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Abstract

Recently, multi-objective optimization (MOO) has
gained attention for its broad applications in ML,
operations research, and engineering. However,
MOO algorithm design remains in its infancy
and many existing MOO methods suffer from
unsatisfactory convergence rate and sample com-
plexity performance. To address this challenge,
in this paper, we propose an algorithm called
STIMULUS (stochastic path-integrated multi-
gradient recursive estimator), a new and robust ap-
proach for solving MOO problems. Different from
the traditional methods, STIMULUS introduces a
simple yet powerful recursive framework for up-
dating stochastic gradient estimates to improve
convergence performance with low sample com-
plexity. In addition, we introduce an enhanced
version of STIMULUS, termed STIMULUS-M,
which incorporates a momentum term to further
expedite convergence. We establish O(1/T ) con-
vergence rates of the proposed methods for non-
convex settings andO(exp−µT ) for strongly con-
vex settings, where T is the total number of itera-
tion rounds. Additionally, we achieve the state-of-
the-art O

(
n+
√
nϵ−1

)
sample complexities for

non-convex settings and O (n+
√
n ln(µ/ϵ)) for

strongly convex settings, where ϵ > 0 is a de-
sired stationarity error. Moreover, to alleviate the
periodic full gradient evaluation requirement in
STIMULUS and STIMULUS-M, we further pro-
pose enhanced versions with adaptive batching
called STIMULUS+ / STIMULUS-M+ and pro-
vide their theoretical analysis.

1 INTRODUCTION

1) Background of multi-objective learning: Machine

learning (ML) has always heavily relied on optimization for-
mulations and algorithms. While traditional ML problems
generally focus on minimizing a single loss function, many
emergent complex-structured multi-task ML problems re-
quire balancing multiple objectives that are often conflicting
(e.g., multi-agent reinforcement learning [Parisi et al., 2014],
multi-task fashion representation learning [Jiao et al., 2022,
2023], multi-task recommendation system [Chen et al.,
2019, Zhou et al., 2023], multi-model learning in video
captioning [Pasunuru and Bansal, 2017], and multi-label
learning-to-rank [Mahapatra et al., 2023a,b]). Such ML ap-
plications necessitate solving multi-objective optimization
(MOO) problems, which can be expressed as:

min
x∈D

F(x) := [f1(x), · · · , fS(x)], (1)

where x ∈ D ⊆ Rd is the model parameters. Here,
each fs denotes the objective function of task s ∈ [S],
fs(x) = 1

n

∑n
j=1 fsj(x; ξsj), where n denotes the total

number of samples, ξsj denotes the j-th sample for task s.
However, unlike traditional single-objective optimization,
there may not exist a common x-solution in MOO that can
simultaneously minimize all objective functions. Instead, a
more relevant optimality criterion in MOO is the notion of
Pareto-optimal solutions, where no objective can be further
improved without sacrificing other objectives. Moreover,
in settings where the set of objective functions are non-
convex, searching for Pareto-optimal solutions is intractable
in general. In such scenarios, the goal of MOO is usually
weakened to finding a Pareto-stationary solution, where no
improving direction exists for any objective without sacri-
ficing other objectives.

2) Motivating application: Multi-label learning to rank
(MLLTR) problem. Problem (1) can be applied to a number
of interesting real-world problems. Here, we provide one
concrete example to further motivate its practical relevance:

The learning to Rank (LTR) method is a common technique
used to rank information based on relevance, but it often
struggles with ambiguity because of the noisy nature of
human-generated data, like product ratings. To tackle this,



Table 1: Convergence comparisons between MOO algorithms, where n is the size of dataset; ϵ is the
convergence error. Our proposed algorithms are marked in a shaded background.

Algorithm Multi-gradient
Non-convex case Strongly-Convex case

Rate Sample Complexity Rate Sample Complexity

MGD [Fliege et al., 2019] Deterministic O
(
T−1

)
O

(
nϵ−1

)
O(exp(−µT )) O (n ln(µ/ϵ))

SMGD [Yang et al., 2022] Stochastic O
(
T−1/2

)
O

(
ϵ−2

)
O

(
T−1

)
O

(
ϵ−1

)
MoCo [Fernando et al., 2022] Stochastic O

(
T−1/2

)
O

(
ϵ−2

)
O

(
T−1

)
O

(
ϵ−1

)
MoCo+ [Fernando et al., 2024] Stochastic O

(
T−2/3

)
O

(
ϵ−1.5

)
- -

CR-MOGM [Zhou et al., 2022] Stochastic O
(
T−1/2

)
O

(
ϵ−2

)
O

(
T−1

)
O

(
ϵ−1

)
STIMULUS/ STIMULUS-M Stochastic O

(
T−1

)
O

(
n +

√
nϵ−1

)
O(exp(−µT )) O

(
n +

√
n ln(µ/ϵ)

)
STIMULUS+ / STIMULUS-M+ Stochastic O

(
T−1

)
O

(
n +

√
nϵ−1

)
O(exp(−µT )) O

(
n +

√
n ln(µ/ϵ)

)

Multi-Label Learning to Rank (MLLTR) offers a more re-
fined approach. MLLTR addresses the inherent challenges
of traditional LTR methods by integrating multiple relevance
criteria into the ranking model. This allows for a more com-
prehensive representation of diverse crucial objectives.

• Learning to Rank: Let A be the training set, consisting of
pairs (ai, bi) where ai ∈ Rd representing features, and b
is the corresponding list of relevance labels bi, and i =
1, . . . , n. We note that the lists a within the training set may
not all be of the same length. x is the model parameter.

The goal of the learning-to-rank problem is to find a
scoring function f that optimizes a chosen Information
Retrieval (IR) metric, such as Normalized Discounted
Cumulative Gain (NDCG), on the test set. The scor-
ing function f is trained to minimize the mean of a
surrogate loss l across the training data: fsingle(x) =
1
|A|
∑

(a,b)∈A l(f(x;a),b).

• Multi-label Learning to Rank: Learning to Rank from multi-
ple relevance labels. In the problem of Multi-label learning
to rank (MLLTR), different relevance criteria are measured,
providing multiple labels for each feature vector ai ∈ Rd.
The goal of MLLTR is still the same as that of LTR, which
is to learn a scoring function f(x;a) that assigns a scalar
value to each feature vector ai ∈ Rd. Here, we consider
a set of training examples denoted by ai ∈ Rd, where
i = 1, . . . , n. Associated with each training example ai
is a vector of class labels: bi =

(
b1i , . . . , b

K
i

)
, indicating

the labels of ai. Here, K is the total count of possible
labels. In the multi-label learning to rank problem, the ob-
jective is to construct K distinct classification functions:
fk(x) : Rd → R, for k = 1, . . . ,K, each tailored to a
specific label.

In MLLTR, the cost is a vector-valued function: f(x) =
[f1(x), f2(x), fK(x)], naturally making it an MOO prob-
lem.

In the search ranking domain, the objective is to rank search

results based on their relevance to user queries and other
factors such as popularity, user feedback, and conversion
rates. The loss function in search ranking not only considers
relevance but also takes into account various performance
metrics, such as click-through rates (CTR), dwell time, or
conversion ratesLyu et al. [2020], Yang et al. [2020], Xiao
et al. [2020]. The goal is to optimize the ranking of search
results to maximize user satisfaction and engagement. Com-
mon loss functions used in search ranking include pairwise
ranking lossKumar et al. [2020], Jing et al. [2019], Wang
et al. [2021], listwise lossRevaud et al. [2019], Yu et al.
[2019], or evaluation metrics like normalized discounted cu-
mulative gain (NDCG)Bruch et al. [2019] or mean average
precision (MAP)Revaud et al. [2019]. These loss functions
aim to capture the overall quality of the search ranking by
considering both relevance and performance metrics.

The multi-label learning to rank problem typically involves
a larger number of labels, which increases the dimension-
ality of the output space. This higher dimensionality often
necessitates a greater number of samples to accurately train
models, resulting in increased sample complexity. There-
fore, this motivates us to propose a new family of algorithms
for low sample complexity and fast convergence rates.

3) Related works and motivation: To date, existing MOO
algorithms in the literature can be generally categorized as
gradient-free and gradient-based methods. Typical gradient-
free methods include evolutionary MOO algorithms and
Bayesian MOO algorithms [Zhang and Li, 2007, Deb et al.,
2002, Belakaria et al., 2020, Laumanns and Ocenasek,
2002]. These techniques are suitable for small-scale prob-
lems but inefficient in solving high-dimensional MOO mod-
els (e.g., deep neural networks). Notably, gradient-based
methods have attracted increasing attention recently due to
their stronger empirical performances. Specifically, follow-
ing a similar token of (stochastic) gradient descent meth-
ods for single-objective optimization, (stochastic) multi-
gradient descent (MGD/SMGD) algorithms have been pro-
posed in [Fliege et al., 2019, Fernando et al., 2022, Zhou



et al., 2022, Liu and Vicente, 2021]. The basic idea of
MGD/SMGD is to iteratively update the x-variable fol-
lowing a common descent direction for all the objectives
through a time-varying convex combination of (stochastic)
gradients of all objective functions. Although MGD-type al-
gorithms enjoy a fast O(1/T ) convergence rate (T denotes
the number of iterations) in finding a Pareto-stationary solu-
tion, theirO(n) per-iteration computation complexity in full
multi-gradient evaluations becomes prohibitive when the
dataset size n is large. As a result, SMGD-type algorithms
are often more favored in practice thanks to the lower per-
iteration computation complexity in evaluating stochastic
multi-gradients. However, due to the noisy stochastic multi-
gradient evaluations, SMGD-type algorithms typically ex-
hibit a slowO(1/

√
T ) convergence rate, which also induces

a high O(ϵ−2) sample complexity. Although SMGD is eas-
ier to implement in practice thanks to the use of stochastic
multi-gradient, it has been shown that the noisy common de-
scent direction in SMGD could potentially cause divergence
(cf. the example in Sec. 4 in [Zhou et al., 2022]). There also
have been recent works on using momentum-based methods
for bias mitigation in MOO, named MoCo [Fernando et al.,
2022], MoCo+ [Fernando et al., 2024], CR-MOGM [Zhou
et al., 2022]. For easier comparisons, we summarize the
state-of-the-art gradient-based MOO algorithms and their
convergence rate results under non-convex and strongly
convex settings in Table 1. We note that given the limited
research on finite-sum multi-objective optimization, we in-
cluded broader comparisons.

In light of these major limitations of SMGD-type algorithms,
a fundamental question naturally emerges:

(Q): Is it possible to develop fast-convergent stochastic
MOO algorithms in the sense of matching the conver-
gence rate of deterministic MGD-type methods, while
having a low per-iteration computation complexity as
in SMGD-type algorithms, as well as achieving a low
overall sample complexity?

To be specific, our algorithms differ from them in the follow-
ing key aspects: (i) Our algorithms only require a constant
level step size, which is easier to tune in practice. (ii) Our
STIMULUS family of algorithms has a lower sample com-
plexity compared to all other existing methods.

4) Technical Challenges: As in traditional single-objective
optimization, a natural idea to achieve both fast convergence
and low sample complexity in MOO is to employ the so-
called “variance reduction” (VR) techniques to tame the
noise in stochastic multi-gradients in SMGD-type methods.
However, due to the complex coupling nature of MOO prob-
lems, developing VR-assisted algorithms for SMGD-type
algorithms faces the following challenges unseen in their
single-objective counterparts:

(1) Since SMGD-type methods aim to identify the Pareto

front (i.e., the set of all Pareto-optimal/stationary solutions),
it is critical to ensure that the use of VR techniques does
not introduce new bias into the already-noisy SGMD-type
search process, which drives the search process toward cer-
tain regions of the Pareto front. (2) MOO problems often in-
volve higher computational complexity compared to single-
objective problems due to the need to evaluate multiple ob-
jectives simultaneously. Incorporating VR techniques adds
another layer of complexity, as it requires additional compu-
tations to estimate and reduce variance across multiple ob-
jectives. (3) Conducting theoretical analysis to prove the con-
vergence performance of some proposed VR-based SMGD-
type techniques also contains multiple challenges, including
how to quantify multiple conflicting objectives, navigating
trade-offs between them, handling the non-convexity objec-
tive functions, and managing the computational cost of eval-
uations. All of these analytical challenges are quite different
from those in single-objective optimization theoretical anal-
ysis, which necessitate specialized proofs and analyses are
needed to effectively tackle these challenges and facilitate
efficient exploration of the Pareto optimality/stationarity.

5) Main Contributions: The major contribution of this
paper is that we overcome the aforementioned technical
challenges and develop a suite of new VR-assisted SMGD-
based MOO algorithms called STIMULUS (stochastic path-
integrated multi-gradient recursive estimator) to achieve
both fast convergence and low sample complexity in MOO.
Our main technical results are summarized as follows:

• Our STIMULUS algorithm not only enhances compu-
tational efficiency but also significantly reduces multi-
gradient estimation variance, leading to more stable conver-
gence trajectories and overcoming the divergence problem
of SMGD. We theoretically establish a convergence rate of
O(1/T ) for STIMULUS in non-convex settings (typical
in ML), which further implies a low sample complexity
of O

(
n+
√
nϵ−1

)
. In the special setting where the objec-

tives are strongly convex, we show that STIMULUS has a
linear convergence rate of O(exp(−µT )), which implies
an even lower sample complexity of O (n+

√
n ln(µ/ϵ)).

