
Annealing Flow Generative Models Towards Sampling High-Dimensional and
Multi-Modal Distributions

Dongze Wu 1 Yao Xie 1

Abstract
Sampling from high-dimensional, multi-modal
distributions remains a fundamental challenge
across domains such as statistical Bayesian in-
ference and physics-based machine learning. In
this paper, we propose Annealing Flow (AF), a
method built on Continuous Normalizing Flow
(CNF) for sampling from high-dimensional and
multi-modal distributions. AF is trained with a dy-
namic Optimal Transport (OT) objective incorpo-
rating Wasserstein regularization, and guided by
annealing procedures, facilitating effective explo-
ration of modes in high-dimensional spaces. Com-
pared to recent NF methods, AF greatly improves
training efficiency and stability, with minimal re-
liance on MC assistance. We demonstrate the
superior performance of AF compared to state-of-
the-art methods through experiments on various
challenging distributions and real-world datasets,
particularly in high-dimensional and multi-modal
settings. We also highlight AF’s potential for sam-
pling the least favorable distributions.

1. Introduction
Sampling from high-dimensional and multi-modal distribu-
tions is crucial for various fields, including physics-based
machine learning such as molecular dynamics (Miao et al.,
2015; Salo-Ahen et al., 2020), quantum physics (Carlson
et al., 2015; Lynn et al., 2019), and lattice field theory (Jay &
Neil, 2021; Lozanovski et al., 2020). With modern datasets,
it also plays a key role in Bayesian areas, including Bayesian
modeling (Kandasamy et al., 2018; Balandat et al., 2020;
Stephan et al., 2017) with applications in areas like compu-
tational biology (Stanton et al., 2022; Overstall et al., 2020),
and Bayesian Neural Network sampling (Cobb & Jalaian,

1H. Milton Stewart School of Industrial and Systems Engineer-
ing (ISyE), Georgia Institute of Technology, USA. Correspondence
to: Yao Xie <yao.xie@isye.gatech.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2021; Izmailov et al., 2021; Wu et al., 2024).

MCMC and Neural Network Variants: Numerous MCMC
methods have been developed over the past 50 years, includ-
ing Metropolis-Hastings (MH) and its variants (Haario et al.,
2001; Cornish et al., 2019; Griffin & Walker, 2013; Choi,
2020), Hamiltonian Monte Carlo (HMC) schemes (Girolami
& Calderhead, 2011; Bou-Rabee & Sanz-Serna, 2017; Shah-
baba et al., 2014; Li et al., 2015; Hoffman et al., 2021; 2014).
HMC variants are still considered state-of-the-art methods.
However, they require exponentially many steps in the di-
mension for mixing, even with just two modes (Hackett
et al., 2021). More recently, Neural network (NN)-assisted
sampling algorithms (Wolniewicz et al., 2024; Bonati et al.,
2019; Gu & Sun, 2020; Egorov et al., 2024; Li et al., 2021;
Hackett et al., 2021) have been developed to leverage NN
expressiveness for improving MCMC, but they still inherit
some limitations like slow mixing and imbalanced mode
exploration, particularly in high-dimensional spaces.

Annealing Variants: Annealing methods (Gelfand et al.,
1990; Sorkin, 1991; Van Groenigen & Stein, 1998; Neal,
2001) are widely used to develop MCMC techniques like
Parallel Tempering (PT) and its variants (Earl & Deem,
2005; Chandra et al., 2019; Syed et al., 2022). In anneal-
ing, sampling gradually shifts from an easy distribution to
the target by lowering the temperature. Annealed Impor-
tance Sampling (Neal, 2001) and its variants(Zhang et al.,
2021; Karagiannis & Andrieu, 2013; Chehab et al., 2024)
are developed for estimating normalizing constants with low
variance using MCMC samples from intermediate distribu-
tions. Recent Normalizing Flow and score-based annealing
methods (Arbel et al., 2021; Doucet et al., 2022) optimize
intermediate densities for lower-variance estimates, but still
rely on MCMC for sampling. However, MCMC struggles
with slow mixing, local mode trapping, mode imbalance,
and correlated samples issues. These limitations are par-
ticularly pronounced in high-dimensional, multi-modal set-
tings (Van Ravenzwaaij et al., 2018; Hackett et al., 2021).

Particle Optimization Methods: Recently, particle-based
optimization methods have emerged for sampling, includ-
ing Stein Variational Gradient Descent (SVGD) (Liu &
Wang, 2016), and stochastic approaches such as Dai et al.
(2016); Nitanda & Suzuki (2017); Maddison et al. (2018);

1

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

Liu (2017); Pulido & van Leeuwen (2019); Li et al. (2023);
Detommaso et al. (2018); Maurais & Marzouk (2024). How-
ever, many of these methods rely on kernel computations,
which scale polynomially with sample size, and are sensitive
to hyperparameters.

Normalizing Flows: Recently, discrete Normalizing Flows
(NFs) (Rezende & Mohamed, 2015) and Stochastic NFs
(Wu et al., 2020; Hagemann et al., 2022) have been actively
explored for sampling tasks. Discrete NFs sometimes suffer
from mode collapse, and methods relying on them (Arbel
et al., 2021; Matthews et al., 2022; Gabrié et al., 2021;
2022; Albergo & Vanden-Eijnden, 2023; Brofos et al., 2022;
Cabezas et al., 2024; Qiu & Wang, 2024) attempt to mitigate
this issue using MCMC corrections or design specialized
loss functions. More recently, Fan et al.; Tian et al. (2024)
introduced path-guided NFs, which utilize training losses
conceptually similar to score matching. However, these
methods may require a substantial number of discretized
time steps, with score estimation at each step. Besides,
the quality of these estimations substantially influences the
overall training performance.

Challenges persist with multi-modal distributions in high-
dimensional spaces. This paper introduces Annealing
Flow (AF), a Continuous Normalizing Flow trained with a
dynamic Optimal Transport (OT) objective incorporating
Wasserstein regularization, and guided by annealing proce-
dures. Our key contributions are as follows:

• We present a dynamic OT objective that greatly reduces
the number of intermediate annealing steps and im-
proves training stability, compared to recent annealing-
like NFs (Tian et al., 2024; Fan et al.), which require
score estimation and matching during training.

• The proposed annealing-assisted procedure is crucial
for success on high-dimensional distributions with
widely separated modes, outperforming state-of-the-
art NF-based methods in challenging experiments with
notably fewer annealing steps.

• Theoretically, Theorem 3.3 establishes that the in-
finitesimal optimal velocity field equals the difference
in the score between consecutive annealing densities, a
desirable property unique to our dynamic OT objective.

2. Preliminaries
Neural ODE and Continuous Normalizing Flow: A Neural
ODE is a continuous model where the trajectory of data is
modeled as the solution of an ordinary differential equation
(ODE). Formally, in Rd, given an input x(0) = x0 at time
t = 0, the transformation to the output x(1) is governed by:

dx(t)

dt
= v(x(t), t), t ∈ [0, 1], (1)

where v(x(t), t) represents the velocity field, which is of
the same dimension as x(t) and is parameterized by a neural
network with input x(t) and t. The time horizon is rescaled
to [0, 1] without loss of generality.

Continuous Normalizing Flow (CNF) is a class of normaliz-
ing flows where the transformation of a probability density
from a base distribution π0(x) (at t = 0) to a target distri-
bution q(x) (at t = 1) is governed by a Neural ODE. The
marginal density of x(t), denoted as ρ(x, t), evolves accord-
ing to the continuity equation derived from the ODE in Eq.
(1). This continuity equation is written as:

∂tρ(x, t) +∇ · (ρ(x, t)v(x, t)) = 0, ρ(x, 0) = π0(x),
(2)

where ∇· denotes the divergence operator.

Dynamic Optimal Transport (OT): The Benamou-Brenier
equation (Benamou & Brenier, 2000) below provides a dy-
namic formulation of Optimal Transport T , which transports
probability mass from π0 to q via a velocity field v(x(t), t):

inf
v

∫ 1

0

Ex(t)∼ρ(·,t)∥v(x(t), t)∥2dt

s.t. ∂tρ+∇ · (ρv) = 0, ρ(·, 0) = π0, ρ(·, 1) = q,
(3)

The optimization problem seeks to find the optimal T that
moves mass from the base density π0 to the target density q,
subject to the continuity equation (2) to ensure that ρ(·, t)
evolves as a valid probability density over time. Addition-
ally, the constraint ρ(·, 1) = q ensures that the target density
is reached by the end of the time horizon. The time horizon
is rescaled to [0, 1] without loss of generality.

3. Annealing Flow Model
The annealing philosophy (Gelfand et al., 1990; Sorkin,
1991; Van Groenigen & Stein, 1998; Neal, 2001) refers to
gradually transitioning an initial flattened distribution to the
target distribution as the temperature decreases. Building
on this idea, we introduce Annealing Flow (AF), a sam-
pling algorithm that learns a continuous normalizing flow
to gradually map an initial easy-to-sample density π0(x) to
the target density q(x) through a set of intermediate distri-
butions.

We define the target distribution as q(x) = Zq̃(x), where
q̃(x) is the unnormalized form given explicitly, and Z > 0
is an unknown normalizing constant. To interpolate between
an easy-to-sample initial distribution π0(x) (e.g., a standard
Gaussian) and the target q(x), we construct a sequence
of intermediate distributions {fk(x)}, with corresponding
unnormalized forms {f̃k(x)}. These are defined as:

f̃k(x) = π0(x)
1−βk q̃(x)βk ,

fk(x) = Zkf̃k(x).
(4)

2

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

Here, 1/Zk =
∫
Rn f̃k(x)dx is an unknown normalizing

constant, and βk is an increasing sequence with β0 = 0 and
βK = 1. Therefore, f0(x) = π0(x) and fK(x) = q(x). Im-
portantly, our algorithm depends only on the unnormalized
f̃k(x) and is independent of Zk.

flow

f0 = π0

f2

f1

f3

f4 f5 ≈ q

diffusion

annealing trajectory

f2 f3

f2 f3

Figure 1. Illustrations and comparisons of annealing trajectories:
Annealing Flow (based on optimal transport maps) versus other
methods based on diffusion and score matching.

3.1. Algorithm

The objective of Annealing Flow (AF) is to learn a continu-
ous optimal transport flow that transitions between interme-
diate distributions fk−1 and fk for k = 1, . . . ,K, ultimately
mapping an initial distribution π0(x) to the target distribu-
tion q(x), as illustrated in Figure 1. A key observation is
that during AF training, the normalizing constant does not
affect the training objective. Once trained, users simply
sample x(0) ∼ π0(x), and the transport map pushes them
to x(1) ∼ q(x). The transport map T evolves the density
according to (2), which in turn drives the evolution of the
sample x(t) following the ODE in (1):

x(t) = T (x(0)) = x(0) +

∫ t

0

v(x(s), s)ds, t ∈ [0, 1].

(5)

We divide the time horizon [0, 1] into K intervals: [tk−1, tk)
for k = 1, . . . ,K − 1, and [tK−1, tK], with t0 = 0 and
tK = 1. We thus define x(tk) as the pushed-forward sam-
ple at time step tk. Following the annealing flow path in
(4), the continuous flow map T gradually transforms the
density from f0(x) to f1(x) over [0, t1), and continues this
process until fK−1(x) is transformed into fK(x) = q(x)
over [tK−1, 1].

Figure 2 shows this progression with two intermediate dis-
tributions. For clarity, we denote Tk as the segment of
the continuous normalizing flow during [tk−1, tk), which
pushes the density from fk−1(x) to fk(x). Consequently,

we define vk(x(t), t) as the velocity field of v(x(t), t) dur-
ing the time horizon t ∈ [tk−1, tk).

Annealing Flow aims to learn each transport map Tk

based on dynamic OT objective (3) over the time horizon
[tk−1, tk), where the velocity field vk(x(t), t) is learned us-
ing a neural network. The terminal condition ρ(·, 1) =
q in (3) can be imposed approximately using the Kull-
back–Leibler (KL) divergence (see, for instance, Ruthotto
et al. (2020)). Consequently, minimizing the objective (3)
for dynamic optimal transport Tk : fk−1(x) → fk(x) over
the time horizon [tk−1, tk) can be reduced to solving the
following problem:

Tk = argmin
T

{
KL(T#fk−1∥fk)

+ γ

∫ tk

tk−1

Ex(t)∼ρ(·,t)∥vk(x(t), t)∥2dt
}
,

(6)
t ∈ [tk−1, tk), subject to ρ(x(t), t) and vk(x(t), t) evolving
according to (2). Here, KL(T#fk−1∥fk) represents the KL
divergence between the push-forward density T#fk−1 (by
transport map T) and the target density fk, and γ > 0 is a
regularization parameter that controls the smoothness and
efficiency of the transport path. Additionally, the constraint
(2) ensures that x(t) follows the ODE trajectory defined by
(1) during t ∈ [tk−1, tk), which is given by:

x(t) = x(tk−1) +

∫ t

tk−1

vk(x(s), s)ds, t ∈ [tk−1, tk).

(7)
The following proposition shows that, once samples x(tk−1)
from fk−1 have been obtained through the previously
learned T1, · · · , Tk−1, the KL divergence in (6) can be
equivalently expressed using vk(x(t), t) and − log f̃k(x),
up to an additive constant. Therefore, learning the optimal
transport map Tk reduces to learning the optimal vk(x(t), t).
The proof is provided in Appendix A.1.

Proposition 3.1. Given the samples from fk−1, we have:

KL(T#fk−1∥fk) = c+ Ex(tk−1)∼fk−1

[
− log f̃k(x(tk))

−
∫ tk

tk−1

∇ · vk(x(s), s) ds

]
,

(8)
up to a constant c that is independent of vk(x(s), s).

Given x(tk−1) from fk−1(x), the value of x(tk) inside
− log f̃k(·) can be calculated as shown in equation (7). Ad-
ditionally, according to the lemma below, the second term in
the objective (6) can be approximated as a discretized sum.
The proof is provided in Appendix A.1.

Lemma 3.2. Let x(t) be particle trajectories driven by
a smooth velocity field vk(x(t), t) over the time interval

3

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

(a) β0 = 0

T0

[0, t1)

(b) β1 = 1/3

T1

[t1, t2)

(c) β2 = 2/3

T2

[t2, 1]

(d) β3 = 1

Figure 2. Illustration of the Annealing Flow Map, with a set of annealing densities from π0(x) = N(0, I2) to q(x), a GMM with 6 modes.

