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Abstract

Revealing novel insights from the relationship between molecular measurements
and pathology remains a very impactful application of machine learning in
biomedicine. Data in this domain typically contain only a few observations but
thousands of potentially noisy features, posing challenges for conventional machine
learning approaches. While prior-data fitted networks emerge as foundation models
for tabular data, they are currently not suited to handle large feature counts (> 500).
Although feature reduction enables their application, it hinders feature importance
analysis. We propose a strategy that extends existing models through continued
pre-training on synthetic data sampled from a customized prior. The resulting
model, TabPFN-Wide, matches or exceeds TabPFNv2’s performance while exhibit-
ing improved robustness to noise. It seamlessly scales beyond 50,000 features,
regardless of noise levels, while maintaining inherent interpretability, which is crit-
ical for biomedical applications. Our results show that prior-informed adaptation is
suitable to enhance the capability of foundation models for high-dimensional data.

1 Introduction

Figure 1: The performance of existing
tabular foundation models decreases for
a selected high-dimensional biomedical
dataset. Further datasets are presented in
Section 4 to confirm generality.

Data stored in a table are an important data modality used
for quantitative research in healthcare, finance, natural
sciences, and many more. Tabular data are relevant for
many real-world applications and “offer[s] uniquely ex-
citing, large, unsolved challenges for researchers" [van
Breugel and van der Schaar, 2024]. One such challenge
is high-dimensional, low-sample-size (HDLSS) data, for
example, found in biomedical research. Cohort sizes of
studies are small due to cost, time, or disease rarity, while
modern biomedical technologies, on the other hand, en-
able the measurement of thousands of features per patient.
Collected data can then be examined, for example, to study
interactions between thousands of biomarkers and cancer
types [McLendon et al., 2008, Bell et al., 2011].

Foundation models for structured data have emerged, and
models like TabPFN and TabICL [Hollmann et al., 2023b,
2025, Qu et al., 2025] are currently at the forefront of
predictive tabular ML benchmark tasks [Erickson et al., 2025]. These state-of-the-art models use
in-context learning (ICL) [Brown et al., 2020] and are based on transformers, pre-trained on synthetic
or real-world data to solve regression and classification tasks. As a result, they are highly effective on
unseen tasks with characteristics similar to those seen during pre-training. While the exact training
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data are often unknown, empirical performance on HDLSS data (see brown and blue lines in the
example in Figure 1) suggests that current models have not learned to handle extreme feature counts.

Such limits stem from insufficient exposure during pre-training and not necessarily from a lack
of model capacity, data or resources; thus, re-training from scratch could be a solution. However,
re-training from scratch whenever we encounter a new task or data characteristic to “fix" a model
would be extremely resource-intensive, and therefore often infeasible. Instead, we study the more
general question: “How can continued pre-training extend tabular foundation models to generalize
across diverse task types in high-dimensional, small-sample data?”

Specifically, our contributions are:

1. We develop a novel prior to efficiently generate synthetic HDLSS data.
2. We propose continued pre-training to extend TabPFNv2, resulting in TabPFN-Wide, to

handle extreme feature counts beyond 50,000 features.
3. In empirical evaluations on biomedical data and tabular benchmark tasks, we show that

TabPFN-Wide maintains performance for small datasets, while being significantly more
robust on wide data.

2 Background on Extending Tabular Foundation Models

To address limitations of foundation models like TabPFNv2, current research focuses on scaling to
large samples and feature counts. One prominent example is TabICL [Qu et al., 2025], which uses
only a fixed number of embedded [CLS] tokens per sample for ICL rather than all the features. Other
approaches designed to handle more samples include TuneTables [Feuer et al., 2024] or TabFlex [Zeng
et al., 2025]. While all these approaches aim to extend the application range, they propose new
architectures and inference mechanisms, often applying feature reduction and compression. In
contrast, we aim to expand an existing model’s capability without the need for feature reduction.

Continued pre-training as an alternative to fine-tuning has been shown to improve performance on
specific downstream tasks. For example, Real-TabPFN [Garg et al., 2025], further pre-trained on
real-world datasets, shows significant improvements on real-world tabular benchmarks. We follow
this direction, but instead of using real-world data, we study how to continue pre-training with
synthetic data to scale TabPFN to extreme feature counts, far beyond what it has seen during pre-
training. Because this involves sequential training, it is crucial to prevent the model from experiencing
catastrophic forgetting [French, 1993, Kemker et al., 2018]. This could cause the model to perform
significantly worse on tabular data within the original ranges of TabPFNv2.