• To further improve the performance of STIMULUS, we
develop an enhanced version called STIMULUS-M, which
incorporates momentum information to expedite conver-
gence speed. Also, to relax the requirement for peri-
odic full multi-gradient evaluations in STIMULUS and
STIMULUS-M, we propose two enhanced variants called
STIMULUS+ and STIMULUS-M+ based on adaptive
batching, respectively. We provide theoretical convergence
and sample complexity analyses for all these enhanced
variants. These enhanced variants expand the practical util-
ity of STIMULUS, offering efficient solutions that not only
accelerate optimization processes but also alleviate com-
putational burdens in a wide spectrum of multi-objective
optimization applications.

• We conduct extensive experiments on a variety of chal-



lenging MOO problems to verify our theoretical results
and illustrate the efficacy of the STIMULUS algorithm
family. Our experiments demonstrate the efficiency of the
STIMULUS algorithm family over existing state-of-the-art
MOO methods, which underscore the robustness, scalabil-
ity, and flexibility of our STIMULUS algorithm family in
complex MOO applications.

2 PRELIMINARIES

To facilitate subsequent technical discussions, in this sec-
tion, we first provide a primer on MOO fundamentals and
formally define the notions of Pareto optimality/stationarity,
ϵ-stationarity in MOO, and the associated sample complex-
ity. Then, we will give an overview of the most related work
in the MOO literature, thus putting our work into compara-
tive perspectives.

Multi-objective Optimization: A primer. As introduced
in Section 1, MOO aims to optimize multiple objectives
in Eq. (1) simultaneously. However, since in general there
may not exist an x-solution that minimizes all objectives
at the same time in MOO, the more appropriate notion of
optimality in MOO is the so-called Pareto optimality, which
is formally defined as follows:

Definition 1 ((Weak) Pareto Optimality). Given two so-
lutions x and y, x is said to dominate y only if fs(x) ≤
fs(y),∀s ∈ [S] and there exists at least one function, fs,
where fs(x) < fs(y). A solution x∗ is Pareto optimal if
no other solution dominates it. A solution x is defined as
weakly Pareto optimal if there is no solution y for which
fs(x) > fs(y),∀s ∈ [S].

Finding a Pareto-optimal solution in MOO is as complex as
solving single-objective non-convex optimization problems
and is NP-Hard in general. Consequently, practical efforts
in MOO often aim to find a solution that meets the weaker
notion called Pareto-stationarity (a necessary condition for
Pareto optimality), which is defined as follows Fliege and
Svaiter [2000], Miettinen [2012]:

Definition 2 (Pareto Stationarity). A solution x is Pareto-
stationary if no common descent direction d ∈ Rd exists
such that∇fs(x)⊤d < 0,∀s ∈ [S].

Note also that in the special setting with strongly convex
objective functions, Pareto-stationary solutions are Pareto-
optimal. Following directly from Pareto-stationarity in Def-
inition 2, gradient-based MOO algorithms strive to find a
common descent (i.e., improving) direction d ∈ Rd, such
that∇fs(x)⊤d ≤ 0,∀s ∈ [S]. If such a direction does not
exist at x, then x is Pareto-stationary. Toward this end, the
MGD method [Désidéri, 2012] identifies an optimal weight
λ∗ for the multi-gradient set∇F(x) ≜ {∇fs(x),∀s ∈ [S]}
by solving λ∗(x) ∈ argminλ∈C ∥λ

⊤∇F(x)∥2. Conse-
quently, the common descent direction can be defined as

d = λ⊤∇F(x). Then, MGD follows the iterative update
rule x ← x − ηd in the hope that a Pareto-stationary
point can be reached, where η signifies a learning rate.
SMGD Liu and Vicente [2021] follows a similar approach,
but with full multi-gradients being replaced by stochastic
multi-gradients. For both MGD and SMGD, it has been
shown that if ∥λ⊤∇F(x)∥ = 0 for some λ ∈ C, where
C ≜ {y ∈ [0, 1]S ,

∑
s∈[S] ys = 1}, then x is a Pareto

stationary solution Fliege et al. [2019], Zhou et al. [2022].

Here, it is insightful to contrast vector-valued MOO with
the linear scalarization method with fixed weights for MOO,
which is also a relatively straightforward approach com-
monly seen in the MOO literature. We note that vector-
valued MOO offers unique benefits that do not exist in
linear scalarization. Specifically, MGD-type methods for
vector-valued MOO dynamically calculate the weights for
each objective based on the gradient information in each
iteration. The dynamic weighting in MGD-type approach
adapts much better to the landscapes of different MOO prob-
lems, which enables a much more flexible exploration on
the Pareto front. In contrast, the linear scalarization method
uses fixed or pre-defined weights for each objective. As a
result, linear scalarization methods are limited to identifying
the convex hull of the Pareto front [Boyd and Vandenberghe,
2004, Ehrgott, 2005], whereas (stochastic) multi-gradient
methods, including our proposed VR-based algorithms, have
the capability to uncover the Pareto front.

In this paper, we focus on MOO problems in two settings: (i)
non-convex MOO and (ii) strongly convex MOO. Clearly,
the non-convex setting is applicable to many learning prob-
lems in practice (e.g., neural network models). The strongly
convex setting is also interesting due to many applications in
practice (e.g., linear models with quadratic regularizations).

Next, to introduce the notion of sample complexity in MOO,
we first need the following definitions for the non-convex
and strongly convex settings, respectively.

Definition 3 (ϵ-Stationarity (Nonconvex Setting)). A so-
lution x is ϵ-stationary in MOO problem if the common
descent direction at x satisfies the following condition:
minλ∈C E∥λ⊤∇F(x)∥2 ≤ ϵ in non-convex MOO prob-
lems, where C ≜ {y ∈ [0, 1]S ,

∑
s∈[S] ys = 1}.

Definition 4 (ϵ-Optimality (Strongly-Convex Setting)). In
the strongly-convex setting, a solution x is ϵ-optimal if
E[∥x− x∗∥2] ≤ ϵ in MOO problems, where x∗ is a Pareto-
optimal solution of Problem (1).

With the above definitions, we are now in a position to define
the concept of sample complexity in MOO as follows:

Definition 5 (Sample Complexity). The sample complexity
in MOO is defined as the total number of incremental first-
order oracle (IFO) calls required by a MOO algorithm to
converge to an ϵ-stationary (or ϵ-optimal in the strongly



convex setting) point, where one IFO call evaluates the
multi-gradient∇xfsj(x; ξsj) for all tasks s.

3 THE STIMULUS ALGORITHM FAMILY

In this section, we first present the basic version of the
STIMULUS algorithm in Section 3.1, which is followed
by its momentum and adaptive-batching variants in Sec-
tions 3.2 and 3.3, respectively.

3.1 THE STIMULUS ALGORITHM

Our STIMULUS algorithm is presented in Algorithm 1,
where we propose a new variance-reduced (VR) multi-
gradient estimator. It can be seen from Algorithm 1 that
our proposed VR approach has a double-loop structure,
where the inner loop is of length q > 0. More specifically,
different from MGD where a full multi-gradient direction
us
t = ∇fs(xt), ∀s ∈ [S] is evaluated in all iterations, our

STIMULUS algorithm only evaluates a full multi-gradient
every q iterations (i.e., mod(t, q) = 0). For all other iter-
ations t with mod(t, q) ̸= 0, our STIMULUS algorithm
uses a stochastic multi-gradient estimator us

t based on a
mini-batch A with a recursive correction term as follows:

us
t = us

t−1 +
1

|A|
∑
j∈A

(∇fsj(xt; ξsj)

−∇fsj(xt−1; ξsj)), for all s ∈ [S]. (2)

Eq. (2) shows that the estimator is constructed iteratively
based on information from xt−1 and us

t−1, both of which
are obtained from the previous update. We will show later in
Section 4 that, thanks to the q-periodic full multi-gradients
and the recursive correction terms, STIMULUS is able to
achieve a convergence rate ofO(1/T ). Moreover, due to the
stochastic subsampling in mini-batch A, STIMULUS has a
lower sample complexity than MGD. In STIMULUS, the
update rule for parameters in x is written as: xt+1 = xt −
ηdt, where η is the learning rate. Here, the direction dt

is defined as dt :=
∑

s∈[S] λ
s
tu

s
t , where the λs

t -values are
obtained by solving the following quadratic optimization
problem:

min
λs
t≥0

∥∥∥ ∑
s∈[S]

λs
tu

s
t

∥∥∥2

, s.t.
∑
s∈[S]

λs
t = 1. (3)

The iterative update in Eqs. (3) follows the same token as
in the MGDA algorithm [Mukai, 1980, Sener and Koltun,
2018, Lin et al., 2019, Fliege et al., 2019].

3.2 THE STIMULUS-M ALGORITHM

Although it can be shown that STIMULUS achieves a the-
oretical O(1/T ) convergence rate, it could be sensitive to
the choice of learning rate and suffer from similar oscilla-
tion issues in practice as gradient-descent-type methods do

Algorithm 1 STIMULUS algorithm and its variants.

Require: Initial point x0, parameters T , q.
1: Initialize: Choose x0.
2: for t = 0, 1, . . . , T do
3: if mod(t, q) = 0 then
4: if STIMULUS or STIMULUS-M then
5: Compute: us

t=
1
n

∑n
j=1∇fsj(xt; ξsj),∀s∈ [S].

6: end if
7: if STIMULUS+ or STIMULUS-M+ then
8: Compute: us

t as in Eq. (5).
9: end if

10: else
11: Compute us

t as in Eq. (2).
12: end if
13: Compute λ∗

t ∈ [0, 1]S by solving Eq. (3).
14: Compute: dt =

∑
s∈[S] λ

s,∗
t us

t .
15: if STIMULUS or STIMULUS+ then
16: Update: xt+1 = xt − ηdt.
17: end if
18: if STIMULUS-M or STIMULUS-M+ then
19: Update: xt+1 = xt + α(xt − xt−1)− ηdt.
20: end if
21: end for

in single-objective optimization when some objectives are
ill-conditioned.

To further improve the empirical performance of
STIMULUS, we now propose a momentum-assisted en-
hancement for STIMULUS called STIMULUS-M. The idea
behind STIMULUS-M is to take into account the past trajec-
tories to smooth the update direction. Specifically, in addi-
tion to the combined iterative update as in xt+1 = xt− ηdt

and (3), the update rule in STIMULUS-M incorporates an
α-parameterized momentum term as follows:

xt+1 = xt − ηdt + α(xt − xt−1)︸ ︷︷ ︸
Momentum

, ∀s ∈ [S], (4)

where α ∈ (0, 1) is the momentum coefficient.

3.3 STIMULUS+ /STIMULUS-M+ ALGORITHMS

Note that in both STIMULUS and STIMULUS-M, one still
needs to evaluate a full multi-gradient every q iteration,
which remains computationally demanding in the large
data regime. Moreover, if the objectives are in an expec-
tation or “online” form rather than the finite-sum setting, it
is infeasible to compute a full multi-gradient. To address
these limitations, we propose two adaptive-batching en-
hanced versions for STIMULUS and STIMULUS-M called
STIMULUS+ and STIMULUS-M+, respectively. Specif-
ically, rather than using a q-periodic full multi-gradient
us
t = ∇fs(xt) =

1
n

∑n
j=1∇fsj(xt; ξsj), ∀s ∈ [S], in iter-

ation t with mod(t, q) = 0, we utilize an adaptive-batching



stochastic multi-gradient as follows:

us
t =

1

|Ns|
∑
j∈Ns

∇fsj(xt; ξsj), ∀s ∈ [S], (5)

where Ns is an ϵ-adaptive batch sampled from the dataset
uniformly at random with size:

|Ns| = min
{
cγσ

2γ−1
t , cϵσ

2ϵ−1, n
}
. (6)

We choose constants cγ ≥ 8, cϵ ≥ η in non-convex case
and cγ ≥ 8µ

η , cϵ ≥ µ
2 in strongly-convex case (see detailed

discussions in Section 4). The σ2 represents the variance
bound of stochastic gradient norms (cf. Assumption. 2).
In STIMULUS+ , we choose γt+1 =

∑t
i=(nk−1)q

∥di∥2

q ,

while in the momentum based algorithm STIMULUS-M+,
we choose γt+1 =

∑t
i=(nk−1)q ∥α(t−i)di∥2/q. The term

γt+1 offers further refinement to improve convergence.

4 PARETO STATIONARITY
CONVERGENCE ANALYSIS

In this section, we theoretically analyze the Pareto station-
arity convergence of our STIMULUS algorithms in non-
convex and strongly convex settings, beginning with two
necessary assumptions.

Assumption 1 (L-Lipschitz Smoothness). There exists a
constant L > 0 such that ∥∇fs(x) − ∇fs(y)∥ ≤ L∥x −
y∥,∀x,y ∈ Rd, ∀s ∈ [S].

Assumption 2 (Bounded Variance). There exists a con-
stant σ > 0 such that for all x ∈ Rd, E∥∇xfs(x; ξ) −
∇xfs(x)∥2 ≤ σ2, ∀s ∈ S.

With these assumptions, we are now in a position to discuss
the Pareto stationary convergence of the STIMULUS family.

4.1 PARETO-STATIONARITY CONVERGENCE OF
STIMULUS

1) STIMULUS: The Non-convex Setting. First, we show
that the basic STIMULUS algorithm achieves an O(1/T )
convergence rate for non-convex MOO problems in the
following theorem. Note that this result matches that of the
deterministic MGD method.

