
Adversarial Training from Mean Field Perspective

Soichiro Kumano
The University of Tokyo

kumano@cvm.t.u-tokyo.ac.jp

Hiroshi Kera
Chiba University

kera@chiba-u.jp

Toshihiko Yamasaki
The University of Tokyo

yamasaki@cvm.t.u-tokyo.ac.jp

Abstract

Although adversarial training is known to be effective against adversarial examples,
training dynamics are not well understood. In this study, we present the first
theoretical analysis of adversarial training in random deep neural networks without
any assumptions on data distributions. We introduce a new theoretical framework
based on mean field theory, which addresses the limitations of existing mean
field-based approaches. Based on the framework, we derive the (empirically tight)
upper bounds of ℓq norm-based adversarial loss with ℓp norm-based adversarial
examples for various values of p and q. Moreover, we prove that networks without
shortcuts are generally not adversarially trainable and that adversarial training
reduces network capacity. We also show that the network width alleviates these
issues. Furthermore, the various impacts of input and output dimensions on the
upper bounds and time evolution of weight variance are presented.

1 Introduction

Adversarial training [38, 58] is one of the most effective approaches against adversarial examples [89].
Various studies aimed to improve the performance of adversarial training [28, 94, 113], leading
to numerous observations. Adversarial training improves accuracy for adversarial examples but
decreases it for clean images [58, 88]. Moreover, it requires additional training data [14, 40, 77]
and achieves high robust accuracy in a training dataset but not in a test dataset [58]. To improve the
reliability of adversarial training and address the aforementioned challenges, a theoretical analysis is
essential. Specifically, it is crucial to gain insight into network evolution during adversarial training,
conditions for adversarial trainability, and differences between adversarial and standard training.

However, the theoretical understanding of network training is challenging, even for standard training,
due to the non-convexity of loss surface and optimization stochasticity. Recent studies employed
the mean field theory and analyzed the early stage of standard training for randomly initialized deep
neural networks (random networks) [71, 81]. Some studies explored network trainability regarding
gradient vanishing/explosion [81, 104, 105] and dynamical isometry [69, 79, 100]. Others examined
network representation power [49, 71, 101]. The theoretical results of the early stage of training
have been empirically observed to fit well with fully trained networks [25, 84], partially supported
by recent theoretical results [46]. However, existing mean field-based approaches cannot manage
the probabilistic properties of an entire network (e.g., the distribution of a network Jacobian) and
dependence between network inputs and parameters, which are crucial for analyzing adversarial
training.

In this study, we propose a mean field-based framework that addresses the aforementioned limita-
tions (Thm 4.1), and apply it to the adversarial training analysis. While previous studies on adversarial

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



training rely on strong assumptions (e.g., Gaussian data [14, 80] and linear classifiers [76, 107]), the
proposed framework includes various scenarios (e.g., ℓp norm-based adversarial examples and deep
neural networks with or without shortcuts, i.e., residual or vanilla networks) without any assumptions
on data distributions. Our analysis reveals various adversarial training characteristics that have been
only experimentally observed or are unknown. The results are summarized as follows.

Upper bounds of adversarial loss. We derive the upper bounds of adversarial loss, quantifying
the adverse effect of adversarial examples for various combinations of ℓq-adversarial loss with the
ℓp-norm ϵ-ball (p, q ∈ {1, 2,∞}) (Thm 5.1). Numerical experiments confirm the tightness of these
bounds. We also investigate the impacts of input and output dimensions on these bounds, and discover
that for the (p, q) = (2,∞) combination, the bound is independent of these dimensions.

Time evolution of weight variance. We present the time (training step) evolution of weight variance
in training (Thms 5.4 and G.9). Weight variance has been used to assess training properties [49, 71, 81].
Our analysis indicates that adversarial training significantly regularizes weights and exhibits consistent
weight dynamics across different norm choices.

Vanilla networks are not adversarially trainable under mild conditions. We show that gra-
dient vanishing occurs in vanilla networks (without shortcuts) with large depths and small widths,
making them untrainable via adversarial training, even with careful weight initialization (Thm 5.7).
This contradicts standard training, where deep vanilla networks can be trained with proper ini-
tialization [81, 100]. However, residual networks are adversarially trainable even without proper
initialization (Thm 5.8 and Prop G.10), proving the importance of shortcuts for adversarial training.

Degradation of network capacity and role of network width. As adversarial robustness requires
high network capacity [63], deep networks can be used in adversarial training. However, we reveal
that network capacity, measured based on the Fisher–Rao norm [56], sharply degrades in deep
networks during adversarial training (Thms 5.9 and G.14). Specifically, we confirm that the capacity
at training step t is Θ(L− tL2/N), where L and N denote the network depth and width, respectively.
Interestingly, this result contrasts the roles of depth and width, i.e., the depth increases the initial
capacity but decays it as training proceeds, whereas the width preserves it. While our theory is
validated only during the initial stages of training, our experiments confirm that the adversarial
robustness after full training is significantly influenced by network width (cf. Tabs. A5 and A6) as
demonstrated in our theorems.

Other contributions. Furthermore, we show the followings cases: (a) Equality of the adversarial
loss is obtained instead of inequality (upper bound) under several assumptions (Props G.2 and G.3).
(b) Adversarial training leads to faster weight decay and less stable gradients compared with ℓ2
weight regularization. (c) Capacity degradation is discussed for metrics other than the Fisher–Rao
norm. (d) Adversarial risk cannot be mitigated while maintaining trainability and expressivity.
(e) Discussion on ReLU-like activations extends to Lipschitz continuous activations under certain
conditions. (f) A single-gradient descent attack can find adversarial examples that flip the prediction
of a binary classifier (Prop K.1). Contributions (b)–(f) are found in Appx. K.

Although this study focuses on adversarial training, our theoretical framework can be applied to
other training methods that consider the probabilistic property of an entire network and dependence
between network inputs and parameters. Consequently, we believe that this study can potentially
contribute to the theoretical understanding of adversarial training and various deep learning methods.

2 Related work

Here, we summarize the full version in Appx. A. A technical discussion follows in Sec. 5.1.

Mean field theory. Mean field theory in machine learning investigates the training dynamics of
random networks in chaotic and ordered phases [71]. Networks can be trained at the boundary between
these phases [81]. The theory has been extended to networks with shortcuts [105, 106], recurrent
connections [15, 69], and batch normalization [104]. It has been employed to study dynamical
isometry [15, 69, 70, 79], and a subsequent study achieved training of 10,000-layer networks without

2



shortcuts [100]. Moreover, the theory has been applied to analyze network representation power [49,
71, 101]. However, existing mean field-based analysis cannot handle the properties of an entire
network and input–parameter dependence, which is a drawback for some deep learning methods, e.g.,
adversarial training. Thus, we propose a new framework to address these limitations.

Adversarial training. Various questions related to adversarial training have been theoretically
addressed by some studies, including the robustness-accuracy trade-off [29, 47, 75, 76, 92, 113],
generalization gap [6, 50, 102, 107], sample complexity [1, 14, 62, 80, 110], large model require-
ment [63], and enhanced transfer learning performance [27]. However, these results are obtained
in limited settings (e.g., Gaussian data and linear classifiers) and are not easily extended to deep
neural networks or realistic data distributions. To explore more general settings, recent studies used
the neural tangent kernel theory [4, 46, 55]. In the kernel regime, adversarial training, even with a
heuristic attack, finds a robust network [35, 115]. In our study, we investigate adversarial training
dynamics based on a mean field perspective, covering general multilayered networks with or without
shortcuts and without assumptions about data distributions.

3 Preliminaries

3.1 Setting

Notations are summarized in Tab. A2. For an integer n ∈ N, let [n] := {1, . . . , n}. In this study,
we focus on random deep neural networks with ReLU-like activations, called random ReLU-like
networks. This is formally defined as follows:

Definition 3.1 (ReLU-like network). A network is called a ReLU-like network if all its activation
functions are ϕ(z) := uz for z ≥ 0 and vz for z < 0, with u, v ∈ R.

ReLU-like activations [33, 57] are widely used in theoretical and practical applications [42, 45, 53,
85, 109]. In Appx. K, we extend our theorems to networks with Lipschitz continuous activations.

A ReLU-like network, f : Rd → RK , comprises L ∈ N trainable layers and two non-trainable layers
for adjusting input and output dimensions. The input layer projects xin ∈ Rd to an N -dimensional
vector x(0) ∈ RN using the random matrix P in ∈ RN×d. Subsequently, L consecutive affine
transformations and activations are applied by g : RN → RN . Then, g(x(0)) is multiplied by a
random matrix P out ∈ RK×N to obtain the output vector f(xin). Finally, the network function is
provided by f(xin) := P outg(P inxin). We assume that d and K are sufficiently large, and each
entry of P in and P out is i.i.d. and sampled from Gaussians N (0, 1/d) and N (0, 1/N), respectively.