3 Methodology

A Prior for Synthetic HDLSS Data Generation. To adapt our model, we need a mechanism to
generate training data, which (1) works fast and cost-effectively, since we need multiple datasets per
batch step, and (2) yields realistic data, to provide a meaningful and reliable signal during adaptation.

For the first desideratum, we follow prior work and rely on synthetic data obtained from a data-
generating mechanism based on structural causal models [Hollmann et al., 2023a,b]. Datasets are
therefore drawn from randomly sampled directed acyclic graphs. Specifically, as the TabPFNv2
prior is not publicly available, we use the open-source prior used to train TabICL [Qu et al., 2025],
considering TabICL’s strong empirical performance as evidence of the prior’s similar effectiveness.
To fulfill the second desideratum, we leverage the assumption that features in HDLSS data often
exhibit substantial noise and strong inter-feature correlations [Clarke et al., 2008].

Specifically, we describe our procedure in Algorithm 1, which takes as input the continuous numerical
features X of a dataset, during training sampled from the TabICL prior with a moderate feature count
m (generation step), and then artificially widens it to d ≫ m dimensions (widening step).

Continued Pre-Training. For our continued pre-training setup we start with the original TabPFNv2
classifier checkpoint1 and updated all parameters during training. We used AdamW (using a weight

1See Hugging Face model; Runtime complexity remains unaffected, thus, to satisfy higher resource demands
for continued pre-training we used 4 NVIDIA H100 GPUs with a combined memory of 320GB.
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decay of 1 × 10−4 and a learning rate of 1 × 10−5) [Loshchilov and Hutter, 2019] with linear
warm-up, cosine decay, and gradient norms clipping to 1.0. We used a batch size of 16, reducing it to
8 for training runs with over 5,000 features due to memory constraints. Training and validation were
performed using cross-entropy loss. The generated datasets of the TabICL prior had up to 10 classes
(to match TabPFNv2’s limitations), 40 to 400 samples, and 50 to 350 features which we then widened
using Algorithm 1. The number of features as parameter of Algorithm 1 was uniformly sampled
between 200 and d features with d ∈ {1,500; 5,000; 8,000}. With a probability of 0.5, the original
features were appended to the final dataset. Sparsity and noise level were uniformly sampled with
p ∈ [0, 0.05] and σ ∈ [0, 1] following our analysis visualized in Figure 4. We denote the resulting
models as TabPFN-Wide-d, where d indicates the maximum number of features used during training.
For model selection, we used two real-world datasets (COAD and GBM; see description below). We
use the model with the lowest average validation loss.

4 Experiments and Results

Algorithm 1 Feature Widening

Input: Input features X ∈ Rn×m , target dimension d ,

sparsity p ∈ [0, 1] , noise std. σ

Output: Wide features Xwide ∈ Rn×d

1: Sample weights W ∈ Rm× d with Wij ∼ N (0, 1)

2: Sample mask M ∈ {0, 1}m× d

with Mij ∼ Bernoulli( p )

3: Compute wide features Xwide ← X (M ⊙W )

4: Sample noise N ∈ Rm× d

with Nij ∼ N (0, ( σ σj)
2) and σj = std( Xwide:,j )

5: Add noise Xwide ← Xwide +N

6: return Xwide

Datasets and Evaluation Protocol. We
use six machine learning–ready TCGA
datasets differing from raw TCGA data by
already being normalized, quality-checked,
and otherwise pre-processed. We use two
of them for model selection and the re-
maining for evaluation (see Section A.1
for further details). In addition, we also
evaluate on 21 benchmark tasks (with ≤
10, 000 samples and ≤ 500 features) in-
troduced by TabArena [Erickson et al.,
2020]. Alongside the foundation mod-
els TabPFNv2 and TabICL, we evaluate
RealMLP-TD [Holzmüller et al., 2025] as
well as classical tree-based machine learn-
ing techniques like random forest and XG-
Boost [Chen and Guestrin, 2016]. En-
sembling was not used for TabPFN-Wide,
TabPFNv2, TabICL, and RealMLP-TD.

We perform 5-fold cross-validation for our biomedical datasets to compute AUROC, AUPRC, and
accuracy. For the TabArena datasets we follow the original evaluation protocol and compute AUROC
using a 3-fold cross-validation repeated 3 or 10 times, depending on dataset size.