Theorem 1 (STIMULUS for Non-convex MOO). Under
Assumption 1, let η ≤ 1

2L , if at least one objective func-
tion fs(·), s ∈ [S] is bounded from below by fmin

s ,
then the sequence {xt} output by STIMULUS satisfies:
1
T

∑T−1
t=0 minλ∈C E∥λ⊤∇F(xt)∥2 = O(1/T ).

Following from Theorem. 1, we immediately have the fol-
lowing sample complexity for the STIMULUS algorithm by
choosing q = |A| = ⌈

√
n⌉:

Corollary 1 (Sample Complexity of STIMULUS). By
choosing η ≤ 1

2L , q = |A| = ⌈
√
n⌉, the overall sample

complexity of STIMULUS for finding an ϵ-stationary point
for non-convex MOO problems is O

(√
nϵ−1 + n

)
.

Several interesting remarks regarding Theorem 1 and Corol-
lary 1 are in order: 1) Our proof of STIMULUS’s Pareto-
stationarity convergence only relies on standard assumptions
commonly used in first-order optimization techniques. This
is in stark contrast to prior research, where unconventional
and hard-to-verify assumptions were required (e.g., an as-
sumption on the convergence of x-sequence is used in Fliege
et al. [2019]). 2) While both MGD and our methods share
the same O(1/T ) convergence rate, STIMULUS enjoys a
substantially lower sample complexity than MGD. More
specifically, the sample complexity of STIMULUS is re-
duced by a factor of

√
n when compared to MGD. This

becomes particularly advantageous in the “big data” regime
where n is large.

2) STIMULUS: The Strongly Convex Setting. Now, we
consider the strongly convex setting, which is more tractable
but still of interest in many learning problems in practice
(e.g., multi-objective ridge regression). In the strongly con-
vex setting, we have the following additional assumption:

Assumption 3 (µ-Strongly Convex Function). Each ob-
jective fs(x), s ∈ [S] is a µ-strongly convex function, i.e.,
fs(y) ≥ fs(x) +∇fs(x)(y− x) + µ

2 ∥y− x∥2, ∀x,y, for
some µ > 0.

Assumption 4. For any objective function fj , there ex-
ists a positive real number cj such that for any x in
Rn the following relation holds fj(x) − fj (x

∗) ≥
cj
2 ∥x− x∗∥2 a.s. ;j ∈ S.

Assumption 4 asserts that the function value increases at
least quadratically as you move away from x∗, ensuring
consistent progress towards the optimum. It is a reasonable
assumption since it is also based on the strong convexity
property. The above assumption has also been adopted in
Mercier et al. [2018].

For strongly convex MOO problems, the next result says
that STIMULUS achieves a much stronger expected linear
Pareto-optimality convergence performance:

Theorem 2 (STIMULUS for µ-Strongly Convex MOO).
Under Assumption 1, 3, 4, let η ≤ min{ 12 ,

1
2µ ,

1
8L ,

µ
64L2 },

q = |A| = ⌈
√
n⌉. Under Assumptions 1–4, pick xt as

the final output of STIMULUS with probability wt =
(1 − 3µη

4 )1−t. Then, we have E∥xt − x∗∥2 ≤ ∥x0 −
x∗∥2µ exp(− 3ηµT

4 ).

Further, Theorem 2 immediately implies following with log-
arithmic sample complexity (in terms of ϵ) STIMULUS with
a proper choice of learning rate and q = |A| = ⌈

√
n⌉.



Corollary 2 (Sample Complexity of STIMULUS). By
choosing η ≤ min{ 12 ,

1
2µ ,

1
8L ,

µ
64L2 }, q = |A| = ⌈

√
n⌉},

the overall sample complexity of STIMULUS for solving
strongly convex MOO is O (n+

√
n ln(µ/ϵ)).

There are also several interesting insights from Theo-
rem 2 and Corollary 2 regarding STIMULUS’s perfor-
mance for solving strongly convex MOO problems: 1)
STIMULUS achieves an expected linear convergence rate
of O(µ exp(−µT )). Interestingly, this convergence rate
matches that of MGD for strongly convex MOO prob-
lems as well as gradient descent for strongly convex single-
objective optimization. 2) Another interesting feature of
STIMULUS for strongly convex MOO stems from its use of
randomly selected outputs xt along with associated weights
wt from the trajectory of xt, which is inspired by the sim-
ilar idea for stochastic gradient descent (SGD) [Ghadimi
and Lan, 2013]. Note that, for implementation in practice,
one does not need to store all xt-values. Instead, the al-
gorithm can be implemented by using a random clock for
stopping [Ghadimi and Lan, 2013].

4.2 PARETO STATIONARITY CONVERGENCE OF
STIMULUS-M

Next, we turn our attention to the Pareto stationarity conver-
gence of the STIMULUS-M algorithm. Again, we analyze
STIMULUS-M in non-convex and strongly convex settings:

Theorem 3 (STIMULUS-M for Non-convex MOO). Let
ηt = η ≤ min{ 1

2L ,
1
2}, q = |A| = ⌈

√
n⌉. Un-

der Assumptions 1, if at least one objective function
fs(·), s ∈ [S], is bounded from below by fmin

s , then
the sequence {xt} output by STIMULUS-M satisfies
1
T

∑T−1
t=0 minλ∈C E∥λ⊤∇F(xt)∥2 = O( 1

T ).

Similar to the basic STIMULUS algorithm, by choosing the
appropriate learning rate and inner loop length parameters,
we immediately have the following sample complexity result
for STIMULUS-M for solving non-convex MOO problems:

Corollary 3 (Sample Complexity of STIMULUS-M). By
choosing ηt = η ≤ min{ 1

2L ,
1
2}, q = |A| = ⌈

√
n⌉. The

overall sample complexity of STIMULUS-M under non-
convex objective functions is O

(√
nϵ−1 + n

)
.

The next two results state the Pareto optimality and sample
complexity results for STIMULUS-M:

Theorem 4 (STIMULUS-M for µ-Strongly Convex MOO).
Let η ≤ min{ 12 ,

1
2µ ,

1
8L ,

µ
64L2 }, q = |A| = ⌈

√
n⌉. Under

Assumption 1, 3, 4, pick xt as the final output of STIMULUS-
M with probability wt = (1 − 3µη

4 )1−t. Then, we have
E∥xt − x∗∥2 ≤ ∥x0 − x∗∥2µ exp(− 3ηµT

4 ).

Corollary 4 (Sample Complexity of STIMULUS-M). By
choosing η ≤ min{ 12 ,

1
2µ ,

1
8L ,

µ
64L2 }, q = |A| = ⌈

√
n⌉,

the overall sample complexity of STIMULUS-M for solving
strongly convex MOO is O (n+

√
n ln(µ/ϵ)).

We remark that the convergence rate upper bound of
STIMULUS-M is the same as that in Theorem 2, which
suggests a potentially loose convergence upper bound in
Theorem 4 due to the technicality and intricacies in analyz-
ing momentum-based stochastic multi-gradient algorithms
for solving non-convex MOO problems. Yet, we note that
even this potentially loose convergence rate upper bound in
Theorem 4 already suffices to establish a linear convergence
rate for STIMULUS-M in solving strongly convex MOO
problems. Moreover, we will show later in Section 5 that
this momentum-assisted method significantly accelerates
the empirical convergence speed performance. It is also
worth noting that there are two key differences in the proofs
of Theorem 3 and 4 compared to those of the momentum-
based stochastic gradient algorithm for single-objective non-
convex optimization: 1) our proof exploits the martingale
structure of the us

t . This enables us to tightly bound the
mean-square error term E ∥∇fs (xt)− us

t∥
2 under the mo-

mentum scheme. In contrast, in the traditional analysis of
stochastic algorithms with momentum, this error term cor-
responds to the variance of the stochastic estimator and is
typically assumed to be bounded by a universal constant.
2) Our proof requires careful manipulation of the bound-
ing strategy to effectively handle the accumulation of the
mean-square error E ∥∇fs (xk)− us

t∥
2 over the entire op-

timization trajectory in non-convex MOO.

4.3 PARETO STATIONARITY CONVERGENCE
RESULTS OF STIMULUS+ AND STIMULUS-M+

Next, we present the Pareto stationarity convergence
and the associated sample complexity results of the
STIMULUS+ /STIMULUS-M+ algorithms for non-convex
MOO as follows:

Theorem 5 (STIMULUS+ /STIMULUS-M+). Let η ≤
min{ 1

4L ,
1
2}, q = |A| = ⌈

√
n⌉. By choosing cγ and

cϵ as such that cγ ≥ 8, and cϵ ≥ η, under As-
sumptions 1 and 2, if at least one function fs(·), s ∈
[S] is bounded from below by fmin

s , then the sequence
{xt} output by STIMULUS+ /STIMULUS-M+ satisfies:
1
T

∑T−1
t=0 minλ∈C E∥λ⊤∇F(xt)∥2 = O( 1

T ).

Corollary 5 (Sample Complexity). By choosing η ≤
min{ 1

4L ,
1
2}, q = |A| = ⌈

√
n⌉, cγ ≥ 8, and cϵ ≥

η. The overall sample complexity of STIMULUS+ /
STIMULUS-M+ under non-convex objective functions is
O
(√

nϵ−1 + n
)
.
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(a) Training loss convergence in terms of iterations.
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(b) Training loss convergence in terms of samples.

Figure 1: Training loss convergence comparisons between different MOO algorithms.

Theorem 6 (STIMULUS+ /STIMULUS-M+). Let η ≤
min{ 12 ,

1
2µ ,

1
8L ,

µ
64L2 }, cγ ≥ 8µ

η , cϵ ≥ µ
2 , q = |A| = ⌈

√
n⌉.

Under Assumptions 1- 4, pick xt as the final output of
the STIMULUS+ /STIMULUS-M+ algorithm with weights
wt = (1 − 3µη

4 )1−t. Then, it holds that E∥xt − x∗∥2 ≤
∥x0 − x∗∥2µ exp(− 3ηµT

4 ).

Corollary 6 (Sample Complexity). By choosing η ≤
min{ 12 ,

1
2µ ,

1
8L ,

µ
64L2 }, cγ ≥ 8µ

η , cϵ ≥ µ
2 , q = |A| =

⌈
√
n⌉, the overall sample complexity of STIMULUS+ /

STIMULUS-M+ for solving strongly-convex MOO is
O (n+

√
n ln(µ/ϵ)).

We note that, although the theoretical sample complex-
ity bounds of STIMULUS+ / STIMULUS-M+ are the
same as those of STIMULUS/ STIMULUS-M, respec-
tively, the fact that STIMULUS+ and STIMULUS-M+ do
not need full multi-gradient evaluations implies that
STIMULUS/ STIMULUS-M use significantly fewer sam-
ples than STIMULUS/ STIMULUS-M in the large dataset
regime. Our experimental results in the next section will
also empirically confirm this.

5 EXPERIMENTAL RESULTS

In this section, we conduct numerical experiments to val-
idate our STIMULUS algorithm family, focusing on non-
convex MOO problems, while results for strongly convex
and 8-objective MOO experiments are in the appendix.

1) Two-Objective Experiments on the MultiMNIST
Dataset: First, we test the convergence performance of
our STIMULUS using the “MultiMNIST” dataset [Sabour
et al., 2017], which is a multi-task learning version of the
MNIST dataset [LeCun et al., 1998] from LIBSVM reposi-
tory. Specifically, MultiMNIST converts the hand-written
classification problem in MNIST into a two-task problem,
where the two tasks are task “L” (to categorize the top-left
digit) and task “R” (to classify the bottom-right digit). The
goal is to classify the images of different tasks. We com-
pare our STIMULUS algorithms with MGD, SMGD, CR-
MOGM, and MOCO. All algorithms use the same randomly
generated initial point. The learning rates are chosen as

η = 0.3, α = 0.5, constant c = cγ = cϵ = 32 and solution
accuracy ϵ = 10−3. The batch-size for MOCO, CR-MOGM
and SMGD is 96. The full batch size for MGD is 1024, and
the inner loop batch-size |Ns| for STIMULUS, STIMULUS-
M, STIMULUS+ , STIMULUS-M+is 96. As shown in
Fig. 1(a), SMGD exhibits the slowest convergence speed,
while MOCO has a slightly faster convergence. MGD and
our STIMULUS algorithms have comparable performances.
The STIMULUS-M /STIMULUS-M+ algorithms converge
faster than MGD, STIMULUS , and STIMULUS+ , pri-
marily due to the use of momentum. Fig. 1(b) highlights
differences in sample complexity. MGD suffers the highest
sample complexity, while STIMULUS+ and STIMULUS-
M+ demonstrate a more efficient utilization of samples in
comparison to STIMULUS and STIMULUS-M. These re-
sults are consistent with our theoretical analyses as outlined
in Theorems 1, 3, and 5.

2) 40-Objective Experiments with the CelebA Dataset:

Lastly, we conduct large-scale 40-objective experiments
with the CelebA dataset [Liu et al., 2015], which contains
200K facial images annotated with 40 attributes. Each at-
tribute corresponds to a binary classification task, resulting
in a 40-objective problem.
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Figure 2: Training loss conver-
gence comparison (40-task).

We use a ResNet-18
He et al. [2016]
model without
the final layer for
each attribute, and
we attach a lin-
ear layer to each
attribute for clas-
sification. In this
experiment, we set
η = 0.0005, α =
0.01, the full batch
size for MGD is
1024, and the batch
size for SMGD, CR-MOGM and MOCO and the inner
loop batch size |Ns| for STIMULUS, STIMULUS-M,
STIMULUS+ , STIMULUS-M+is 32. As shown in Fig. 2,
MGD, STIMULUS, STIMULUS-M, STIMULUS+ , and
STIMULUS-M+significantly outperform SMGD, CR-



MOGM and MOCO in terms of training loss. Also, we
would like to note that STIMULUS+ and STIMULUS-
M+ consume fewer sample (approximately 11,000)
samples compared to STIMULUS and STIMULUS-M ,
which consume approximately 13,120 samples, and MGD,
which consumes roughly 102,400 samples. These results
are consistent with our theoretical results in Theorems 1, 3,
and 5.