An L-layer neural network g comprises weights W (l) = (W
(l)
ij ) ∈ RN×N and biases b(l) =

(b
(l)
1 , . . . , b

(l)
N )⊤ ∈ RN , where l ∈ [L] denotes the layer index. The network is assumed to possess a

sufficiently large width (i.e., N is sufficiently large). The l-th pre- and post-activation are defined as
h(l) := W (l)x(l−1) + b(l) and x(l) := ϕ(h(l)), respectively, where ReLU-like activation ϕ operates
entry-wise. The weight W (l)

ij and bias b(l)i are i.i.d. and sampled from N (0, σ2
w/N) and N (0, σ2

b ),
respectively. The network function is represented by Eq. (1). For a residual network setting, refer to
Appx. C.

f(xin) := P outϕ(W (L)ϕ(· · ·ϕ(W (1)P inxin + b(1)) · · · ) + b(L)). (1)

3.2 Background

Mean field theory. Mean field theory employs probabilistic methods to analyze the properties of
random deep neural networks. It assumes that h(l) follows a Gaussian, justified by the central limit
theorem when width N is sufficiently large [71]. Here, we review the mean field-based approach
to analyze the forward and backward dynamics of a network. Let L : Rd → R represent the loss
function. The mean squared pre-activation E[(h(l)

i )2] and gradient χ(l) := E[(∂L(xin)/∂x
(l)
i )2],

where i denotes the neuron index, are calculated as follows [71, 81]:

E[(h(l)
i )2] = σ2

wE[ϕ(h
(l−1)
i )2] + σ2

b , χ(l) = σ2
wE[ϕ′(h

(l+1)
i )2]χ(l+1). (2)

3



These equations represent the dynamics between adjacent layers. We can infer that gradients vanish
when σ2

wE[ϕ′(h
(l+1)
i )2] < 1 and explode when σ2

wE[ϕ′(h
(l+1)
i )2] > 1, indicating that a network is

trainable only if σ2
wE[ϕ′(h

(l+1)
i )2] ≈ 1.

Adversarial training. We define adversarial loss as follows:

Ladv(x
in) := max

∥η∥p≤ϵ

∥∥f(xin + η)− f(xin)
∥∥
q

(3)

= max
∥η∥p≤ϵ

∥∥∥∥∥P outϕ(W (L)ϕ(· · ·ϕ(W (1)P in(xin + η) + b(1)) · · · ) + b(L))

−P outϕ(W (L)ϕ(· · ·ϕ(W (1)P inxin + b(1)) · · · ) + b(L))

∥∥∥∥∥
q

, (4)

where ϵ > 0 and p, q ∈ {1, 2,∞}. The adversarial loss aims to minimize the difference between the
network outputs of natural and adversarial inputs. Networks are trained by minimizing the sum of
the standard loss Lstd : Rd × Y → R (e.g., cross-entropy loss), where Y denotes a label set, and
the adversarial loss Ladv. The mean field analysis typically assumes gradient independence for loss
functions (Appx. B) [81]. We use this assumption for Lstd, but not Ladv. Although Eq. (3) differs
from the standard adversarial loss based on cross-entropy [58], our definition is employed in more
robust methods, e.g., TRADES [113] and is theoretically simpler to analyze. Therefore, herein, the
aforementioned loss is analyzed. However, even this simplified definition (Eq. (3)) poses a challenge
for theoretical analysis due to the complex nested structure of a deep neural network (cf. Eq. (4)).

4 Theoretical framework

4.1 Limitations of existing mean field-based approaches

We propose a new theoretical framework based on mean field theory to analyze adversarial training.
Here, we describe two limitations of existing mean field-based approaches, e.g., Eq. (2).

Layer-wise approach. Existing approaches focus on the dynamics between adjacent layers (cf.
Eq. (2)). However, analyzing the adversarial loss (Eq. (3)) requires a framework that handles the
probabilistic properties of an entire network instead of adjacent layers. This analysis becomes difficult
due to the complex nested structure of networks (cf. Eqs. (1) and (4)). For example, there is no clarity
on the the probabilistic behavior of f(xin), distribution of f(xin + η)− f(xin), and dependence
between f(xin) and inputs. We need a framework that disentangles the nested structure of networks
and manages the probabilistic properties of an entire network. Recent studies on the mean field
theory studies [15, 36, 69, 70, 100] have concepts related to ours; the comparative analysis is given
in Sec. 5.1.

Difficulty in analyzing input–parameter dependence. The analysis of adversarial training requires
consideration of input-parameter dependence since adversarial perturbations are designed based
on network parameters (cf. Eq. (3)). However, this cannot be readily addressed using existing
approaches because their frameworks (e.g., Eq. (2)) do not offer a clear view of the dependence
between perturbation η and network parameters W (1)

1,1 , W (1)
1,2 , . . ., and W

(L)
N,N .

The proposed framework resolves these limitations and provides a simple network representation that
allows us to capture the entire network property with clear input–parameter dependence.

4.2 Proposed framework

The current mean field-based approaches cannot capture the probabilistic properties of an entire net-
work due to the complex nested structure of deep neural networks. Moreover, it is difficult to consider
the dependence between inputs and numerous number of parameters. To address these limitations, we
employ a linear-like representation of a ReLU-like network and propose its probabilistic properties.
As ReLU-like networks are piecewise linear, a vanilla ReLU-like network can be represented as:

f(xin) = J(xin)xin + a(xin), (5)

J(xin) := P outD(ϕ′(h(L)(xin)))W (L)D(ϕ′(h(L−1)(xin)))W (L−1) · · ·W (1)P in, (6)

4



−0.10 −0.05 0.00 0.05 0.10
0

5

10

P
ro

ba
bi

lit
y

de
ns

it
y

Exp.

Theory

Figure 1: Distribution of J(xin)1,1 in the vanilla
ReLU network with d = 1, 000, K = 1, N =
5, 000, L = 10, σ2

w = 2, and σ2
b = 0.01.

The blue histogram represents the experimental re-
sults (10,000-time samplings), and the orange curve
is predicted by Thm 4.1.

Table 1: Values of βp,q. Under further assump-
tions, we can obtain equality of the adversarial
loss rather than inequality (upper bound). Val-
ues marked with † represent the equality when ϵ
is sufficiently small. Values marked with ♢ are
applicable if ϵ is sufficiently small and K = 1.

q = 1 q = 2 q = ∞

p = 1
√

2K2

πd

† √
K
d

† √
2 lnK

d

p = 2 1♢ +
√

K
d 1†♢

p = ∞
√

2d
π

†♢

where D( · ) denotes a diagonal matrix and a(xin) is defined similar to J(xin) (cf. Eq. (A48)). For a
residual network, Eq. (A73) can be referred. Importantly, this representation does not rely on approx-
imations, e.g., Taylor expansions. As W (l) and b(l) are randomly sampled, J (l)(xin) and a(l)(xin)
denote a random matrix and vector, respectively. Unlike the original network definition (Eq. (1)), this
representation (Eq. (5)) is non-nested and focuses only two parameters, thereby simplifying network
analysis. Remarkably, we show the following properties of J(xin) and a(xin):
Theorem 4.1 (Properties and distributions of J(xin) and a(xin)). Suppose that the width N is
sufficiently large. Then, for any xin ∈ Rd, (I) J(xin) and a(xin) are independent. (II) each entry of
J(xin) and a(xin) is i.i.d. and follows the Gaussian below:

J(xin)ij ∼ N
(
0,

ωL

d

)
, a(xin)i ∼ N

(
0, ασ2

b

L∑
k=1

ωk−1

)
, (7)

where α := (u2 + v2)/2 (cf. Defn 3.1) and ω is ωv := ασ2
w for vanilla networks and ωr := 1+ασ2

w
for residual networks.

A significance of this theorem lies in that despite being functions of xin, the distributions of J(xin)
and a(xin) do not depend on xin.1 In other words, although J(xin) and a(xin) are determined by
(a fixed) xin for an initialized network, they become different for each sampling of weights and biases,
and the selection of these values is independent of xin. Besides, J(xin) and a(xin) are independent
and their distributions are Gaussian, which exhibits convenient properties. A sketch of proof is given
in Appx. D and formal one is in Appxs. E and F.

To validate Thm 4.1, we conducted a numerical experiment and present the results in Fig. 1. We
randomly sampled 10,000 vanilla ReLU networks and computed J(xin)1,1 for each network using
the identical input xin. Additional experimental results can be found in Appx. L.

Broader applicability. The proposed framework (Thm 4.1) manages an entire network using only
two Gaussians. While we focus on adversarial training, Thm 4.1 can be valuable for other deep
neural network analyses based on the mean field theory. For example, contrastive learning [16]
can be investigated, as it aims to minimize the distance between original and positive samples
while maximizing it for negative samples. In this context, instead of considering the adversar-
ial loss, ∥f(xin + η) − f(xin)∥, we can analyze loss functions, e.g., ∥f(xin

pos) − f(xin
ori)∥ and

∥f(xin
neg) − f(xin

ori)∥, where xin
ori, x

in
pos, and xin

neg represent the original, positive, and negative
samples, respectively. The complex nested structure of a network makes it challenging to consider the
difference between two network outputs; however, Thm 4.1 helps theoretically manageable analyses.

5 Analysis of adversarial training

The proof of each theorem is described in Appx. G.

1This does not imply that random variables, J(x) and J(y), are identical for x ̸= y. In addition, J(x) and
J(y) are not always independent. Please also refer to the empirical results in Appx. L.

5



5.1 Upper bounds of adversarial loss

As the ReLU-like network f is locally linear and its input Jacobian at xin is J(xin) (cf. Eq. (5)), we
can consider a more tractable form of the adversarial loss instead of Eq. (4) as follows:

Ladv(x
in) ≤ max

x∈Rd,∥η∥p≤ϵ
∥J(x)η∥q = ϵmax

x∈Rd
∥J(x)∥p,q, (8)

where ∥J(x)∥p,q := max∥η∥p=1 ∥J(x)η∥q denotes the (p, q)-operator norm of J(x). Using
Thm 4.1, which describes the property of J(x), we transform Ineq. (8) and obtain the following:
Theorem 5.1 (Upper bounds of adversarial loss). Suppose that the input dimension d, output
dimension K, and width N are sufficiently large. Then, for any xin ∈ Rd, the following inequality
holds:

Ladv(x
in) ≤ ϵβp,qω

L/2 =

{
ϵβp,q(

α
LN

∑
W∈W W 2)L/2 (vanilla)

ϵβp,q(1 +
α

LN

∑
W∈W W 2)L/2 (residual)

, (9)

where W := {W (1)
1,1 ,W

(1)
1,2 , . . . ,W

(L)
N,N} denotes the set of all network weights. The constant βp,q for

each norm pair (p, q) is described in Tab. 1.