Results on Real-World Wide Datasets. We first evaluate TabPFN-Wide on the four multi-omics
datasets. The average AUROC scores on the four TCGA datasets in Table 1) highlights the strong
capabilities of TabPFN-Wide. While tree-based methods exhibit stable performance, our model
achieves superior results. TabPFNv2 and TabICL exhibit inferior performance consistent with the
fact that they were not trained for such extreme feature counts. RealMLP-TD, trained on each

Dataset LGG OV BRCA SARC
#features 60,664 60,443 26,577 26,577

TabPFN-Wide
1.5k 0.989 ± 0.010 0.986 ± 0.006 0.978 ± 0.002 0.954 ± 0.005

5k 0.987 ± 0.008 0.985 ± 0.006 0.984 ± 0.002 0.950 ± 0.007
8k 0.989 ± 0.009 0.983 ± 0.006 0.983 ± 0.000 0.953 ± 0.003

TabPFNv2 0.875 ± 0.010 0.899 ± 0.005 0.884 ± 0.004 0.902 ± 0.010
TabICL 0.943 ± 0.010 0.718 ± 0.011 0.943 ± 0.004 0.863 ± 0.019
R. Forest 0.989 ± 0.007 0.968 ± 0.003 0.982 ± 0.003 0.942 ± 0.017
XGBoost 0.985 ± 0.008 0.971 ± 0.006 0.981 ± 0.002 0.929 ± 0.018
RealMLP-TD 0.987 ± 0.009 0.982 ± 0.005 0.981 ± 0.004 0.952 ± 0.016

Table 1: Average AUROC (±SEM) scores on 4 real-world multi-omics datasets (higher is better). We
compare TabPFN-Wide, using up to 8k features for continued pre-training to TabPFNv2 and other
baselines. We boldface the best values in each column.
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dataset separately, yields comparable although slightly inferior AUROC results to TabPFN-Wide
demonstrating that it also effectively handles HDLSS data.

To enable a systematic comparison of the models across a fixed set of feature counts, we applied
feature reduction. Figure 2d shows the strong relative performance for all TabPFN-Wide variants
compared to a random forest. While all models perform similar with heavily reduced feature sets,
the performance of TabPFN and TabICL drastically declines for higher numbers of features, while
TabPFN-Wide’s performance stays robust suggesting that it captures the correct signal. Notably,
TabPFN-Wide exhibits competitive performance even with feature counts far exceeding those seen
during continued pre-training.

Interestingly, increasing the maximum width of synthetic datasets used during continued pre-training
from 1,500 to 8,000 exerts only a minor influence on cancer subtype classification performance,
hence, further research on the optimal setting is needed.

Results on Standard Benchmarks and Widened Adaptations. Next, we compare performance on
standard benchmark tasks. Figure 2a compares TabPFN-Wide to TabPFNv2 on TabArena datasets,
showing that our continued pre-pretraining impacts performance negligibly, with TabPFN-Wide
achieving results on par with TabPFNv2. We also generated a widened version of 13 OpenML [Bischl
et al., 2025] and TabArena datasets using Algorithm 1 (see Section A.7 for details). Specifically, we
explore: (a) needle-in-a-haystack, where we add noise features (p = 0, with the original features
included) and (b) feature smearing, where the signal is distributed, i.e. “smeared”, across many
features (p ∈ {0.02, 0.25, 0.5}, without original features).

For setting (a), Figure 2b shows that our model (green line) is nearly unaffected by noisy features,
resulting in only a slight performance decrease relative to TabPFNv2’s performance on the original
datasets. This highlights that TabPFN-Wide can pinpoint relevant features making up as little as 0.03%
of all input features, i.e., the needle in the haystack. Figure 2c shows results for setting (b) where
TabPFN-Wide performs again best, reaching on average about 95% of TabPFNv2’s performance on
the original datasets.

(a) (b) (c)
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Figure 2: (a) AUROC for TabPFN-Wide-5k vs TabPFNv2 on 21 TabArena classification tasks. (b-c)
Average AUROC (relative to TabPFNv2 evaluated on the original dataset) on a set of 13 widened
datasets: (b) needle-in-a-haystack and (c) features-smearing (see text for further details). (d) Models’
average relative performance compared to random forest (pink) for up to 4 multi-omics datasets.

