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Abstract

Cross-domain recommendations in healthcare services differ
from traditional ones in electronic commerce due to the need
for heightened medical privacy protection for a small group
of users, while ensuring the majority, who may lack suffi-
cient medical knowledge, can understand the recommenda-
tions. To recommend doctors who provide online consulta-
tions to health video viewers and enable multimodal cross-
domain recommendations from short video platforms (source
domain) to online healthcare communities (target domain),
this paper introduces a framework based on the User-Centric
Synthetic Data Architect (UCSDA) and Pre-trained Large
Language Model (PtLLM). UCSDA employs a user-centric,
advanced selection-synthesis mechanism to filter users’ cold
interaction items and synthesize noise items, reducing pri-
vacy leakage risk. PtLLM focuses on necessary patient and
doctor IDs during the recommendation decision process to
generate explanations. The model’s effectiveness and scala-
bility were validated using three public datasets and a health-
care cross-domain recommendation dataset. In addition to
traditional evaluation metrics, strong privacy metrics and the
unique sentence ratio were used to assess privacy protection
and interpretability. We also compared the characteristics of
privacy protection and interpretability between e-commerce
and healthcare recommendation scenarios.

Code and datasets — https://github.com/zyl-mc/HCR

Introduction
In today’s digital landscape, short video platforms have
successfully adapted to users’ fragmented attention spans
through rapid content updates, reshaping the attention econ-
omy. As user engagement has grown, advertisers and e-
commerce platforms have increasingly integrated these plat-
forms, facilitating smooth transitions from video content to
direct purchases. To enhance user experience, cross-domain
recommendation (CDR) algorithms have been developed
to recommend products based on user behavior, improving
both customer satisfaction and creating new marketing op-
portunities for businesses.

In healthcare, CDR systems differ significantly from tra-
ditional e-commerce (Jiang, Mi, and Xu 2024). The target
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audience includes consumers and patients, most of whom
lack professional medical knowledge. As a result, recom-
mendations must be highly explainable, allowing patients
to understand and accept them, which in turn boosts the
adoption of recommended treatments and improves user sat-
isfaction with healthcare services. Moreover, sensitive pa-
tient data, such as medical records, require strict protection,
meaning recommendation algorithms must also safeguard
this information.

Healthcare recommendation algorithms are still challeng-
ing due to the opacity of machine learning models, which
hinders understanding the link between patient data and rec-
ommendations. Since patients have limited medical knowl-
edge, clear explanations are needed to build trust. Explain-
ability can be improved with templates (Zhang et al. 2014),
highlighted images (Chen et al. 2019), and autogenerated
text (Li, Zhang, and Chen 2020), the latter being boosted by
natural language generation (NLG). GPT models are good at
personalization but are complex for healthcare. Researchers
are looking into task-adaptive models that keep GPT’s struc-
ture but make it generate more understandable healthcare ex-
planations, showing potential for better explainability.

Most existing CDR systems assume that plaintext data can
be transferred across domains (Chen et al. 2023b). How-
ever, in healthcare, where patient privacy is critical, this
assumption falls short (Liu et al. 2021). The absence of
robust privacy-preserving technologies hinders the practi-
cal use of CDRs in this sector, emphasizing the need for
privacy-preserving CDRs (PPCDRs) that can balance pri-
vacy protection with high-quality recommendations. While
some studies (Liu et al. 2021; Chen et al. 2023a) have in-
troduced privacy-preserving techniques, such as differential
privacy and federated learning, these methods face two key
challenges. First, they often overlook the heterogeneity and
multimodal nature of healthcare data, which includes text,
images, audio, and video. To provide accurate recommen-
dations, CDR systems must integrate these multimodal fea-
tures effectively. Second, existing solutions mainly protect
privacy during model training and result collection, yet in
healthcare, users are particularly concerned about the pri-
vacy of their interaction data. Additionally, decentralized
CDR frameworks are difficult to implement due to high
communication and computational costs. In response, the
use of synthetic data has emerged as a promising solution
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to ensure privacy protection in healthcare CDRs.
To meet the demand for privacy-preserving and inter-