For some choices of (p, q), we cannot derive upper bounds, and thus, Tab. 1 contains blank. Numerical
experiments show the tightness of the bounds (cf. Fig. 2). The theorem indicates that (i) the bounds
increase linearly with the perturbation budget ϵ, (ii) the effects of the input and output dimensions
depend on the norms (p, q) (cf. Tab. 1), and (iii) network depth L exponentially impacts the bounds,
with ω = 1 as a threshold between order and chaos. Further, the square sum of the weights in Ineq. (9)
suggests that adversarial training exhibits a weight regularization effect, which is compared to ℓ2
weight regularization in Appx. I. Besides, we derive equality rather than inequality (upper bound)
under specific assumptions (e.g., small ϵ) for some (p, q) in Appx. K, indicated by † and ♢ in Tab. 1.

The input and output dimensions, d and K, influence the bounds through the (p, q)-dependent
parameter βp,q. In Tab. 1, βp,q displays a wide range of dependencies on d and K. When d → ∞
and q = ∞, d significantly affects the two phases of the adversarial loss, where p = 2 marks the
transition point from order (p = 1) to chaos (p = ∞). In contrast, under realistic assumptions with
d ≫ K, K affects negligibly. Interestingly, the dimensions do not impact the upper bounds when
(p, q) = (2,∞). In practice, we scale the perturbation budget and adversarial loss according to the
choice of (p, q), respectively, and discuss the scaling effects in Appx. K.

Comparison with other studies. We can consider studies on global Lipschitz of networks in
certified adversarial defenses [3, 18, 93] and spectral regularization [60, 108] to analyze Ineq. (8). A
key difference is that the proposed probabilistic approach contradicts their deterministic approach.
By imposing probabilistic constraints on network parameters, we can obtain exponentially tighter,
interpretable, and more theoretically manageable bounds, which facilitates the subsequent section’s
discussion. The mathematical comparison is described in Appx. H.

Results obtained from [15, 36, 69, 70, 100] can be used to analyze the Jacobian’s singular value
distribution. Compared to their approaches, which are limited to (p, q) = (2, 2), the proposed method
offers greater generality and flexibility, providing upper bounds for various (p, q). Moreover, Thm 4.1
enables the derivation of equality instead of inequality (upper bound), Props G.2 and G.3, which
is not achievable using the approaches mentioned in the aforementioned studies because it cannot
incorporate perturbation-Jacobian dependence. Moreover, we do not consider their assumption that
the variance V[h(l)

i ] is constant for all l ∈ [L], which is often difficult to satisfy.

Further, we refer to [78], which established a theoretical link between adversarial training and the
(p, q)-operator norm of a Jacobian. Their findings support Ineq. (8) in training scenarios using
heuristic attacks, e.g., projected gradient descent [58]. In this study, we derive concrete upper bounds
beyond their theoretical link, enabling further investigation of adversarial training properties.

5.2 Time evolution of weight variance

Weight variance plays a critical role in determining deep neural network properties [49, 81]. We
substitute the adversarial loss definition (Eq. (3)) with Ladv := ϵβp,qω(t)

L/2, where t ≥ 0 denotes the

6



continuous training step. Considering gradient descent with an infinitely small learning rate (gradient
flow), the model parameter θ(t) at step t is updated as:

dθ(t)

dt
:= −∂Lstd

∂θ(t)
− ∂Ladv

∂θ(t)
. (10)

We make the following assumption.
Assumption 5.2. For 0 ≤ t ≤ T ≪ N , model parameters are independent, and weight and bias
follow Gaussian N (0, σ2

w(t)/N) and N (0, σ2
b (t)), respectively.

This assumption ensures that the properties of the model parameters remain close to their initial
values during the early stages of training (t ≤ T ). Under Asm 5.2, the original and proposed mean
field theories (Thm 4.1) remain valid during training. For a moderately small value of T , Asm 5.2
is not strong because the model parameters change minimally and retain their initialized states
with sufficiently small learning rates. Recent neural tangent kernel studies partially supported this
assumption [4, 46, 55], and it is known that random network theories align well with fully trained
networks [25, 84]. For example, T = 160 is reasonable in a specific training setting (cf. Fig. 4).

Now, we summarize other assumptions for reference as follows:
Assumption 5.3. The input dimension d, output dimension K, and width N are sufficiently large.
We apply Asm B.1 to the standard loss function Lstd. The adversarial loss is defined as Ladv :=
ϵβp,qω(t)

L/2 (cf. Thm 5.1).

Based on the aforementioned settings, we obtain the time evolution of the weight variance.
Theorem 5.4 (Weight time evolution of vanilla network in adversarial training). Suppose that
Asms 5.2 and 5.3 hold. Then, the time evolution of σ2

w of a vanilla network in adversarial training is
given by:

σ2
w(t) =

(
1− ϵαβp,qωv(0)

L/2−1

N
t

)
σ2
w(0). (11)

A similar result is obtained for residual networks (Thm G.9). The theorem reveals that the weight
variance linearly decreases with t, which can be attributed to the weight regularization effect of
adversarial training (cf. Sec. 5.1). In addition, the norm pair (p, q) affect only time-invariant constant
βp,q, and the dynamics of the weight variance can be represented as a consistent function of t
regardless of (p, q). In other words, adversarial training exhibits consistent weight dynamics
irrespective of norm selection, with a scale factor varying.

5.3 Vanilla networks are not adversarially trainable under mild conditions

We show that in adversarial training, vanilla networks can fit a training dataset in limited cases (small
depth and large width), but residual networks can in most cases. This result suggests that residual
networks are better suited for adversarial training. First, we present the trainability condition based
on the concept in [81, 105].
Definition 5.5 ((M,m)-trainability condition). A network is said to be (M,m)-trainable if a network
satisfies m ≤ χ(0)/χ(L) ≤ M , where 0 ≤ m ≤ 1 and M ≥ 1.2

The value χ(l) denotes the squared length of the gradient in the l-th layer. A near-zero χ(0)/χ(L)

suggests gradient vanishing, while a large value implies gradient explosion. Hence, Defn 5.5 is
directly linked to successful training. In contrast to the existing definition, χ(l−1)/χ(l) ≈ 1 [81, 105],
Defn 5.5 incorporates M and m for the subsequent discussion. Then, we establish specific (M,m)-
trainability conditions for ReLU-like networks.
Lemma 5.6 (Vanilla and residual (M,m)-trainability condition). Suppose that the width N is
sufficiently large. Then, the (M,m)-trainability conditions for vanilla and residual networks are
respectively given by:

m1/L ≤ ασ2
w ≤ M1/L (vanilla), ασ2

w ≤ M1/L − 1 (residual). (12)
2Trainability depends on other factors such as the number of parameters; however, these are not considered

herein to maintain simplicity. It is empirically known that this condition represents trainability well [81].

7



Using the weight time evolution (Thm 5.4) and (M,m)-trainability condition (Lemma 5.6), the
following theorem can be readily derived.
Theorem 5.7 (Vanilla networks are not adversarially trainable). Consider a vanilla network. Suppose
that Asms 5.2 and 5.3 hold, and the (M,m)-trainability condition holds at t = 0 and ασ2

w(0) = 1. If

T ≥ (1−m1/L)N

ϵαβp,q
, (13)

then there exists 0 < τ ≤ T such that the (M,m)-trainability condition does not hold for τ ≤ t ≤ T .

This indicates the potential untrainability of vanilla networks in adversarial training, even
when satisfying the (M,m)-trainability condition at initialization, contradicting with standard
training where extremely deep networks can be trained if initialized properly [81]. This issue
arises from the inconsistency between the trainability condition of a vanilla network, i.e., m1/L ≤
ασ2

w (cf. Lemma 5.6) and monotonically decreasing nature of σ2
w(t) in adversarial training (cf.

Thm 5.4). As stated in Asm 5.2, we assume that T is small. Therefore, if the right-hand term of
Eq. (13) becomes large, the assumption and Thm 5.7 are violated. In summary, for large L (many
layers) and ϵ (large perturbation constraint), vanilla networks are not adversarially trainable.
Moreover, a large N (a wide network) can mitigate this issue in vanilla networks. For example,
the vanilla network with L = 20, N = 256, and ϵ = 0.3 is not adversarially trainable; however,
when the width is increased to 512, it becomes trainable (cf. Fig. 4). In contrast, we can claim the
following for residual networks:
Theorem 5.8 (Residual networks are adversarially trainable). Consider a residual network. Suppose
that Asms 5.2 and 5.3 hold, and the (M,m)-trainability condition holds at t = 0 and ασ2

w(0) ≪ 1.
Then, (M,m)-trainability condition always holds for 0 ≤ t ≤ T .

This occurs due to the (M,m)-trainability condition for residual networks, which does not have any
lower bound (cf. Lemma 5.6), and the monotonically decreasing nature of σ2

w (cf. Thm G.9). Besides,
residual networks are adversarially trainable even without careful weight initialization (Prop G.10).
These theorems highlight the robust stability of adversarial training in residual networks.