6 CONCLUSION

In this paper, we proposed STIMULUS, a new variance-
reduction-based stochastic multi-gradient-based algorithm
to achieve fast convergence and low sample complexity
multi-objective optimization (MOO). We analyze its Pareto
stationarity convergence and sample complexity under non-
convex and strongly convex settings. To enhance empirical
convergence, we propose STIMULUS-M , which incorpo-
rates momentum. To reduce the periodic full multi-gradient
evaluation in STIMULUS and STIMULUS-M, we introduce
adaptive batching versions, STIMULUS+ /STIMULUS-
M+, with theoretical performance analysis. Overall, our
STIMULUS algorithm family advances MOO algorithm de-
sign and analysis.
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A PROOF OF CONVERGENCE OF STIMULUS

Table 2: List of key notation.

Notation Definition
n Total number of samples per task
s Objective/task index
S Total number of objectives/tasks
t Iteration number index
T Total number of iterations
x ∈ Rd Model parameters in Problem (1)
x∗ ∈ Rd A pareto optimal solution of Problem (1)
η The learning rate
α The momentum constant
ϵ Stationarity error in Def. 3
µ Strongly-convex constant in Assumption 3

For clarity of notation, we drop ∗ for λ, that is, we use λs
t to represent the solution of quadratic problem for task s in the t-th

round.

Lemma 1. Let Assumption 1 hold. The gradient estimator us
t satisfies for all (nt − 1)q + 1 ≤ t ≤ ntq − 1:

Et∥∇fs(xt)− us
t∥2 ≤

L2

|A|

t∑
i=(nt−1)q

E∥xi+1 − xi∥2 + Et∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2. (7)

Proof of Lemma. 1.

Proof. From Lemma 1 in Fang et al. [2018], we have

Et∥∇fs(xt)− us
t∥2

(a)
= Et∥∇fs(xt−1)− us

t−1∥2

+Et∥
1

|A|
∑
j∈A

(∇fsj(xt; ξsj)−∇fsj(xt−1; ξsj) +∇fs(xt−1)−∇fs(xt)) ∥2

(b)

≤Et∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2 + L2
t∑

i=(nt−1)q

1

|A|
E∥xi+1 − xi∥2. (8)

(a) stems from Proposition 1 in Fang et al. [2018], where the expectation of the gradient difference is broken down. (b)
leverages Eq. (2.3) from Fang et al. [2018], applying a bound based on the Lipschitz continuity of the gradient.

Telescoping over from (nt − 1) q + 1 to t, where t ≤ ntq − 1, we obtain that

Et∥∇fs(xt)− us
t∥2 ≤ Et∥∇fs(x(nt−1)q)− us

(nt−1)q∥
2 + L2

t∑
i=(nt−1)q

1

|A|
E∥xi+1 − xi∥2 (9)

Then, we have

Et∥∇fs(xt)− us
t∥2 ≤

L2

|A|

t∑
i=(nt−1)q

E∥xi+1 − xi∥2 + Et∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2. (10)

Lemma 2. For general L-smooth functions {fs, s ∈ [S]}, choose the learning rate η s.t. η ≤ 1
2L , the update dt of the

algorithm satisfies:

fs(xt+1) ≤ fs(xt) +
η

2
∥∇fs(xt)− us

t∥2 −
η

4
∥dt∥2. (11)



Proof of Lemma. 2.

Proof.

fs(xt+1)
(a)

≤ fs(xt) + ⟨∇fs(xt),−ηdt⟩+
1

2
L∥ηdt∥2

= fs(xt)− η ⟨∇fs(xt)− us
t ,dt⟩ − η ⟨us

t ,dt⟩+
1

2
L∥ηdt∥2

(b)

≤ fs(xt)− η ⟨∇fs(xt)− us
t ,dt⟩ − η∥dt∥2 +

1

2
L∥ηdt∥2

(c)

≤ fs(xt) +
η

2
∥∇fs(xt)− us

t∥2 +
1

2
η∥dt∥2 − η∥dt∥2 +

1

2
Lη2∥dt∥2

= fs(xt) +
η

2
∥∇fs(xt)− us

t∥2 − η

(
1

2
− 1

2
Lη

)
∥dt∥2. (12)

(a) follows from the objective function fs is L-smooth. (b) follows from ⟨us
t ,dt⟩ ≥ ∥dt∥2 since dt is a general solution

in the convex hull of the family of vectors {us
t , s ∈ [S]} (see Lemma 2.1 Désidéri [2012]). (c) follows from the triangle

inequality.

By setting
(
1
2 −

L
2 η
)
≥ 1

4 , that is, η ≤ 1
2L , we have

fs(xt+1) ≤ fs(xt) +
η

2
∥∇fs(xt)− us

t∥2 −
η

4
∥dt∥2. (13)

Proof of Theorem. 1

Proof. Taking expectation on both sides of the inequality in Lemma. 2, we have

E[fs(xt+1)]
(a)

≤ E[fs(xt)] +
η

2
E∥∇fs(xt)− us

t∥2 −
η

4
E∥dt∥2

(b)

≤ E[fs(xt)]−
η

4
E∥dt∥2 + E

η

2
[
L2

|A|

t∑
i=(nt−1)q

E∥xi+1 − xi∥2 + E∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2]

(c)
= E[fs(xt)]−

η

4
E∥dt∥2 +

η

2
[
L2

|A|

t∑
i=(nt−1)q

η2E∥di∥2]. (14)

(a) follows from Lemma. 2. (b) follows from the Lemma. 1. (c) follows from the update rule of x as shown in Eq. (5) and
E∥∇fs(x(nt−1)q)− us

(nt−1)q∥
2 = 0 as shown in Line 5 in our Algorithm. 1.

Next, telescoping the above inequality over t from (nt − 1) q to t where t ≤ ntq − 1 and noting that for (nt − 1) q ≤ j ≤
ntq − 1, nj = nt, we obtain

E[fs(xt+1)]

≤ E[fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

E∥dj∥2 +
η

2
[
L2

|A|

t∑
j=(nt−1)q

j∑
i=(nt−1)q

η2E∥di∥2]

(a)

≤ E[fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

E∥dj∥2 +
η

2
[
L2

|A|

t∑
j=(nt−1)q

t∑
i=(nt−1)q

η2E∥di∥2]

(b)

≤ E[fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

E∥dj∥2 +
η3q

2
[
L2

|A|

t∑
j=(nt−1)q

E∥dj∥2]



= E[fs(x(nt−1)q)]− [
η

4
− η3q

2

L2

|A|
]

t∑
j=(nt−1)q

E∥dj∥2. (15)

where (a) extends the summation of the third term from j to t, (b) follows from the fact that t ≤ ntq − 1.

We continue the proof by further driving

E[fs(xT )]− E[fs(x0)]

= (E[fs(xq)]− E[fs(x0)]) + (E[fs(x2q)]− E[fs(xq)]) + ·+ (E[fs(xT )]− E[fs(x(nT−1)q)])

≤ −[η
4
− η3q

2

L2

|A|
]

T−1∑
t=0

E∥dt∥2 (16)

Note that E[fs (xT+1)] ≥ f∗
s ≜ infx∈Rd fs(x). Hence, we have

[
η

4
− η3q

2

L2

|A|
]

T−1∑
t=0

E∥dt∥2 ≤ [[fs(x0)]− [fs(xT )]] ≤ [[fs(x0)]− f∗
s ]. (17)

Based on the parameter setting q = |A| = ⌈
√
n⌉, we have

[
η

4
− η3L2

2
]

T−1∑
t=0

∥dt∥2 ≤ [[fs(x0)]− f∗
s ]. (18)

Thus, we have

1

T

T−1∑
t=0

E∥dt∥2 ≤
[[fs(x0)]− f∗

s ]

[η4 −
η3L2

2 ]T
. (19)

Since 1
T

∑T−1
t=0 E∥dt∥2 is just common descent directions. According to Definition. 3 shown in the paper, the quantity to

our interest is ∥
∑

s∈[S] λ
s
t∇f(x)∥2.

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2

(a)

≤ 1

T

T−1∑
t=0

2E∥
∑
s∈[S]

λs
t∇fs(xt)−

∑
s∈[S]

λs
tu

s
t∥2 +

1

T

T−1∑
t=0

2E∥
∑
s∈[S]

λs
tu

s
t∥2

(b)
=

1

T

T−1∑
t=0

2E∥
∑
s∈[S]

λs
t (∇fs(xt)− us

t )∥2 +
1

T

T−1∑
t=0

2E∥dt∥2

(c)

≤ 1

T

T−1∑
t=0

2S
∑
s∈[S]

(λs
t )

2E∥(∇fs(xt)− us
t )∥2 +

1

T

T−1∑
t=0

2E∥dt∥2

(d)

≤ 1

T

T−1∑
t=0

2S
∑
s∈[S]

(λs
t )

2[Et∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2 + L2
t∑

i=(nt−1)q

1

|A|
E∥xi+1 − xi∥2] +

1

T

T−1∑
t=0

2E∥dt∥2

=
1

T

T−1∑
t=0

2S
∑
s∈[S]

(λs
t )

2[Et∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2]

+ 2SL2 1

T

T−1∑
t=0

t∑
i=(nt−1)q

1

|A|
E∥xi+1 − xi∥2 +

1

T

T−1∑
t=0

2E∥dt∥2



(e)

≤ 1

T

T−1∑
t=0

2S
∑
s∈[S]

(λs
t )

2[Et∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2]

+ 2SL2 1

T

T−1∑
t=0

ntq−1∑
i=(nt−1)q

1

|A|
E∥xt+1 − xt∥2 +

1

T

T−1∑
t=0

2E∥dt∥2

=2SL2 1

T

T−1∑
t=0

q

|A|
E∥xt+1 − xt∥2 +

1

T

T−1∑
t=0

2E∥dt∥2

(f)
=2SL2η2

1

T

T−1∑
t=0

E∥dt∥2 +
1

T

T−1∑
t=0

2E∥dt∥2

=(2SL2η2 + 2)
1

T

T−1∑
t=0

E∥dt∥2 (20)

where (a) and (c) hold from the triangle inequality. (b) is because the definition dt =
∑

s∈[S] λ
s
tu

s
t as shown in Line 14 in

Algorithm. 1. (d) follows from the Lemma. 1. (e) is because t ≤ ntq − 1. (f) is because we have q = |A| = ⌈
√
n⌉.

Then, we can conclude that

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2

(a)

≤ (2SL2η2 + 2)
[[fs(x0)]− f∗

s ]

[η4 −
η3L2

2 ]T
, (21)

where (a) follows from Eqs. (20) and Eqs. (19).

Let η ≤ 1
2L , we have

1

T

T−1∑
t=0

min
λ∈C

E∥λ⊤∇F(xt)∥2 ≤
1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2

≤
(2SL2η2 1

T + 2)[[fs(x0)]− f∗
s ]

[η8 ]T
=

(2SL2η2 + 2) 8η [[fs(x0)]− f∗
s ]

T
= O( 1

T
). (22)

Lastly, to show the sample complexity, the number of samples with mod(t, q) = 0 can be calculated as: ⌈Tq ⌉ ·M . Also, the
number of samples with mod(t, q) ̸= 0 can be calculated as T · |A|. Hence, the total sample complexity can be calculated
as: ⌈Tq ⌉n + T · |A| ≤ T+q

q n + T
√
n = T

√
n + n + T

√
n = O(n +

√
nϵ−1). Thus, the overall sample complexity is

O(n+
√
nϵ−1). This completes the proof.

A.1 PROOF OF THEOREM. 2

Proof.

fs(xt+1)

≤fs(xt) + ⟨∇fs(xt),−ηdt⟩+
1

2
L∥ηdt∥2

(a)

≤fs(x∗) + ⟨∇fs(xt),xt − x∗⟩ −
µ

2
∥xt − x∗∥2 + ⟨∇fs(xt),−ηdt⟩+

1

2
L∥ηdt∥2

=fs(x∗) + ⟨∇fs(xt),xt − x∗ − ηdt⟩ −
µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2

(b)

≤fs(x∗) + ⟨∇fs(xt)− us
t ,xt − x∗ − ηdt⟩+ ⟨us

t ,xt − x∗ − ηdt⟩



− µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2

(c)

≤fs(x∗) +
1

2δ
∥∇fs(xt)− us

t∥2 +
δ

2
∥xt − x∗ − ηdt∥2 + ⟨us

t ,xt − x∗ − ηdt⟩

− µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2

(d)

≤fs(x∗) +
1

2δ
∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

+ ⟨us
t ,xt − x∗ − ηdt⟩ −

µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2, (23)

the first inequality is due to L-smoothness, the second inequality follows from µ-strongly convex. The last two inequality
follows from the triangle inequality.