pretable CDRs in healthcare, this paper proposes a Hybrid
Cross-domain Recommendation (HCR) framework with a
self-supervised modality-aware information encoder. This
encoder captures and integrates behavioral and modality
information from various sources, enabling a comprehen-
sive understanding of user behavior and preferences through
self-supervised auxiliary tasks. Furthermore, we introduce
a privacy-preserving synthesizer that perturbs real user in-
teraction data, preventing the leakage of plaintext from the
source domain while preserving user preferences. Finally,
we incorporate a pre-trained language model into the HCR
framework, employing a two-stage adjustment strategy to
sequentially fine-tune prompt and model parameters. This
approach ensures alignment and generates patient-friendly
textual explanations, enhancing the system’s effectiveness
and user trust.

Related Work
CDR systems utilize data from dense domains to address
sparsity in others, improving user-item modeling and knowl-
edge transfer (Hu, Zhang, and Yang 2018). For example,
Chen et al. (2023b) aligned users across domains with trans-
formation modules. Recent studies also integrated user re-
views to enhance model performance. However, most CDR
models overlook privacy, which is particularly critical in
healthcare. Balancing effective recommendations with pri-
vacy protection remains a key challenge.

Recently, many privacy-preserving methods have been
added to recommendation systems. PriCDR (Chen et al.
2022) adds differential privacy noise to the user-item ma-
trix and shares data directly. However, these often separate
privacy from collaborative filtering, leading to less than op-
timal results. DPSMRec (Liu et al. 2023b) addresses this by
integrating semantic and structural information with a differ-
ential privacy-enhanced sparse optimal transport algorithm.
Federated learning has been used in CDR, with models like
FedCT (Liu et al. 2021) and P2FCDR (Chen et al. 2023a)
improving user data privacy. But most ignore the protection
of recommendation interaction data. PPGenCDR (Liao et al.
2023) fills this gap using GANs and Rényi differential pri-
vacy for a robust framework. GANs have potential, but come
with challenges like complex training and mode collapse.
Current methods focus on recommendation accuracy over
privacy measurement. In healthcare, it is vital to introduce
metrics for privacy effectiveness, as done in vehicular com-
munication. This paper presents several privacy metrics for
accurate and consistent evaluations.

In recommendation systems, items have audio, images,
and text features. Multimodal representation learning turns
them into vectors for better content understanding, but it
is challenging due to data complexity and heterogeneity.
Early methods used pretrained neural networks to extract
features and combined them with user behavior data (He
and McAuley 2016). Recently, GCN-based methods like
MMGCN (Wei et al. 2019) and GRCN (Wei et al. 2020)
have excelled in multimodal recommendations by creating
user-item interaction graphs. However, they often miss the

differences in user preferences across modalities. Adaptive
methods like SLMRec (Tao et al. 2022) and BM3 (Zhou
et al. 2023) use self-supervised learning to improve modality
alignment and fusion, but struggle with noise in item repre-
sentations. Our proposal adds a self-supervised task to learn
user modal preferences and performs fine-grained feature
aggregation to avoid noise contamination in node embed-
dings.

The Transformer (Vaswani 2017), initially used in ma-
chine translation, has shown effectiveness on natural lan-
guage tasks, but it requires large models and data. Prompt
learning (Liu et al. 2023a) has advanced, allowing pre-
trained models to handle various tasks with specific prompts,
avoiding retraining. This paper aims to integrate pre-trained
language models into a privacy-preserving cross-domain
framework, focusing on healthcare recommendations. We
suggest using GPT-2 with continuous prompts (ID embed-
dings) and a two-stage tuning method to align prompts and
model parameters.

Methodology
Problem Formulation
Consider two domains, S and T , with the same set U
of NU users, but different rating matrices RS and RT .
NS and NT items are in S and T , respectively. We cre-
ate unique ID embeddings for users and items in both do-
mains. We use pretrained models to extract embeddings
from text, images, and audio. Visual features are extracted
from video keyframes using VGG19 (Simonyan and Zis-
serman 2014), acoustic features from audio tracks with Li-
brosa (McFee et al. 2015), and textual features by fine-
tuning XLM-RoBERTa (Conneau, Khandelwal, and Goyal
2019). The modalities are represented as M = {v, a, t}
for visual, acoustic, and textual. The goal is to transfer
information from the source domain to the target domain
while preserving privacy and improving recommendation
performance. The proposed HCR model recommends items
with explanations. Its framework includes a Self-Supervised
Modality-Aware Information Encoder, Privacy-Preserving
Synthesizer, and Explanation Generator, as shown in Fig. 1.