[tk−1, tk), where hk = tk − tk−1. Assume that vk(x, t) is
Lipschitz continuous in both x and t. By dividing [tk−1, tk)
into S equal mini-intervals with grid points tk−1,s, where
s = 0, 1, . . . , S and tk−1,0 = tk−1, tk−1,S = tk, we have:∫ tk

tk−1

Ex(t)∼ρ(·,t)
[
∥vk(x(t), t)∥2

]
dt

=
S

hk

S−1∑
s=0

E
[
∥x(tk−1,s+1)− x(tk−1,s)∥2

]
+O(h2

k/S).

(9)
One can observe that the RHS of (9) is a discretized sum
of stepwise Wasserstein-2 distances, reflecting the dynamic
nature of the transport. Dynamic W2 regularization en-
courages smooth transitions from fk−1 to fk with minimal
transport cost, ensuring stable sampling performance.

Next, by incorporating Proposition 3.1 and Lemma 3.2 into
(6), the final objective becomes:

min
vk(·,t)

Ex(tk−1)∼fk−1

[
− log f̃k(x(tk))

† −
∫ tk

tk−1

∇ · vk(x(s), s)ds

+α

S−1∑
s=0

∥x(tk−1,s+1)− x(tk−1,s)∥2
]
.

(10)
Remark†: We empirically observed that replacing the first
term − log f̃k(x(tk)) in the objective (10) with the first-
order Taylor approximation −hk∇ log f̃k(x(tk)) · vk led
to improved empirical performance, as detailed in Ap-
pendix C.1.

In the final objective, α = γS/hk, and vk(x(s), s) is
learned by a neural network. We break the time interval
[tk−1, tk) into S mini-intervals, and x(tk−1,s+1) is com-
puted as in equation (7).

3.2. Properties of learned velocity field

As hk = tk−tk−1 → 0, the final objective in (10) converges
to a form involving the Stein operator. This is shown in A.2
as part of the prerequisite proof for Theorem 3.3.

Define L2(fk−1) = {v :
∫
Rd ∥v(x)∥2fk−1(x) dx < ∞} as

the L2 space over (Rd, fk−1(x) dx). Define sk = ∇ log fk
as the score function of the density fk. We can then establish
the following property, with proofs provided in A.2:

Theorem 3.3. (Optimal Velocity Field as Score Difference)
Suppose hk → 0. Let fk−1 and fk be continuously dif-
ferentiable on Rd. Assume that ∇ · vk(x) exists for all
x ∈ Rd, and ∇ · vk(x), sk−1 and sk belong to L2(fk−1).
Assume that the components of vk are independent and
lim∥x∥→∞ fk−1(x)∥vk(x)∥2 = 0. Under these conditions,
the minimizer of (10) is:

lim
hk→0

v∗k = sk − sk−1. (11)

Therefore, the infinitesimal optimal v∗k is equal to the differ-
ence between the score function of the next density, fk, and
the current density, fk−1. This suggests that by adding more
intermediate densities, one can learn a sufficiently smooth
transport map T that exactly learns the mapping between
each pair of densities.

Additionally, one can observe that when each f̃k(x) is set
to the target q̃(x), i.e., when all βk are set to 1, and the
second term in the objective (6) is relaxed to static W2

regularization, the objective of Annealing Flow becomes
equivalent to Wasserstein gradient flow. Details, along with
its convergence theorems, are provided in Appendix B.

4. Algorithm Implementation

Algorithm 1 Block-wise Training of Annealing Flow Net
Require: Unnormalized target density q̃(x); an easy-to-

sample π0(x); {β1, β2, · · · , βK−1}; total number of
blocks K.

1: Set β0 = 0 and βK = 1
2: for k = 1 to K do
3: Set f̃k(x) = π0(x)

1−βk q̃(x)βk ;
4: Sample {x(i)(0)}ni=1 from π0(x)
5: Compute the pushed-forward samples x(i)(tk−1)

from the trained (k − 1) blocks via (13);
6: (Optional Langevin adjustments)
7: for several steps, update each x(i)(tk−1) via
8: x(i)(tk−1)← x(i)(tk−1) +

η
2
∇ log f̃k−1 +

√
η ϵ

9: end for
10: Optimize vk(·, t) by minimizing the final objective.
11: end for

4

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

4.1. Block-wise training

Training of the k-th flow map Tk begins once the (k −
1)-th block has completed training. Given the samples
{x(i)(tk−1)}ni=1 ∼ fk−1(x) after the (k − 1)-th block, we
can replace Ex∼fk−1

with the empirical average. The diver-
gence of the velocity field in (10) can be computed either by
brute force or via the Hutchinson trace estimator (Hutchin-
son, 1989; Xu et al., 2024b):

∇·vk(x, t) ≈ Eϵ∼pϵ

[
ϵ · vk(x+ σϵ, t)− vk(x, t)

σ

]
, (12)

where we select p(ϵ) = N(0, Id). The Hutchinson estima-
tor significantly improves computational efficiency while
maintaining good performance. More details are provided
in C.2. Furthermore, we apply the Runge-Kutta method for
numerical integration, with details provided in C.3.

Our method adopts block-wise training for the continuous
normalizing flow, as summarized in Algorithm 1. After
training each block, optional Langevin adjustments (Lines
6–9) can be applied to enhance performance. The block-
wise training approach of Annealing Flow significantly re-
duces memory and computational requirements, as only one
neural network is trained at a time.

4.2. Efficient sampling and methods comparisons

Once T is learned, the sampling process of the target q(x)
becomes very efficient. Users simply sample {x(i)(0)}ni=1

from π0(x), and then directly calculate {x(i)(1)}ni=1 ∼ q(x)
through Annealing Flow nets (k = 1, · · · ,K):

x(i)(tk) = Tk(x
(i)(tk−1))

= x(i)(tk−1) +

∫ tk

tk−1

vk(x
(i)(s), s)ds.

(13)

MCMC struggles with poor performance on multi-modal
distributions, long mixing times, and correlated samples, es-
pecially in high dimensions. In contrast, NFs push samples
from π0(x) through a learned transport map, enabling faster
and independent sampling. Although Annealing Flow re-
quires more expensive pre-training, this can be done offline
and only once. Once trained, AF samplers are highly effi-
cient, generating 10,000 samples in 2.1 seconds on average
in our 50D experiments.

Compared to recent NFs, our annealing procedure enables
a more direct and efficient exploration of transport trajecto-
ries. The lower part of Figure 1 illustrates a single transport
trajectory between two consecutive annealing densities. Un-
like many recent annealing-like NFs (Tian et al., 2024; Fan
et al.), which depend on score estimation and matching for
training, our Annealing Flow is based on a dynamic OT ob-
jective, free from score matching, and uniquely supported by

dynamic W2 regularization. This unique loss facilitates op-
timal paths with notably fewer time steps. Detailed results,
algorithmic analyses, and ablation studies are thoroughly
presented in Section 6 and Appendix D.

5. Importance Flow
Sampling from complex distributions is fundamental, which
can benefit tasks like Bayesian analysis and statistical
physics. Here, we briefly discuss another aspect: us-
ing Annealing Flow to sample from the Least-Favorable-
Distribution (LFD) and obtain a low-variance Importance
Sampling (IS) estimator, referred to as Importance Flow.

5.1. Settings

Suppose we want to estimate EX∼π0(x) [h(X)], which can-
not be computed in closed form. A natural approach is to use
Monte Carlo estimation by sampling {xi}ni=1 from π0(x).
However, if xi consistently falls in regions where h(x) has
extreme values, the estimator may exhibit high variance.
For example, with π0(x) = N(0, Id) and h(x) = 1∥x∥≥6,
almost no samples will satisfy ∥x∥ ≥ 6, resulting in a zero
estimate.

To address this situation, we can select an appropriate pro-
posal distribution q(x) and rewrite the expectation and MC
estimator as:

Ex∼π0(x) [h(x)] = Ex∼q(x)

[
π0(x)

q(x)
h(x)

]
≈ 1

n

n∑
i=1

π0(xi)

q(xi)
h(xi), xi ∼ q(x).

(14)

It is well-known that the theoretically optimal proposal for
the importance sampler is: q∗(x) ∝ π0(x)|h(x)| := q̃∗(x).
However, q̃∗(x) is often difficult to sample from, especially
when π0(x) or h(x) is complex. Consequently, people typ-
ically choose a distribution that is similar in shape to the
theoretically optimal proposal but easier to sample from.

Annealing Flow enables sampling from q∗(x), allowing
the construction of an Importance Sampling (IS) estimator.
However, q∗(x) is only known up to the normalizing con-
stant Z, where q∗(x) = 1

Z q̃∗(x) and Z = Ex∼π0(x)[h(x)]
is our target. Therefore, assuming no knowledge of Z, a
common choice can be the Normalized IS Estimator:

ÎN =

n∑
i=1

π0(xi)

q̃∗(xi)
h(xi)/

n∑
i=1

π0(xi)

q̃∗(xi)
. (15)

However, this estimator is often biased, as can be seen from
Jensen’s Inequality.

5

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

5.2. Density ratio estimation

Using samples from q∗(x) and those along the trajectory
obtained via Annealing Flow, we can train a neural network
for Density Ratio Estimation (DRE) of π0(x)/q

∗(x). In-
spired by works Rhodes et al. (2020); Choi et al. (2022); Xu
et al. (2025), we can train a continuous neural network

r(x) = rK(x; θK)◦rK−1(x; θK−1)◦· · ·◦r1(x; θ1), (16)

where samples xi ∼ fK = q∗(x) are inputs and the output
is the density ratio π0(xi)/q

∗(xi). Each rk(x; θk) is trained
using the following loss:

Lk(θk) = Ex(tk−1)∼fk−1

[
log(1 + e−rk(xi(tk−1)))

]
+ Ex(tk)∼fk

[
log(1 + erk(xi(tk)))

]
.

(17)

The theoretically optimal r∗k(x) = log(fk−1(x)/fk(x)),
and thus r∗(x) =

∑K
k=1 r

∗
k(x) = log(π0(x)/q

∗(x)). (Ap-
pendices A.3 and C.5 contain proof and further details.)
To obtain the optimal importance sampling estimator, one
can then directly use samples {xi}ni=1 ∼ q∗(x) from
Annealing Flow and apply (14) together with the DRE:
1
n

∑n
i=1 exp(r

∗(xi)) ·h(xi). The estimator is unbiased and
can achieve zero variance theoretically.

6. Numerical Experiments
In this section, we present numerical experiments compar-
ing Annealing Flow (AF) with the following methods: (1)
Annealing-based MCMC: Parallel Tempering (PT); (2) NN-
assisted MCMC: AI-Sampler (AIS) (Egorov et al., 2024);
(3) Particle Optimization methods: Stein Variational Gra-
dient Descent (SVGD) (Liu & Wang, 2016) and Mollified
Interaction Energy Descent (MIED) (Li et al., 2023); and
(4) Normalizing Flow approaches: Continual Repeated An-
nealed Flow Transport Monte Carlo (CRAFT) (Matthews
et al., 2022), Liouville Flow Importance Sampler (LFIS)
(Tian et al., 2024), and Path-Guided Particle-based Sam-
pling (PGPS) (Fan et al.). Experimental details are provided
in Appendix C.3.

The number of time steps for Annealing Flow (AF) is set
per distribution as follows: (1) GMMs: 12 steps—10 inter-
mediate densities and 2 refinement blocks using q(x) as the
target; (2) Truncated Normal: 8 steps with 7 intermediate
densities; (3) Funnel: 8 steps with each intermediate density
as the target; (4) Exp-Weighted Gaussian: 20 steps—15 in-
termediate densities and 5 refinement blocks; (5) Bayesian
Logistic Regression: 6 steps with each intermediate density
as the target.

For fair comparison, all figures and tables (except Table 3)

Our code is publicly available at https://github.com/
StatFusion/Annealing-Flow-For-Sampling.

use the same number of training steps and intermediate den-
sities for CRAFT, LFIS, PGPS, and our AF, with identical
network architectures and training iterations. All AF results
are reported without the optional Langevin adjustments, and
PGPS is also run without them for fairness. Additional re-
sults—including LFIS with 256 steps, and CRAFT/PGPS
with 128 steps—are provided in Appendix D.

6.1. Experiments and results

Gaussian Mixture Models (GMMs): Figure 3 (main script)
and Figures 4 and 5 (Appendix) show the visualized sam-
pling results of various methods on GMMs. Additionally,
we tested unequally weighted GMMs, where two modes
have double the weight of the others. Numerical evaluation
metrics for experiments with different numbers of modes
and dimensions are presented in Tables 1, 4, and 5. Addi-
tional figures and tables are provided in Appendix D.

Truncated normal distribution: Figure 7 in the Appendix
shows the sampling results for the truncated normal dis-
tribution q̃(x) = 1∥x∥≥cN(0, Id). Notably, even af-
ter relaxing 1∥x∥>c to 1/(1 + exp(−k(∥x∥ − c))) in
∇ log

(
1∥x∥≥cN(0, Id)

)
, methods including CRAFT, LFIS,

PGPS, SVGD, MIED, and AI-Sampler fail to produce mean-
ingful results. Please refer to Figure 6 in Appendix D for
the results of these algorithms.

Funnel distribution: We tested each algorithm for the funnel
distribution

q(x1, x2, . . . , xd) ∝ N (x1 | 0, σ2)

d∏
i=2

N (xi | 0, exp (x1)).

(18)
Figure 9 in Appendix D shows the sampling results.

Exp-Weighted Gaussian (ExpGauss) with an extreme num-
ber of modes in high-dimensional spaces:

We tested each algorithm on sampling from an extreme
distribution:

p(x1, x2, · · · , x10) ∝ e10
∑10

i=1 |xi|− 1
2∥x∥

2

, (19)

which has 210 = 1024 modes arranged at the vertices of a
10-D cube. The Euclidean distance between two horizon-
tally or vertically adjacent modes is 20, while the diagonal
modes are separated by up to

√
10 · 202 ≈ 63.25. We also

tested on the extreme distribution:

p(x1, x2, · · · , x50) ∝ e
10

∑10
i=1

|xi|
σ2
i

+10
∑50

i=11
xi
σ2
i

− 1
2∥x∥

2

,
(20)

which has 210 = 1024 modes arranged at the vertices of
a 50-dimensional space, with imbalanced variances across
modes along different dimensions.
Given the challenge of visualizing results in high-
dimensional space, we first present the number of modes

6

https://github.com/StatFusion/Annealing-Flow-For-Sampling
https://github.com/StatFusion/Annealing-Flow-For-Sampling

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

(a) True (b) AF (c) CRAFT (d) LFIS (e) PGPS (f) PT (g) SVGD (h) MIED (i) AIS

Figure 3. Sampling from a 10-mode Gaussian Mixture Model (GMM) arranged in a circle of radius r = 12. Annealing Flow (AF) always
uses 12 time steps. Top row: AF, CRAFT, LFIS, PGPS are trained using 12 time steps; PGPS is trained without Langevin correction.
Bottom row: AF, CRAFT, LFIS, and PGPS are trained using 12, 128, 256, and 128 time steps, respectively; PGPS is trained with Langevin
correction. See Figures 4 and 5 for additional visualizations.