5.4 Degradation of network capacity

We demonstrate that adversarial training degrades network capacity. We use the Fisher–Rao norm as
a metric [56], with alternative metrics discussed in Appx. K. The Fisher–Rao norm is defined as:

∥w∥FR := w⊤F (xin)w, F (xin) :=

K∑
i=1

(
∂fi(x

in)

∂w

)⊤
∂fi(x

in)

∂w
, (14)

where w := (W
(1)
11 ,W

(1)
12 , . . . ,W

(L)
NN )⊤ represents the vector of all the network weights and F

denotes the empirical Fisher information matrix when only one training data point is considered (for
simplicity). The Fisher–Rao norm is preferred over other norm-based capacity metrics [8, 65–67]
owing to its invariance to node-wise rescaling [56]. We present the following theorem based on [49]:
Theorem 5.9 (Adversarial training degrades network capacity). Consider a vanilla network. Suppose
that Asms 5.2 and 5.3 hold, Asm B.1 is applied to the network output, and the (M,m)-trainability
condition holds at t = 0 and ασ2

w(0) = 1. Assume
∥∥xin

∥∥
2
=

√
d and σ2

b (t) = 0. Then, the
expectation of the Fisher–Rao norm is given by:

E[∥w(t)∥FR] = LK

(
1− ϵαβp,qL

N
t

)
. (15)

A related result for residual networks is presented in Thm G.14. As described in [63], adversarial
robustness necessitates high capacity. However, Thm 5.9 indicated that capacity decreases linearly
with step t in adversarial training. To address this conflict, large depth (large L), which increase the
initial capacity with Θ(L), can be considered, but this scenario accelerates the degradation speed with
Θ(L2). To preserve capacity, we must increase the width N accordingly. Consequently, to achieve
high capacity in adversarial training, it is necessary to increase not only the number of layers L
but also the width N to keep L2/N constant. Although Thms 5.9 and G.14 have been established
in the early stages of training, numerical experiments proved that the adversarial robustness following
full training is significantly influenced by network width (cf. Tabs. A5 and A6).

8



250 500 750 1000

0.25

0.50

0.75

p = 1, q = 1

250 500 750 1000

0.05

0.10
p = 1, q = 2

250 500 750 1000

0.01

0.02

0.03
p = 1, q =∞

Theory

Exp.

250 500 750 1000

0.15

0.20
p = 2, q = 2

250 500 750 1000
0.0

0.2
p = 2, q =∞

250 500 750 1000

1

2

p =∞, q =∞

Input dimension d

A
dv

er
sa

ri
al

lo
ss
L a

d
v

Figure 2: Adversarial loss (Eq. (3)) in vanilla networks with N = 40, 000, K = 100, L = 3, and
ϵ = 0.1. We generated 100 adversarial examples for each input dimension. The blue curves and
bands represent the mean and standard deviation of the adversarial loss, respectively, whereas the
orange curves (upper bounds) are predicted based on Thm 5.1. Some samples slightly exceed the
upper bounds because we used the finite network width (cf. Appx. L).

0 500 1000 1500 2000
Training step

1.9985

1.9990

1.9995

2.0000

W
ei

gh
t

va
ri

an
ce
σ

2 w

Standard

`2 weight

Adv. (N = 2k)

Adv. (N = 1k)

Theory (N = 2k)

Theory (N = 1k)

Figure 3: Time evolution of the weight variance
in the vanilla network with L = 10, p = ∞,
q = ∞, and ϵ = 0.3. We used N = 1, 000 for
standard and ℓ2 regularized training. The solid
lines represent experimental results. The dashed
lines are predicted by Thm 5.4.

100 200 300 400 500 600 700 800
Width N

10

20

30

40
D

ep
th
L

T
=

10
0

T = 160

T = 250

0.0

0.2

0.4

0.6

0.8

1.0

T
raining

accuracy

Figure 4: Heat map of the training accuracy of
vanilla networks with p = ∞, q = ∞, and ϵ =
0.3. The dashed lines represent the condition of
T in Thm 5.7 with m = 0.0001. In standard
training, high accuracy is obtained across all the
depths and widths (cf. Fig. A19).

6 Experimental results

We validate Thms 5.1, 5.4 and 5.7 via numerical experiments. The vanilla ReLU networks were
initialized with σ2

w = 2 and σ2
b = 0.01 to meet the (M,m)-trainability conditions (Lemma 5.6). To

verify Thms 5.4 and 5.7, we used MNIST [26]. Setup details and more results are given in Appx. L.

Verification of Thm 5.1. We created adversarial examples for initialized networks and computed the
adversarial loss (Eq. (3)). As shown in Fig. 2, the upper bounds in Thm 5.1 were considerably tight.
Some samples slightly exceeded the upper bounds because we used the finite network width while
the infinite width is assumed (cf. Appx. L).

Verification of Thm 5.4. We trained vanilla networks normally (with and without ℓ2 regularization)
and adversarially. The time evolution of weight variance is shown in Fig. 3. Adversarial training
significantly reduces weight variance, whereas wide width (i.e., large N ) suppresses it. The validity
of Thm 5.4, which forms the basis of our theorems such as Thms 5.7 and 5.9, supports our theorems.

Verification of Thm 5.7. We trained vanilla networks considering various depth and width settings
and monitored the training accuracy. As shown in Fig. 4, it was difficult for vanilla networks to fit the
training dataset when the depth was large and the width was small; increased width helps in fitting.
Although we currently lack a theoretical prediction of the boundary between trainable and untrainable
areas determined based on Eq. (13), empirical evidence suggests that T = 160 is relevant.

9



7 Limitations

The mean field theory offers valuable insight into network training. However, its applicability is
restricted to the initial stages of training. Although recent studies suggested empirically [25, 84]
and theoretically [46] that the analysis of early-stage training extends well to full training, the
strict relationship is yet to be explored. Our results have the same limitations. Although some
theorems accurately capture the behavior during the initial stages of training and even after full
training (cf. Tabs. A5 and A6), as training progresses, some theorems begin to diverge from the actual
behavior (cf. Fig. A17). Another caveat is that the mean field theory assumes infinite network width,
which is practically infeasible. Empirically, our theorems hold well when the width approximately
exceeds 1,000 (cf. Fig. A7), while Thm 5.1 requires larger width approximately exceeds 10,000
for (p, q) = (2, 2) (cf. Fig. A14). These limitations also derive from the mean field theory and are
not unique to our study. Despite these limitations, we consider that this study provides a powerful
theoretical framework that extends the applicability of the mean field theory to various training
methods, and the results obtained for adversarial training are insightful.

8 Conclusions

We proposed a framework based on the mean field theory and conducted a theoretical analysis of
adversarial training. The proposed framework addressed the limitations of existing mean field-based
approaches, which could not handle the probabilistic properties of an entire network and dependence
between network inputs and parameters [71, 81]. Based on this framework, we examined adver-
sarial training from various perspectives, unveiling upper bounds of adversarial loss, relationships
between adversarial loss and network input/output dimensions, the time evolution of weight variance,
trainability conditions, and the degradation of network capacity. The theorems of this study were
validated via numerical experiments. The proposed theoretical framework is highly versatile and can
help analyze various training methods, e.g., contrastive learning.

Acknowledgments and Disclosure of Funding

We would like to thank Huishuai Zhang for useful discussions. This work was supported by JSPS
KAKENHI Grant Number JP23KJ0789 and JP22K17962, by JST, ACT-X Grant Number JPM-
JAX23C7, JAPAN, and by Microsoft Research Asia.

References
[1] J.-B. Alayrac, J. Uesato, P.-S. Huang, A. Fawzi, R. Stanforth, and P. Kohli. Are labels required

for improving adversarial robustness? In NeurIPS, volume 32, 2019.

[2] L. Amsaleg, J. Bailey, D. Barbe, S. Erfani, M. E. Houle, V. Nguyen, and M. Radovanović. The
vulnerability of learning to adversarial perturbation increases with intrinsic dimensionality. In
WIFS, pages 1–6, 2017.

[3] C. Anil, J. Lucas, and R. Grosse. Sorting out lipschitz function approximation. In ICML, pages
291–301, 2019.

[4] S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, and R. Wang. On exact computation
with an infinitely wide neural net. In NeurIPS, volume 32, 2019.

[5] A. Athalye, N. Carlini, and D. Wagner. Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. In ICML, pages 274–283, 2018.

[6] P. Awasthi, N. Frank, and M. Mohri. Adversarial learning guarantees for linear hypotheses
and neural networks. In ICML, pages 431–441, 2020.

[7] P. Bartlett, S. Bubeck, and Y. Cherapanamjeri. Adversarial examples in multi-layer random
relu networks. In NeurIPS, volume 34, pages 9241–9252, 2021.

[8] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for
neural networks. In NeurIPS, volume 30, 2017.

10



[9] P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. JMLR, 3(Nov):463–482, 2002.

[10] Y. Blumenfeld, D. Gilboa, and D. Soudry. A mean field theory of quantized deep networks:
The quantization-depth trade-off. In NeurIPS, volume 32, 2019.

[11] S. Bubeck, Y. Cherapanamjeri, G. Gidel, and R. Tachet des Combes. A single gradient step
finds adversarial examples on random two-layers neural networks. In NeurIPS, volume 34,
pages 10081–10091, 2021.

[12] N. Carlini and D. Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. In ACM WS, pages 3–14, 2017.

[13] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In SSP,
pages 39–57, 2017.

[14] Y. Carmon, A. Raghunathan, L. Schmidt, P. Liang, and J. C. Duchi. Unlabeled data improves
adversarial robustness. In NeurIPS, 2019.

[15] M. Chen, J. Pennington, and S. Schoenholz. Dynamical isometry and a mean field theory
of RNNs: Gating enables signal propagation in recurrent neural networks. In ICML, pages
873–882, 2018.

[16] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning
of visual representations. In ICML, pages 1597–1607, 2020.

[17] Y. Cho and L. Saul. Kernel methods for deep learning. In NeurIPS, volume 22, 2009.

[18] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier. Parseval networks: Improving
robustness to adversarial examples. In ICML, pages 854–863, 2017.

[19] J. Cohen, E. Rosenfeld, and Z. Kolter. Certified adversarial robustness via randomized
smoothing. In ICML, pages 1310–1320, 2019.

[20] F. Croce and M. Hein. Reliable evaluation of adversarial robustness with an ensemble of
diverse parameter-free attacks. In ICML, pages 2206–2216, 2020.