According to Definition. 3 shown in the paper, the quantity to our interest is
∑

s∈[S] λ
s
t [fs(xt+1)− fs(x∗)], then we have

∑
s∈[S]

λs
t [fs(xt+1)− fs(x∗)]

(a)

≤ 1

2δ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

+

〈∑
s∈[S]

λs
tu

s
t ,xt − x∗

〉
− µ

2
∥xt − x∗∥2 +

〈∑
s∈[S]

λs
tu

s
t ,−ηdt

〉
+

1

2
L∥ηdt∥2

=
1

2δ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

+

〈∑
s∈[S]

λs
tu

s
t ,xt − x∗ − ηdt

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2

(b)

≤ 1

2δ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

+ ⟨dt,xt − x∗ − ηdt⟩ −
µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2

= ⟨dt,xt − x∗⟩ − η∥dt∥2 −
µ

2
∥xt − x∗∥2 +

1

2
Lη2∥dt∥2

+
1

2δ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

(c)

≤ 1

2η

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− 1

2
η∥dt∥2 −

µ

2
∥xt − x∗∥2 +

1

2
Lη2∥dt∥2

+
4

µ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 +
µ

8
∥xt − x∗∥2 +

µ

8
∥ηdt∥2

(d)

≤ 1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥dt∥2

+
4

µ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2

(e)

≤ 1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥dt∥2

+
4

µ
(
L2

|A|

t∑
i=(nt−1)q

∥xi+1 − xi∥2 +
∑
s∈[S]

λs
t∥∇fs(x(nt−1)q)− us

(nt−1)q∥
2)



=
1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥dt∥2

+
4

µ
(
L2

|A|

t∑
i=(nt−1)q

∥xi+1 − xi∥2). (24)

where (a) follows from Eqs. (23). (b) is because the definition dt =
∑

s∈[S] λ
s
tu

s
t as shown in Line 14 in Algorithm. 1. (c)

is because ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 = −η2∥dt∥2 + 2 ⟨ηdt,xt − x∗⟩, and we choose δ = µ
8 in (d). (e) follows from

Lemma. 1.

Next, telescoping the above inequality over t from (nt − 1) q to t where t ≤ ntq − 1 and noting that for (nt − 1) q ≤ j ≤
ntq − 1, nj = nt, we obtain

t∑
i=(nt−1)q

∑
s∈[S]

λs
i [fs(xi+1)− fs(x∗)]

(a)

≤ 1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2)

t∑
i=(nt−1)q

∥di∥2 +
4

µ
(
L2

|A|

t∑
j=(nt−1)q

j∑
i=(nj−1)q

∥xi+1 − xi∥2)

(b)

≤ 1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2)

t∑
i=(nt−1)q

∥di∥2 +
4

µ
(
L2

|A|

t∑
j=(nt−1)q

t∑
i=(nt−1)q

∥xi+1 − xi∥2)

=
1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
)

t∑
i=(nt−1)q

∥di∥2), (25)

where (a) is from Eqs. (24). (b) relaxes j to t, since j ≤ t. We continue the proof by further driving

T∑
i=0

∑
s∈[S]

λs
i [fs(xi+1)− fs(x∗)]

=

q∑
i=0

∑
s∈[S]

λs
i [fs(xi+1)− fs(x∗)] +

2q∑
i=q

∑
s∈[S]

λs
i [fs(xi+1)− fs(x∗)] +

· · ·+
T∑

i=(nT−1)q

∑
s∈[S]

λs
i [fs(xi+1)− fs(x∗)]

≤ 1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

i=0

∥xi+1 − x∗∥2
)

− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
)

T∑
i=0

∥di∥2), (26)



where the last inequality is from Eq. (15) and Eq. (25). Next, we have

T∑
i=0

∑
s∈[S]

λs
i [fs(xi)− fs(x∗)]

=

T∑
i=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)− fs(xi+1) + fs(xi)]

≤
T∑

i=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]−

T∑
i=0

∑
s∈[S]

λs
t |fs(xi+1)− fs(xi)|

≤ 1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

i=0

∥xi+1 − x∗∥2
)

− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
− [

η

4
− η3q

2

L2

|A|
])

T∑
i=0

∥di∥2 (27)

Let |A| = q = ⌈
√
n⌉ and η ≤ min{ 1

2µ ,
1
8L ,

µ
64L2 }, we have ( 12η −

µ
8 η

2 − 1
2Lη

2 − 4
µ

L2qη2

|A| − [η4 −
η3q
2

L2

|A| ]) >
η
16 > 0

Thus, we have

T∑
i=0

∑
s∈[S]

λs
i [fs(xi)− fs(x∗)] ≤

1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

i=0

∥xi+1 − x∗∥2
)
. (28)

Then, we have

Et[
∑
s∈[S]

λs
i [fs(xt)− fs(x∗)]] ≤

1

2η

(
(1− 3µη

4
)Et∥xt − x∗∥2 − Et∥xt+1 − x∗∥2

)
. (29)

Based on Assumption.4 and averaging using weight wt = (1− 3µη
4 )1−t and using such weight to pick output x, by using

Lemma 1 in Karimireddy et al. [2020] with η ≥ 1
uR , we have

E∥xt − x∗∥2 [fs(xt)− fs(x∗)]] ≤ ∥x0 − x∗∥2µ exp(−3ηµT

4
) (30)

= O(µ exp(−µT )). (31)

Then we have the convergence rate E∥xt − x∗∥2 = O(µ exp(−µT )).

Lastly, the total sample complexity can be calculated as: ⌈Tq ⌉n + T · |A| ≤ T+q
q n + T

√
n = T

√
n + n + T

√
n =

O(n+
√
n ln(µ/ϵ). Thus, the overall sample complexity is O(n+

√
n ln(µ/ϵ). This completes the proof.

B PROOF OF CONVERGENCE OF STIMULUS-M

Lemma 3. For general L-smooth functions {fs, s ∈ [S]}, choose the learning rate η s.t. η ≤ 1
2 , the update dt of the

VR-MOO-M algorithm satisfies:

fs(xt+1) ≤fs(xt) +
η

2

t∑
i=(nt−1)q

α(t−i)∥∇fs(xi)− us
i∥2 −

1

2
η

t∑
i=(nt−1)q

α(t−i)∥di∥2

+
1

2
L∥xt+1 − xt∥2. (32)



Proof of Lemma. 3.

Proof.

fs(xt+1) ≤ fs(xt) + ⟨∇fs(xt),xt+1 − xt⟩+
1

2
L∥xt+1 − xt∥2

(a)

≤ fs(xt) + ⟨∇fs(xt), α(xt+1 − xt)⟩+ ⟨∇fs(xt),−ηdt⟩+
1

2
L∥ηdt∥2

(b)
= fs(xt) +

t∑
i=0

α(t−i) ⟨∇fs(xi),−ηdi⟩+
1

2
L∥ηdt∥2

= fs(xt)− η

t∑
i=0

α(t−i) ⟨∇fs(xi)− us
i ,di⟩ − η

t∑
i=0

α(t−i) ⟨us
i ,di⟩+

1

2
L∥xt+1 − xt∥2

(c)

≤ fs(xt)− η

t∑
i=0

α(t−i) ⟨∇fs(xi)− us
i ,di⟩ − η

t∑
i=0

α(t−i)∥di∥2 +
1

2
L∥xt+1 − xt∥2

(d)

≤ fs(xt) +
η

2

t∑
i=0

α(t−i)∥∇fs(xi)− us
i∥2 +

1

2
η

t∑
i=0

α(t−i)∥di∥2

− η

t∑
i=0

α(t−i)∥di∥2 +
1

2
L∥xt+1 − xt∥2

= fs(xt) +
η

2

t∑
i=0

α(t−i)∥∇fs(xi)− us
i∥2 −

1

2
η

t∑
i=0

α(t−i)∥di∥2 +
1

2
L∥xt+1 − xt∥2. (33)

(a) follows from the objective function fs is L-smooth. (b) follows from the update rule of xt shown in Line 19 in Algorithm.
1. (c) follows from ⟨us

t ,dt⟩ ≥ ∥dt∥2 since dt is a general solution in the convex hull of the family of vectors {us
t , s ∈ [S]}

(see Lemma 2.1 Désidéri [2012]). (d) follows from the triangle inequality.

Proof of Theorem. 3

Proof. Taking expectation on both sides of the inequality in Lemma. 3, we have

E[fs(xt+1)]

(a)

≤E[fs(xt)] +
η

2

t∑
i=0

α(t−i)E∥∇fs(xi)− us
i∥2 −

1

2
η

t∑
i=0

α(t−i)E∥di∥2 +
1

2
LE∥xt+1 − xt∥2

(b)

≤E[fs(xt)]−
1

2
η

t∑
i=0

α(t−i)E∥di∥2 +
1

2
LE∥xt+1 − xt∥2

+
η

2

t∑
j=0

α(t−j)[
L2

|A|

j∑
i=(nt−1)q

E∥xi+1 − xi∥2 + E∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2]

=E[fs(xt)]−
1

2
η

t∑
i=0

α(t−i)E∥di∥2 +
1

2
LE∥xt+1 − xt∥2

+
η

2

t∑
j=0

α(t−j)[
L2

|A|

j∑
i=(nt−1)q

E∥xi+1 − xi∥2], (34)

where (a) follows from Eqs. 33. (b) follows from the Lemma. 1. (c) follows from E∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2 = 0 as
shown in Line 5 in our Algorithm. 1.



Next, telescoping the above inequality over t from (nt − 1) q to t where t ≤ ntq − 1 and noting that for (nt − 1) q ≤ j ≤
ntq − 1, nj = nt and let η ≤ 1

4L , we obtain

E[fs(xt+1)]

(a)

≤E[fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)E∥di∥2 +
1

2
L

t∑
i=(nt−1)q

E∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[
L2

|A|

i∑
r=(nt−1)q

E∥xr+1 − xr∥2]

(b)

≤E[fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)E∥di∥2 +
1

2
L

t∑
i=(nt−1)q

E∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[
L2

|A|

ntq−1∑
r=(nt−1)q

E∥xr+1 − xr∥2]

≤E[fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)E∥di∥2 +
1

2
L

t∑
i=(nt−1)q

E∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[
L2

|A|
qE∥xj+1 − xj∥2]

(c)
=E[fs(x(nt−1)q)]−

η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)E∥di∥2 +
1

2
L

t∑
i=(nt−1)q

E∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[L2E∥xj+1 − xj∥2]

(d)
=E[fs(x(nt−1)q)]−

η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)E∥di∥2 +
1

2
L

t∑
i=(nt−1)q

E∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[L2E∥η
j∑

r=0

α(j−r)dr∥2]

(e)

≤E[fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)E∥di∥2 +
1

2
L

t∑
i=(nt−1)q

E∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α2(j−i)[L2η2E∥di∥2]

(f)

≤E[fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

j∑
i=0

α(j−i)E∥di∥2 +
1

2
L

t∑
j=(nt−1)q

E∥η
j∑

i=0

α(j−i)dj∥2

(g)

≤E[fs(x(nt−1)q)]−
η

8

t∑
j=(nt−1)q

E∥dj∥2, (35)

where (a) holds from Eqs. (34). (b) is extend i to t since i ≤ ntq − 1. (c) is because q = |A| = ⌈
√
n⌉. (d) follows from the

update rule of xt shown in Line 19 in Algorithm. 1. (e) follows from the triangle inequality. (f) and (g) hold from η ≤ 1
2L

and 0 < α < 1. We continue the proof by further driving

[fs(xT )]− [fs(x0)]

= ([fs(xq)]− [fs(x0)]) + ([fs(x2q)]− [fs(xq)]) + ·+ ([fs(xT )]− [fs(x(nT−1)q)])



≤ −[η
8
]

T−1∑
t=0

∥dt∥2 (36)

Note that [fs (xT+1)] ≥ f∗
s ≜ infx∈Rd fs(x). Hence, we have

[
η

8
]

T−1∑
t=0

∥dt∥2 ≤ [[fs(x0)]− [fs(xT )]] ≤ [[fs(x0)]− f∗
s ]. (37)

Based on the parameter setting q = |A| =
√
n, we have

[
η

8
]

T−1∑
t=0

∥dt∥2 ≤ [[fs(x0)]− f∗
s ]. (38)

Since 1
T

∑T−1
t=0 E∥dt∥2 is just common descent directions. According to Definition. 3 shown in the paper, the quantity to

our interest is ∥
∑

s∈[S] λ
s
t∇f(x)∥2.

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2

(a)

≤ (2SL2η2
1

T
+ 2)

1

T

T−1∑
t=0

E∥dt∥2 (39)

where (a) follows from Eqs. (20).

Then, we can conclude that

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2

(a)

≤ (2SL2η2 + 2)
[E[fs(x0)]− f∗

s ]
η
8T

, (40)

where (a) follows from Eqs. (20) and Eqs. 19.

Thus, we have

1

T

T−1∑
t=0

min
λ∈C

E∥λ⊤∇F(xt)∥2 ≤
1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2 = O( 1

T
). (41)

The total sample complexity can be calculated as: ⌈Tq ⌉n+T · |A| ≤ T+q
q n+T

√
n = T

√
n+n+T

√
n = O(n+

√
nϵ−1).

Thus, the overall sample complexity is O(n+
√
nϵ−1). This completes the proof.