Table 1. Mode-Weight Mean Squared Error across distributions. The number of time steps for CRAFT, LFIS, and PGPS is set equal to
that of AF. Three additional types of metrics are presented in Tables 4, 5, and 7.

Distributions AF CRAFT LFIS PGPS SVGD MIED AI-Sampler

d = 2

GMM-6-8 (8.5±.37)× 10−5 (7.7±.51)× 10−5 (1.2±.28)× 10−4 (7.4±.44)× 10−5 (1.6±.84)× 10−2 (1.4±.79)× 10−3 (8.3±.48)× 10−5

GMM-8-10 (9.4±.12)× 10−5 (2.7±.39)× 10−4 (5.8±.82)× 10−4 (9.8±.41)× 10−5 (1.7±.92)× 10−2 (1.5±.87)× 10−3 (2.3±.52)× 10−4

GMM-10-12 (5.7±.76)× 10−5 (2.6±.70)× 10−4 (2.3±.41)× 10−3 (2.2±.82)× 10−4 (1.7±.82)× 10−2 (5.6±.77)× 10−3 (1.0±.68)× 10−3

wGMM-10-12 (9.5±.70)× 10−5 (9.7±.98)× 10−5 (3.8±.62)× 10−3 (4.7±.85)× 10−4 (2.4±.93)× 10−2 (5.2±.60)× 10−3 (3.6±.60)× 10−3

d = 5

GMM-6-8 (1.3±.48)× 10−4 (1.5±.18)× 10−2 (5.4±.13)× 10−4 (1.2±.57)× 10−4 (2.1±.75)× 10−2 (1.1±.40)× 10−3 (8.6±.21)× 10−3

GMM-8-10 (2.2±.29)× 10−4 (1.1±.79)× 10−2 (9.2±.41)× 10−4 (4.8±.85)× 10−4 (3.4±.75)× 10−2 (4.8±.94)× 10−3 (2.7±.65)× 10−3

GMM-10-12 (1.8±.65)× 10−4 (8.8±.79)× 10−3 (3.5±.49)× 10−3 (5.2±.73)× 10−4 (5.2±1.8)× 10−2 (3.1±.14)× 10−3 (4.5±.80)× 10−3

wGMM-10-12 (7.3±.76)× 10−4 (9.7±.29)× 10−3 (7.6±.71)× 10−3 (5.9±.78)× 10−4 (6.4±.39)× 10−2 (6.0±.65)× 10−3 (7.9±.32)× 10−3

d = 10 ExpGauss-1024 (8.2±.31)× 10−8 (8.8±.35)× 10−7 (1.5±.66)× 10−6 (1.2±.35)× 10−7 (8.5±.27)× 10−8 (4.6±.18)× 10−6 (8.6±.24)× 10−5

d = 50

ExpGauss-1024 (9.8±.68)× 10−8 (9.4±.80)× 10−7 (2.2±.82)× 10−6 (3.5±.80)× 10−7 (3.3±1.0)× 10−6 (2.1±.92)× 10−6 (1.1±.76)× 10−4

ExpGaussUV-2-1024 (1.8±.97)× 10−7 (7.8±.59)× 10−6 (7.1±.23)× 10−6 (4.8±.23)× 10−6 (7.6±.97)× 10−6 (9.2±1.1)× 10−6 (1.7±.95)× 10−4

ExpGaussUV-10-1024 (2.4±.13)× 10−7 (1.9±.98)× 10−5 (6.9±.47)× 10−5 (9.9±.70)× 10−6 (1.1±.98)× 10−5 (9.5±1.9)× 10−6 (1.4±.99)× 10−4

ExpGaussUV-15-1024 (2.0±.31)× 10−7 (2.2±1.1)× 10−5 (8.9±.66)× 10−5 (1.9±.45)× 10−5 (7.0±.66)× 10−5 (3.7±.59)× 10−5 (1.6±.87)× 10−4

ExpGaussUV-20-1024 (3.6±.60)× 10−7 (4.7±.78)× 10−5 (9.7±.94)× 10−5 (4.8±.82)× 10−5 (8.7±.93)× 10−5 (7.6±.71)× 10−5 (1.8±.90)× 10−4

Table 2. Number of modes explored by different methods in a
50-dimensional Exponentially Weighted Gaussian with 1024 far-
separated modes. The number of time steps for AF, CRAFT, LFIS,
and PGPS is set to 20.

True AF CRAFT LFIS PGPS PT SVGD MIED AIS
d = 2 4 4 2.6 3.6 3.8 3.4 3.9 3.8 3.8
d = 5 32 32 22.3 27.4 31.2 25.2 28.5 28.0 28.3
d = 10 1024 1024 515.4 387.0 826.0 233.7 957.3 923.4 301.2
d = 50 1024 1024 473.2 298.2 813.6 < 10 916.4 890.6 125.6

successfully explored by different algorithms across varying
dimensions in Table 2. Each algorithm was run 10 times,
with 20,000 points sampled per run, and the average number
of modes explored was calculated. Additionally, Table 1
presents the Mode Weights Mean Squared Error along with
results of other distributions.

Evaluation metrics: We report the following metrics
for each applicable experiment: (1) Mode-Weight Mean
Squared Error, (2) Maximum Mean Discrepancy (MMD),
(3) Wasserstein Distance, and (4) Sample-Variance Mean
Squared Error across dimensions. The results for these
metrics are presented in Table 1 (main script) and in Ta-
bles 4, 5 and 7 in the Appendix. Appendix C.7 explains

the details of these metrics. In the tables, GMM refers
to Gaussian Mixture Models, while wGMM denotes un-
equally weighted GMM. The notation (w)GMM-{number
of modes}-{radius of the circle} represents a (w)GMM
with the specified number of modes arranged on a circle of
the given radius. ExpGauss-1024 refers to exponentially
weighted Gaussian experiments involving 1,024 widely sep-
arated modes. ExpGaussUV-{number of UV dimensions}-
1024 refers to ExpGauss with 1024 modes that have Unequal
Variances (UV) across the specified number of dimensions.
Alongside Table 7, we provide more results for ExpGauss,
with details on the selection of σ2

i across dimensions.

Bayesian logistic regression: We use the same Bayesian lo-
gistic regression setting as in Liu & Wang (2016), where a hi-
erarchical structure is assigned to the model parameters. The
weights β follow a Gaussian prior p0(β|α) = N(β; 0, α−1),
and α follow a Gamma prior p0(α) = Gamma(α; 1, 0.01).
Sampling is performed on the posterior p(β, α|D), where
D = {xi, yi}ni=1. The performance comparisons are shown
in Table 3. Detailed settings are given in C.4.

Importance flow: Table 8 in the Appendix reports the prelim-
inary results of the importance flow (discussed in Section 5)
for estimating Ex∼N(0,I)

[
1∥x∥≥c

]
with varying radii c and

7

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

Table 3. Bayesian logistic regression: comparison of different algorithms across datasets. In the table Acc±Std represents Accuracy (%) ±
std (%), and lpost represents the averaged Log-Posterior. The number of time steps is set to 6, 128, 256, and 128 for AF, CRAFT, LFIS,
and PGPS, respectively.

Dataset \ Methods AF CRAFT LFIS PGPS SVGD MIED AI-Sampler

Acc±Std lpost Acc±Std lpost Acc±Std lpost Acc±Std lpost Acc±Std lpost Acc±Std lpost Acc±Std lpost

Diabetes (d = 8) 76.3±2.1 −0.50 76.2±2.2 −0.51 76.2±3.0 −0.50 76.3±2.2 −0.50 76.1±2.5 −0.50 75.8±2.3 −0.50 76.3±2.2 −0.49
Cancer (d = 10) 97.9±1.1 −0.02 98.9±1.2 −0.01 96.4±2.0 −0.03 98.9±1.1 −0.01 97.8±2.5 −0.02 98.9±1.0 −0.01 97.8±2.8 −0.02
Heart (d = 13) 88.5±2.7 −0.32 88.4±3.0 −0.32 86.6±3.6 −0.43 87.2±2.9 −0.40 79.4±3.8 −0.59 86.7±2.2 −0.32 84.2±2.5 −0.46
Australian (d = 14) 86.6±1.2 −0.36 85.0±3.0 −0.39 84.1±2.0 −0.36 85.4±1.7 −0.39 84.6±2.9 −0.37 85.2±1.3 −0.37 84.6±2.3 −0.38
Ijcnn1 (d = 22) 92.0±0.1 −0.20 88.8±0.1 −0.23 89.8±0.4 −0.31 91.2±1.3 −0.20 89.4±0.3 −0.21 91.8±0.2 −0.20 88.3±0.3 −0.33
Svmguide3 (d = 22) 80.0±1.0 −0.47 78.6±0.9 −0.50 80.3±1.2 −0.48 80.0±1.0 −0.49 78.9±1.2 −0.48 80.6±1.0 −0.47 80.1±1.0 −0.47
German (d = 24) 78.0±1.7 −0.47 77.5±1.7 −0.48 76.7±2.3 −0.49 77.7±1.6 −0.48 76.4±1.7 −0.48 77.2±1.8 −0.48 76.9±1.8 −0.48
Splice (d = 61) 86.9±1.7 −0.41 81.1±2.2 −0.49 82.0±1.3 −0.48 82.8±2.1 −0.47 82.4±2.0 −0.47 83.1±1.5 −0.46 80.1±1.9 −0.50

dimensions. Please refer to C.5 for detailed experimental
settings. Additionally, we discussed a possible extension of
the Importance Flow framework in D.4.

6.2. Results discussions and comparisons

Significance of Annealing Procedures: We comment that
annealing procedures play a crucial role in the success of
our AF in high-dimensional settings with widely separated
modes. Appendix D.3.1 and D.3.2 present ablation studies
for cases with no or very few annealing steps. This unique
feature allows AF to succeed on challenging distributions,
unlike most NFs used for sampling.

Little dependence on Monte Carlo sampling: During im-
plementations, we observe that CRAFT heavily depends on
the choice of the MC kernel, one of its major functioning
components. LFIS depends on accurate score estimation
for training, necessitating many more time steps. PGPS
relies heavily on Langevin adjustments after each step, with-
out which its performance becomes poor. In contrast, AF
achieves success with minimal assistance.

Computational and storage efficiency: In Tables 9 and 10 of
Appendix D, we report the training and sampling times for
AF, CRAFT, LFIS, and PGPS. Notably, AF requires signifi-
cantly fewer intermediate time steps than other normalizing
flow methods while achieving superior performance in our
experiments. We also provide ablation studies in D.3.2 with
even fewer time steps. In addition, in our experiments, AF
with a single 32-unit hidden layer and sigmoid activation suf-
fices for most tasks, except Exp-weighted Gaussian, which
requires only 32-32 hidden layers. This also yields notable
storage savings—for instance, 2.1MB total for 20 networks
trained in the 50D ExpGauss experiment.

Training stability: Our unique dynamic optimal transport
(OT) objective with W2 regularization is key to ensuring
much more stable performance, even with far fewer interme-
diate time steps. In Appendix D.3.1 and D.3.2, we provide
ablation studies highlighting the significance of our OT
objective. Unlike the score-matching training, the unique
dynamic OT objective of AF is crucial for ensuring stability,

achieving much higher efficiency, and enabling successful
sampling in high-dimensional and multi-modal settings.

Comparisons with MCMC: Compared to MCMC methods,
AF offers three key advantages. First, AF enables efficient
sampling after a one-time offline training phase, whereas
MCMC requires no training but suffers from long mixing
times and high runtime per effective sample. Second, AF
performs reliably in high-dimensional, multimodal settings
where MCMC often fails to explore all modes, as evidenced
by its poor coverage in the 50D ExpGauss experiment (Table
2). Third, AF generates balanced and independent samples
by construction, while MCMC frequently produces imbal-
anced mode visitation due to stochastic mode-hopping.

7. Conclusions
In this paper, we have proposed the Annealing Flow
(AF) algorithm, a novel approach for sampling from high-
dimensional and multi-modal distributions. With the unique
Annealing-guided dynamic optimal transport objective, AF
offers multiple advantages over existing methods, including
superior performance on extreme distributions, greatly im-
proved training efficiency compared to other NF methods,
minimal reliance on MC assistance, and enhanced training
stability compared to other NF methods.

We establish in Theorem 3.3 that the infinitesimal optimal
velocity field corresponds to the score difference between
consecutive annealing densities, a property unique to our
AF. This desirable feature sets our AF’s objective apart
from recent annealing-like methods (Tian et al., 2024; Fan
et al.). In Appendix B, we demonstrate the equivalence of
the AF objective with the Wasserstein gradient flow and its
associated convergence theorems. A range of experiments
demonstrate that AF performs well across a variety of chal-
lenging distributions and real-world datasets. Finally, the
importance flow discussed in Section 5 may be extended to a
distribution-free model, allowing one to learn an importance
flow from a dataset for sampling its Least-Favorable Distri-
bution (LFD) with minimal variance, as further discussed in
D.4.

8

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

Acknowledgment
This work is partially supported by an NSF DMS-2134037,
CMMI-2112533, and the Coca-Cola Foundation. This work
is also partially supported by the Stewart Fellowship.

Impact Statement
Our work contributes to statistical sampling and machine
learning, offering both theoretical and practical advances.
Sampling is a fundamental and ubiquitous problem with
broad applications in statistical physics, Bayesian modeling,
and machine learning. While our method has broad poten-
tial societal implications, none of which we feel must be
specifically highlighted here.

References
Albergo, M. S. and Vanden-Eijnden, E. Learning to sam-

ple better, 2023. URL https://arxiv.org/abs/
2310.11232. Les Houches 2022 Summer School on
Statistical Physics and Machine Learning.

Arbel, M., Matthews, A., and Doucet, A. Annealed flow
transport monte carlo. In International Conference on
Machine Learning, pp. 318–330. PMLR, 2021.

Axler, S. Measure, integration & real analysis. Springer
Nature, 2020.

Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham, B.,
Wilson, A. G., and Bakshy, E. Botorch: A framework for
efficient monte-carlo bayesian optimization. Advances in
neural information processing systems, 33:21524–21538,
2020.

Benamou, J.-D. and Brenier, Y. A computational fluid me-
chanics solution to the monge-kantorovich mass transfer
problem. Numerische Mathematik, 84(3):375–393, 2000.