5 Conclusion

We introduce TabPFN-Wide, developed by continuing pre-training of TabPFNv2. To the best of our
knowledge, it is the first tabular foundation model that handles HDLSS data without feature reduction
and is the first application of continued pre-training to extend tabular foundation model capabilities. It
achieves state-of-the-art performance on real-world and synthetic HDLSS data while simultaneously
maintaining performance on small datasets.

Since our model is currently based solely on TabPFNv2, our approach seeks further validation from
continuing pre-training of the regressor model. The prior setup is strongly inspired by the biomedical
data, raising the question of whether a more diverse or sophisticated HDLSS prior could further
improve performance. Overall, we show that continued pre-training has the potential to extend the
capabilities of pre-trained models, like TabPFNv2, paving the way for resource-efficient generation
of “patched" model versions for other dataset characteristics.
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LLM Usage

Large Language Models (LLMs) were used to support the paper writing process. We used OpenAI’s
ChatGPT-4 and -5 to polish writing, increase conciseness of sentences, and retrieve recommendations
for rewriting to increase readability and the flow of the paper. We did not use LLMs to generate any
content nor did we use it for interpretation / analyses of the results. All outputs of the LLMs were
thoroughly reviewed and checked before including them into the paper to guarantee that the meaning
and intent stayed unaffected.

A Appendix

A.1 Data Overview

Table 2 gives an overview of the number of samples and features of the used datasets. Furthermore, it
shows which molecular measurements are available for which dataset. Datasets provided by Yang
et al. [2025] (COAD, LGG, OV) have 4 different omics: mRNA gene expression data (mRNA),
copy number variation data (CNV), methylation data (Methylation) and micro RNA data (miRNA).
MRNA, CNV, and methylation features are measurements corresponding to human genes. For our
usage, we concatenated all different omics resulting in up to 60,000 features. Datasets provided by
Rappoport and Shamir [2018] consist of less features due to missing CNV data and lower number of
features for methylation data.

Patients mRNA CNV Methylation miRNA All

LGG (low grade glioma) 247 14,260 21,104 24,979 321 60,664
OV (ovarian cancer) 284 14,229 21,104 24,797 313 60,443
COAD (colon adenocarcinoma) 260 17,261 19,551 19,052 375 56,239

BRCA (breast cancer) 440 20,531 N/A 5,000 1,046 26,577
SARC (sarcoma) 259 20,531 N/A 5,000 1,046 26,577
GBM (glioblastoma) 274 12,042 N/A 5,000 534 17,576

Table 2: Number of samples and features for all used datasets. Datasets used for model selection are
marked in green.

A.2 Comparison of Different Feature Reduction Techniques

In preliminary experiments, we tested the performance of TabPFNv2 on our real-world HDLSS
datasets reduced with different feature reduction methods. Since this is not our main priority, we
focused on simple approaches offered by sci-kit learn [Pedregosa et al., 2011]. Although we tested
both supervised (label-based) and unsupervised feature reduction methods, our preference was for
the unsupervised approaches, as they better mitigate the risk of overfitting in HDLSS settings. For
biomedical data, a common approach is to cluster by correlation [Langfelder and Horvath, 2008]
which we compared against clustering by lowest Euclidean distance between feature vectors and
reduction using the feature importance weights from fitted machine learning models. Given that
Euclidean distance-based clustering frequently outperforms the correlation-based approach for our
data (see Figure 3) and achieves performance comparable to supervised methods, we adopted this
strategy for our analyses.
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Figure 3: AUROC of TabPFNv2 evaluated on different datasets reduced to (a) 500 features and
(b) 2,000 features using different techniques.

A.3 HDLSS Prior Sparsity Comparison

Our procedure can generate new features that form correlated clusters as new features depend on
only a subset of the original features. The sparsity parameter p controls this structure: small values
yield new features influenced by few or no originals, resulting in sparse correlation patterns, whereas
large values produce new features that are mixtures of many originals, leading to dense correlation
patterns. Figure 4 compares real-world HDLSS biomedical data (a) with synthetic datasets (b–f),
with p = 0.02 showing the closest match to the real correlation structure.

real-world p = 0 p = 0.01 p = 0.02 p = 0.1 p = 1.0

(a) (b) (c) (d) (e) (f)

Figure 4: Feature correlation maps for (a) mRNA gene expression data and (b–f) synthetically
generated datasets with different sparsity values p. We compute Pearson correlation for 100 randomly
sampled features and sort them by average absolute correlation.