[21] A. Damianou and N. D. Lawrence. Deep gaussian processes. In AISTATS, pages 207–215,
2013.

[22] A. Daniely. SGD learns the conjugate kernel class of the network. In NeurIPS, volume 30,
2017.

[23] A. Daniely, R. Frostig, and Y. Singer. Toward deeper understanding of neural networks: The
power of initialization and a dual view on expressivity. In NeurIPS, volume 29, 2016.

[24] A. Daniely and H. Schacham. Most relu networks suffer from ell2̂ adversarial perturbations.
In NeurIPS, volume 33, pages 6629–6636, 2020.

[25] G. De Palma, B. Kiani, and S. Lloyd. Adversarial robustness guarantees for random deep
neural networks. In ICML, pages 2522–2534, 2021.

[26] L. Deng. The MNIST database of handwritten digit images for machine learning research.
Signal Process. Mag., 29(6):141–142, 2012.

[27] Z. Deng, L. Zhang, K. Vodrahalli, K. Kawaguchi, and J. Y. Zou. Adversarial training helps
transfer learning via better representations. In NeurIPS, volume 34, pages 25179–25191, 2021.

[28] G. W. Ding, Y. Sharma, K. Y. C. Lui, and R. Huang. MMA training: Direct input space margin
maximization through adversarial training. In ICLR, 2020.

[29] E. Dobriban, H. Hassani, D. Hong, and A. Robey. Provable tradeoffs in adversarially robust
classification. arXiv:2006.05161, 2020.

11



[30] A. Fawzi, H. Fawzi, and O. Fawzi. Adversarial vulnerability for any classifier. In NeurIPS,
volume 31, 2018.

[31] A. Fawzi, O. Fawzi, and P. Frossard. Analysis of classifiers’ robustness to adversarial pertur-
bations. ML, 107(3):481–508, 2018.

[32] A. Fawzi, S.-M. Moosavi-Dezfooli, and P. Frossard. Robustness of classifiers: from adversarial
to random noise. In NeurIPS, volume 29, 2016.

[33] K. Fukushima. Cognitron: A self-organizing multilayered neural network. Biol. Cybern.,
20(3):121–136, 1975.

[34] A. Galloway, A. Golubeva, T. Tanay, M. Moussa, and G. W. Taylor. Batch normalization is a
cause of adversarial vulnerability. In ICML WS, 2019.

[35] R. Gao, T. Cai, H. Li, C.-J. Hsieh, L. Wang, and J. D. Lee. Convergence of adversarial training
in overparametrized neural networks. In NeurIPS, volume 32, 2019.

[36] D. Gilboa, B. Chang, M. Chen, G. Yang, S. S. Schoenholz, E. H. Chi, and J. Pennington.
Dynamical isometry and a mean field theory of LSTMs and GRUs. arXiv:1901.08987, 2019.

[37] J. Gilmer, L. Metz, F. Faghri, S. S. Schoenholz, M. Raghu, M. Wattenberg, and I. Goodfellow.
Adversarial spheres. In ICLR WS, 2018.

[38] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.
In ICLR, 2015.

[39] S. Gowal, K. D. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato, R. Arandjelovic,
T. Mann, and P. Kohli. Scalable verified training for provably robust image classification. In
ICCV, pages 4842–4851, 2019.

[40] S. Gowal, S.-A. Rebuffi, O. Wiles, F. Stimberg, D. A. Calian, and T. A. Mann. Improving
robustness using generated data. In NeurIPS, 2021.

[41] S. Hayou, A. Doucet, and J. Rousseau. On the selection of initialization and activation function
for deep neural networks. arXiv:1805.08266, 2018.

[42] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016.

[43] M. Hein and M. Andriushchenko. Formal guarantees on the robustness of a classifier against
adversarial manipulation. In NeurIPS, volume 30, 2017.

[44] J. Hron, Y. Bahri, J. Sohl-Dickstein, and R. Novak. Infinite attention: NNGP and NTK for
deep attention networks. In ICML, pages 4376–4386, 2020.

[45] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional
networks. In CVPR, pages 4700–4708, 2017.

[46] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In NeurIPS, volume 31, 2018.

[47] A. Javanmard, M. Soltanolkotabi, and H. Hassani. Precise tradeoffs in adversarial training for
linear regression. In COLT, pages 2034–2078, 2020.

[48] H. Kannan, A. Kurakin, and I. Goodfellow. Adversarial logit pairing. arXiv:1803.06373, 2018.

[49] R. Karakida, S. Akaho, and S.-i. Amari. Universal statistics of Fisher information in deep
neural networks: Mean field approach. In AISTATS, pages 1032–1041, 2019.

[50] J. Khim and P.-L. Loh. Adversarial risk bounds via function transformation. arXiv:1810.09519,
2018.

[51] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In CVPR, 2015.

12



[52] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[53] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In NeurIPS, pages 1097–1105, 2012.

[54] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-Dickstein. Deep
neural networks as gaussian processes. In ICLR, 2018.

[55] J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pennington. Wide
neural networks of any depth evolve as linear models under gradient descent. In NeurIPS,
volume 32, 2019.

[56] T. Liang, T. Poggio, A. Rakhlin, and J. Stokes. Fisher-rao metric, geometry, and complexity of
neural networks. In AISTAT, pages 888–896, 2019.

[57] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al. Rectifier nonlinearities improve neural network
acoustic models. In ICML, volume 30, page 3, 2013.

[58] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models
resistant to adversarial attacks. In ICLR, 2018.

[59] A. G. d. G. Matthews, M. Rowland, J. Hron, R. E. Turner, and Z. Ghahramani. Gaussian
process behaviour in wide deep neural networks. In ICLR, 2018.

[60] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative
adversarial networks. In ICLR, 2018.

[61] A. Montanari and Y. Wu. Adversarial examples in random neural networks with general
activations. arXiv:2203.17209, 2022.

[62] A. Najafi, S.-i. Maeda, M. Koyama, and T. Miyato. Robustness to adversarial perturbations in
learning from incomplete data. In NeurIPS, volume 32, 2019.

[63] P. Nakkiran. Adversarial robustness may be at odds with simplicity. arXiv:1901.00532, 2019.

[64] R. M. Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks, pages
29–53. Springer, 1996.

[65] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. Exploring generalization in
deep learning. In NeurIPS, volume 30, 2017.

[66] B. Neyshabur, R. R. Salakhutdinov, and N. Srebro. Path-SGD: Path-normalized optimization
in deep neural networks. In NeurIPS, volume 28, 2015.

[67] B. Neyshabur, R. Tomioka, and N. Srebro. Norm-based capacity control in neural networks.
In COLT, pages 1376–1401, 2015.

[68] R. Novak, L. Xiao, J. Lee, Y. Bahri, G. Yang, J. Hron, D. A. Abolafia, J. Pennington, and
J. Sohl-Dickstein. Bayesian deep convolutional networks with many channels are gaussian
processes. In ICLR, 2019.

[69] J. Pennington, S. Schoenholz, and S. Ganguli. Resurrecting the sigmoid in deep learning
through dynamical isometry: theory and practice. In NeurIPS, volume 30, 2017.

[70] J. Pennington, S. Schoenholz, and S. Ganguli. The emergence of spectral universality in deep
networks. In AISTATS, pages 1924–1932, 2018.

[71] B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli. Exponential expressivity in
deep neural networks through transient chaos. In NeurIPS, volume 29, 2016.

[72] R. Rade and S.-M. Moosavi-Dezfooli. Helper-based adversarial training: Reducing excessive
margin to achieve a better accuracy vs. robustness trade-off. In ICML, 2021.

[73] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. On the expressive power
of deep neural networks. In ICML, pages 2847–2854, 2017.

13



[74] A. Raghunathan, J. Steinhardt, and P. Liang. Certified defenses against adversarial examples.
In ICLR, 2018.

[75] A. Raghunathan, S. M. Xie, F. Yang, J. Duchi, and P. Liang. Understanding and mitigating the
tradeoff between robustness and accuracy. In ICML, 2020.

[76] A. Raghunathan, S. M. Xie, F. Yang, J. C. Duchi, and P. Liang. Adversarial training can hurt
generalization. In ICML WS, 2019.

[77] S.-A. Rebuffi, S. Gowal, D. A. Calian, F. Stimberg, O. Wiles, and T. Mann. Fixing data
augmentation to improve adversarial robustness. arXiv:2103.01946, 2021.

[78] K. Roth, Y. Kilcher, and T. Hofmann. Adversarial training is a form of data-dependent operator
norm regularization. In NeurIPS, volume 33, pages 14973–14985, 2020.

[79] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. In ICLR, 2014.

[80] L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar, and A. Madry. Adversarially robust general-
ization requires more data. In NeurIPS, 2018.

[81] S. S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein. Deep information propagation.
In ICLR, 2017.

[82] A. Shafahi, W. R. Huang, C. Studer, S. Feizi, and T. Goldstein. Are adversarial examples
inevitable? In ICLR, 2019.

[83] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis, G. Taylor, and
T. Goldstein. Adversarial training for free! In NeurIPS, 2019.

[84] C.-J. Simon-Gabriel, Y. Ollivier, L. Bottou, B. Schölkopf, and D. Lopez-Paz. First-order
adversarial vulnerability of neural networks and input dimension. In ICML, pages 5809–5817,
2019.

[85] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR, 2014.

[86] A. Sinha, H. Namkoong, R. Volpi, and J. Duchi. Certifying some distributional robustness
with principled adversarial training. In ICLR, 2018.

[87] H. Sompolinsky, A. Crisanti, and H.-J. Sommers. Chaos in random neural networks. Phys.
Rev. Lett., 61(3):259, 1988.