Bonati, L., Zhang, Y.-Y., and Parrinello, M. Neural
networks-based variationally enhanced sampling. Pro-
ceedings of the National Academy of Sciences, 116(36):
17641–17647, 2019.

Bou-Rabee, N. and Sanz-Serna, J. M. Randomized hamilto-
nian monte carlo. 2017.

Brofos, J., Gabrié, M., Brubaker, M. A., and Lederman,
R. R. Adaptation of the independent metropolis-hastings
sampler with normalizing flow proposals. In International
Conference on Artificial Intelligence and Statistics, pp.
5949–5986. PMLR, 2022.

Cabezas, A., Sharrock, L., and Nemeth, C. Markovian flow
matching: Accelerating mcmc with continuous normaliz-
ing flows. arXiv preprint arXiv:2405.14392, 2024.

Carlson, J., Gandolfi, S., Pederiva, F., Pieper, S. C., Schi-
avilla, R., Schmidt, K. E., and Wiringa, R. B. Quantum
monte carlo methods for nuclear physics. Reviews of
modern physics, 87(3):1067–1118, 2015.

Chandra, R., Jain, K., Deo, R. V., and Cripps, S. Langevin-
gradient parallel tempering for bayesian neural learning.
Neurocomputing, 359:315–326, 2019.

Chehab, O., Hyvarinen, A., and Risteski, A. Provable ben-
efits of annealing for estimating normalizing constants:
Importance sampling, noise-contrastive estimation, and
beyond. Advances in Neural Information Processing Sys-
tems, 36, 2024.

Cheng, X., Lu, J., Tan, Y., and Xie, Y. Convergence of flow-
based generative models via proximal gradient descent
in wasserstein space. IEEE Transactions on Information
Theory, 2024.

Choi, K., Meng, C., Song, Y., and Ermon, S. Density ratio
estimation via infinitesimal classification. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 2552–2573. PMLR, 2022.

Choi, M. C. Metropolis–hastings reversiblizations of non-
reversible markov chains. Stochastic Processes and their
Applications, 130(2):1041–1073, 2020.

Cobb, A. D. and Jalaian, B. Scaling hamiltonian monte carlo
inference for bayesian neural networks with symmetric
splitting. In Uncertainty in Artificial Intelligence, pp.
675–685. PMLR, 2021.

Cornish, R., Vanetti, P., Bouchard-Côté, A., Deligianni-
dis, G., and Doucet, A. Scalable metropolis-hastings for
exact bayesian inference with large datasets. In Interna-
tional Conference on Machine Learning, pp. 1351–1360.
PMLR, 2019.

Dai, B., He, N., Dai, H., and Song, L. Provable bayesian
inference via particle mirror descent. In Artificial Intelli-
gence and Statistics, pp. 985–994. PMLR, 2016.

Detommaso, G., Cui, T., Marzouk, Y., Spantini, A., and
Scheichl, R. A stein variational newton method. Advances
in Neural Information Processing Systems, 31, 2018.

Doucet, A., Grathwohl, W. S., Matthews, A. G. d. G., and
Strathmann, H. Annealed importance sampling meets
score matching. In ICLR Workshop on Deep Generative
Models for Highly Structured Data, 2022.

Earl, D. J. and Deem, M. W. Parallel tempering: Theory,
applications, and new perspectives. Physical Chemistry
Chemical Physics, 7(23):3910–3916, 2005.

9

https://arxiv.org/abs/2310.11232
https://arxiv.org/abs/2310.11232

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

Egorov, E., Valperga, R., and Gavves, E. Ai-sampler: Adver-
sarial learning of markov kernels with involutive maps. In
Proceedings of the International Conference on Machine
Learning (ICML), 2024.

Fan, M., Zhou, R., Tian, C., and Qian, X. Path-guided
particle-based sampling. In Forty-first International Con-
ference on Machine Learning.

Gabrié, M., Rotskoff, G. M., and Vanden-Eijnden, E. Ef-
ficient bayesian sampling using normalizing flows to as-
sist markov chain monte carlo methods. arXiv preprint
arXiv:2107.08001, 2021.

Gabrié, M., Rotskoff, G. M., and Vanden-Eijnden, E. Adap-
tive monte carlo augmented with normalizing flows. Pro-
ceedings of the National Academy of Sciences, 119(10):
e2109420119, 2022.

Gelfand, S. B., Mitter, S. K., et al. On sampling methods
and annealing algorithms. 1990.

Girolami, M. and Calderhead, B. Riemann manifold
langevin and hamiltonian monte carlo methods. Jour-
nal of the Royal Statistical Society Series B: Statistical
Methodology, 73(2):123–214, 2011.

Griffin, J. E. and Walker, S. G. On adaptive metropolis–
hastings methods. Statistics and Computing, 23:123–134,
2013.

Gu, M. and Sun, S. Neural langevin dynamical sampling.
IEEE Access, 8:31595–31605, 2020.

Haario, H., Saksman, E., and Tamminen, J. An adaptive
metropolis algorithm. 2001.

Hackett, D. C., Hsieh, C.-C., Albergo, M. S., Boyda, D.,
Chen, J.-W., Chen, K.-F., Cranmer, K., Kanwar, G.,
and Shanahan, P. E. Flow-based sampling for multi-
modal distributions in lattice field theory. arXiv preprint
arXiv:2107.00734, 2021.

Hagemann, P., Hertrich, J., and Steidl, G. Stochastic nor-
malizing flows for inverse problems: a markov chains
viewpoint. SIAM/ASA Journal on Uncertainty Quantifi-
cation, 10(3):1162–1190, 2022.

Hoffman, M., Radul, A., and Sountsov, P. An adaptive-
mcmc scheme for setting trajectory lengths in hamiltonian
monte carlo. In International Conference on Artificial
Intelligence and Statistics, pp. 3907–3915. PMLR, 2021.

Hoffman, M. D., Gelman, A., et al. The no-u-turn sampler:
adaptively setting path lengths in hamiltonian monte carlo.
J. Mach. Learn. Res., 15(1):1593–1623, 2014.

Hutchinson, M. F. A stochastic estimator of the trace of the
influence matrix for laplacian smoothing splines. Com-
munications in Statistics-Simulation and Computation,
18(3):1059–1076, 1989.

Izmailov, P., Vikram, S., Hoffman, M. D., and Wilson, A.
G. G. What are bayesian neural network posteriors really
like? In International conference on machine learning,
pp. 4629–4640. PMLR, 2021.

Jay, W. I. and Neil, E. T. Bayesian model averaging for
analysis of lattice field theory results. Physical Review D,
103(11):114502, 2021.

Jordan, R., Kinderlehrer, D., and Otto, F. The variational
formulation of the fokker–planck equation. SIAM journal
on mathematical analysis, 29(1):1–17, 1998.

Kandasamy, K., Krishnamurthy, A., Schneider, J., and
Póczos, B. Parallelised bayesian optimisation via thomp-
son sampling. In International conference on artificial
intelligence and statistics, pp. 133–142. PMLR, 2018.

Karagiannis, G. and Andrieu, C. Annealed importance
sampling reversible jump mcmc algorithms. Journal of
Computational and Graphical Statistics, 22(3):623–648,
2013.

Li, L., Liu, Q., Korba, A., Yurochkin, M., and Solomon, J.
Sampling with mollified interaction energy descent. In
Proceedings of the International Conference on Learning
Representations (ICLR), 2023.

Li, T.-M., Lehtinen, J., Ramamoorthi, R., Jakob, W., and
Durand, F. Anisotropic gaussian mutations for metropo-
lis light transport through hessian-hamiltonian dynamics.
ACM Transactions on Graphics (TOG), 34(6):1–13, 2015.

Li, Z., Chen, Y., and Sommer, F. T. A neural network mcmc
sampler that maximizes proposal entropy. Entropy, 23(3):
269, 2021.

Liu, Q. Stein variational gradient descent as gradient flow.
Advances in neural information processing systems, 30,
2017.

Liu, Q. and Wang, D. Stein variational gradient descent: A
general purpose bayesian inference algorithm. Advances
in neural information processing systems, 29, 2016.

Lozanovski, B., Downing, D., Tran, P., Shidid, D., Qian,
M., Choong, P., Brandt, M., and Leary, M. A monte
carlo simulation-based approach to realistic modelling
of additively manufactured lattice structures. Additive
Manufacturing, 32:101092, 2020.

Lynn, J. E., Tews, I., Gandolfi, S., and Lovato, A. Quantum
monte carlo methods in nuclear physics: recent advances.

10

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

Annual Review of Nuclear and Particle Science, 69(1):
279–305, 2019.

Maddison, C. J., Paulin, D., Teh, Y. W., O’Donoghue, B.,
and Doucet, A. Hamiltonian descent methods. arXiv
preprint arXiv:1809.05042, 2018.

Matthews, A., Arbel, M., Rezende, D. J., and Doucet, A.
Continual repeated annealed flow transport monte carlo.
In International Conference on Machine Learning, pp.
15196–15219. PMLR, 2022.

Maurais, A. and Marzouk, Y. Sampling in unit time with
kernel fisher-rao flow. arXiv preprint arXiv:2401.03892,
2024.

Miao, Y., Feher, V. A., and McCammon, J. A. Gaussian
accelerated molecular dynamics: unconstrained enhanced
sampling and free energy calculation. Journal of chemical
theory and computation, 11(8):3584–3595, 2015.

Neal, R. M. Annealed importance sampling. Statistics and
computing, 11:125–139, 2001.

Nitanda, A. and Suzuki, T. Stochastic particle gradi-
ent descent for infinite ensembles. arXiv preprint
arXiv:1712.05438, 2017.

Overstall, A. M., Woods, D. C., and Parker, B. M. Bayesian
optimal design for ordinary differential equation models
with application in biological science. Journal of the
American Statistical Association, 2020.

Pulido, M. and van Leeuwen, P. J. Sequential monte carlo
with kernel embedded mappings: The mapping particle
filter. Journal of Computational Physics, 396:400–415,
2019.

Qiu, Y. and Wang, X. Efficient multimodal sampling via
tempered distribution flow. Journal of the American Sta-
tistical Association, 119(546):1446–1460, 2024.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In International conference on ma-
chine learning, pp. 1530–1538. PMLR, 2015.

Rhodes, B., Xu, K., and Gutmann, M. U. Telescoping
density-ratio estimation. Advances in neural information
processing systems, 33:4905–4916, 2020.

Ribera Borrell, E., Quer, J., Richter, L., and Schütte, C.
Improving control based importance sampling strate-
gies for metastable diffusions via adapted metadynamics.
SIAM Journal on Scientific Computing, 46(2):S298–S323,
2024.

Ruthotto, L., Osher, S. J., Li, W., Nurbekyan, L., and Fung,
S. W. A machine learning framework for solving high-
dimensional mean field game and mean field control prob-
lems. Proceedings of the National Academy of Sciences,
117(17):9183–9193, 2020.

Salo-Ahen, O. M., Alanko, I., Bhadane, R., Bonvin, A. M.,
Honorato, R. V., Hossain, S., Juffer, A. H., Kabedev, A.,
Lahtela-Kakkonen, M., Larsen, A. S., et al. Molecular dy-
namics simulations in drug discovery and pharmaceutical
development. Processes, 9(1):71, 2020.

Shahbaba, B., Lan, S., Johnson, W. O., and Neal, R. M.
Split hamiltonian monte carlo. Statistics and Computing,
24:339–349, 2014.

Sorkin, G. B. Efficient simulated annealing on fractal energy
landscapes. Algorithmica, 6:367–418, 1991.

Stanton, S., Maddox, W., Gruver, N., Maffettone, P., De-
laney, E., Greenside, P., and Wilson, A. G. Accelerating
bayesian optimization for biological sequence design with
denoising autoencoders. In International Conference on
Machine Learning, pp. 20459–20478. PMLR, 2022.

Stephan, M., Hoffman, M. D., Blei, D. M., et al. Stochas-
tic gradient descent as approximate bayesian inference.
Journal of Machine Learning Research, 18(134):1–35,
2017.

Syed, S., Bouchard-Côté, A., Deligiannidis, G., and Doucet,
A. Non-reversible parallel tempering: a scalable highly
parallel mcmc scheme. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 84(2):321–350,
2022.

Tian, Y., Panda, N., and Lin, Y. T. Liouville flow importance
sampler. arXiv preprint arXiv:2405.06672, 2024.

Van Groenigen, J. and Stein, A. Constrained optimization
of spatial sampling using continuous simulated annealing.
Technical report, Wiley Online Library, 1998.

Van Ravenzwaaij, D., Cassey, P., and Brown, S. D. A sim-
ple introduction to markov chain monte–carlo sampling.
Psychonomic bulletin & review, 25(1):143–154, 2018.

Wolniewicz, L. M., Sadowski, P., and Corti, C. Neural
surrogate hmc: Accelerated hamiltonian monte carlo with
a neural network surrogate likelihood. arXiv preprint
arXiv:2407.20432, 2024.

Wu, D., Gao, J., and Yin, F. Bayesian-boosted metaloc: Ef-
ficient training and guaranteed generalization for indoor
localization. In ICASSP 2024-2024 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6070–6074. IEEE, 2024.

11

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

Wu, H., Köhler, J., and Noé, F. Stochastic normalizing flows.
Advances in Neural Information Processing Systems, 33:
5933–5944, 2020.

Xu, C., Cheng, X., and Xie, Y. Local flow matching genera-
tive models. arXiv preprint arXiv:2410.02548, 2024a.

Xu, C., Cheng, X., and Xie, Y. Normalizing flow neural
networks by jko scheme. Advances in Neural Information
Processing Systems, 36, 2024b.

Xu, C., Lee, J., Cheng, X., and Xie, Y. Flow-based distribu-
tionally robust optimization. IEEE Journal on Selected
Areas in Information Theory, 2024c.

Xu, C., Cheng, X., and Xie, Y. Computing high-dimensional
optimal transport by flow neural networks. In The 28th
International Conference on Artificial Intelligence and
Statistics, 2025. URL https://openreview.net/
forum?id=oEWYNesvRJ.

Zhang, G., Hsu, K., Li, J., Finn, C., and Grosse, R. B. Dif-
ferentiable annealed importance sampling and the perils
of gradient noise. Advances in Neural Information Pro-
cessing Systems, 34:19398–19410, 2021.

