, which uses less
memory but is only half as fast.

Model-2 If the optional parameter is small TRUE, an alternative decompression algorithm is used, which requires less
storage, but runs half as fast.

Model-3 If the optional parameter is small, then an alternative decompression algorithm is used, which takes less storage
but is half as fast.

Model-4 (Ours) If the optional parameter is small TRUE, an alternative decompression algorithm is used, which consumes less
memory but is only half as fast.

Table 12: Case Study.
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