Self-Supervised Modality-Aware Information
Encoder
Adding modal features helps improve user preference mod-
eling, which then boosts the accuracy of recommendation
systems (Zhang et al. 2021). We have designed a module
that automatically combines these different types of data to
better understand users and make better recommendations.
It is in both domains but does not share its learning across
domains.

Behavior Embedding. Inspired by the recent success of
applying LightGCN (He et al. 2020) for recommendation,
we design a content-aware graph convolution operation to
encode information about various interactions on user-item
graph. The message propagation stage at l-th graph convo-
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Figure 1: Framework of HCR. Pre-trained models are uti-
lized to extract modality features, and the Self-Supervised
Modality-Aware Information Encoder is designed to aggre-
gate multimodal features and behavioral information. The
Privacy-Preserving Synthesizer is used to perturb user in-
teraction data, while the Explanation Generator is used to
generate textual explanations for a given user-item pair.

lution layer can be formulated as:

E
(l)
id = σ

(
ÂE

(l−1)
id W(l−1)

)
, (1)

where σ is the non-linear ReLu function, Â is the re-
normalization of the adjacency matrix. Then a simplified
graph convolutional layer is defined as:

E
(l)
id =

(
D−1/2AD−1/2

)
E

(l−1)
id . (2)

The representations of the l-th layer encode the l-order
neighbors’ information. By incorporating residual connec-
tions into the users’ and items’ initial embeddings in a GCN,
we can mitigate the over-smoothing problem and get the fi-
nal representations Eid:

Eu,id =
1

L+ 1

L∑
l=0

El
u,id

Ei,id =
1

L+ 1

L∑
l=0

El
i,id +E0

i,id.

(3)

Modality Embedding. Studies have stopped modal noise
in graph neural networks using indirect modal info, but this
harms recommendation systems. We fix this by adding an
item ID embedding matrix and a user-item interaction ma-
trix to adjust the modal embeddings. We start by introduc-
ing the item’s initial ID embedding matrix EI,id and use it
to transform the modality matrix EI,m into a modal-specific
representation EI,m through an element-wise multiplication
with a sigmoid activated transformation:

EI,m = EI,id ⊙ σ (W1EI,m + b1) , (4)
where W1 and b1 are learnable weights. Then, we multi-
ply the user-item interaction matrix RI with the transformed
matrix EI,m to get the fused user modality vector EU,m:

EU,m = W2ĖI,m (RI)
T
+ b2. (5)

Finally, by concatenating user and item single-modal repre-
sentations, we obtain the modal-specific representations of
all nodes Em ∈ Rd×(NU+NI).

Information Fusion. We consider visual, acoustic, tex-
tual, and ID embeddings as inputs for the self-supervised
task. Using a multi-task strategy, the graph-based recom-
mender is the main task, supported by the self-supervised
task. We apply spatial transformations to ID and modal-
ity embeddings before fusion, aligning them in modality-
specific spaces:

Tm(X) : S(X) → S(m), (6)
where Tm(X) projects the input feature X from its orig-
inal feature space to a specific modal space, Tm(X) =
σ (WmX+ bm), Wm ∈ Rd×d, bm ∈ Rd, σ is the sig-
moid nonlinearity. This maintains a distinct space for each
modality, with ID embeddings guiding the alignment of vi-
sual, acoustic, and textual embeddings into a common space.
The final fusion embeddings are an adaptive fusion of the
transformed embeddings:

Efuse =
1

|M|

Tv

(
Eid

)
⊙ Tv

(
Ev

)
+ Ta

(
Tv

(
Eid

))
⊙ Ta

(
Ea

)
+ Tt

(
Ta

(
Tv

(
Eid

)))
⊙ Tt

(
Et

)
 . (7)