12

https://openreview.net/forum?id=oEWYNesvRJ
https://openreview.net/forum?id=oEWYNesvRJ

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

A. Proofs
A.1. Proofs in Section 3.1

Proposition 3.1. (KL-Divergence Decomposition) Given the samples from fk−1, the KL-Divergence between T#fk−1 and
fk is equivalent to:

KL(T#fk−1∥fk) = c+ Ex∼fk−1

[
− log f̃k(x(tk))−

∫ tk

tk−1

∇ · vk(x(s), s) ds

]
,

up to a constant c that is independent of vk(x(s), s).

Proof:

Let ρ(x, t) denote the density evolution under the transport map T , as defined in the continuity equation (2). By the
constraints in the transport map objective (3), we have T#fk−1(x) = ρ(x, tk). The expression for KL-divergence is given
by:

KL(T#fk−1 ∥ fk) = Ex∼ρ(x,tk)

[
log

T#fk−1(x)

fk(x)

]
= Ex∼ρ(x,tk) [log T#fk−1(x)− log fk(x)] . (21)

Recall that in equation (4), we express fk(x) = Zkf̃k(x). Substituting this into the equation yields:

KL(T#fk−1 ∥ fk) = Ex∼ρ(x,tk)

[
log T#fk−1(x)− log f̃k(x)

]
− logZk (22)

= Ex∼ρ(x,tk−1)

[
log T#fk−1(x(tk))− log f̃k(x(tk))

]
− logZk, (23)

where the second equality holds because the flow T maps samples x(tk−1) to x(tk) in a way that preserves the probability
measure by the continuity equation (2). That is,

Ex∼ρ(x,tk)[·] = Ex∼ρ(x,tk−1)

[
·
∣∣
x(tk−1)→x(tk)

]
, (24)

where the particles x(t) evolve according to the Neural ODE (1).

Next, to compute log T#fk−1(x(tk)), we use the fact that the dynamics of the pushforward density ρ are governed by the
velocity field vk(x(s), s):

d

ds
log ρ(x(s), s) =

∇ρ(x(s), s) · ∂sx(s) + ∂sρ(x(s), s)

ρ(x(s), s)
(25)

=
∇ρ · vk −∇ · (ρvk)

ρ

∣∣∣
(x(s),s)

(by (1) and (2)) (26)

=
∇ρ · vk − (∇ρ · vk + ρ∇ · vk)

ρ

∣∣∣
(x(s),s)

(27)

= −∇ · vk(x(s), s). (28)

Integrating this equation over the interval s ∈ [tk−1, tk), we find:

log T#fk−1(x(tk)) = log ρ(x(tk), tk) = log ρ(x(tk−1), tk−1)−
∫ tk

tk−1

∇ · vk(x(s), s)ds. (29)

We now substitute this result back into the KL-divergence expression:

KL(T#fk−1 ∥ fk) = Ex∼ρ(x,tk−1)

[
log ρ(x(tk−1), tk−1)−

∫ tk

tk−1

∇ · vk(x(s), s)ds− log f̃k(x(tk))

]
− logZk. (30)

Note that Ex∼ρ(x(tk−1),tk−1) [log ρ(x(tk−1), tk−1)] is independent of vk(x(s), s) : tk−1 → tk and thus acts as a constant
term, along with − logZk, which we now denote as c:

c = Ex∼ρ(x(tk−1),tk−1) [log ρ(x(tk−1), tk−1)]− logZk. (31)

13

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

Besides, after successfully training the previous velocity fields, we have ρ(x(tk−1), tk−1) = fk−1(x). Therefore, the
relevant terms for the KL-divergence are:

KL(T#fk−1 ∥ fk) = c+ Ex∼fk−1

[
− log f̃k(x(tk))−

∫ tk

tk−1

∇ · vk(x(s), s)ds

]
. (32)

Lemma 3.2. (Wasserstein Distance Discretization) Let x(t) be particle trajectories driven by a smooth velocity field
vk(x(t), t) over the time interval [tk−1, tk), where hk = tk − tk−1. Assume that vk(x, t) is Lipschitz continuous in both x
and t. By dividing [tk−1, tk) into S equal mini-intervals with grid points tk−1,s, where s = 0, 1, . . . , S and tk−1,0 = tk−1,
tk−1,S = tk, we have:∫ tk

tk−1

Ex(t)∼ρ(·,t)
[
∥vk(x(t), t)∥2

]
dt =

S

hk

S−1∑
s=0

E
[
∥x(tk−1,s+1)− x(tk−1,s)∥2

]
+O

(
h2
k/S

)
.

Proof:

Consider particle trajectories x(t) driven by a sufficiently smooth velocity field vk(x(t), t) over the time interval [tk−1, tk),
where hk = tk − tk−1. We divide this interval into S equal mini-intervals of length δt = hk

S , resulting in grid points
tk−1,s = tk−1 + sδt for s = 0, 1, . . . , S, where δt = tk−tk−1

S .

Within each mini-interval [tk−1,s, tk−1,s+1], we perform a Taylor expansion of x(t) around tk−1,s:

x(tk−1,s+1) = x(tk−1,s) + vk(x(tk−1,s), tk−1,s)δt+
1

2

dvk
dt

δt2 +O(δt3), (33)

where dvk

dt denotes the total derivative of vk with respect to time.

The squared displacement over the mini-interval [tk−1,s, tk−1,s+1] is given by:

∥x(tk−1,s+1)− x(tk−1,s)∥2 =

∥∥∥∥vk(x(tk−1,s), tk−1,s)δt+
1

2

dvk
dt

δt2 +O(δt3)

∥∥∥∥2 (34)

= ∥vk(x(tk−1,s), tk−1,s)∥2δt2 +O(δt3), (35)

as we assume that vk is L-Lipschitz continuous and it follows that |dvk

dt | ≤ L. The higher-order terms O(δt3) become
negligible as δt → 0.

Summing the expected squared displacements over all mini-intervals, we obtain:

S−1∑
s=0

E
[
∥x(tk−1,s+1)− x(tk−1,s)∥2

]
= δt2

S−1∑
s=0

E
[
∥vk(x(tk−1,s), tk−1,s)∥2

]
+O

(
S · δt3

)
. (36)

Now, we examine the L.H.S. of Lemma 3.2 by approximating the integral of the expected squared velocity using a Riemann
sum: ∫ tk

tk−1

Ex(t)

[
∥vk(x(t), t)∥2

]
dt = δt

S−1∑
s=0

E
[
∥vk(x(tk−1,s), tk−1,s)∥2

]
+O

(
S · δt2

)
= δt

[
1

δt2

S−1∑
s=0

E
[
∥x(tk−1,s+1)− x(tk−1,s)∥2

]
+O(S · δt)

]
+O(S · δt2)

=
1

δt

S−1∑
s=0

E
[
∥x(tk−1,s+1)− x(tk−1,s)∥2

]
+O

(
S · δt2

)
,

(37)

where the Riemann sum error term O(S · δt2) arises from a well-known result (for instance, see Chapter 1 of Axler (2020)),
given the assumption that vk is L−Lipschitz continuous.

14

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

A.2. Proofs in Section 3.2

Before formally proving Theorem 3.3, we first reformulate the objective in (10) to a form involving the Stein operator, as
stated in Lemma 3.3.

Lemma 3.3. (Objective Reformulation) Denote hk = tk − tk−1, and let sk = ∇ log fk(x) denote the score function of fk.
As hk → 0 and with γ = 1

2 , the objective in (10) becomes equivalent to the following:

min
vk=vk(·,0)

Ex∼fk−1

[
−Afkvk +

1

2
∥vk∥2

]
, Afkvk := sk · vk +∇ · vk.

Proof:

From the Neural ODE (1) and using Taylor’s expansion, we obtain:

x(tk)− x(tk−1) =

∫ tk

tk−1

vk(x(s), s)ds = hkvk(x(tk−1), tk−1) +O(h2
k) (38)

Next, by performing Taylor expansion of − log f̃k(x(tk)) around tk−1:

− log f̃k(x(tk)) = − log f̃k(x(tk−1)) + (x(tk)− x(tk−1))∇(− log f̃k(x(tk−1))) +O(h2
k)

= − log f̃k(x(tk−1))− hk∇ log f̃k(x(tk−1)) · vk(x(tk−1), tk−1) +O(h2
k)

= − log f̃k(x(tk−1))− hk sk(x(tk−1)) · vk(x(tk−1), tk−1) +O(h2
k),

(39)

where we define the score function sk = ∇ log fk = ∇ log f̃k.

Besides, we also have that: ∫ tk

tk−1

∇ · vk(x(s), s)ds = hk∇ · vk(x(tk−1), tk−1) +O(h2
k). (40)

As hk → 0, we no longer need to divide the time interval, i.e., S = 1. The objective function (10) can be then approximated
as:

Ex∼fk−1

[
− log f̃k(x(tk))−

∫ tk

tk−1

∇ · vk(x(s), s) ds+
1

2hk
∥x(tk)− x(tk−1)∥2

]

= Ex∼fk−1

[(
− log f̃k(x(tk−1))− hk sk(x(tk−1)) · vk(x(tk−1), tk−1) +O(h2

k)
)

−
(
hk∇ · vk(x(tk−1), tk−1) +O(h2

k)
)
+

1

2hk
∥hkvk(x(tk−1)) +O(h2

k)∥2
]

= Ex∼fk−1

[
− log f̃k(x) + hk

(
−sk(x) · vk(x, tk−1)−∇ · vk(x, tk−1) +

1

2
∥vk(x, tk−1)∥2

)
+O(h2

k)

]
(41)

Since Ex(tk−1)∼fk−1
[− log f̃k(x(tk−1))] is independent of vk(x, t), as hk → 0, the minimization of the leading term is

equivalent to:

min
vk=vk(·,0)

Ex∼fk−1

[
−Afkvk +

1

2
∥vk∥2

]
, Afkvk := sk · vk +∇ · vk. (42)

Here, Afkvk denotes the Stein operator applied to the vector field vk under the target density fk.

15

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

Theorem 3.3 (Optimal Velocity Field as Score Difference) Suppose hk → 0. Let fk−1 and fk be continuously differentiable
on Rd. Assume that ∇ · vk(x) exists for all x ∈ Rd, and ∇ · vk(x), sk−1 and sk belong to L2(fk−1). Assume that the
components of vk are independent and lim∥x∥→∞ fk−1(x)∥vk(x)∥2 = 0. Under these conditions, the minimizer of (10) is:

lim
hk→0

v∗k = sk − sk−1.

Proof:

Under the assumptions that hk → 0 and γ = 1
2 , we begin by considering the equivalent minimization objective derived in

Lemma 3.3:

min
vk

J(vk) := min
vk

Ex∼fk−1

[
−Afkvk +

1

2
∥vk∥2

]
, Afkvk := sk · vk +∇ · vk.

Expanding the objective functional, we have:

Ex∼fk−1

[
−sk · vk −∇ · vk +

1

2
∥vk∥2

]
=

∫
Rd

fk−1(x)

(
−sk(x) · vk(x)−∇ · vk(x) +

1

2
∥vk(x)∥2

)
dx. (43)

Define Br = {x ∈ Rd : ∥x∥ ≤ r}, and let ∂Br denote the boundary of Br, which is the sphere of radius r. Under the
assumption that lim∥x∥→∞ fk−1(x)∥vk(x)∥2 = 0, we have the following:

|
∫
Rd

∇ · (fk−1 vk) dx| = lim
r→∞

|
∫
Br

∇ · (fk−1vk) dx| (44)

= lim
r→∞

|
∫
∂{x∈Rd:∥x∥<r}

fk−1(x)vk(x) · n(x)dS(x)| (45)

≤ lim
r→∞

∫
∂{x∈Rd:∥x∥<r}

fk−1∥vk∥2∥n(x)∥2dS(x) (46)

= lim
r→∞

∫
∂{x∈Rd:∥x∥<r}

fk−1∥vk∥2dS(x) (47)

= 0 (48)

Therefore,
∫
Rd ∇ · (fk−1 vk) dx = 0. Next, we further expand the divergence theorem:

0 =

∫
Rd

∇ · (fk−1(x)vk(x))dx

=

∫
Rd

fk−1(x)∇ · vk(x)dx+

∫
Rd

vk(x) · ∇fk−1(x)dx

=

∫
Rd

fk−1(x)∇ · vk(x)dx+

∫
Rd

vk(x) · sk−1(x) fk−1(x) dx

(49)

Substitute the result back into the objective functional, we have:

Ex∼fk−1

[
−sk · vk −∇ · vk +

1

2
∥vk∥2

]
=

∫
Rd

fk−1(x)

(
−sk(x) · vk(x)−∇ · vk(x) +

1

2
∥vk(x)∥2

)
dx (50)

=

∫
Rd

fk−1(x)

(
(sk−1(x)− sk(x)) · vk(x) +

1

2
∥vk(x)∥2

)
dx. (51)

The integrand does not involve ∇vk,j(x), j = 1, · · · d and higher-order derivatives. Assuming the components vk,j , j =
1, · · · , d of vk are independent, we can take the functional derivative component-wise and set them to zero:

δJ

δvk
= fk−1 (vk + (sk−1 − sk)) = 0, (52)

Since fk−1 > 0 for all x, this implies:
v∗k = sk − sk−1. (53)

16

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

A.3. Proofs in Section 5.2

Density Ratio Estimation (DRE) By optimizing the following loss function:

Lk(θk) = Ex(tk−1)∼fk−1

[
log(1 + e−rk(xi(tk−1)))

]
+ Ex(tk)∼fk

[
log(1 + erk(xi(tk)))

]
,

the model learns an optimal r∗(x; θk) = log fk−1(x)
fk(x)

.

Proof:

Express the loss function as integrals over x:

Lk =

∫
fk−1(x) log

(
1 + e−rk(x)

)
dx+

∫
fk(x) log

(
1 + erk(x)

)
dx. (54)

Compute the functional derivative of Lk with respect to rk:

δLk(rk)

δrk
= −fk−1(x) ·

e−rk(x)

1 + e−rk(x)
+ fk(x) ·

erk(x)

1 + erk(x)
. (55)

Next, we can set the derivative δlk/δrk(x) to zero to find the minimizer r∗k(x):

r∗k(x) = ln

(
fk−1(x)

fk(x)

)
. (56)

Therefore, by concatenating each r∗k(x), we obtain

r∗(x) =

K∑
k=1

r∗k(x) = log
fK−1(x)

fK(x)
· fK−2(x)

fK−1(x)
· · · · · f0(x)

f1(x)
= log

f0(x)

fK(x)
= log

π0(x)

q∗(x)
, (57)

the log density ratio between π0(x) and q∗(x).

B. Equivalence to Wasserstein gradient flow when β = 1

In this section, we demonstrate the equivalence between the dynamic optimal transport (OT) objective of AF and the
Wasserstein Gradient Flow, under the condition that all βk (k = 1, 2, . . . ,K) are set to 1, and a static Wasserstein
regularization is used in place of the dynamic Wasserstein regularization introduced in 9.