A.4 Training of TabICL with HDLSS Prior

We tried training TabICL [Qu et al., 2025] with the same training setup as for TabPFN-Wide. However,
the model’s training performance did not improve, suggesting that our HDLSS prior may not be
effective for TabICL. Whether this arises from TabICL’s architectural setup which could make it
unsuitable for HDLSS data in general or whether changes to the prior / continued pre-training could
mitigate this problem, remains open for future research.
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Figure 5: Development of validation loss (left) and validation AUROC (right) for TabICL vs. TabPFN-
Wide when training with the same HDLSS prior.
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A.5 Detailed Results for all Multi-Omics Datasets

(a) LGG (b) OV

(c) BRCA (d) SARC

Figure 6: Results for all datasets with feature reduction applied. The axis were chosen such that the
differences in feature numbers and AUROC scores becomes comparable.

A.6 Different Metrics Analysis

We also calculated different metrics for the evaluation on our multi-omics datasets to gain a compre-
hensive view and address issues posed by using AUROC only.

Dataset LGG OV BRCA SARC
#features 60,664 60,443 26,577 26,577

TabPFN-Wide
1.5k 0.980 ± 0.009 0.965 ± 0.009 0.919 ± 0.012 0.838 ± 0.026

5k 0.980 ± 0.012 0.965 ± 0.015 0.934 ± 0.015 0.837 ± 0.032
8k 0.986 ± 0.010 0.960 ± 0.009 0.933 ± 0.006 0.829 ± 0.017

TabPFNv2 0.747 ± 0.014 0.795 ± 0.008 0.753 ± 0.014 0.646 ± 0.020
TabICL 0.889 ± 0.021 0.507 ± 0.006 0.817 ± 0.006 0.638 ± 0.060
R. Forest 0.983 ± 0.009 0.925 ± 0.011 0.926 ± 0.016 0.776 ± 0.025
XGBoost 0.976 ± 0.011 0.932 ± 0.012 0.928 ± 0.012 0.790 ± 0.043
RealMLP-TD 0.980 ± 0.012 0.957 ± 0.010 0.940 ± 0.008 0.824 ± 0.042

Table 3: Average AUPRC (±SEM) scores of 4 multi-omics datasets (higher is better). We compare
TabPFN-Wide, using up to 8k features for continued pre-training (second column), to TabPFNv2 and
other baseline methods and boldface the best values for each column.
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Dataset LGG OV BRCA SARC
#features 60,664 60,443 26,577 26,577

TabPFN-Wide
1.5k 0.959 ± 0.017 0.898 ± 0.019 0.848 ± 0.009 0.772 ± 0.024

5k 0.972 ± 0.005 0.898 ± 0.020 0.884 ± 0.009 0.760 ± 0.024
8k 0.972 ± 0.010 0.887 ± 0.009 0.859 ± 0.006 0.764 ± 0.017

TabPFNv2 0.806 ± 0.006 0.679 ± 0.008 0.651 ± 0.012 0.683 ± 0.013
TabICL 0.822 ± 0.020 0.472 ± 0.014 0.768 ± 0.008 0.656 ± 0.039
R. Forest 0.956 ± 0.016 0.852 ± 0.018 0.845 ± 0.009 0.756 ± 0.029
XGBoost 0.976 ± 0.008 0.824 ± 0.014 0.873 ± 0.012 0.761 ± 0.044
RealMLP-TD 0.964 ± 0.010 0.884 ± 0.016 0.891 ± 0.014 0.807 ± 0.033

Table 4: Average accuracy (±SEM) scores of 4 multi-omics datasets (higher is better). We compare
TabPFN-Wide, using up to 8k features for continued pre-training (second column), to TabPFNv2 and
other baseline methods and boldface the best values for each column.