User preferences are embedded in behavioral features, so
we use this information to enhance the fused embeddings.
We also create a self-supervised learning task to delve into
user preferences, aiming to maximize mutual information
between behavioral and multimodal features (Kemertas et al.
2020). This task follows the InfoNCE loss (Oord, Li, and
Vinyals 2018) and is formulated to measure the cosine sim-
ilarity between ID and fused embeddings, normalized by a
temperature hyperparameter:

Lss = − log
exp (sim (ēi,id, ei,fuse) /τss)∑

j∈[N ] exp (sim (ēj,id, ej,fuse) /τss)
. (8)

Privacy-Preserving Synthesizer
IS,u denotes the set of items in S that user u has interacted
with. Note that the interactions can be either implicit (e.g.,
click) or explicit (e.g., rating). Given the historical data IS,u

of user u in source domain S , our goal is to generate the
synthetic data under users’ privacy preference, i.e. Virtual
items VS,u, to replace a certain percentage of the original
items. Note that synthetic interaction data contains few or
no sensitive information.

Cold Items Selection. Historical interaction items vary in
their impact on user preferences. Less influential items, or
cold items, can be replaced with synthetic items for privacy
protection. The replacement ratio, k, determines how many
items are swapped. We use an attention mechanism to as-
sess each item’s contribution to a user’s preferences: The
attention weight aui for item i is calculated using a ReLU-
activated hidden layer and a smoothing exponent β:

vui = hT ReLU (W3 ([eu,fuse : ei,fuse]) + b3) ,

aui =
exp (vui)[∑

j′∈Iu
exp (vui′)

]β . (9)
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The user’s preferences pu are represented by the weighted
average of the fused embeddings of items they’ve purchased:

pu =
1

|IS,u|
∑

i∈IS,u

auiei,fuse. (10)

We expect the user preference representation to be similar to
the user’s ID embedding. To learn the attention weights, we
use the ID embedding eu,id as supervision and define an L2
regularizer:

Lc
pp =

∑
u∈U

∥f (pu, θ)− eu,id∥2 , (11)

where an MLP with dropout is used as the transformation
function f(·) to map pu to the same space as eu,id. θ repre-
sents the trainable parameters of the MLP. During training,
we minimize Lc

pp to determine the contribution of each item.
The items with the lowest attention weights, representing the
top k percent, are identified as cold items IcS,u.

Virtual Items Generation. The synthesizer creates a vir-
tual item to attract user u’s attention, considering user pref-
erences, privacy sensitivity, and cold item characteristics.
It combines the user vector eu,fuse, a cold item vector
ei,fuse(i ∈ IcS,u), and a privacy parameter γu, then projects
this into a latent space: zui = W4 [eu,fuse; ei,fuse; γu] +
b4, where zui is the latent feature of the output.

The similarity between the latent feature and all item em-
beddings is calculated, and the probability distribution over
all items is estimated using softmax: hui = zuiES,fuse,
but is non-differential. To address this, Gumbel-Softmax
(Havrylov and Titov 2017) is used for a differentiable ap-
proximation. After generating a virtual interaction item, the
user’s privacy-protected representation is updated: eppu =
eu,id + eu,fuse + ei.

To prevent privacy leakage, a privacy regularizer con-
strains the similarity between the privacy-preserving and
source user embeddings:

Lv
pp =

∑
(u,i)

[sim (eppu , esrcu )− γu]+ . (12)

Here, [z]+ = max(z, 0) represents the hinge loss. The sen-
sitivity γu serves as a threshold, allowing a certain level of
similarity between the source and privacy-preserving user
embeddings. The final loss function, combining Lc

pp and
Lv
pp, optimizes the synthesizer, balancing user preference

and privacy:

Lpp = λppLc
pp + (1− λpp)Lv

pp. (13)

The model aims to produce preferred virtual items and create
perturbed user vectors for privacy-protected use in the target
domain.