Langevin Dynamics and Fokker-Planck Equation: Langevin Dynamics is represented by the following SDE.

dXt = −∇E(Xt) dt+
√
2 dWt, (58)

where E(x) = − log f(x) is the energy function of the equilibrium density f(x, T) = q(x). Let X0 ∼ pX and denote the
density of Xt by ρ(x, t). The Langevin Dynamics corresponds to the Fokker-Planck Equation (FPE), which describes the
evolution of ρ(x, t) towards the equilibrium ρ(x, T) = q(x), as follows:

∂tρ = ∇ · (ρ∇E +∇ρ), ρ(x, 0) = pX(x). (59)

JKO Scheme and Wasserstein Gradient Flow: The Jordan-Kinderlehrer-Otto (JKO) scheme (Jordan et al., 1998) is a time
discretization scheme for gradient flows to minimize KL(ρ∥q) under the Wasserstein-2 metric. Given a target density q
and a functional F(ρ, q) = KL(ρ∥q), the JKO scheme approximates the continuous gradient flow of ρ(x, t) by solving a
sequence of minimization problems. Assume there are K steps with time stamps 0 = t0, t1, · · · , tK = T , at each time
stamp tk, the scheme updates ρk at each time step by minimizing the functional

ρk = argmin
ρ

(
F(ρ, q) +

1

2τ
W 2

2 (ρ, ρk−1)

)
, (60)

17

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

where W2(ρ, ρk−1) denotes the squared 2-Wasserstein distance between the probability measures ρ and ρk. It was proven in
Jordan et al. (1998) that as h = tk − tk−1 approaches 0, the solution ρ(·, kh) provided by the JKO scheme converges to the
solution of (59), at each step k.

It is straightforward to see that solving for the transport density ρk using (60) is equivalent to solving for the transport map
Tk via:

Tk = arg min
T :Rd→Rd

(
KL(T#ρk−1∥q) +

1

2τ
Ex∼ρk−1

∥x− Tk(x)∥2
)

(61)

Therefore, it is immediately evident that the Wasserstein gradient flow based on the discretized JKO scheme is equivalent to
(6) when each f̃k(x) is set as the target distribution q(x), i.e., when all βk are set to 1, and the second term in the objective
(6) is relaxed to a static W2 regularization instead of a dynamic W2 regularization.

There are some well-established properties regarding the convergence of densities under the Wasserstein Gradient Flow
objective when the target distribution q(x) is log-concave. Define P2 = {P :

∫
Rd ∥x2∥dP (x) < ∞} and Pr

2 = {P ∈ P2 :
P ≪ dx}.
Assumption B.1. For all n, the learned velocity field v̂n guarantees that the mappings Tn is non-degenerate. Additionally,
for the time interval [tn−1, tn], the integrated squared deviation of the velocity field satisfies the inequality∫ tn

tn−1

∫
Rd

∥v − v̂∥2ρ dx dt ≤ ϵ2, ϵ ∈ (0, 1).

Assumption B.2. F (ρ, q) : ρ → (−∞,∞] where
∫
Rd ∥x2∥dρ(x) < ∞, is lower semi-continuous; Dom(F) ⊂ Pr

2 ; F (ρ, q)
is λ-convex a.g.g. in P2 = {P :

∫
Rd ∥x2∥dP (x) < ∞}.

When the energy function E of q = e−E is strongly convex, and F (ρ, q) is chosen as in (61) in our method, Assumption
2 holds true. Under the Assumptions 1-2, the Wasserstein gradient flow converges toward the target distribution at a
polynomial rate in terms of the Wasserstein W2 distance. Specifically, the distance between the iterates and the target
distribution decays geometrically with each iteration, up to a fixed error term (Cheng et al., 2024).

Furthermore, when additional regularity and integrability conditions are imposed—ensuring boundedness, smoothness, and
suitable tail behavior—the convergence behavior improves in a stronger sense. Under these conditions, the gradient flow is
shown to converge exponentially fast in the χ2-divergence measure, meaning that the discrepancy between the iterates and
the target decays at an exponential rate (Xu et al., 2024a).

Therefore, when all βk are set to 1 and a static Wasserstein regularization is used in place of the dynamic Wasserstein
regularization introduced in (9), our AF retains the well-established convergence properties for log-concave q, in terms of
both the W2-distance and the χ2-divergence measure. Furthermore, for non-log-concave densities q, we have established in
Theorem 3.3 that the difference in the optimal velocity field between two consecutive annealing densities equals the score
difference, under the unique dynamic optimal transport (OT) objective of our AF.

C. Experimental Details
C.1. Alternative Loss

We empirically observed that replacing the first term − log f̃k(x(tk)) in the objective (10) with the approximation
−hk∇ log f̃k(x(tk)) · vk leads to improved performance. This substitution is motivated by the first-order Taylor expansion
of − log f̃k(x(tk−1)) around x(tk), given by:

− log f̃k(x(tk−1)) = − log f̃k(x(tk))−∇ log f̃k(x(tk)) · (x(tk−1)− x(tk)) +O(h2
k)

= − log f̃k(x(tk)) + hk∇ log f̃k(x(tk)) · vk +O(h2
k).

(62)

Therefore, the alternative objective to (10) is given by:

min
vk(·,t)

Ex(tk−1)∼fk−1

[
c1 − hk∇ log f̃k(x(tk)) · vk −

∫ tk

tk−1

∇ · vk(x(s), s)ds+ α

S−1∑
s=0

∥x(tk−1,s+1)− x(tk−1,s)∥2
]
,

(63)

18

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

where c1 = − log f̃k(x(tk−1))+O(h2
k), noting that − log f̃k(x(tk−1)) is independent of vk given samples x(tk−1) ∼ fk−1.

We found that this alternative loss led to slightly better performance across several distributions. The alternative objective
(63) was used consistently for experiments on the Gaussian Mixture Model, Funnel distribution, and Exponentially Weighted
Gaussian. For the Truncated Normal and Bayesian Logistic Regression tasks, we retained the original objective (10)
formulation.

C.2. Hutchinson trace estimator

The objective function in (10) involve the calculation of ∇ · vk(x, t), i.e., the divergence of the velocity field represented by
a neural network. This may be computed by brute force using reverse-mode automatic differentiation, which is much slower
and less stable in high dimensions.

We can express ∇ · vk(x, t) = Eϵ∼p(ϵ)

[
ϵTJv(x)ϵ

]
, where Jv(x) is the Jacobian of vk(x, t) at x. Given a fixed ϵ, we have

Jv(x)ϵ = limσ→0
vk(x+σϵ)−vk(x)

σ , which is the directional derivative of vk along the direction ϵ. Therefore, for a sufficiently
small σ > 0, we can propose the following estimator (Hutchinson, 1989; Xu et al., 2024b):

∇ · vk(x, t) ≈ Eϵ∼p(ϵ)

[
ϵT

vk(x+ σϵ, t)− vk(x, t)

σ

]
, (64)

where p(ϵ) is a distribution in RdY satisfying E[ϵ] = 0 and Cov(ϵ) = I (e.g., a standard Gaussian). This approximation
becomes exact as σ → 0. In our experiments, we set σ = 0.02/

√
d.

C.3. Other Annealing Flow settings

Time steps and numerical integration

By selecting K values of β, we divide the original time scale [0, 1] of the Continuous Normalizing Flow (2) and (3) into K
intervals: [tk−1, tk) for k = 1, 2, . . . ,K. Notice that the learning of each velocity field vk depends only on the samples
from the (k − 1)-th block, not on the specific time stamp. Therefore, we can re-scale each block’s time interval to [0, 1],
knowing that using the time stamps [(k− 1)h, kh] yields the same results as using [0, 1] for the neural network vk(x, t). For
example, the neural network will learn vk(x, 0) = vk(x, (k − 1)h) and vk(x, 1) = vk(x, kh), regardless of the time stamps.

Recall that we relaxed the shortest transport map path into a dynamic W2 regularization loss via Lemma 3.2. This requires
calculating intermediate points x(tk−1,s), where s = 0, 1, . . . , S. We set S = 3, evenly spacing the points on [tk−1, tk),
resulting in the path points x(tk−1), x(tk−1 + hk/3), x(tk−1 + 2hk/3), x(tk). To compute each x(tk−1,s), we integrate
the velocity field vk between tk−1 and tk−1,s, using the Runge-Kutta method for numerical integration. Specifically, to
calculate x(t+ h) based on x(t) and an intermediate time stamp t+ h

2 :

x(t+ h) = x(t) +
h

6
(k1 + 2k2 + 2k3 + k4) ,

k1 = v(x(t), t), k2 = v

(
x(t) +

h

2
k1, t+

h

2

)
,

k3 = v

(
x(t) +

h

2
k2, t+

h

2

)
, k4 = v (x(t) + hk3, t+ h)

Here, h is the step size, and v(x, t) represents the velocity field.

The choice of βk

In the experiments on Gaussian Mixture Models (GMMs), we set the number of intermediate βk values to 8, equally spaced such that
β0 = 0, β1 = 1/8, β2 = 2/8, . . . , β8 = 1. We chose the easy-to-sample distribution π0(x) as N(0, Id). Finally, we added 2 refinement
blocks. The intermediate distributions are defined as:

f̃k(x) = π0(x)
1−βk q̃(x)βk .

In the experiment on the Truncated Normal Distribution, we did not select βk in the same manner as for the GMM and Exp-Weighted
Gaussian distributions. Instead, following the same Annealing philosophy, we construct a gradually transforming bridge from π0(x) to
q̃(x) = 1|x|≥cN(0, Id) by setting each intermediate density as:

f̃k(x) = 1∥x∥≥c/(k+1)N(0, Id).

19

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

The number of intermediate βk values is set to 8.

In the experiment on funnel distributions, we set all βk = 1, with the number of time steps set to 8. As discussed in Appendix B, the
algorithm becomes equivalent to a Wasserstein gradient descent problem.

In the experiment on 50D Exp-Weighted Gaussian, 20 time steps are used, with 15 intermediate densities and 5 refinement blocks.

The choice of α

In the experiments on Gaussian Mixture Models (GMMs), funnel distributions, truncated normal, and Bayesian Logistic
Regressions, α is uniformly set to [8

3
, 8
3
, 4
3
, 4
3
, 2
3
, 2
3
, 2
3
, · · ·]. In the experiments on Exp-Weighted Gaussian, α is set to

[20
3
, 20

3
, 20

3
, 20

3
, 10

3
, 10

3
, 10

3
, 10

3
, 5
3
, 5
3
, 5
3
, 5
3
, 1, 1, 1, 1, 1, 1, 1, 1].

Neural networks and selection of other hyperparameters

The neural network structure in our experiments is consistently set with hidden layers of size 32-32. During implementation, we observed
that when d ≤ 5, even a neural network with a single hidden layer of size 32 can perform well for sampling. However, for consistency
across all experiments, we uniformly set the structure to 32-32.

We sample 100,000 data points from N(0, Id) for training, with a batch size of 1,000. The Adam optimizer is used with a learning rate of
0.0001, and the maximum number of iterations for each block vk is set to 1,000.

Different numbers of test samples are used for reporting the experimental results: 5,000 points are sampled and plotted for the experiment
on Gaussian Mixture Models, 5,000 points for the experiment on Truncated Normal Distributions, 10,000 points for the experiment on
Funnel Distributions, and 10,000 points for the experiment on Exp-Weighted Gaussian with 1,024 modes in 10D space.

C.4. Bayesian logistic regression

We use a hierarchical Bayesian structure for logistic regression across a range of datasets provided by LIBSVM. The detailed setting of
the Bayesian Logistic Regression is as follows.

We adopt the same Bayesian logistic regression setting as described in Liu & Wang (2016), where a hierarchical structure is assigned
to the model parameters. The weights β follow a Gaussian prior, p0(β|α) = N(β; 0, α−1), and α follows a Gamma prior, p0(α) =
Gamma(α; 1, 0.01). The datasets used are binary, where xi has a varying number of features, and yi ∈ {+1,−1} across different
datasets. Sampling is performed from the posterior distribution:

p(β, α|D) ∝ Gamma(α; 1, 0.01) ·
D∏

d=1

N(βd; 0, α
−1) ·

n∏
i=1

1

1 + exp(−yiβTxi)
,

We set βk = 1 and use 8 blocks to train the Annealing Flow.

During testing, we use all algorithms to sample 1,000 particles of β and α jointly, and use {β(i)}1000i=1 to construct 1,000 classifiers. The
mean accuracy and standard deviation are then reported in Table 3. Additionally, the average log posterior in Table 3 is reported as:

1

|Dtest|
∑

x,y∈Dtest

log
1

|C|
∑
θ∈C

p(y|x, θ).

C.5. Importance flow

We report the results of the importance sampler (discussed in Section 5) for estimating Ex∼N(0,I)

[
1∥x∥≥c

]
with varying c and dimensions,

based on our Annealing Flow. To estimate Ex∼N(0,I)

[
1∥x∥≥c

]
, we know that the theoretically optimal proposal distribution which can

achieve 0 variance is q̃∗(x) = 1∥x∥≥cN(0, I). Then the estimator becomes:

EX∼π0(x) [h(X)] = EX∼q∗(x)

[
π0(x)

q∗(x)
· h(x)

]
≈ 1

n

n∑
i=1

π0(xi)

q∗(xi)
· h(xi), xi ∼ q∗(x),

where π0(x) = N(0, Id), h(x) = 1∥x∥≥c and q∗(x) = Z · q̃∗(x).

Therefore, the Importance Flow consists of two parts: First, using Annealing Flow to sample from q̃∗(x); second, constructing a Density
Ratio Estimation (DRE) neural network using samples from {xi}ni=1 ∼ q̃∗(x) and {yi}ni=1 ∼ N(0, Id), as discussed in Section 5.2. The
estimator becomes:

1

n

n∑
i=1

DRE(xi) · h(xi).

The Naive MC results comes from directly using {yi}ni=1 ∼ N(0, Id) to construct estimator 1
n

∑n
i=1 1∥yi∥≥c. When c ≥ 6, the Naive

MC methods consistently output 0 as the result.

20

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

In our experiment, we use a single DRE neural network to construct the density ratio between π0(x) and q∗(x) = Z · 1∥x∥≥cN(0, I)
directly. The neural network structure consists of hidden layers with sizes 64-64-64. The size of the training data is set to 100,000, and the
batch size is set to 10,000. We use 30 to 70 epochs for different distributions, depending on the values of c and dimension d. The Adam
optimizer is used, with a learning rate of 0.0001. The test data size is set to 1,000, and all results are based on 200 estimation rounds, each
using 500 samples.