A.7 Benchmark Results for Different TabPFN-Wide Models

(a) (b) (c) (d)

Figure 7: (a) AUROC for TabPFN-Wide-1.5k vs TabPFNv2 on 21 TabArena classification tasks with
≤ 10,000 samples and ≤ 500 features. (b-c) Average AUROC (relative to TabPFNv2 evaluated on the
original dataset) on a set of 13 widened datasets: (b) needle-in-a-haystack and (c) features-smearing.
(d) TabPFN-Wide-1.5k’s performance for different sparsities. p = 0 corresponds to TabPFN-Wide-
1.5k’s curve in (b), and p = 0.02 in (c)

(a) (b) (c) (d)

Figure 8: (a) AUROC for TabPFN-Wide-8k vs TabPFNv2 on 21 TabArena classification tasks with
≤ 10,000 samples and ≤ 500 features. (b-c) Average AUROC (relative to TabPFNv2 evaluated on the
original dataset) on a set of 13 widened datasets: (b) needle-in-a-haystack and (c) features-smearing.
(d) TabPFN-Wide-8k’s performance for different sparsities. p = 0 corresponds to TabPFN-Wide-8k’s
curve in (b), and p = 0.02 in (c)

We evaluated all 3 models (TabPFN-Wide-1.5k|-5k|-8k) on the TabArena [Erickson et al., 2025]
benchmark with classification datasets within TabPFNv2’s sample (≤ 10, 000) and feature (≤ 500)
range. TabPFN-Wide5k has the best performance with the highest spearman correlation coefficient.
TabPFN-Wide1.5k shows decent performance as well with one outlier dataset (see Figure 7). For
TabPFN-Wide-8k, the performance for most datasets is slightly worse compared to TabPFNv2
showing more datasets below the diagonal compared to the other models. However, the relative
and absolute performance differences are small, as seen in Figure 8. All in all, the three models
maintain good performance on the TabArena benchmark, with TabPFN-Wide-5k performing best. On
classification datasets within TabPFNv2’s range of the AutoML benchmark [Gijsbers et al., 2024],
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the results are similar with TabPFN-Wide-8k decreasing most in performance (see Figure 9). Overall,
TabPFN-Wide-5k shows the highest correlation coefficient with TabPFN-Wide-1.5k’s coefficient
being insignificantly worse, hence overall, hinting at an inverse relationship between wider datasets
during training and performance on datasets within TabPFNv2’s original ranges.

(a) (b) (c)

Figure 9: AUROC for TabPFN-Wide models vs TabPFNv2 on 27 AutoML benchmark classification
tasks with ≤ 10,000 samples and ≤ 500 features.

For the needle-in-a-haystack and feature smearing tasks, we chose a subset of the TabArena and the
AutoML benchmark. The intuition behind this selection was to evaluate TabPFN-Wide on datasets
that are close to our HDLSS use case, while being synthetically generated. To include as many
datasets as possible and increase the statistical significance of our analysis, we set the threshold for
the maximum number of samples to 2,500. Secondly, applying Algorithm 1 entails two requirements:
the features must be numerical, and their number should ideally be large to ensure that the constructed
features can serve as meaningful mixtures of the originals. To increase dataset inclusion, we set this
threshold to at least 8 numerical features. Since only 5 datasets meet these requirements in TabArena,
we decided to include 9 classification datasets from the AutoML benchmarks as well, resulting in a
total of 13 unique datasets (1 overlapping dataset).

All models exhibit high robustness against noise for the synthetically widened datasets across different
number of features and choices of the sparsity parameter p. This highlights the ability of TabPFN-
Wide to handle diverse types of noise / features. However, while showing competitive performance
on real-world HDLSS datasets (see Section 4) TabPFN-Wide-1.5k has a stronger performance decline
compared to the other two models towards high feature counts which may stem from the reduced
number of features seen during training.

A.8 Detailed Widening Results for all used Datasets

Figures 10, 11, 12, and 13 show the results for every synthetically widened dataset that was selected
for our widening experiments. The number of features refers to the absolute number of features in
the dataset to allow for easier comparison regarding the width of a dataset. For Figure 10 the features
of the original dataset were widened with different numbers of Gaussian noise features. For three
datasets that showed missing values those were imputed to also allow for the evaluation of random
forest and TabICL on them. Figures 11, 12, and 13 show the results for the datasets widened using
Algorithm 1 with a sparsity of 0.02, 0.25, and 0.5 respectively.
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(a) 54 (b) 188 (c) 1049 (d) 1067 (e) 1468

(f) 1494 (g) 40982 (h) 40984 (i) 41157 (j) 46921

(k) 46930 (l) 46940 (m) 46980

Figure 10: Detailed results for all widened OpenML datasets (needle-in-a-haystack). The
captions indicate the corresponding OpenML dataset IDs.