B.1 PROOF OD THEOREM. 4

Proof.

fs(xt+1)

(a)

≤fs(xt) +

〈
∇fs(xt),−η

T∑
t=0

α(t−i)di

〉
+

1

2
L∥η

T∑
t=0

α(t−i)di∥2

(b)

≤fs(x∗) + ⟨∇fs(xt),xt − x∗⟩ −
µ

2
∥xt − x∗∥2 +

〈
∇fs(xt),−η

T∑
t=0

α(t−i)di

〉

+
1

2
L∥η

T∑
t=0

α(t−i)di∥2



=fs(x∗) +

〈
∇fs(xt),xt − x∗ − η

T∑
t=0

α(t−i)di

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥η

T∑
t=0

α(t−i)di∥2

=fs(x∗) +

〈
∇fs(xt)− us

t ,xt − x∗ − η

T∑
t=0

α(t−i)di

〉
+

〈
us
t ,xt − x∗ − η

T∑
t=0

α(t−i)di

〉

− µ

2
∥xt − x∗∥2 +

1

2
L∥η

T∑
t=0

α(t−i)di∥2

(c)

≤fs(x∗) +
1

2δ
∥∇fs(xt)− us

t∥2 +
δ

2
∥xt − x∗ − η

T∑
t=0

α(t−i)di∥2

+

〈
us
t ,xt − x∗ − η

T∑
t=0

α(t−i)di

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥η

T∑
t=0

α(t−i)di∥2

(d)

≤fs(x∗) +
1

2δ
∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥η
T∑

t=0

α(t−i)di∥2

+

〈
us
t ,xt − x∗ − η

T∑
t=0

α(t−i)di

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥η

T∑
t=0

α(t−i)di∥2, (42)

where (a) is due to L-smoothness, (b) follows from µ-strongly convex. (c) and (d) follow from the Young’s inequality.

Next, we have ∑
s∈[S]

λs
t [fs(xt+1)− fs(x∗)]

(a)

≤ 1

2δ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥η
T∑

t=0

α(t−i)di∥2

+

〈∑
s∈[S]

λs
tu

s
t ,xt − x∗

〉
− µ

2
∥xt − x∗∥2 +

〈∑
s∈[S]

λs
tu

s
t ,−η

T∑
t=0

α(t−i)di

〉

+
1

2
L∥η

T∑
t=0

α(t−i)di∥2

=
1

2δ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥η
T∑

t=0

α(t−i)di∥2

+

〈∑
s∈[S]

λs
tu

s
t ,xt − x∗ − η

T∑
t=0

α(t−i)di

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥η

T∑
t=0

α(t−i)di∥2

(b)
=

1

2δ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥η
T∑

t=0

α(t−i)di∥2

+

〈
dt,xt − x∗ − η

T∑
t=0

α(t−i)di

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥η

T∑
t=0

α(t−i)di∥2

(c)

≤ 1

2η

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− 1

2
η∥

T∑
t=0

α(t−i)di∥2 −
µ

2
∥xt − x∗∥2

+
1

2
L∥η

T∑
t=0

α(t−i)di∥2 +
4

µ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 +
µ

8
∥xt − x∗∥2 +

µ

8
∥η

T∑
t=0

α(t−i)di∥2

=
1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥

T∑
t=0

α(t−i)di∥2



+
4

µ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2

(e)

≤ 1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥

T∑
t=0

α(t−i)di∥2

+
4

µ
(
L2

|A|

t∑
i=(nt−1)q

∥xi+1 − xi∥2 +
∑
s∈[S]

λs
t∥∇fs(x(nt−1)q)− us

(nt−1)q∥
2)

(f)
=

1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥

T∑
t=0

α(t−i)di∥2

+
4

µ
(
L2

|A|

t∑
i=(nt−1)q

∥xi+1 − xi∥2). (43)

where (a) follows from Eqs. (42). (b) is because the definition dt =
∑

s∈[S] λ
s
tu

s
t as shown in Line 14 in Algorithm. 1.

(c) is because ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 = −η2∥
∑T

t=0 α
(t−i)di∥2 + 2

〈
η
∑T

t=0 α
(t−i)di,xt − x∗

〉
, and we choose

δ = µ
8 . (e) and (f) follow from

∑
s∈[S] λ

s
t = 1 and ∥∇fs(x(nt−1)q)− us

(nt−1)q∥
2 = 0.

Next, telescoping the above inequality over t from (nt − 1) q to t where t ≤ ntq − 1 and noting that for (nt − 1) q ≤ j ≤
ntq − 1, nj = nt, we obtain

t∑
i=(nt−1)q

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]

(a)
=

1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2)

t∑
i=(nt−1)q

∥
T∑

t=0

α(t−i)di∥2 +
4

µ
(
L2

|A|

t∑
j=(nt−1)q

j∑
i=(nj−1)q

∥xi+1 − xi∥2)

(b)

≤ 1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2)

t∑
i=(nt−1)q

∥
T∑

t=0

α(t−i)di∥2 +
4

µ
(
L2

|A|

t∑
j=(nt−1)q

t∑
i=(nt−1)q

∥xi+1 − xi∥2)

(c)
=

1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
)

t∑
i=(nt−1)q

∥
T∑

t=0

α(t−i)di∥2), (44)

where (a) follows from Eqs. (43), (b) extend j to t. (c) follows from the update rule of xt+1 shown in Eqs. (4).

We continue the proof by further driving

T∑
t=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]

=

q∑
i=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)] +

2q∑
i=q

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)] +



T∑
i=(nT−1)q

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]

(a)

≤ 1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

t=0

∥xi+1 − x∗∥2
)

− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
)

T∑
t=0

∥
T∑

t=0

α(t−i)di∥2), (45)

where (a) follows from Eqs. (44). Next, we have

T∑
t=0

∑
s∈[S]

λs
t [fs(xi)− fs(x∗)]

=

T∑
t=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)− fs(xi+1) + fs(xi)]

=

T∑
t=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]−

T∑
t=0

∑
s∈[S]

λs
t |fs(xi+1)− fs(xi)|

(a)

leq
1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

t=0

∥xi+1 − x∗∥2
)

− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
− [

η

4
− η3q

2

L2

|A|
])

T∑
t=0

∥
T∑

t=0

α(t−i)di∥2, (46)

where (a) follows from Eqs. (45). Let |A| = q = ⌈
√
n⌉ and η ≤ min{ 1

2µ ,
1
8L ,

µ
64L2 }, we have ( 12η −

µ
8 η

2 − 1
2Lη

2 −
4
µ

L2qη2

|A| − [η4 −
η3q
2

L2

|A| ]) >
η
16 > 0

Thus, we have

T∑
t=0

∑
s∈[S]

λs
t [fs(xi)− fs(x∗)] ≤

1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

t=0

∥xi+1 − x∗∥2
)
. (47)

Then, we have

E[
∑
s∈[S]

λs
t [fs(xt)− fs(x∗)]] ≤

1

2η

(
(1− 3µη

4
)E∥xt − x∗∥2 − E∥xt+1 − x∗∥2

)
. (48)

Based on Asumption. 4 and averaging using weight wt = (1− 3µη
4 )1−t and using such weight to pick output x, by using

Lemma 1 in Karimireddy et al. [2020] with η ≥ 1
uR , we have

E∥xt − x∗∥2 ≤ ∥x0 − x∗∥2µ exp(−3ηµT

4
) (49)

= O(µ exp(−µT )). (50)

Then we have the convergence rate E∥xt − x∗∥2 = O(µ exp(−µT )). the total sample complexity can be calculated as:
⌈Tq ⌉n + T · |A| ≤ T+q

q n + T
√
n = T

√
n + n + T

√
n = O(n +

√
n ln(µ/ϵ). Thus, the overall sample complexity is

O(n+
√
n ln(µ/ϵ). This completes the proof.



C PROOF OF CONVERGENCE OF STIMULUS+

Proof of Theorem. 5 [Part 1]

Proof. Recall that Ns = min{cγσ2(γt)
−1, cϵσ

2ϵ−1, n}. Then we have

I(Ns<n)

Ns
≤ 1

min{cϵσ2(ϵ)−1, cγσ2(γt)−1}

= max{ γt
cγσ2

,
ϵ

cϵσ2
} ≤ γt

cγσ2
+

ϵ

cϵσ2
. (51)

From Lemma. 2, we have

[fs(xt+1)]
(a)

≤ [fs(xt)] +
η

2
∥∇fs(xt)− us

t∥2 −
η

4
∥dt∥2

(b)

≤ [fs(xt)]−
η

4
∥dt∥2

+
η

2
[
L2

|A|

t∑
i=(nt−1)q

∥xi+1 − xi∥2 + ∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2]

(c)

≤ [fs(xt)]−
η

4
∥dt∥2 +

η

2
[
L2

|A|

t∑
i=(nt−1)q

η2∥di∥2 +
I(Ns<n)

Ns
σ2], (52)

where (a) follows from Lemma. 2. (b) follows from Lemma. 1. (c) follows from the update rule shown in Eqs. (5).

Next, telescoping the above inequality over t from (nt − 1) q to t where t ≤ ntq − 1 and noting that for (nt − 1) q ≤ j ≤
ntq − 1, nj = nt, and aking expectation on both sides of the inequality in Eqs. (52),we obtain

E[fs(xt+1)]

(a)

≤E[fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

E∥dj∥2

+
η

2
[
L2

|A|

t∑
j=(nt−1)q

j∑
i=(nt−1)q

η2E∥di∥2 +
t∑

i=(nt−1)q

I(Ns<n)

Ns
σ2]

(b)

≤E[fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

E∥dj∥2

+
η

2

t∑
i=(nt−1)q

[
L2

|A|

t∑
j=(nt−1)q

t∑
i=(nt−1)q

η2E∥di∥2] +
η

2

t∑
i=(nt−1)q

I(Ns<n)

Ns
σ2

=E[fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

E∥dj∥2

+
η3q

2
[
L2

|A|

t∑
j=(nt−1)q

E∥dj∥2] +
η

2

t∑
i=(nt−1)q

I(Ns<n)

Ns
σ2

(c)
=E[fs(x(nt−1)q)]− [

η

4
− η3q

2

L2

|A|
]

t∑
j=(nt−1)q

E∥dj∥2 +
η

2

t∑
i=(nt−1)q

(
γi
cγ

+
ϵ

cϵ
), (53)

where (a) follows from Eqs. (52), (b) extends j to t. (c) follows from Eqs. (51)



Recall that γt = 1
q

∑t
i=(nt−1)q ∥dt∥2. Then, we have We continue the proof by further driving

E[fs(xT )− fs(x0)]

= E[([fs(xq)]− [fs(x0)]) + ([fs(x2q)]− [fs(xq)]) + ·+ ([fs(xT )]− [fs(x(nT−1)q)])]

(a)

≤ −[η
4
− η3q

2

L2

|A|
]

T−1∑
t=0

E∥dt∥2 +
η

2

T−1∑
t=0

(
E[γi]
cγ

+
ϵ

cϵ
)

(b)

≤ −[η
4
− η3q

2

L2

|A|
− η

2cγ
]

T−1∑
t=0

E∥dt∥2 +
η

2
T

ϵ

cϵ
, (54)

where (a) is from Eqs. (53). (b) follows from γt =
1
q

∑t
i=(nt−1)q ∥dt∥2.

Note that [fs (xT+1)] ≥ f∗
s ≜ infx∈Rd fs(x). Let cγ > 4. Hence, we have

[
η

8
− η3q

2

L2

|A|
− η

2cγ
]

T−1∑
t=0

E∥dt∥2 ≤ E[[fs(x0)]− [fs(xT )]] ≤ E[[fs(x0)]− f∗
s ] +

η

2
T

ϵ

cϵ
. (55)

Based on the parameter setting q = |A| = ⌈
√
n⌉, we have

[
η

8
− η3L2

2
− η

2cγ
]

T−1∑
t=0

E∥dt∥2 ≤ E[[fs(x0)]− f∗
s ] +

η

2
T

ϵ

cϵ
. (56)

Thus, we have

1

T

T−1∑
t=0

E∥dt∥2 ≤
E[[fs(x0)]− f∗

s ]

[η8 −
η3L2

2 − η
2cγ

]T
+

η

2

ϵ

cϵ
. (57)

Let η ≤ 1
4L , cγ ≥ 8, cϵ ≥ η, we have

Since 1
T

∑T−1
t=0 E∥dt∥2 is just common descent directions. According to Definition. 3 shown in the paper, the quantity to

our interest is ∥
∑

s∈[S] λ
s
t∇f(x)∥2.

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2

(a)

≤ (2SL2η2 + 2)
1

T

T−1∑
t=0

E∥dt∥2 (58)

where (a) follows from Eqs. (20).

Then, we can conclude that

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2

(a)

≤ (2SL2η2 + 2)(
E[[fs(x0)]− f∗

s ]

[η8 −
η3L2

2 − η
2cγ

]T
+

η

2

ϵ

cϵ
), (59)

where (a) follows from Eqs. (20) and Eqs. 19.

Thus, we have

1

T

T−1∑
t=0

min
λ∈C

E∥λ⊤∇F(xt)∥2 ≤
1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2 = O( 1

T
). (60)

The total sample complexity can be calculated as: ⌈Tq ⌉n+T · |A| ≤ T+q
q n+T

√
n = T

√
n+n+T

√
n = O(n+

√
nϵ−1).

Thus, the overall sample complexity is O(n+
√
nϵ−1). This completes the proof.



C.1 PROOF OF THEOREM. 6 [PART 1]

Proof.

fs(xt+1)

(a)

≤fs(xt) + ⟨∇fs(xt),−ηdt⟩+
1

2
L∥ηdt∥2

(b)

≤fs(x∗) + ⟨∇fs(xt),xt − x∗⟩ −
µ

2
∥xt − x∗∥2 + ⟨∇fs(xt),−ηdt⟩+

1

2
L∥ηdt∥2

=fs(x∗) + ⟨∇fs(xt),xt − x∗ − ηdt⟩ −
µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2

=fs(x∗) + ⟨∇fs(xt)− us
t ,xt − x∗ − ηdt⟩+ ⟨us

t ,xt − x∗ − ηdt⟩

− µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2

(c)

≤fs(x∗) +
1

2δ
∥∇fs(xt)− us

t∥2 +
δ

2
∥xt − x∗ − ηdt∥2 + ⟨us

t ,xt − x∗ − ηdt⟩

− µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2

(d)

≤fs(x∗) +
1

2δ
∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

+ ⟨us
t ,xt − x∗ − ηdt⟩ −

µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2, (61)

where (a) follows from L-smoothness, (b) follows from µ-strongly convexity. (c) follows from Young’s inequality, and (d)
follows from triangle inequality.