C.6. Details of other algorithms

The Algorithms 2 and 3 introduce the algorithmic framework of Metropolis-Hastings (MH) and Parallel Tempering (PT) compared in our
experiments.

Algorithm 2 Metropolis-Hastings Algorithm
1: Initialize x0

2: for t = 1 to N do
3: Propose x∗ ∼ q(x∗|xt−1)

4: Compute acceptance ratio α = min
(
1, π(x∗)q(xt−1|x∗)

π(xt−1)q(x∗|xt−1)

)
5: Sample u ∼ Uniform(0, 1)
6: if u < α then
7: xt = x∗

8: else
9: xt = xt−1

10: end if
11: end for
12: return {xt}Nt=0

Algorithm 3 Parallel Tempering Algorithm
1: Initialize replicas {x1, x2, . . . , xnum replicas} with Gaussian noise
2: Initialize temperatures {T1, T2, . . . , Tnum replicas}
3: for i = 1 to iterations do
4: for j = 1 to num replicas do
5: Propose x∗

j ∼ q(x∗
j |xj) {Using Metropolis-Hastings step for each replica}

6: Compute acceptance ratio αj =
π(x∗

j)

π(xj)

7: Sample u ∼ Uniform(0, 1)
8: if u < αj then
9: xj = x∗

j

10: end if
11: Store xj in samples for replica j
12: end for
13: if i mod exchange interval = 0 then
14: for j = 1 to num replicas − 1 do
15: Compute energies Ej = − log(π(xj) + ϵ), Ej+1 = − log(π(xj+1) + ϵ)

16: Compute ∆ =
(

1
Tj

− 1
Tj+1

)
(Ej+1 − Ej)

17: Sample u ∼ Uniform(0, 1)
18: if u < exp(∆) then
19: Swap xj ↔ xj+1

20: end if
21: end for
22: end if
23: end for
24: return samples from all replicas

In our experiments, we set the proposal density as q(x′|x) = N (x; 0, Id). We use 5 replicas in Parallel Tempering (PT), with a linear
temperature progression ranging from T1 = 1.0 to Tmax = 2.0, and an exchange interval of 100 iterations. For HMC, we set the number
of leapfrog steps to 10, with a step size (ϵ) of 0.01, and the mass matrix M is set as the identity matrix. Additionally, we use the default
hyperparameters as specified in SVGD (Liu & Wang, 2016), MIED (Li et al., 2023), and AI-Sampler (Egorov et al., 2024). In the actual
implementation, we found that the time required for SVGD to converge increases significantly with the number of samples. Therefore, in
most experiments, we sample 1000 data points at a time using SVGD, aggregate the samples, and then generate the final plot. The settings
for CRAFT, LFIS, and PGPS are discussed alongside each table and figure in Appendix D.

21

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

C.7. Evaluation metrics

To assess the performance of our model, we utilized two key metrics: Maximum Mean Discrepancy (MMD) and Wasserstein Distance,
both of which measure the divergence between the true samples and the samples generated by the algorithms.

Maximum Mean Discrepancy (MMD)

MMD is a non-parametric metric used to quantify the difference between two distributions based on samples. Given two sets of samples
X1 ∈ Rn1×d and X2 ∈ Rn2×d, MMD computes the kernel-based distances between these sets. Specifically, we employed a Gaussian
kernel:

k(x, y) = exp{−α∥x− y∥22},

parameterized by a bandwidth α. The MMD is computed as follows:

MMD(X1, X2) =
1

n2
1

∑
i,j

k(Xi
1, X

j
1) +

1

n2
2

∑
i,j

k(Xi
2, X

j
2)−

2

n1n2

∑
i,j

k(Xi
1, X

j
2),

where k(·, ·) represents the Gaussian kernel. In our experiments, we set α = 1/γ2 and γ = 0.1 ·median dist, where median dist denotes
the median of the pairwise distances between the two datasets.

Wasserstein Distance

In addition to MMD, we used the Wasserstein distance, which measures the cost of transporting mass between distributions. Given two
point sets X ∈ Rd and Y ∈ Rd, we compute the pairwise Euclidean distance between the points. The Wasserstein distance is then
computed using the optimal transport plan via the linear sum assignment method (from scipy.optimize package):

W (X,Y) =
1

n

n∑
i=1

∥Xr(i) − Yc(i)∥2,

where r(i) and c(i) are the optimal row and column assignments determined through linear sum assignment.

Sample-Variance Mean Squared Error across all dimensions

This metric is reported for Exp-Weighted Gaussian distribution in our experiments. Recall that the distribution of a 50D ExpGauss is:

p(x1, x2, · · · , x50) ∝ e
10

∑10
i=1

|xi|
σ2
i

+10
∑50

i=11
xi
σ2
i

− 1
2
∥x∥2

.

To calculate the Mean Squared Error of sample variances across dimensions, we first take the absolute values of the first 10 dimensions,
while leaving the values of the remaining dimensions unchanged. The metric is calculated as:

MSE =
1

D

D∑
d=1

(σ̂2
d − σ2

d)
2, σ̂2

d =
1

n− 1

n∑
i=1

(xi,d − x̄i)
2.

In all experiments, we sample 10,000 points from each model and generate 10,000 true samples from the GMM to calculate and report
both MMD and Wasserstein distance. Note that the smaller the two metrics mentioned above, the better the sampling performance.

D. Additional Experiment Results
We adopt the standard Annealing Flow framework discussed in this paper for experiments on Gaussian Mixture Models (GMM), Truncated
Normal distributions, Exp-Weighted Gaussian distributions, and Bayesian Logistic Regressions. For experiments on funnel distributions,
we set each f̃k(x) as the target q(x), under which the Annealing Flow objective becomes equivalent to the Wasserstein Gradient Flow
based on the JKO scheme, as discussed in B. Please refer to C.3 for βk selections.

D.1. More Results

We begin by presenting the numerical tables for Gaussian Mixture Models (GMMs). In the tables, GMM refers to Gaussian Mixture
Models, while wGMM denotes unequally weighted Gaussian Mixture Models. The notation (w)GMM-{number of modes}-{radius of the
circle} represents a (w)GMM with the specified number of modes arranged on a circle of the given radius. Note that the Mode-Weight
Mean Squared Error (MSE) is also reported in Table 1 (Main Script).

MMD and Wasserstein Distance

22

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

Table 4. MMD results of different methods across the GMM distributions

Distributions AF CRAFT LFIS PGPS PT SCGD MIED AI-Sampler

d = 2

GMM-6-8 2.38× 10−3 2.30× 10−3 1.15× 10−2 7.12× 10−2 6.27× 10−2 9.35× 10−2 9.32× 10−3 2.34× 10−3

GMM-8-10 2.45× 10−3 8.98× 10−2 2.31× 10−2 6.32× 10−2 6.48× 10−2 1.51× 10−1 2.49× 10−2 2.61× 10−3

GMM-10-12 3.01× 10−3 9.06× 10−2 8.97× 10−2 7.01× 10−2 9.01× 10−2 1.85× 10−1 6.28× 10−2 4.02× 10−3

wGMM-10-12 4.95× 10−3 9.96× 10−2 1.14× 10−1 8.95× 10−2 7.02× 10−2 2.72× 10−1 8.31× 10−2 3.19× 10−3

d = 5

GMM-6-8 5.82× 10−3 9.92× 10−2 1.23× 10−2 7.81× 10−2 8.83× 10−2 9.81× 10−2 8.01× 10−3 7.55× 10−2

GMM-8-10 1.25× 10−3 9.76× 10−2 4.52× 10−2 7.76× 10−2 8.98× 10−2 9.63× 10−2 3.88× 10−2 5.26× 10−3

GMM-10-12 1.57× 10−3 2.14× 10−1 7.25× 10−2 8.31× 10−2 1.18× 10−1 1.98× 10−1 9.88× 10−3 6.37× 10−3

wGMM-10-12 4.31× 10−3 3.95× 10−1 8.38× 10−2 8.28× 10−2 1.05× 10−1 1.32× 10−1 2.03× 10−2 1.87× 10−2

Table 5. Wasserstein distance results of different methods across the GMM distributions

Distributions AF CRAFT LFIS PGPS PT SCGD MIED AI-Sampler

d = 2

GMM-6-8 9.38× 10−1 9.28× 10−1 8.24× 10+0 6.33× 10+0 5.71× 10+0 9.97× 10+0 8.01× 10−1 7.92× 10−1

GMM-8-10 7.22× 10−1 7.57× 10+0 8.99× 10+0 5.82× 10+0 5.98× 10+0 1.14× 10+1 8.15× 10−1 8.95× 10−1

GMM-10-12 8.05× 10−1 8.73× 10+0 9.79× 10+0 6.09× 10+0 7.91× 10+0 1.82× 10+1 9.35× 10−1 8.13× 10−1

wGMM-10-12 9.94× 10−1 9.78× 10+0 1.02× 10+1 7.88× 10+0 6.48× 10+0 2.93× 10+1 1.06× 10+0 8.44× 10−1

d = 5

GMM-6-8 1.97× 10+0 1.12× 10+1 1.01× 10+1 7.78× 10+0 1.07× 10+1 1.13× 10+1 2.52× 10+0 2.38× 10+0

GMM-8-10 3.33× 10+0 1.98× 10+1 3.55× 10+1 8.21× 10+0 1.53× 10+1 2.07× 10+1 8.89× 10+0 5.53× 10+0

GMM-10-12 2.82× 10+0 2.53× 10+1 4.89× 10+1 8.75× 10+0 1.83× 10+1 2.45× 10+1 7.89× 10+0 3.83× 10+0

wGMM-10-12 3.53× 10+0 3.03× 10+1 5.21× 10+1 8.64× 10+0 2.13× 10+1 2.34× 10+1 1.13× 10+1 9.73× 10+0

(a) True (b) AF (c) CRAFT (d) LFIS (e) PGPS (f) PT (g) SVGD (h) MIED (i) AIS

Figure 4. Sampling methods for Gaussian Mixture Models (GMM) with 6, 8, and 10 modes arranged on circles with radii r = 8, 10, 12.
The number of time steps for CRAFT, LFIS, and PGPS is set to 12, the same as for AF.

(a) True (b) AF (c) CRAFT (d) LFIS (e) PGPS (f) PT (g) SVGD (h) MIED (i) AIS

Figure 5. Sampling methods for Gaussian Mixture Models (GMM) with 6, 8, and 10 modes arranged on circles with radii r = 8, 10, 12.
The number of time steps for AF is 12. The number of time steps for CRAFT, LFIS, and PGPS is set as 128, 256, and 128, respectively.

23

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

Gaussian Mixture Models (GMMs)

We tested each algorithm on GMMs with dimensions ranging from 2 to 5. In the 2D GMM, the modes are arranged in circles with radii
r = 8, 10, 12. For dimensions higher than 2, the coordinates of the additional dimensions are set to r/2.

Figure 5 shows the results when the number of time steps for CRAFT, LFIS, and PGPS is set to 10, the same as for AF. Additionally,
Figure 5 presents results where the number of time steps for CRAFT, LFIS, and PGPS is set to 128, 256, and 128, respectively, while the
time step for AF remains at 10.

Truncated Normal Distribution

Relaxations are applied to the Truncated Normal Distribution in all experiments except for MH, HMC, and PT. Specifically, we relax the
indicator function 1∥x∥≥c to 1

1+exp(−k(∥x∥−c))
. We set k = 20 for all experiments. AIS is designed for continuous densities, and we

similarly relax the densities in SVGD and MIED, following the approach used in AF. The resulting plots are as follows:

(a) True (b) AF (c) LFIS (d) PGPS (e) PT (f) SVGD (g) MIED

Figure 6. Sampling Methods for Truncated Normal Distributions with Radius c = 6, together with the failure cases of SVGD and MIED.

Each algorithm draws 5,000 samples. It can be observed that MCMC-based methods, including HMC and PT, produce many overlapping
samples. This occurs because when a new proposal is rejected, the algorithms retain the previous sample, leading to highly correlated
sample sets.

(a) True (b) AF (c) MH (d) HMC (e) PT

Figure 7. Sampling methods for truncated normal distributions with radii c = 4, 6 in 2D space for the first three rows. The last row
presents sampling results in 5D with a radius of 8, projected onto a 3D space.

Funnel Distribution

In the main paper, we present the sampling methods for the funnel distribution with d = 5, projected onto a 3D space. To assess the
sample quality, here we present the corresponding results projected onto a 2D space, plotted alongside the density heat map.

24

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

(a) AF (b) CRAFT (c) LFIS (d) PGPS (e) PT (f) SVGD (g) MIED (h) AIS

(a) True (b) AF (c) CRAFT (d) LFIS (e) PGPS (f) PT (g) SVGD (h) MIED (i) AIS

Figure 9. Sampling Methods for Funnel Distribution with σ2 = 0.81 in Dimension d = 5, projected onto a d = 3 Space.

As seen from both figures, our AF method achieves the best sampling performance on the funnel distribution, while other methods, such
as MIED and AIS, fail to capture the full spread of the funnel’s tail. Additionally, PT, SVGD, and AIS all fail to capture the sharp part of
the funnel’s shape.

Exp-Weighted Gaussian Distribution

Table 2 in the main manuscript presents results for CRAFT, LFIS, and PGPS, using the same number of intermediate time steps as AF.
Below, in Table 6, we report the number of modes explored for the 50D Exp-Weighted Gaussian distribution, which has unequal variances
across 10 dimensions, when CRAFT, LFIS, and PGPS are trained with 128, 256, and 128 time steps, respectively.

Table 6. Number of modes explored in the Exp-Weighted Gaussian distribution by different methods, with CRAFT, LFIS, and PGPS
trained with 128, 256, and 128 time steps, respectively. AF is trained with 20 time steps.

True AF CRAFT LFIS PGPS PT SVGD MIED AIS
d = 2 4 4 4 4 4 3.4 3.9 3.8 3.8
d = 5 32 32 30.3 31.6 32 25.2 28.5 28.0 28.3
d = 10 1024 1024 984.0 993.2 1002.8 233.7 957.3 923.4 301.2
d = 50 1024 1024 886.5 923.4 994.0 < 10 916.4 890.6 125.6

We conducted more experiments on asymmetric 50D ExpGaussian distributions with unequal variances across dimensions. In addition to
the mode weights’ MSE results shown in Table 1 of the main script, we provide an additional metric: the mean squared error of sample
variances across dimensions.

Recall that the distribution of 50D ExpGaussian is:

p(x1, x2, · · · , x50) ∝ e
10

∑10
i=1

|xi|
σ2
i

+10
∑50

i=11
xi
σ2
i

− 1
2
∥x∥2

.