Explanation Generator
We use the pre-trained language model GPT-2 to generate
explanations for recommendations by treating user and item
embeddings as continuous prompts. This approach avoids
the need for conversion and preserves important informa-
tion. During training, we represent the input sequence as a

concatenation of user-item embeddings, explanation words,
and special token embeddings for users and items. The se-
quence is then processed by GPT-2, and a linear layer with
softmax is used for next-word prediction. The vector ct rep-
resents the probability distribution over the vocabulary. The
negative log-likelihood (NLL) is used as the loss function to
compute the average of user-item pairs in the training set:

Leg =
1

|T |
∑

(u,i)∈T

1

|Eu,i|

|Eu,i|∑
t=1

− log cet2+t, (14)

where cett is offset by two positions (i.e., user embedding
and item embedding) because the explanation is placed at
the end of the sequence.

For inference, we aim to generate the explanation word
sequence with the highest log-likelihood. We use greedy de-
coding to select the word with the highest probability at
each step. In the fine-tuning strategy, we introduce additional
prompt parameters for the pre-trained language model. To
bridge the gap between these parameters and the pre-trained
language model parameters, we use a fixed-prompt LM tun-
ing method. This involves first optimizing the prompt pa-
rameters, then fine-tuning all parameters together.

Prediction
Based on the ID embeddings enhanced by user-item interac-
tion behavior graph and the fused multi-modal embeddings,
we form the final representations of users and items in target
domain:

eTu = eu,id + eu,fuse,

eTi = ei,id + ei,fuse.
(15)

The inner product is adopted to predict the likelihood of in-
teraction between user u and item i: ŷ = (eTu )

⊤eTi .

Optimization
During the phase of model training, we adopt binary cross
entropy (BCE) loss as the basic optimization task for recom-
mendation prediction in target domain:

Lpred = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)], (16)

where N is the number of samples, yi is the i-th ground truth
label. Additionally, we bridge the knowledge of source do-
main to the target domain by user alignment module, which
minimizes the user differences in both domains (S and T ):

Lalign =

NU∑
u=1

∥∥eppu − eTu
∥∥2
F
. (17)

Overall, the optimization of HCR is to minimize:
L = Lpred + λaLalign + λssLss + λegLeg + λ∥Θ∥22 (18)

where Θ is the set of model parameters; λa, λss, λeg and
λ are hyperparameters to adjust the balance between align-
ment task, self-supervised task, explanation generation task
and the effect of L2 regularization, respectively. HCR can
model the distribution of private data in source domain and
enhance the recommendation performance in the target do-
main.
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Datasets Users Items Ratings Density
Amazon Arts 49,201 81,983 556,942 0.01%

Amazon Fashion 153,014 852,016 0.01%
Amazon Software 4,026 8,976 49,266 0.14%

Amazon Game 13,691 46,125 0.08%
Healthcare Video 22,824 50,256 322,159 0.03%
Healthcare Doctor 75,680 215,912 0.01%

Table 1: Statistics of datasets.

Experiments
This section aims to answer the following research questions
through experiments and case studies.

Q1: Can the proposed HCR model achieve better perfor-
mance and enhanced privacy compared to existing SOTA
models of plaintext CDR, multimodal CDR, and advanced
PPCDR?

Q2: Can the SS (Self-Supervised modality-aware en-
coder) and PP (Privacy Protection) submodules within HCR
enhance its performance?

Q3: In the field of healthcare services, does the explana-
tions provided by HCR significantly enhance patients’ un-
derstanding of the recommendations?

Q4: How do various hyperparameters affect the perfor-
mance of HCR?

Experimental Settings
Datasets. This paper first compares the performance of
our proposed HCR method with advanced benchmark algo-
rithms through extensive experiments on a large-scale public
Amazon dataset (Cao et al. 2022). We focus on four subdo-
mains: Arts, Fashion, Software, and Games.

We also collected a dataset for online medical consulta-
tion (OMC) services, combining data from a short video-
sharing platform and an online health platform. The dataset
includes two domains: health-related videos by certified pro-
fessionals (source domain) and physicians on the health plat-
form (target domain). User comments on the videos are la-
beled as positive (1) or negative (0), while doctor ratings
range from 1 to 5. We then reversed the source and target
domains and identified a shared user set by matching com-
ments with patient queries. Dataset statistics are shown in
Tab. 1. All data used is publicly available and collected com-
pliantly. Viewer IDs are anonymized, depersonalized codes
are used, and private information is manually excluded. The
data aims to advance multimodal medical recommendation
research while adhering to ethical standards.