Then, we have ∑
s∈[S]

λs
t [fs(xt+1)− fs(x∗)] (62)

(a)

≤ 1

2δ
∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

+

〈∑
s∈[S]

λs
tu

s
t ,xt − x∗

〉
− µ

2
∥xt − x∗∥2 +

〈∑
s∈[S]

λs
tu

s
t ,−ηdt

〉
+

1

2
L∥ηdt∥2 (63)

=
1

2δ
∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

+

〈∑
s∈[S]

λs
tu

s
t ,xt − x∗ − ηdt

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2 (64)

(b)

≤ 1

2δ
∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

+ ⟨dt,xt − x∗ − ηdt⟩ −
µ

2
∥xt − x∗∥2 +

1

2
L∥ηdt∥2 (65)

= ⟨dt,xt − x∗⟩ − η∥dt∥2 −
µ

2
∥xt − x∗∥2 +

1

2
Lη2∥dt∥2

+
1

2δ
∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥ηdt∥2

(c)
=

1

2η

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− 1

2
η∥dt∥2 −

µ

2
∥xt − x∗∥2 +

1

2
Lη2∥dt∥2

+
4

µ
∥∇fs(xt)− us

t∥2 +
µ

8
∥xt − x∗∥2 +

µ

8
∥ηdt∥2 (66)

=
1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥dt∥2



+
4

µ
∥∇fs(xt)− us

t∥2 (67)

(d)

≤ 1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥dt∥2

+
4

µ
(
L2

|A|

t∑
i=(nt−1)q

∥xi+1 − xi∥2 + ∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2) (68)

(f)

≤ 1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥dt∥2

+
4

µ
(
L2

|A|

t∑
i=(nt−1)q

∥xi+1 − xi∥2) +
µ

4

I(Ns<n)

Ns
σ2. (69)

where (a) follows from Eqs.(61). (b) follows from the definition dt =
∑

s∈[S] λ
s
tu

s
t as shown in Line 14 in Algorithm. 1.

(c) is because ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 = −η2∥dt∥2 + 2 ⟨ηdt,xt − x∗⟩. (d) is from Lemma. 1 and we choose δ = µ
8 .

(e) is from Eqs. (51).

Next, telescoping the above inequality over t from (nt − 1) q to t where t ≤ ntq − 1 and noting that for (nt − 1) q ≤ j ≤
ntq − 1, nj = nt, we obtain

t∑
i=(nt−1)q

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]

(a)

≤ 1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2)

t∑
i=(nt−1)q

∥di∥2 +
4

µ
(
L2

|A|

t∑
j=(nt−1)q

j∑
i=(nj−1)q

∥xi+1 − xi∥2)

+
µS

4

t∑
i=(nt−1)q

I(Ns<n)

Ns
σ2

(b)

≤ 1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2)

t∑
i=(nt−1)q

∥di∥2 +
4

µ
(
L2

|A|

t∑
j=(nt−1)q

t∑
i=(nt−1)q

∥xi+1 − xi∥2)

+
µ

4

t∑
i=(nt−1)q

I(Ns<n)

Ns
σ2

(c)

≤ 1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
)

t∑
i=(nt−1)q

∥di∥2)

+
µ

4

t∑
i=(nt−1)q

(
[γi]

cγ
+

ϵ

cϵ
), (70)

where (a) follows from Eqs. (62) and the fact that λs
t ≤ 1∀s ∈ [S]. (b) extends j to t. (c) is because t− (nt − 1)q ≥ q. We

continue the proof by further driving



T∑
t=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]

=

q∑
i=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)] +

2q∑
i=q

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)] +

·+
T∑

i=(nT−1)q

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]

(a)

≤ 1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

t=0

∥xi+1 − x∗∥2
)

− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
+

µ

4cγ
)

T∑
t=0

∥di∥2 +
µ

4
T

ϵ

cϵ
, (71)

where (a) follows from Eqs. (70) and γt =
1
q

∑t
i=(nt−1)q ∥dt∥2.

Next, we have

T∑
t=0

∑
s∈[S]

λs
t [fs(xi)− fs(x∗)]

=

T∑
t=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)− fs(xi+1) + fs(xi)]

=

T∑
t=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)] +

T∑
t=0

∑
s∈[S]

λs
t |fs(xi+1)− fs(xi)|

(a)

≤ 1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

t=0

∥xi+1 − x∗∥2
)

− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
− [

η

4
− η3q

2

L2

|A|
]− µ

4cγ
)

T∑
t=0

∥di∥2 +
µ

4
T

ϵ

cϵ
, (72)

where (a) follows from Eqs. (71).

Let |A| = q = ⌈
√
n⌉ and η ≤ min{ 1

2µ ,
1
8L ,

µ
64L2 }, cγ ≥ 8µ

η , we have ( 12η−
µ
8 η

2− 1
2Lη

2− 4
µ

L2qη2

|A| −[
η
4−

η3q
2

L2

|A| ]−
µ

4cγ
) >

η
32 > 0

Thus, we have

T∑
t=0

∑
s∈[S]

λs
t [fs(xi)− fs(x∗)] ≤

1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

t=0

∥xi+1 − x∗∥2
)
. (73)

Then, we have

E[
∑
s∈[S]

λs
t [fs(xt)− fs(x∗)]] ≤

1

2η

(
(1− 3µη

4
)E∥xt − x∗∥2 − E∥xt+1 − x∗∥2

)
+

µ

4
T

ϵ

cϵ
. (74)

Averaging using weight wt = (1− 3µη
4 )1−t and using such weight to pick output x. By using Lemma 1 in Karimireddy

et al. [2020] with η ≥ 1
uR , cϵ >

µ
2 and Assumption. 4, we have



E∥xt − x∗∥2 ≤ ∥x0 − x∗∥2µ exp(−3ηµT

4
) +

µ

4
T

ϵ

cϵ
(75)

= O(µ exp(−µT )). (76)

Then we have the convergence rate E∥xt − x∗∥2 = O(µ exp(−µT )).

The total sample complexity can be calculated as: ⌈Tq ⌉n+T ·|A| ≤ T+q
q n+T

√
n = T

√
n+n+T

√
n = O(n+

√
n ln(µ/ϵ).

Thus, the overall sample complexity is O(n+
√
n ln(µ/ϵ). This completes the proof.

D PROOF OF CONVERGENCE OF STIMULUS-M+

Proof of Theorem. 5 [Part 2]

Proof. From Lemma. 3, we have

[fs(xt+1)]

(a)

≤ [fs(xt)] +
η

2

t∑
i=0

α(t−i)∥∇fs(xi)− us
i∥2 −

1

2
η

t∑
i=0

α(t−i)∥di∥2 +
1

2
L∥xt+1 − xt∥2

(b)

≤ [fs(xt)]−
1

2
η

t∑
i=0

α(t−i)∥di∥2 +
1

2
L∥xt+1 − xt∥2

+
η

2

t∑
j=0

α(t−j)[
L2

|A|

j∑
i=(nt−1)q

∥xi+1 − xi∥2 + ∥∇fs(x(nt−1)q)− us
(nt−1)q∥

2]

(c)

≤ [fs(xt)]−
1

2
η

t∑
i=0

α(t−i)∥di∥2 +
1

2
L∥xt+1 − xt∥2 +

η

2

t∑
j=0

α(t−j)[
L2

|A|

j∑
i=(nt−1)q

∥xi+1 − xi∥2]

+
η

2

t∑
i=0

α(t−i)(
γi
cγ

+
ϵ

cϵ
), (77)

where (a) follows from Lemma 3. (b) follows from Lemma. 1. (c) follows from Eqs. (51).

Next, telescoping the above inequality over t from (nt − 1) q to t where t ≤ ntq − 1 and noting that for (nt − 1) q ≤ j ≤
ntq − 1, nj = nt and let η ≤ 1

4L , we obtain

[fs(xt+1)]

(a)

≤ [fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
1

2
L

t∑
i=(nt−1)q

∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[
L2

|A|

i∑
r=(nt−1)q

∥xr+1 − xr∥2]

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
)

(b)

≤ [fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
1

2
L

t∑
i=(nt−1)q

∥xi+1 − xi∥2



+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[
L2

|A|
q∥xj+1 − xj∥2]

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
)

(c)
=[fs(x(nt−1)q)]−

η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
1

2
L

t∑
i=(nt−1)q

∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[L2∥xj+1 − xj∥2]

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
)

(d)

≤ [fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
1

2
L

t∑
i=(nt−1)q

∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[L2∥η
j∑

r=0

α(j−r)dr∥2]

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
)

=[fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
1

2
L

t∑
i=(nt−1)q

∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α3(j−i)[L2η2∥di∥2]

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
)

(e)

≤ [fs(x(nt−1)q)]−
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
1

2
L

t∑
i=(nt−1)q

∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)[L2η2∥di∥2]

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
)

(f)

≤ [fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
1

2
L

t∑
i=(nt−1)q

∥xi+1 − xi∥2

+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
)

(g)

≤ [fs(x(nt−1)q)]−
η

4

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
1

2
L

t∑
j=(nt−1)q

∥η
j∑

i=0

α(j−i)dj∥2



+
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
)

(h)

≤ [fs(x(nt−1)q)]−
η

8

t∑
j=(nt−1)q

j∑
i=0

α(j−i)∥di∥2 +
η

2

t∑
j=(nt−1)q

j∑
i=0

α(j−i)(
[γi]

cγ
+

ϵ

cϵ
), (78)

where (a) follows from Eqs. (77). (b) follows from i ≤ ntq. (c) follows from q = |A| = ⌈
√
n⌉. (d) and (g) follow from

the update rule of xt shown in Line 19 in Algorithm. 1. (e) follows from 0 < α < 1, then we have α2(j − i) < α(j−i). (f)
and (h) follow from η ≤ 1

4L Recall that γt = 1
q

∑t
i=(nt−1)q ∥dt∥2. Then, we have

E[fs(xT )]− [fs(x0)]

= E([fs(xq)]− [fs(x0)]) + ([fs(x2q)]− [fs(xq)]) + ·+ ([fs(xT )]− [fs(x(nT−1)q)])

(a)

≤ −[η
8
]

T−1∑
t=0

j∑
i=0

α(j−i)E∥dt∥2 +
η

2cγ

T−1∑
t=0

j∑
i=0

α(j−i)E∥dt∥2 +
η

2
Tq

ϵ

cϵ

(b)

≤ −[ η
16

]

T−1∑
t=0

j∑
i=0

α(j−i)E∥dt∥2 +
η

2
Tq

ϵ

cϵ

(c)

≤ −[ η
16

]

T−1∑
t=0

E∥dt∥2 +
η

2
Tq

ϵ

cϵ
, (79)

where (a) follows from cγ ≥ 8, (c) follows from 0 < α < 1.

Note that [fs (xT+1)] ≥ f∗
s ≜ infx∈Rd fs(x). Hence, we have

[
η

16
]

T−1∑
t=0

∥dt∥2 ≤ [[fs(x0)]− [fs(xT )]] ≤ [[fs(x0)]− f∗
s ]. (80)

Based on the parameter setting q2 = |A| =
√
n, we have

[
η

16
]

T−1∑
t=0

∥dt∥2 ≤ [[fs(x0)]− f∗
s ]. (81)

Thus, we have

1

T

T−1∑
t=0

∥dt∥2 ≤
[[fs(x0)]− f∗

s ]

[ η
16 ]T

. (82)

Since 1
T

∑T−1
t=0 E∥dt∥2 is just common descent directions. According to Definition. 3 shown in the paper, the quantity to

our interest is ∥
∑

s∈[S] λ
s
t∇f(x)∥2.

1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2

(a)

≤ (2SL2η2 + 2)
1

T

T−1∑
t=0

E∥dt∥2 (83)

where (a) follows from Eqs. (20).

Then, we can conclude that

1

T

T−1∑
t=0

min
λ∈C

E∥λ⊤∇F(xt)∥2 ≤
1

T

T−1∑
t=0

E∥
∑
s∈[S]

λs
t∇fs(xt)∥2 = O( 1

T
). (84)

The total sample complexity can be calculated as: ⌈Tq ⌉n+T · |A| ≤ T+q
q n+T

√
n = T

√
n+n+T

√
n = O(n+

√
nϵ−1).

Thus, the overall sample complexity is O(n+
√
nϵ−1). This completes the proof.