To calculate the Mean Squared Error of sample variances across dimensions, we first take the absolute values of the first 10 dimensions,
while leaving the values of the remaining dimensions unchanged. The metric is calculated as:

MSE =
1

D

D∑
d=1

(σ̂2
d − σ2

d)
2, σ̂2

d =
1

n− 1

n∑
i=1

(xi,d − x̄i)
2.

Table 7 presents the sample-variance MSE across ExpGauss experiments. The fourth and fifth rows correspond to a 50D ExpGauss where
the variances of 2 and 10 randomly selected dimensions are set to σ2

i = 0.5, with the remaining dimensions set to 1. The last two rows
correspond to a 50D ExpGauss where the variances of 15 and 20 randomly selected dimensions are uniformly chosen between σ2

i = 0.5
and σ2

i = 2, while the rest are set to 1.

Importance Flow

25

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

Table 7. Sample-Variance Mean Squared Error across dimensions for ExpGauss (1024 modes). The number of time steps for CRAFT,
LFIS, and PGPS is set to 20, the same as for AF.

Distributions AF CRAFT LFIS PGPS SVGD MIED AI-Sampler
d = 10 ExpGauss-1024 (1.2± .23)× 10−3 (9.8± .49)× 10−3 (9.8± .75)× 10−3 (2.5± .37)× 10−2 (5.2± .50)× 10−2 (1.7± .48)× 10−2 (3.9± .75)× 10−2

d = 50

ExpGauss-1024 (1.5± .28)× 10−3 (3.7± .71)× 10−2 (3.5± .56)× 10−2 (3.0± .67)× 10−2 (5.7± .49)× 10−2 (2.5± .63)× 10−2 (8.2± .76)× 10−2

ExpGaussUV-2-1024 (1.6± .26)× 10−3 (7.0± .62)× 10−2 (8.6± .91)× 10−2 (6.8± .53)× 10−2 (6.0± .55)× 10−2 (3.2± .71)× 10−2 (9.9± .98)× 10−2

ExpGaussUV-10-1024 (2.0± .28)× 10−3 (8.8± .80)× 10−2 (9.2± .98)× 10−2 (8.9± .73)× 10−2 (8.1± .90)× 10−2 (4.8± .82)× 10−2 (1.6± .25)× 10−1

ExpGaussUV-15-1024 (2.1± .31)× 10−3 (1.1± .31)× 10−1 (1.4± .23)× 10−1 (1.0± .25)× 10−1 (9.9± .89)× 10−2 (7.6± .80)× 10−2 (1.8± .27)× 10−1

ExpGaussUV-20-1024 (2.3± .30)× 10−3 (2.1± .23)× 10−1 (2.8± .44)× 10−1 (1.9± .35)× 10−1 (1.3± .15)× 10−1 (9.8± .85)× 10−2 (2.3± .47)× 10−1

Table 8 reports the preliminary results of the importance flow (discussed in Section 5) for estimating Ex∼N(0,I)

[
1∥x∥≥c

]
with varying

radii c and dimensions. This estimation uses samples from the experiment on the Truncated Normal Distribution, and thus the results for
SVGD, MIED, and AIS cannot be reported. Additionally, we discussed a possible extension of the Importance Flow framework in D.4.

Table 8. Comparison of estimation results for Ex∼N(0,I)[1∥x∥>c] across different radii c and dimensions d. Values are reported as mean
± standard deviation.

Methods Radius d = 2 d = 3 d = 4 d = 5

True Probability c = 4 (3.35)× 10−4 (1.13)× 10−3 (3.02)× 10−3 (6.84)× 10−3

c = 6 (1.52)× 10−8 (7.49)× 10−8 (2.89)× 10−7 (9.50)× 10−7

Importance Flow c = 4 (4.04± 1.00)× 10−4 (1.30± 0.23)× 10−3 (3.36± 0.42)× 10−3 (7.86± 0.82)× 10−3

c = 6 (9.81± 4.00)× 10−8 (1.51± 1.23)× 10−7 (2.13± 0.87)× 10−7 (2.38± 3.50)× 10−7

DRE with HMC Samples c = 4 (7.56± 4.90)× 10−4 (2.52± 0.63)× 10−3 (8.97± 0.91)× 10−3 (11.2± 1.60)× 10−3

c = 6 (4.35± 7.21)× 10−7 (9.01± 2.90)× 10−7 (1.82± 2.90)× 10−7 (2.31± 6.21)× 10−7

DRE with PT Samples c = 4 (6.79± 3.58)× 10−4 (2.38± 0.54)× 10−3 (5.78± 7.98)× 10−3 (9.94± 1.13)× 10−3

c = 6 (5.37± 9.56)× 10−7 (8.78± 2.32)× 10−7 (9.23± 2.51)× 10−7 (1.98± 7.73)× 10−7

Naı̈ve MC c = 4 (2.75± 6.00)× 10−4 (1.18± 1.10)× 10−3 (2.71± 1.70)× 10−3 (7.94± 2.60)× 10−3

c = 6 0 0 0 0

D.2. Training Efficiency

Table 9 presents the training and sampling times for AF, CRAFT, LFIS, and PGPS in experiments on a 50D Exp-Weighted Gaussian
distribution, conducted on a V100 GPU. The training setup includes 100,000 samples, 1,000 training iterations per time step, and a batch
size of 1,000 for AF, CRAFT, and PGPS. For LFIS, a batch size of 5,000 is used to ensure good performance. The sampling time is
measured for generating 10,000 samples. AF achieves optimal sampling performance with only 20 time steps, compared to other methods
requiring up to 256 time steps. Specifically, CRAFT and PGPS were trained with 128 time steps, while LFIS used 256 time steps, ensuring
these methods achieved the results shown in Figure 5 and Table 6.

Table 9. Total Training and Sampling Time Comparison for the 50D Exp-Weighted Gaussian

Methods Training time (mins) Sampling time (s)
AF 14.5± 1.3 2.1± 0.5

CRAFT 51.2± 1.8 4.9± 0.6
LFIS 86.4± 3.5 6.4± 0.6
PGPS 59.7± 2.1 5.2± 0.4

Table 10 reports the training and sampling times per time step (block) for each method. Notably, as AF requires numerical integration
over the velocity field, its training time per time step is slightly higher compared to other methods.

Table 10. Training and Sampling Time Comparison Per Time Step for the 50D Exp-Weighted Gaussian

Methods Training time (mins) Sampling time (s)
AF 0.70± 0.10 0.10± 0.02

CRAFT 0.45± 0.09 0.06± 0.01
LFIS 0.37± 0.07 0.04± 0.01
PGPS 0.44± 0.10 0.04± 0.01

D.3. Ablation Studies

As reported in the main manuscript, we use 8 intermediate densities and 2 refinement blocks for the GMM experiments, and 15 intermediate
densities with 5 refinement blocks for the 50D Exp-Weighted Gaussian experiments. For GMMs, the regularization constant α is set to

26

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

[8
3
, 8
3
, 4
3
, 4
3
, 2
3
, 2
3
, 2
3
, · · ·]. For Exp-Weighted Gaussian, α is set to [20

3
, 20

3
, 20

3
, 20

3
, 10

3
, 10

3
, 10

3
, 10

3
, 5
3
, 5
3
, 5
3
, 5
3
, 1, 1, 1, 1, 1, 1, 1, 1].

In our main experiments, we note that CRAFT, LFIS, and PGPS require 128, 256, and 128 time steps, respectively, to achieve comparable
performance. In this section, we conduct additional ablation studies to investigate the role of annealing densities and Wasserstein
regularization in ensuring the smoothness and success of Annealing Flow, particularly when fewer time steps are used. We also compare
the performance of all NF methods under further reduced time steps.

D.3.1. SIGNIFICANCE OF ANNEALING DENSITIES AND WASSERSTEIN REGULARIZATION

Here, we conduct experiments on GMMs without intermediate densities (i.e., all fk(x) = q(x)) and using 5 blocks. In Figure 10, the
second column shows AF with the regularization constant α set to

[
4
3
, 4
3
, 2
3
, 2
3
, 2
3

]
, the third column with α set to

[
8
3
, 8
3
, 4
3
, 4
3
, 4
3

]
, and the

fourth column with α set to
[
20
3
, 20

3
, 8
3
, 8
3
, 8
3

]
.

Figure 10. Ablation Studies for Gaussian Mixture Models (GMM) with 6, 8, and 10 modes arranged on circles with radii r = 8, 10, 12.
AF is trained with no intermediate densities and 5 training blocks. The regularization constant α used in the experiments for the three
columns is described in the first paragraph of D.3.1.

The figure illustrates an extreme training scenario with no intermediate annealing densities, where the target modes are far separated
from the initial density π0 = N(0, I). By comparing this to the successful case, where AF is trained with 8 intermediate densities and 2
refinement blocks (Figure 5), one can immediately see that annealing procedures are essential for successfully handling far-separated
modes.

Furthermore, in Figure 10, when no intermediate densities are used, increasing the Wasserstein regularization constant—particularly
in the initial blocks—leads to improved results. This experimentally highlights the importance of Wasserstein regularization in our AF
objective for ensuring stable performance and significantly reducing the number of intermediate time steps.

Table 11. Number of modes explored in the 50D Exponentially-Weighted Gaussian by various methods with different numbers of
annealing densities K, while keeping the Wasserstein normalizing constant fixed.

AF CRAFT LFIS PGPS
K = 0 18.4 4.8 3.2 6.0
K = 2 86.7 18.0 14.2 22.8
K = 4 284.3 128.6 108.0 148.0
K = 6 808.0 256.8 186.4 424.5
K = 8 996.2 382.0 208.4 578.8
K = 10 1024 406.2 234.0 689.0

For the challenging 50D Exponentially Weighted Gaussian with 1024 widely separated modes, where the two farthest modes are 63.25
L2 distance apart, annealing procedures are mandatory to ensure success. Table 11 shows the number of modes explored in the 50D
Exp-Weighted Gaussian by AF, CRAFT, LFIS, and PGPS as the number of annealing steps K increases. Together with Table 2, it is
evident that our AF consistently requires the fewest annealing steps to achieve success in highly challenging scenarios, owing to the W2

regularization of our unique dynamic OT loss.

27

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

D.3.2. PERFORMANCE OF ALGORITHMS WITH EVEN FEWER ANNEALING STEPS

In Figures 3 and 4, the number of time steps for AF, CRAFT, LFIS, and PGPS is set to 10. Here, in Figure 11, we present ablation studies
comparing the performance of these four methods when the number of time steps is reduced to 5.

(a) True (b) AF (c) CRAFT (d) LFIS (e) PGPS

Figure 11. Ablation Studies for Gaussian Mixture Models (GMM) with 6, 8, and 10 modes arranged on circles with radii r = 8, 10, 12.
All methods are trained with 4 intermediate densities and 1 refinement block.

It can be observed that even with half the number of time steps, AF maintains competitive performance on GMMs with 6 and 8 modes and
significantly outperforms other methods on GMMs with 10 modes.

Table 12. Mode-Weight Mean Squared Error across distributions. The number of time steps for AF, CRAFT, LFIS, and PGPS is reduced
to 15 from 20.

Distributions AF CRAFT LFIS PGPS
d = 10 ExpGauss-1024 (9.5± 0.50)× 10−8 (4.8± 0.33)× 10−6 (7.3± 0.74)× 10−6 (7.8± 0.70)× 10−7

d = 50
ExpGauss-1024 (1.2± 0.10)× 10−7 (7.2± 0.90)× 10−6 (9.3± 0.82)× 10−6 (9.8± 0.76)× 10−7

ExpGaussUV-2-1024 (3.3± 0.07)× 10−7 (1.7± 0.70)× 10−5 (2.7± 0.18)× 10−5 (3.5± 0.49)× 10−5

ExpGaussUV-10-1024 (3.8± 0.11)× 10−7 (5.0± 0.82)× 10−5 (9.8± 0.33)× 10−5 (7.6± 0.73)× 10−5

We conducted similar ablation studies on the 50D Exp-Weighted Gaussian with 1024 widely separated modes, reducing the number of
time steps from 20 to 15. Table 12 presents the mode-weight MSE in Exp-weighted Gaussian across different dimensions and unequal
variances, when the number of time steps is reduced to 15 from 20 for all NF methods. AF still successfully captures all 1024 modes, with
slightly higher Mode-Weight MSEs compared to the values reported in Table 1. In contrast, other methods, including CRAFT, LFIS, and
PGPS, perform much worse than AF.

D.4. Possible Extensions of Importance Flow

The importance flow discussed and experimented with in this paper requires a given form of π0(x), and thus, a given form of q̃∗(x) =
π0(x) · |h(x)| for estimating EX∼π0(x) [h(X)]. In our experimental settings, q̃∗(x) = 1∥x∥≥cN(0, Id) can be regarded as the Least-
Favorable-Distribution (LFD). We conducted a parametric experiment for the case where q̃∗(x) has the given analytical form.

However, we believe future research may extend this approach to a distribution-free model. That is, given a dataset without prior
knowledge of its distribution, one could attempt to learn an importance flow for sampling from its Least-Favorable Distribution (LFD)
while minimizing the variance. For example, in the case of sampling from the LFD and obtaining a low-variance IS estimator for
Px∼π(x)(∥x∥ ≥ c), one may use the following distribution-free loss for learning the flow:

min
θ

1

n

n∑
i=1

[
1{T (xi; θ) ≤ c} · ∥T (xi; θ)− c∥2

]
+ γ

∫ 1

0

∥v(x(t), t; θ)∥2, (65)

where the first term of the loss pushes the dataset {xi}ni=1 towards the Least-Favorable tail region, while the second term ensures a smooth

28

Annealing Flow Generative Models Towards Sampling High-Dimensional and Multi-Modal Distributions

and cost-optimal transport map. Note that the above loss assumes no prior knowledge of the dataset distribution π(x) or the target density
q(x).

Xu et al. (2024c) has also explored this to some extent by designing a distributionally robust optimization problem to learn a flow
model that pushes samples toward the LFD Q∗, which is unknown and learned by the model through a risk functionR(Q∗, ϕ). Such
framework has significant applications in adversarial attacks, robust hypothesis testing, and differential privacy. Additionally, the recent
paper by Ribera Borrell et al. (2024) introduces a dynamic control loss for training a neural network to approximate the importance
sampling control. We believe that by designing an optimal control loss in line with the approaches of these two papers, one can develop a
distribution-free Importance Flow for sampling from the LFD of a dataset while minimizing the variance of the adversarial loss, which
can generate a greater impact on the fields of adversarial attacks and differential privacy.

29