[88] D. Su, H. Zhang, H. Chen, J. Yi, P.-Y. Chen, and Y. Gao. Is robustness the cost of accuracy?–a
comprehensive study on the robustness of 18 deep image classification models. In ECCV,
pages 631–648, 2018.

[89] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.
Intriguing properties of neural networks. In ICLR, 2014.

[90] F. Tramer, N. Carlini, W. Brendel, and A. Madry. On adaptive attacks to adversarial example
defenses. In NeurIPS, volume 33, pages 1633–1645, 2020.

[91] J. A. Tropp. Topics in sparse approximation. The University of Texas at Austin, 2004.

[92] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry. Robustness may be at odds
with accuracy. In ICLR, 2019.

[93] Y. Tsuzuku, I. Sato, and M. Sugiyama. Lipschitz-margin training: Scalable certification of
perturbation invariance for deep neural networks. In NeurIPS, volume 31, 2018.

[94] Y. Wang, D. Zou, J. Yi, J. Bailey, X. Ma, and Q. Gu. Improving adversarial robustness requires
revisiting misclassified examples. In ICLR, 2020.

[95] C. Williams. Computing with infinite networks. In NeurIPS, volume 9, 1996.

14



[96] E. Wong and Z. Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In ICML, pages 5286–5295, 2018.

[97] E. Wong, L. Rice, and J. Z. Kolter. Fast is better than free: Revisiting adversarial training. In
ICLR, 2020.

[98] B. Wu, J. Chen, D. Cai, X. He, and Q. Gu. Do wider neural networks really help adversarial
robustness? In NeurIPS, volume 34, pages 7054–7067, 2021.

[99] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. arXiv:1708.07747, 2017.

[100] L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. Schoenholz, and J. Pennington. Dynamical isometry
and a mean field theory of cnns: How to train 10,000-layer vanilla convolutional neural
networks. In ICML, pages 5393–5402, 2018.

[101] L. Xiao, J. Pennington, and S. Schoenholz. Disentangling trainability and generalization in
deep neural networks. In ICML, pages 10462–10472, 2020.

[102] Y. Xing, Q. Song, and G. Cheng. On the generalization properties of adversarial training. In
AISTATS, pages 505–513, 2021.

[103] G. Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process
behavior, gradient independence, and neural tangent kernel derivation. arXiv:1902.04760,
2019.

[104] G. Yang, J. Pennington, V. Rao, J. Sohl-Dickstein, and S. S. Schoenholz. A mean field theory
of batch normalization. In ICLR, 2019.

[105] G. Yang and S. Schoenholz. Mean field residual networks: On the edge of chaos. In NeurIPS,
volume 30, 2017.

[106] G. Yang and S. S. Schoenholz. Deep mean field theory: Layerwise variance and width variation
as methods to control gradient explosion. OpenReview, 2018.

[107] D. Yin, R. Kannan, and P. Bartlett. Rademacher complexity for adversarially robust general-
ization. In ICML, pages 7085–7094, 2019.

[108] Y. Yoshida and T. Miyato. Spectral norm regularization for improving the generalizability of
deep learning. arXiv:1705.10941, 2017.

[109] S. Zagoruyko and N. Komodakis. Wide residual networks. In BMVC, pages 1–12, 2016.

[110] R. Zhai, T. Cai, D. He, C. Dan, K. He, J. Hopcroft, and L. Wang. Adversarially robust
generalization just requires more unlabeled data. arXiv:1906.00555, 2019.

[111] D. Zhang, T. Zhang, Y. Lu, Z. Zhu, and B. Dong. You only propagate once: Accelerating
adversarial training via maximal principle. In NeurIPS, 2019.

[112] H. Zhang, D. Yu, Y. Lu, and D. He. Adversarial noises are linearly separable for (nearly)
random neural networks. arXiv:2206.04316, 2022.

[113] H. Zhang, Y. Yu, J. Jiao, E. Xing, L. El Ghaoui, and M. Jordan. Theoretically principled
trade-off between robustness and accuracy. In ICML, pages 7472–7482, 2019.

[114] J. Zhang, X. Xu, B. Han, G. Niu, L. Cui, M. Sugiyama, and M. Kankanhalli. Attacks which
do not kill training make adversarial learning stronger. In ICML, pages 11278–11287, 2020.

[115] Y. Zhang, O. Plevrakis, S. S. Du, X. Li, Z. Song, and S. Arora. Over-parameterized adversarial
training: An analysis overcoming the curse of dimensionality. In NeurIPS, volume 33, pages
679–688, 2020.

15



Table A2: Notation. While h(l) is a function that takes xin as input, we omit the argument as
h(l) := h(l)(xin) for notational simplicity. Other symbols sometimes follow this.

Notation Description Cf.

d ∈ N Input dimension of the network Sec. 3.1
K ∈ N Output dimension of the network Sec. 3.1
L ∈ N Number of layers in the network, i.e., network depth Sec. 3.1
N ∈ N Number of neurons in a layer, i.e., network width Sec. 3.1

u, v ∈ R Slope of a ReLU-like function Defn 3.1
p ∈ {1, 2,∞} Perturbation constraint norm, ∥η∥p ≤ ϵ Eq. (3)
q ∈ {1, 2,∞} Output difference norm,

∥∥f(xin + η)− f(xin)
∥∥
q

Eq. (3)
m ∈ [0, 1] (M,m)-trainability condition Defn 5.5
ϵ≥ 0 Perturbation constraint, ∥η∥p ≤ ϵ Eq. (3)
α≥ 0 α := (u2 + v2)/2 Thm 4.1

βp,q ≥ 0 Time-invariant constant determined by (p, q) Thm 5.1
t≥ 0 Continuous training step Eq. (10)
T ≥ 0 Upper limit of training steps Asm 5.2
σ2
w ≥ 0 Weight variance, Wij ∼ N (0, σ2

w/N) Sec. 3.1
σ2
b ≥ 0 Bias variance, bi ∼ N (0, σ2

b ) Sec. 3.1
ω ≥ 0 ωv := ασ2

w (vanilla) and ωr := 1 + ασ2
w (residual) Thm 4.1

M ≥ 1 (M,m)-trainability condition Defn 5.5
xin ∈ Rd Input vector Sec. 3.1
η ∈ Rd Perturbation, ∥η∥p ≤ ϵ Eq. (3)

W (l) ∈ RN×N l-th weight, W (l)
ij ∼ N (0, σ2

w/N) Sec. 3.1
W ⊂R Set of all network weights, {W (1)

11 ,W
(1)
12 , . . . ,W

(L)
NN} Thm 5.1

w ∈ RLN2

Vector of all the weights, (W (1)
11 , . . . ,W

(L)
11 )⊤ Eq. (14)

b(l) ∈ RN l-th bias, b(l)i ∼ N (0, σ2
b ) Sec. 3.1

P in ∈ RN×d Rand. mat. for input adjustment, P in
ij ∼ N (0, 1

d ) Sec. 3.1
P out ∈ RK×N Rand. mat. for output adjustment, P out

ij ∼ N (0, 1
N ) Sec. 3.1

P (l) ∈ RN×N Rand. mat. in the l-th shortcuts, P (l)
ij ∼ N (0, 1

N ) Eq. (A16)
ϕ : R → R ReLU-like activation, ϕ := uz(z ≥ 0); vz(z ≤ 0) Defn 3.1

χ(l) : Rd → R Mean squared l-th gradient, E[(∂L(xin)/∂x
(l)
i )2] Sec. 3.1

h(l) : Rd → RN l-th pre-activation, h(l) := W (l)x(l−1)(xin) + b(l) Sec. 3.1
x(l) : Rd → RN l-th post-activation, x(l) := ϕ(h(l)(xin)) Sec. 3.1
F : Rd → RLN2×LN2

Empirical Fisher information matrix Eq. (14)
f : Rd → RK Overall network, f(xin) := P outg(P inxin) Sec. 3.1
g : RN → RN L-trainable layer ReLU-like network Sec. 3.1
J : Rd → RK×d Slope of a piecewise linear region at xin Thm 4.1
a : Rd → RK Bias of a piecewise linear region at xin Thm 4.1
D : RN → RN×N Diagonal matrix Eq. (5)

Lstd : Rd × Y → R Standard loss function, where Y represents a label set Sec. 3.2
Ladv : Rd → R≥0 Adversarial loss function Eq. (3)

A Additional related work

Please also refer to Secs. 2 and 5.1.

A.1 Random networks and mean field theory

Understanding general deep neural networks is challenging due to the non-convexity of loss surfaces
and stochastic nature of optimization. Researchers have explored random networks, which have
random parameters instead of trained parameters. Random networks have been primarily studied in
three areas: compositional kernels [17, 22, 23], neural network Gaussian processes [21, 44, 54, 59,

16



64, 68, 95, 103], and mean field theory. These fields share close relationships, particularly between
neural network Gaussian processes and mean field theory. For example, the forwarding dynamics in
mean field theory (Eq. (2)) is equivalent to the kernel representation of a Gaussian process [64, 71].
Furthermore, the accuracy of a Gaussian process is significantly influenced by the edge of chaos,
which has been studied in mean field theory [68]. We provide a more detailed review of the mean
field theory.

Mean field theory for neural networks was first introduced in [87] and later extended in [71, 81]. This
theory examines the signal propagation, dynamics, and trainability of random networks in two phases:
ordered and chaotic. The ordered phase is characterized by decreasing layer output variance and
vanishing gradients during backpropagation, while the chaotic phase is characterized by expanding
variance and exploding gradients. Effective training of deep neural networks occurs near the boundary
between these two phases [71, 81]. Researchers have applied mean field theory to study various
network architectures, including dropout [81], batch normalization [104], residual network [105, 106],
recurrent network [15], quantized network [10], and Swish [41]. Recent research [15, 36, 69, 70, 100]
has also utilized the mean field theory to analyze dynamical isometry, where all singular values
of the Jacobian are one. Some of these findings can be applied to analyze Ineq. (8) in this study,
with detailed comparisons provided in Sec. 5.1. Other studies have explored network representation
power [49, 71, 101]. This work utilized the proof idea of [49] in the derivation of Thms 5.9 and G.14.