Baselines. This paper compares the proposed HCR model
with the following three baseline categories:

(1) CDR models.

• CoNet(Hu, Zhang, and Yang 2018) is a cross-connection
unit to enable dual knowledge transfer across domains.

• CCTL(Zhang et al. 2023) a SOTA CDR model us-
ing a representation enhancement network to preserve
domain-specific features.

(2) Multimodal CDR models.

• SEMI(Lei et al. 2021) presents a sequential multi-modal
network for e-commerce micro-video recommendations.

• PMMRec(Li et al. 2024) uses multi-modal content for
cross-domain and cross-platform recommendations.

(3) PPCDR models.

• PriCDR(Chen et al. 2022) publishes the perturbed inter-
action data using DP to the target domain.

• DPSMrec(Liu et al. 2023b) is a differentially private
model for PPCDR, using semantic and structural data.

• PPGenCDR(Liao et al. 2023) is the SOTA PPCDR
model using a GAN-based framework.

Additionally, we set up two variants of HCR: Ours w/o
SS and Ours w/o PP.

• Ours w/o SS removes the self-supervised modality-
aware encoder, instead averaging modality embeddings
from a pre-trained model and adding them to item ID
embeddings. These multimodal item embeddings, along
with user ID embeddings, are processed by LightGCN
for message passing on the user-item graph. However, it
lacks independent modality learning and fusion, which
may introduce noise into the graph.

• Ours w/o PP removes the privacy-preserving synthesizer
and directly shares the user embeddings obtained from
graph convolution with the target domain for alignment.

Evaluation Protocols. This study’s experimental results
are evaluated across three key dimensions: recommendation
accuracy, privacy protection, and interpretability. We eval-
uate recommendation performance with hit ratio (HR) and
normalized discounted cumulative gain (NDCG), cutting off
the ranked list at 5 (Liu et al. 2023b).

We assess privacy-preserving techniques in recommender
systems by evaluating user embedding vectors for privacy
risks. We consider a user’s information sources: embed-
ding vector esrc

u , item embedding matrix Esrc
I ∈ Rd×NS ,

and interaction vector ru ∈ RNS . An attacker with access
to the item ID matrix EI,id, privacy-protected embedding
epp
u , and partial interaction data rpp

u = ru ⊙ [1, 1, 0, . . . , 0]
may use the NeuMF model to infer user embedding eatk

u
and item matrix Eatk

I . We measure privacy leakage using
Normalized Entropy (privNE) and Conditional Privacy Loss
(privCPL), where higher privNE indicates stronger protection
and higher privCPL indicates greater leakage.

To evaluate explanation performance, we use the Unique
Sentence Ratio (USR) (Li, Zhang, and Chen 2020), defined
as USR = |E|

N , where E is the set of unique sentences gen-
erated and N is the number of test samples. A low USR in-
dicates many identical explanations, suggesting poor diver-
sity, while a high USR reflects better contextual adaptation
and diverse explanations.

Implementation Details. Our HCR model is imple-
mented in PyTorch with key parameters tuned for optimal
performance. We use the Adam optimizer with a learning
rate of 0.001 and a regularization coefficient of 0.0001. Early
stopping and validation follow LightGCN’s approach. For
the self-supervised task, we set the temperature τss = 0.5. In
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the privacy-preserving synthesizer, we set a fixed λpp = 0.4.
For explanations, we use a pretrained GPT-2 model from
huggingface with Byte Pair Encoding (BPE) to handle rare
words, setting the length to 20 BPE tokens and embedding
size to 768.

Performance Comparison (Q1)

We report the average comparison results from 5 runs on the
Healthcare and Amazon datasets in the Tab. 2, where A →
B means transferring knowledge of domain A to domain B.

PPCDR Algorithms Performance: HCR outperforms
advanced privacy-preserving cross-domain benchmarks,
achieving nearly 30% better privacy protection on the
Healthcare dataset. This demonstrates its robust privacy-
preserving capabilities while considering user preferences,
making it ideal for privacy-sensitive domains like health-
care. However, its recommendation performance still falls
short compared to multimodal cross-domain benchmarks,
highlighting the importance of effective modality use in
preference modeling.