(a) 54 (b) 188 (c) 1049 (d) 1067 (e) 1468

(f) 1494 (g) 40982 (h) 40984 (i) 41157 (j) 46921

(k) 46930 (l) 46940 (m) 46980

Figure 11: Detailed results for all widened OpenML datasets (feature smearing with p = 0.02).
The captions indicate the corresponding OpenML dataset IDs.
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(a) 54 (b) 188 (c) 1049 (d) 1067 (e) 1468

(f) 1494 (g) 40982 (h) 40984 (i) 41157 (j) 46921

(k) 46930 (l) 46940 (m) 46980

Figure 12: Detailed results for all widened OpenML datasets (feature smearing with p = 0.25).
The captions indicate the corresponding OpenML dataset IDs.

(a) 54 (b) 188 (c) 1049 (d) 1067 (e) 1468

(f) 1494 (g) 40982 (h) 40984 (i) 41157 (j) 46921

(k) 46930 (l) 46940 (m) 46980

Figure 13: Detailed results for all widened OpenML datasets (feature smearing with p = 0.5).
The captions indicate the corresponding OpenML dataset IDs.
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A.9 Feature-wise Interpretability via Attention Maps

To gain insights into TabPFNv2’s inference, we analyze attention maps, focusing on attention towards
the label as a proxy for feature importance. This requires that each transformer (token) column
corresponds to a dataset feature. By default, TabPFNv2 groups features, adds distribution-dependent
features, or may remove features impairing a token-to-feature mapping. To address this, we disabled
these modifications for training as well as our biomedical datasets and interpretability analyses.

Attention maps are an intermediate step of the original dot-product attention computation [Vaswani
et al., 2017] and we refer to the matrix A in Equation (1) as “attention map", with query matrix Q,
key matrix K, value matrix V , and key vector dimensionality dkey:

Attention(Q,K,V ) = softmax

(
QKT√
dkey

)
V = AV . (1)

To interpret attention maps as an indicator of feature importance, we consider only TabPFNv2’s
feature-wise attention, disregarding the sample-wise attention. Since the embedded labels are
appended before the forward pass, the attention value towards the label corresponds to the attention
map’s last row excluding the label index.

Furthermore, we average the attention maps across all samples, heads, and layers (similar to prior
work by Ye et al. [2025]). We acknowledge that attention maps can vary substantially across these
dimensions. However, this approach aligns with the intuition that features identified as relevant by
the model across numerous samples, heads, or layers are those most indicative of importance (as we
also show in our empirical results). In the following, the term “attention score" of a feature refers to
its average attention to the label column.

A.10 Interpretability Results

To begin our interpretability analysis, we evaluated the model on synthetically widened datasets, al-
lowing us to assess whether attention scores reflect feature importance. Furthermore, these controlled
datasets also allow us to identify, which features are expected to be predictive. We again conducted
(a) feature smearing and (b) needle-in-a-haystack widening expecting our model to assign the highest
scores to the original features and separate signal from noise. As described in Section A.9, we extract
the attention scores for each feature during inference and average them to obtain a single value. The
generated datasets contain 2,000 features and are derived from the QSAR biodegradation dataset
(OpenML ID 1494). For visualization, we use correlation maps with features ordered by attention
score allowing signal and noise features to be distinguished.

Features with higher attention scores are more predictive than features with lower scores. For
the feature smearing dataset, Figure 14a shows that features with little correlation (upper left) can
be distinguished from increasingly correlated features (lower right). Therefore, noisy features have
low attention scores, while signal-rich features receive higher scores. The needle-in-a-haystack
experiment further illustrates this: Figure 14b shows that the features with the highest attention scores
correspond to those from the original dataset. Hence, the model not only successfully distinguished
between noisy and predictive features to yield competitive performance, but this separation is also
mirrored in the corresponding attention scores. These findings provide promising evidence that
attention scores from TabPFN-Wide reflect feature importance and, consequently, represent a viable
approach for interpretability. Results using TabPFNv2 (see Appendix A.11) show weaker separation
of noise and signal, consistent with its lower performance on wide datasets.

Having evidence that attention maps yield useful insights in feature importance, we return to our
real-world cancer datasets and validate the biological relevance of our model’s attention scores by
retrieving the features with the highest attention scores for subtype classification. Since mRNA is the
most studied modality among the different omic types, we focus on the mRNA data. High correlation
between genes complicates the task, since features that are presumably predictive are not necessarily
causal.