In this study, we employed mean field theory to analyze adversarial training behavior. However, the
original theory has two limitations that make it unsuitable for this purpose (cf. Sec. 4.1). To address
these limitations, we introduced a new mean field-based framework (cf. Sec. 4.2). Our theory is also
applicable to mean field-based analyses of other deep learning methods beyond adversarial training.

A.2 Adversarial examples

A.2.1 Adversarial examples in random neural networks

We summarize the literature on adversarial examples in random neural networks [7, 11, 24, 25, 61,
84, 112]. It has been reported that adversarial perturbations can be found through gradient flow
in most random ReLU networks with decreasing layer widths [24]. This result was extended to
two-layer random networks with greater width than input dimension [11] and generalized to random
ReLU networks with constant depth and wide width [7]. Recently, similar results were presented
without width restrictions and for local Lipschitz continuous activation [61]. Additionally, it has
been demonstrated that adversarial noises generated by a single-step attack are linearly separable in a
two-layer random network and the neural tangent kernel regime [112]. More information on [25, 84]
can be found in Appx. A.2.2.

Although the context differs somewhat, we mention [34], which provides empirical evidence that
batch normalization leads to adversarial vulnerability. This observation aligns with previous results
from mean field theory suggesting that batch normalization causes gradient explosion [104].

In this study, we focused on early stage adversarial training properties rather than adversarial examples.
A key difference is that we primarily investigated the maximum difference between network outputs
for standard and adversarial inputs rather than misclassification which was the main focus of previous
studies [7, 11, 24, 61]. Nonetheless, some findings in Sec. 5.1 can be applied to the understanding
of adversarial examples in random networks. In addition, in Appx. K, we proved the existence of
adversarial examples in random networks to demonstrate the effectiveness of Thm 4.1.

A.2.2 Adversarial examples and input dimension

We present research investigating the relationship between adversarial examples and input dimen-
sions [2, 25, 30–32, 37, 38, 82, 84]. Apart from [38],3 most studies have indicated that adversarial
example threats increase with the square root of the input dimension [25, 30–32, 37, 82, 84]. Some
studies have focused on specific data distributions or simple classifiers [30–32, 37, 82], while others
targeted random networks [25, 84]. The study in [25] has examined the distance from the decision
boundary in random networks, and concluded that adversarial examples deceive classifiers more
easily with the square root of the input dimension. Another study has utilized the first-order Taylor

3Indeed, they omitted weight scaling for simplicity, and their results were essentially consistent with those of
other studies when the scaling was considered.

17



expansion of a loss function to analyze the loss gradient with respect to an input [84]. While a direct
comparison between our work and [84] is challenging due to differing loss functions, our theorems
offer two advantages. First, we considered both the input and output dimensions, whereas they
addressed only input dimensions. Second, our theorems are applicable to residual networks, whereas
their assumptions are not.

In this study, we examined the relationship between an input dimension and adversarial risk in
Sec. 5.1. Our analysis did not depend on specific data distributions or architectures, except for
ReLU-like activations and random parameters, which is advantageous. In addition, we assessed it for
a wide variety of norms, demonstrating that the impact of adversarial examples is not limited to the
square root of the input dimension alone (cf. Tab. 1). Moreover, our bound considers not only the
input dimension but also the number of classes.

A.3 Adversarial training

Numerous empirical adversarial defenses have been proposed; however, most are ineffective against
stronger attacks [5, 12, 13, 20, 90]. Some studies have focused on theoretically certified defenses [19,
39, 43, 74, 96], but these are often only applicable to specific or small networks, or are weaker than
empirical methods. Adversarial training [38, 58] is considered the most effective empirical defense
against various attacks [5, 20, 90]. This involves training a classifier using a dataset that contains
natural images and adversarial examples [38] or solely adversarial examples [58]. Various forms of
adversarial training exist, including more effective loss functions [28, 48, 58, 94, 113], time-efficient
frameworks [83, 97, 111], and procedures that preserve the clean accuracy [72, 113, 114]. Recent
studies have demonstrated that combining adversarial training and data augmentation with unlabeled
or generated data results in high robustness [40, 77]. Despite significant progress in empirical
methods, a theoretical understanding of adversarial training remains incomplete. We provide a
summary of theoretical studies on adversarial training, including robust generalization research.

Several studies have investigated the trade-off between robust and clean accuracy [29, 47, 75, 76,
92, 113], initially observed empirically [58, 88]. The trade-off has been proven inevitable even
in the infinite data limit, assuming data is constructed from a moderately correlated single feature
and weakly correlated many features [92]. Similar claims were found in [113] for different data
distributions. It has been reported that the trade-off in finite data settings for linear and slightly more
complex predictors can be mitigated with additional unlabeled data [76]. While comparable results
were reported in [75], a contrasting study also exists [47]. Moreover, the trade-off has been shown to
depend on class imbalance in a dataset using Gaussian classification models [29].

Various studies have examined the generalization gap of adversarial robust models [6, 50, 102, 107].
For example, ResNet [42] trained adversarially on CIFAR-10 [52] achieved 96% robust training
accuracy but only 47% robust test accuracy [107]. The lower bound of adversarial Rademacher
complexity [9] has been shown to increase with the square root of the input dimension for linear
classifiers trained with ℓ∞ adversarial examples [107], which was later extended in [6]. Similar
results using a tree transformation approach have been reported in [50]. However, the influence of
network width and depth, or other training settings, such as training with ℓ1 adversarial examples, on
the bound remains unclear. The generalization gap has been investigated for linear regression models
and two-layer neural networks with lazy training in data interpolation contexts [102].

Numerous studies have explored the sample complexity of robust generalization [1, 14, 62, 80, 110].
Robust learning may require a larger sample size than standard learning [80]. Subsequent research
has indicated that unlabeled data can be sufficient to achieve robust generalization [1, 14, 62, 110].
The majority of these studies have focused on data sampled from Gaussian mixture models [1, 14,
110]. Moreover, the sample complexity of distributionally robust learning with perturbations in the
Wasserstein ball has been examined [62], and some studies have suggested that the trade-off between
robustness and accuracy can be mitigated using additional unlabeled data [75, 76].

Recent findings have suggested that robust classification requires complex classifiers [63], which is
supported by the results in the neural tangent kernel regime [35]. In the context of transfer learning,
robust classifiers have been shown to perform better [27]. Furthermore, a certifiable adversarial
training procedure has been established, constraining perturbation by the distributional Wasserstein
distance [86].

18



The aforementioned outcomes rely on specific data distributions, such as Gaussian or heuristic-tuned
distributions, or simplistic models, such as linear classifiers or two-layer neural networks. The lack
of theoretical research on adversarial training in deep neural networks stems from the complexity
of training these models, including non-convex loss surfaces and stochastic optimization. Recent
research has employed the neural tangent kernel regime to address these challenges, demonstrating
that adversarial training can yield a robust network with near-zero robust loss [35]. This result was
later extended in two-layer neural networks [115], eliminating the assumption in [35] that requires
exponentially large width and runtime.

In this study, we conducted a theoretical analysis of adversarial training, focusing on the time
evolution of network parameters during training, the conditions promoting adversarial training, and
the differences between adversarial and standard training. Our analysis targeted deep neural networks
without relying on any assumptions about data distribution and employed ℓp norms practically used
as perturbation constraints, rather than more impractical metrics such as the distributional Wasserstein
distance. To address the training difficulty of deep neural networks, we utilized mean field theory.

Finally, we mention the report from a perturbation instability perspective that increasing network
width does not necessarily improve robustness in adversarial training [98]. This may seem to
contradict our results, which suggest that a wider network can help the model maintain capacity
during adversarial training, implying greater robustness in wider networks. However, these two
claims are compatible. Robustness is determined by both perturbation instability (negative effect)
and network capacity (positive effect). While the negative effect of width appears dominant in [98]’s
experiments on CIFAR-10 and WideResNet, the positive effect appeared more prevalent in our
experiments on MNIST, Fashion-MNIST, and fully connected networks with or without shortcuts.
The dominant factor may depend on the dataset and model architectures.

B Gradient independence assumption

The gradient independence assumption was first introduced in [81] for backward dynamics in mean
field theory and later refined in [105]. We provide a definition based on [105] as follows:

Assumption B.1 (Gradient independence assumption [105]). (a) We use a different set of weights for
backpropagation than those used to compute the network outputs, but sampled i.i.d. from the same
distributions. (b) For any loss L, the gradient at layer l, ∂L/∂x(l), is independent of h(l) and x(l−1).

Although not strictly accurate, this assumption has been empirically found to hold well [81, 105]. It
has been rigorously justified for specific architectures, including vanilla, residual, and convolutional
networks [103]. In this study, we applied the assumption to the standard loss function but not to the
adversarial loss function. In addition, we regard a network output as a loss and apply Asm B.1 to the
network output in Sec. 5.4.