D.1 PROOF OF THEOREM. 6 [PART 2]

Proof.

fs(xt+1)

(a)

≤fs(xt) +

〈
∇fs(xt),−η

T∑
t=0

α(t−i)di

〉
+

1

2
L∥η

T∑
t=0

α(t−i)di∥2

(b)

≤fs(x∗) + ⟨∇fs(xt),xt − x∗⟩ −
µ

2
∥xt − x∗∥2 +

〈
∇fs(xt),−η

T∑
t=0

α(t−i)di

〉

+
1

2
L∥η

T∑
t=0

α(t−i)di∥2

=fs(x∗) +

〈
∇fs(xt),xt − x∗ − η

T∑
t=0

α(t−i)di

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥η

T∑
t=0

α(t−i)di∥2

=fs(x∗) +

〈
∇fs(xt)− us

t ,xt − x∗ − η

T∑
t=0

α(t−i)di

〉
+

〈
us
t ,xt − x∗ − η

T∑
t=0

α(t−i)di

〉

− µ

2
∥xt − x∗∥2 +

1

2
L∥η

T∑
t=0

α(t−i)di∥2

(c)

≤fs(x∗) +
1

2δ
∥∇fs(xt)− us

t∥2 +
δ

2
∥xt − x∗ − η

T∑
t=0

α(t−i)di∥2

+

〈
us
t ,xt − x∗ − η

T∑
t=0

α(t−i)di

〉

− µ

2
∥xt − x∗∥2 +

1

2
L∥η

T∑
t=0

α(t−i)di∥2

(d)

≤fs(x∗) +
1

2δ
∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥η
T∑

t=0

α(t−i)di∥2

+

〈
us
t ,xt − x∗ − η

T∑
t=0

α(t−i)di

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥η

T∑
t=0

α(t−i)di∥2, (85)

where (a) follows from L-smoothness assumption, (b) follows from µ-strongly convex. (c) and (d) follow from the triangle
inequality.

∑
s∈[S]

λs
t [fs(xt+1)− fs(x∗)] (86)

(a)

≤ 1

2δ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥η
T∑

t=0

α(t−i)di∥2

+

〈∑
s∈[S]

λs
tu

s
t ,xt − x∗

〉
− µ

2
∥xt − x∗∥2 +

〈∑
s∈[S]

λs
tu

s
t ,−η

T∑
t=0

α(t−i)di

〉

+
1

2
L∥η

T∑
t=0

α(t−i)di∥2

=
1

2δ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥η
T∑

t=0

α(t−i)di∥2



+

〈∑
s∈[S]

λs
tu

s
t ,xt − x∗ − η

T∑
t=0

α(t−i)di

〉
− µ

2
∥xt − x∗∥2

+
1

2
L∥η

T∑
t=0

α(t−i)di∥2

=
1

2δ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 + δ∥xt − x∗∥2 + δ∥η
T∑

t=0

α(t−i)di∥2

+

〈
dt,xt − x∗ − η

T∑
t=0

α(t−i)di

〉
− µ

2
∥xt − x∗∥2 +

1

2
L∥η

T∑
t=0

α(t−i)di∥2

(b)

≤ 1

2η

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− 1

2
η∥

T∑
t=0

α(t−i)di∥2 −
µ

2
∥xt − x∗∥2

+
1

2
L∥η

T∑
t=0

α(t−i)di∥2

+
4

µ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2 +
µ

8
∥xt − x∗∥2 +

µ

8
∥η

T∑
t=0

α(t−i)di∥2

=
1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥

T∑
t=0

α(t−i)di∥2

+
4

µ

∑
s∈[S]

λs
t∥∇fs(xt)− us

t∥2

(c)

≤ 1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥

T∑
t=0

α(t−i)di∥2

+
4

µ
(
L2

|A|

t∑
i=(nt−1)q

∥xi+1 − xi∥2 +
∑
s∈[S]

λs
t∥∇fs(x(nt−1)q)− us

(nt−1)q∥
2)

(d)

≤ 1

2η

(
(1− 3µη

4
)∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
− (

1

2
η − µ

8
η2 − 1

2
Lη2)∥

T∑
t=0

α(t−i)di∥2

+
4

µ
(
L2

|A|

t∑
i=(nt−1)q

∥xi+1 − xi∥2) +
µS

4

I(Ns<n)

Ns
σ2. (87)

where (a) follows from Eqs. (85), (b) follows from ∥xt − x∗∥2 − ∥xt+1 − x∗∥2 = −η2∥dt∥2 + 2 ⟨ηdt,xt − x∗⟩ and we
choose δ = µ

8 . (c) is from Lemma. 1. (d) is from Eqs. (51). (d) follows from 0 < λs
t < 1,∀s ∈ [S]

Next, telescoping the above inequality over t from (nt − 1) q to t where t ≤ ntq − 1 and noting that for (nt − 1) q ≤ j ≤
ntq − 1, nj = nt, we obtain

t∑
i=(nt−1)q

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]

(a)

≤ 1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2)

t∑
i=(nt−1)q

∥
t∑

i=0

α(t−i)di∥2



+
4

µ
(
L2

|A|

t∑
j=(nt−1)q

j∑
i=(nj−1)q

∥xi+1 − xi∥2) +
µ

4cγ

t∑
i=(nt−1)q

∥α(t−i)di∥2

+
µ

4cγ

t∑
t=(nt−1)q

∥α(t−i)di∥2 ++
µ

4

t∑
i=(nt−1)q

ϵ

cϵ

(b)

≤ 1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2


− (
1

2
η − µ

8
η2 − 1

2
Lη2)

t∑
i=(nt−1)q

∥
T∑

t=0

α(t−i)di∥2

+
4

µ
(
L2

|A|

t∑
j=(nt−1)q

t∑
i=(nt−1)q

∥xi+1 − xi∥2)

+
µ

4cγ

t∑
t=(nt−1)q

∥α(t−i)di∥2 ++
µ

4

t∑
i=(nt−1)q

ϵ

cϵ

(c)

≤ 1

2η

(1− 3µη

4
)

t∑
i=(nt−1)q

∥xi − x∗∥2 −
t∑

i=(nt−1)q

∥xi+1 − x∗∥2
+

µ

4

t∑
i=(nt−1)q

ϵ

cϵ

− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
)

t∑
i=(nt−1)q

∥
T∑

t=0

α(t−i)di∥2)

+
µ

4cγ

t∑
t=(nt−1)q

∥α(t−i)di∥2 +
µ

4

t∑
i=(nt−1)q

ϵ

cϵ
, (88)

where (a) follows from Eqs. (86), (b) extends j to t. (c) follows from t ≤ ntq − 1.

We continue the proof by further driving

T∑
t=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]

=

q∑
i=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)] +

2q∑
i=q

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)] + ·+

T∑
i=(nT−1)q

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)]

≤ 1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

t=0

∥xi+1 − x∗∥2
)
− (

1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
)

T∑
t=0

∥
T∑

t=0

α(t−i)di∥2)

+
µ

4cγ

T∑
t=0

∥α(t−i)di∥2 +
µ

4
T

ϵ

cϵ
. (89)

Next, we have

T∑
t=0

∑
s∈[S]

λs
t [fs(xi)− fs(x∗)]

=

T∑
t=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)− fs(xi+1) + fs(xi)]

≤
T∑

t=0

∑
s∈[S]

λs
t [fs(xi+1)− fs(x∗)] +

T∑
t=0

∑
s∈[S]

λs
t |fs(xi+1)− fs(xi)|



(a)

≤ 1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

t=0

∥xi+1 − x∗∥2
)

− (
1

2
η − µ

8
η2 − 1

2
Lη2 − 4

µ

L2qη2

|A|
− [

η

4
− η3q

2

L2

|A|
]− µ

4cγ
)

T∑
t=0

∥α(t−i)di∥2 +
µ

4
T

ϵ

cϵ
, (90)

where (a) follows from Eqs. (89). Let |A| = q = ⌈
√
n⌉ and η ≤ min{ 1

2µ ,
1
8L ,

µ
64L2 }, cγ ≥ 8µ

η , cϵ ≥ µ
2 , we have

( 12η −
µ
8 η

2 − 1
2Lη

2 − 4
µ

L2qη2

|A| − [η4 −
η3q
2

L2

|A| ]−
µ

4cγ
) > η

32 > 0

Thus, we have

T∑
t=0

∑
s∈[S]

λs
t [fs(xi)− fs(x∗)]

≤ 1

2η

(
(1− 3µη

4
)

T∑
i=0

∥xi − x∗∥2 −
T∑

t=0

∥xi+1 − x∗∥2
)

+
ϵ

2
. (91)

Then, we have

E[
∑
s∈[S]

λs
t [fs(xt)− fs(x∗)]]

≤ 1

2η

(
(1− 3µη

4
)E∥xt − x∗∥2 − E∥xt+1 − x∗∥2

)
+

ϵ

2
. (92)

Based on Assumption. 4 and averaging using weight wt = (1− 3µη
4 )1−t and using such weight to pick output x. By using

Lemma 1 in Karimireddy et al. [2020] with η ≥ 1
uR , we have

E∥xt − x∗∥2 ≤ ∥x0 − x∗∥2µ exp(−3ηµT

4
) (93)

= O(µ exp(−µT )). (94)

Then we have the convergence rate E∥xt − x∗∥2 = O(µ exp(−µT )).

The total sample complexity can be calculated as: ⌈Tq ⌉n+T ·|A| ≤ T+q
q n+T

√
n = T

√
n+n+T

√
n = O(n+

√
n ln(µ/ϵ).

Thus, the overall sample complexity is O(n+
√
n ln(µ/ϵ). This completes the proof.

E ADDITIONAL EXPERIMENT RESULTS

1) Strongly-Convex Optimization:

We conducted experiments to assess the performance of our algorithms on a strongly-convex optimization problem, where
F(x) = [f1(x) = x2, f2(x) = e−x]. For this experiment, we selected hyperparameters η = 0.005 and α = 0.3, while
introducing stochasticity into the gradient by adding Gaussian noise with a range of (-1, 1). As shown in Fig. 3, it is
evident that all of the algorithms successfully achieved convergence. Notably, the momentum-based algorithms, namely
MOCO, STIMULUS-M, and STIMULUS-M+, exhibited faster convergence compared to MGD, MSGD, STIMULUS, and
STIMULUS+ . We would also like to note that there isn’t a significant difference between the stochastic algorithms (SMGD,
MGD) and other algorithms. This is not necessarily because the stochastic algorithms are inferior, but perhaps because the
strongly-convex function in question is too simplistic.

2) Eight-Objective Experiments on River Flow Dataset:
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Figure 3: Convergence comparison on strongly-convex optimization problem.

Figure 4: Training loss conver-
gence comparison (8-objective).

We further test our algorithms on an 8-task problem with the river flow dataset [Nie
et al., 2017], which is for flow prediction at eight locations in the Mississippi river
network. In this experiment, we set η = 0.001, α = 0.1, the batch size for MOCO,
CR-MOGM and SMGD is 8, the full batch size for MGD is 128, and the inner loop
batch size |Ns| for STIMULUS, STIMULUS-M, STIMULUS+ , STIMULUS-M+is
eight. To better visualize different tasks, we plot the normalized loss in a radar chart
as shown in Fig. 4, where we can see that our STIMULUS algorithms achieve a much
smaller footprint, which is desirable. Further, we compare the sample complexity
results of all algorithms in Table 3, which reveals a significant reduction in sample
utilization by STIMULUS+ /STIMULUS-M+ compared to MGD, while achieving a
much better loss compared to SGMD and MOCO (cf. Fig. 4).

Table 3: Results of normalized loss with the river flow dataset and learning tasks.

# of samples Tasks

0 1 2 3 4 5 6 7

SMGD 8000 0.985 0.558 0.521 0.384 1 0.862 0.667 0.550
MOCO 8000 0.985 0.753 1 0.399 0.632 1 0.595 0.926
MGDA 128000 0.989 0.396 0.532 0.174 0.589 0.945 0.417 0.669
STIMULUS 27200 0.985 0.546 0.675 1 0.077 0.898 0.417 0.281
STIMULUS+ 20947 0.996 1 0.528 0.178 0.990 0.395 0.427 1
STIMULUS-M 27200 0.996 0.864 0.530 0.475 0.036 0.271 1 0.264
STIMULUS-M+ 21085 1 0.596 0.627 0.1781 0.0376 0.482 0.430 0.055

3) Ablation study on momentum in STIMULUS-M:

Table 4: Loss value vs. Iteration on tasks L and R of STIMULUS-M.

Momentum Term α
Task L Task R

100 200 300 500 100 200 300 500

0.1 0.0228 0.0207 0.0203 0.0153 0.0229 0.0223 0.0205 0.0215
0.3 0.0228 0.0182 0.0179 0.0120 0.0223 0.0191 0.0168 0.0143
0.5 0.0227 0.0174 0.0146 0.0078 0.0215 0.0180 0.0124 0.0091
0.8 0.0225 0.0158 0.0127 0.0065 0.0210 0.0152 0.0113 0.0078

We performed additional experiments to analyze the impact of varying the momentum term in our proposed STIMULUS-M
algorithm, as shown in Table 4, on the classification task of the MultiMNIST dataset. The experimental settings are consistent
with those in Section 5.1 of the main paper. These results indicate that a larger momentum term leads to faster convergence.


	Introduction
	Preliminaries
	The STIMULUS Algorithm Family
	The STIMULUS Algorithm
	The STIMULUS-M Algorithm
	STIMULUS+ /STIMULUS-M+ Algorithms

	Pareto Stationarity Convergence Analysis
	Pareto-Stationarity Convergence of STIMULUS
	Pareto Stationarity Convergence of STIMULUS-M
	Pareto Stationarity Convergence Results of STIMULUS+ and STIMULUS-M+

	Experimental Results
	Conclusion
	Acknowledgement
	Proof of convergence of STIMULUS
	Proof of Theorem. 2

	Proof of convergence of STIMULUS-M 
	Proof od Theorem. 4

	Proof of convergence of STIMULUS+ 
	Proof of Theorem. 6 [Part 1]

	Proof of convergence of STIMULUS-M+ 
	Proof of Theorem. 6 [Part 2]

	Additional experiment results