Superiority of Multimodal CDR Algorithms: Multi-
modal algorithms generally achieve better recommenda-
tion accuracy by effectively using modality information for
comprehensive user preference modeling and cross-domain
knowledge transfer. However, modality noise poses chal-
lenges. SEMI struggles with noise filtering, and PMMRec’s
contrastive learning may overlook behavior-driven fusion.
HCR overcomes this by using a shallow graph neural net-
work for high-order modality extraction and adaptive fu-
sion through behavior-driven guidance, integrating modality
preferences while minimizing noise.

Comparison with Multimodal CDR Algorithms: Com-
pared to the optimal benchmark PMMRec, HCR signifi-
cantly enhances privacy metrics through Gumbel-Softmax
sampling and item replacement. But this kind of shifting
may pay some cost, leading to recommendation accuracy
loss on certain datasets such as Amazon Arts→Fashion.
PMMRec excels at aligning modality features for de-
tailed item representations but struggles with complemen-
tary modalities. HCR, with its modality-aware encoder and
self-supervised ID embeddings, better integrates diverse
modalities and user preferences.

Ablation Study (Q2)

Removing the SS module (Ours w/o SS) significantly re-
duces recommendation performance, emphasizing the im-
portance of modality information in cross-domain tasks.
The proposed self-supervised encoder enhances user behav-
ior modeling and knowledge transfer, capturing modality-
specific details while avoiding noise without compromising
privacy protection.

Conversely, removing the privacy module (Ours w/o PP)
boosts recommendation performance but increases informa-
tion leakage, underscoring the need for strong privacy mech-
anisms. HCR effectively balances privacy with performance
by carefully managing information interference.
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Figure 2: Empirical investigation and visual examples.

Empirical Study of Explanation (Q3)
We assessed the impact of interpretability on medical and
health service recommendations by comparing explanations
in the e-commerce and healthcare domains. We enhanced
the PMMRec model with the HCR model’s explanation fea-
ture, creating PMMRec+. Fifty users were split into two
groups, U1 and U2, each keeping five historical items.
Group U1 used HCR, and Group U2 used PMMRec+, with
group assignments randomized to prevent bias.

Experiments were conducted on two datasets: (Amazon)
Software → Game and (Healthcare) Video → Doctor, with
500 participants split into A/B groups. Group A received
only recommendations, while Group B received recommen-
dations with explanations. Participants rated the relevance of
recommendations on a scale of 1 to 5, unaware of the rec-
ommendation sources.

We compared the average scores of HCR and PMMRec+
across different scenarios and demonstrated the effect of
recommendation explanations (top 3 explanations for space
limits) through an example in Fig 2. Key findings include:
• Without explanations, both models scored similarly,

with PMMRec+ slightly ahead. Adding explanations im-
proved scores for both models, enhancing user under-
standing and acceptance.

• Explanations had a greater impact in healthcare than in e-
commerce, where images sufficed for user engagement.

• PMMRec+ performed better in comprehension even
without explanations, likely due to its strong visual in-
terpretation.

• Healthcare recommendations were harder for users to
grasp, highlighting the need for explanations, which sig-
nificantly boosted doctor recommendation acceptance.

In summary, text explanations improved user understand-
ing and engagement, especially in healthcare, where inter-
pretability is crucial.

Sensitivity Analysis (Q4)
We evaluated the privacy-preserving synthesizer by measur-
ing recommendation precision and privacy protection in var-
ious settings, illustrated as Fig. 3. As sensitivity γ decreases
and replacement ratio k increases, recommendation perfor-
mance worsens while privacy protection improves, show-
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(Healthcare) Video → Doctor (Healthcare) Doctor → Video (Amazon) Arts → Fashion (Amazon) Software → Game
HR NDCG NE↑ CPL↓ HR NDCG NE↑ CPL↓ HR NDCG NE↑ CPL↓ HR NDCG NE↑ CPL↓