TabPFN-Wide identifies important biomarkers for different cancer subtypes. We extracted the
10 genes with the highest attention scores from each dataset and examined their biological relevance
according to literature (see Section A.12 for details). For breast cancer data (BRCA), all of these
genes have known links to breast cancer, confirming their biological relevance and validating our
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(a) (b)

Figure 14: Correlations of 2,000 features sorted by their attention score. (a) feature smearing with
p = 0.02 and σ = 1. (b) needle-in-a-haystack.

method. Genes such as FOXC1, ERBB2, PPP1R14C, and NDC80 are directly connected to certain
subtypes of breast cancer, aligning well with the subtype classification task addressed by the model.
However, in other datasets fewer features could be validated by this literature review (3/10). This
may indicate that these cancer types are not as well studied as breast cancer, hinting at potentially
undiscovered relationships, though variability in attention maps cannot be ruled out. Nevertheless,
we believe these exciting results support the usefulness of attention maps as interpretability tools.

A.11 Attention Score Comparison

To compare the attention scores of TabPFNv2 and TabPFN-Wide we repeated our experiments
described in Section A.10 with 10,000 features with the assumption that a reduced performance
coincides with a reduced interpretability of the attention scores.

Figure 15 shows the correlations of feature smearing datasets. TabPFN-Wide (left) shows patterns
more concentrated in the lower corner whereas TabPFNv2 pattern are far more spread with even some
in the upper left corner (corresponding to lowest attention scores). This indicates that our model is
better at separating noise from signal for this task.

(a) (b)

Figure 15: Comparison of correlations (TabPFN-Wide (left); TabPFNv2 (right)) between features
ordered by their attention score for a feature smearing dataset with p = 0.02 and σ = 1

Figure 16 shows the correlations of the 100 features with the highest attention scores for a needle-
in-a-haystack dataset with 10,000 features in total. Although TabPFNv2 is able to recover some of
the original features, TabPFN-Wide identifies a larger number overall while also assigning higher
average attention scores.
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(a) (b)

Figure 16: Comparison of correlations (TabPFN-Wide (left); TabPFNv2 (right)) between the top
100 features with the highest attention scores for a needle-in-a-haystack dataset with 10,000 features
overall.

A.12 Genes with highest attention scores

As described in Section A.10 we analyzed the genes with the highest attention scores from our
datasets with respect to literature connecting the gene with the given cancer type. We classified
each gene as (i) directly associated with the specified cancer subtype, (ii) generally associated with
cancer across multiple types, or (iii) having no known association with cancer. As this analysis
was conducted manually, the list of citations should not be considered exhaustive. In cases where a
PubMed search did not yield relevant literature, no potential associations were reported.
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Dataset Direct Connection General
Connection
to Cancer

No Known
Connection

LGG RAD21 [Bady et al., 2018],
MAPK4[Ren et al., 2023],
NAPE-PLD[Wu et al., 2012]

C4B, GPN1,
PPP2R3C,
PRKAR1B,
CWF19L2, ARIH2,
PORCN

OV CGB7[Śliwa et al., 2019],
ACSL3[Chen et al., 2016],
PPA1[Li et al., 2017],
CFL1[Cheng et al., 2024],
CGRRF1[Lee et al., 2019],
CMPK1[Zhou et al., 2017]

PHF20 [Li
et al., 2013],

CFD, NAXE,
PDXDC1

BRCA FOXC1 [Han et al., 2017],
ERBB2 Krishnamurti and Silverman [2014],
MIA [Bosserhoff et al., 1999],
DSC3 [Oshiro et al., 2005],
SFRP1 [Lo et al., 2006],
FAM189A2 [Tsunoda et al., 2022],
BLM [de Voer et al., 2015],
PPP1R14C [Jian et al., 2022],
NDC80 [Tang and Toda, 2015],
UBE2T [Dutta et al., 2022]

SARC TSPAN31 [Jankowski et al., 1994],
MDM2[Sciot, 2021],
LMOD1[Guo et al., 2015],
CTDSP2[Su et al., 1997],
CDK4[Su et al., 1997],
METTL1[Wang et al., 2023],
ADPGK[Zhang et al., 2025],
ACTG2[Lehtonen et al., 2012]

MARCH9,
FAM119B

Table 5: Categorization of the top 10 features with the highest attention scores for datasets when
performing subtype classification.
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