CoNet .2762 .1817 .0988 .3511 .2817 .1865 .0971 .3640 .3194 .2065 .0896 .3077 .3034 .1984 .0902 .2660
CCTL .3126 .2115 .1270 .2359 .3256 .2176 .1278 .2342 .3702 .2478 .1265 .2301 .3508 .2315 .1211 .2877

PriCDR .4142 .3061 .5490 .1510 .4231 .3168 .5486 .1518 .5133 .4065 .5511 .1530 .4558 .3370 .5385 .2174
DPSMRec .4356 .3276 .5502 .1456 .4447 .3390 .5503 .1462 .5437 .4418 .5591 .1489 .4789 .3607 .5396 .2102

PPGenCDR .4403 .3275 .5569 .1450 .4487 .3390 .5570 .1567 .5501 .4410 .5651 .1481 .4836 .3610 .5433 .2081
SEMI .4392 .3389 .2216 .2166 .4485 .3514 .2191 .2147 .5428 .4580 .2231 .2056 .4831 .3764 .2201 .2580

PMMRec .4449 .3526 .2803 .1875 .4538 .3510 .2777 .1890 .5517 .4615 .2855 .1886 .4887 .3803 .2744 .2543
Ours w/o SS .4345 .3379 .7211 .1109 .4480 .3501 .7140 .1156 .5489 .4402 .7056 .1189 .4832 .3771 .6712 .1298
Ours w/o PP .4465 .3574 .2928 .1981 .4551 .3557 .3044 .1915 .5523 .4620 .3056 .1961 .4902 .3824 .2659 .1843

Ours .4453 .3560 .7220 .1033 .4542 .3543 .7199 .1102 .5508 .4601 .7128 .1052 .4890 .3809 .6852 .1204
Impro.(%) 0.09 0.96 157.58 44.91 0.09 0.94 159.24 41.69 -0.16 -0.3 149.67 44.22 0.06 0.16 149.71 52.65

Table 2: The recommendation performance and privacy protection of various recommendation models on cross-domain datasets.

Figure 3: Performance comparison of HCR on different pri-
vacy settings. k and γ represent replacement ratio and sen-
sitivity, respectively.

ing the synthesizer’s customizable privacy features. Despite
high privacy settings, the data still reflects user preferences.
However, at high sensitivity (γ = 0.9), performance suffers
due to reduced data diversity.

Optimal sensitivity varies by scenario: γ = 0.5 for
(Healthcare) Video → Doctor and γ = 0.7 for (Amazon)
Software → Game. Sensitivity impacts healthcare recom-
mendations less than gaming, likely due to dataset complex-
ity. Similarly, the replacement ratio k affects the Amazon
dataset less due to denser interactions. The HCR model ef-
fectively balances privacy and performance across scenar-
ios, maintaining strong privacy while ensuring competitive
accuracy.

Fig. 4 illustrates hyperparameter effects on the (Health-
care) Video → Doctor scenario. HCR performs best with
specific settings for alignment (λa), temperature (τss), SS
(λss), and explanation generation (λeg). Performance is sta-
ble across λa values, reflecting good use of source domain
knowledge. Bell-shaped curves for τss and λss emphasize
the need for careful hyperparameter tuning. Higher λeg val-
ues boost interpretability but lower accuracy, suggesting a

Figure 4: Results on (Healthcare) Video → Doctor.

trade-off that can be optimized.

Conclusion and Future Work
This paper introduces an interpretable PPCDR framework
tailored for healthcare. By integrating the UCSDA and a
PtLLM, we effectively address the dual challenges of pro-
tecting sensitive data and providing patient-friendly expla-
nations. Its performance, validated across multiple datasets
using both traditional and healthcare-specific metrics, high-
lights its scalability and robustness.

Although HCR offers a significant advancement in PPC-
DRs, limitations remain. The reliance on public datasets
suggests a need for testing in more diverse real-world health-
care settings, where cross-domain data sharing and interop-
erability are complicated. Future work should also explore
further improvements in privacy techniques and multimodal
data integration to optimize recommendation quality.

In conclusion, our framework contributes to the growing
demand for interpretable and privacy-conscious recommen-
dations in healthcare. Further research is needed to refine
these systems, ensuring they continue to meet the evolving
demands of this sensitive domain.
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