C Setting of residual networks

The mean field theory for residual networks is studied in [105]. Although they employed trainable
weights in shortcuts, we employ the untrainable matrix. Formally, the pre- and post-activations in the
l-th layer of a residual network are defined as follows:

h(l) := W (l)x(l−1) + b(l), x(l) := x(l−1) + P (l)ϕ(h(l)), (A16)

where P (l) ∈ RN×N is an untrained random matrix. Each entry of P (l) is i.i.d. sampled from
a Gaussian N (0, 1/N) at initialization. The random matrix P (l) is introduced for simplifying
probabilistic calculations and is applied in accordance with Asm B.1(a). The definition of x(l), given
in Eq. (A16), is slightly different from the original definition in [105]. Therefore, we will derive
the basic probabilistic properties of pre- and post-activation again, based on Eq. (A16). Following a
similar approach to [71, 105], the mean squared pre- and post-activation can be calculated as follows:

E[(h(l)
i )2] = σ2

wE[(x
(l−1)
i )2] + σ2

b , E[(x(l)
i )2] = E[(x(l−1)

i )2] + E[ϕ(h(l)
i )2]. (A17)

19



Additionally, following [81, 105], the mean squared gradient with respect to pre- and post-activation
can be calculated as follows:

E

( ∂L
∂h

(l)
i

)2
 = σ2

wE[ϕ′(h
(l)
i )2]E

( ∂L
∂h

(l+1)
i

)2
, (A18)

χ(l) = (1 + σ2
wE[ϕ′(h

(l+1)
i )2])χ(l+1). (A19)

We can derive Eq. (A18) under Asm B.1 as follows:

E

( ∂L
∂h

(l)
i

)2
 = E

( ∂L
∂h(l+1)

∂h(l+1)

∂x
(l)
i

∂x
(l)
i

∂h
(l)
i

)2
 (A20)

= E


 N∑

j=1

∂L
∂h

(l+1)
j

W
(l+1)
ji

2

ϕ′(h
(l)
i )2

 (A21)

= σ2
wE[ϕ′(h

(l)
i )2]E

( ∂L
∂h

(l+1)
j

)2
. (A22)

We can derive Eq. (A19) under Asm B.1 as follows.

χ(l) := E

( ∂L
∂x

(l)
i

)2
 (A23)

=E

( ∂L
∂x

(l+1)
i

)2
+ 2E

 N∑
j=1

N∑
k=1

∂L
∂x

(l+1)
i

∂L
∂x

(l+1)
j

P
(l+1)
jk ϕ′(h

(l+1)
k )W

(l+1)
ki


+E

 N∑
j=1

N∑
k=1

N∑
j′=1

N∑
k′=1

∂L
∂x

(l+1)
j

∂L
∂x

(l+1)
j′

P
(l+1)
jk P

(l+1)
j′k′ ϕ′(h

(l+1)
k )ϕ′(h

(l+1)
k′ )W

(l+1)
ki W

(l+1)
k′i

 (A24)

=(1 + σ2
wE[ϕ′(h

(l+1)
k )2])χ(l+1). (A25)

From Eq. (A23) to Eq. (A24), we used the following equation:

∂L
∂x

(l)
i

=

N∑
j=1

∂L
∂x

(l+1)
j

∂x
(l+1)
j

∂x
(l)
i

(A26)

=

N∑
j=1

∂L
∂x

(l+1)
j

(
δij +

N∑
k=1

P
(l+1)
jk

∂ϕ(h
(l+1)
k )

∂x
(l)
i

)
(A27)

=
∂L

∂x
(l+1)
i

+

N∑
j=1

N∑
k=1

∂L
∂x

(l+1)
j

P
(l+1)
jk ϕ′(h

(l+1)
k )W

(l+1)
ki . (A28)

The second term of Eq. (A24) is rearranged as follows:

2E

 N∑
j=1

N∑
k=1

∂L
∂x

(l+1)
i

∂L
∂x

(l+1)
j

P
(l+1)
jk ϕ′(h

(l+1)
k )W

(l+1)
ki


=2

N∑
j=1

N∑
k=1

E[P (l+1)
jk ]E

[
∂L

∂x
(l+1)
i

∂L
∂x

(l+1)
j

ϕ′(h
(l+1)
k )W

(l+1)
ki

]
(A29)

=0. (A30)

20



The third term of Eq. (A24) is rearranged as follows:

E

 N∑
j=1

N∑
k=1

N∑
j′=1

N∑
k′=1

∂L
∂x

(l+1)
j

∂L
∂x

(l+1)
j′

P
(l+1)
jk P

(l+1)
j′k′ ϕ′(h

(l+1)
k )ϕ′(h

(l+1)
k′ )W

(l+1)
ki W

(l+1)
k′i


=

N∑
j=1

N∑
k=1

E

( ∂L
∂x

(l+1)
j

)2

(P
(l+1)
jk )2ϕ′(h

(l+1)
k )2(W

(l+1)
ki )2

 (A31)

=

N∑
j=1

N∑
k=1

E

( ∂L
∂x

(l+1)
j

)2
E[(P (l+1)

jk )2]E[ϕ′(h
(l+1)
k )2]E[(W (l+1)

ki )2] (A32)

=σ2
wE[ϕ′(h

(l+1)
k )2]χ(l+1). (A33)

D Sketch of proof for Thm 4.1

In this section, we provide a plain but informal proof of Thm 4.1 for the stepping stone to the formal
proof. We present two levels of explanation: the most straightforward one and the other that is closer
to a formal proof.

First, we introduce the simplest proof of counterintuitive independence of the distribution of J(xin)
from xin. As indicated in Eq. (6), the definition of J(xin) includes ϕ′(h(l)(xin)); thus, the distri-
bution appears to depend xin. Here, we consider the distribution of ϕ′(h(x)), where h(x) := wx
with w ∼ N (0, σ2

w) and x ∈ R. From the following proposition, although ϕ′(h(x)) is defined as a
function of x, its distribution is independent of x. This characteristic holds even for J(xin), which
encompasses multiple ϕ′(h(l)(xin)).

Proposition D.1. Let ϕ(z) := uz (z ≥ 0); vz (z < 0) be a ReLU-like function, w ∼ N (0, σ2
w) be a

Gaussian variable, and x ∈ R be a fixed real number. Then, the distribution of ϕ′(wx) is independent
of x.

Proof. Consider the derivative of ϕ, given by ϕ′(z) := u (z ≥ 0); v (z < 0). The input to ϕ′, i.e.,
wx, follows a Gaussian N (0, x2σ2

w). The probability of a zero-mean Gaussian being greater than or
equal to zero is the same as it being less than zero, regardless of the value of x. Therefore, for any
given x, the probabilities of ϕ′(wx) = u and ϕ′(wx) = v are invariant to x. Consequently, the claim
is established.

Then, let us consider Thm 4.1 in a neural network with one activation and one weight layer, re-
spectively, as f(x) := P outϕ(W (1)P inxin). In this setting, the network Jacobian is represented
by J(xin) := P outD(ϕ′(W (1)P inxin))W (1)P in. Moreover, we assume that the uncorrelated
Gaussian variables are independent. This assumption is incorrect. Uncorrelated Gaussian variables
are not necessarily independent (cf. Remark E.3). However, for the intuition about the formal proof,
we assume this. The simplified Thm 4.1 and its proof are as follows:

Proposition D.2. Consider a neural network f(x) := P outϕ(W (1)P inxin). Suppose that the
width N is sufficiently large. Assume that uncorrelated Gaussian variables are independent. Then,
for any xin ∈ Rd, each entry of J(xin) := P outD(ϕ′(W (1)P inxin))W (1)P in is i.i.d. and follows
the Gaussian N (0, ασ2

w/d).

Proof. First, we prove that each entry of J(xin) is i.i.d. and follows a Gaussian. To this end, we
consider the probabilistic properties in the order of P inxin, D(ϕ′(W (1)P inxin)), W (1)P in, and
P outD(ϕ′(W (1)P inxin))W (1)P in. Then, we derive the concrete distribution, i.e., its mean and
variance. Comparing the distributions between f(xin)2 and (J(xin)xin)2, we achieve this.

We first consider P inxin =: x(0). Recall that xin is a deterministic vector and P in is a random
matrix where each entry is i.i.d. and follows a Gaussian. Since the weighted sum of independent
Gaussian variables follows a Gaussian, each entry of x(0) is i.i.d. and follows a Gaussian.

21



Then, let us consider W (1)x(0). The i-th entry of W (1)x(0) is expressed as
∑N

j=1 W
(1)
ij x

(0)
j . Since

W (1) is a random matrix with i.i.d. entries, W (1)
ij x

(0)
j is i.i.d. with respect to j. By the central limit

theorem with infinite N , the i-th entry of W (1)x(0) follows a Gaussian. In addition, the entries of
W (1)x(0) follow the same Gaussian. Moreover, since E[(

∑N
j=1 W

(1)
ij x

(0)
j )(

∑N
j=1 W

(1)
i′j x

(0)
j )] = 0

holds for i ̸= i′, different entries of W (1)x(0) are uncorrelated and thus independent (this is originally
incorrect but guaranteed by the assumption here). In conclusion, W (1)x(0) is a random vector with
i.i.d. Gaussian entries. Naturally, D(ϕ′(W (1)P inxin)) is a diagonal matrix with i.i.d. entries.

Similar to the discussion above, W (1)P in =: A is a random matrix with i.i.d. entries.

Finally, consider P outD(ϕ′(W (1)P inxin))W (1)P in. For notational simplicity, we denote D :=
D(ϕ′(W (1)P inxin)). Thus, P outD(ϕ′(W (1)P inxin))W (1)P in = P outDA. The entry of i-th
row and j-th column of this matrix is expressed as

∑N
k=1 P

out
ik DkAkj . Note that P out is inde-

pendent of DA and its entries are i.i.d. Moreover, based on network symmetry, the dependence
between Dk and Akj is invariant to k. Thus, P out

ik DkAkj is i.i.d. with respect to k and each
entry of this matrix follows the same Gaussian by the central limit theorem. Moreover, since
E[(
∑N

k=1 P
out
ik DkAkj)(

∑N
k=1 P

out
i′k DkAkj′)] = 0 holds for (i, j) ̸= (i′, j′), different entries of

P outDA are uncorrelated and thus independent. Therefore, each entry of J(xin) is i.i.d. and follows
the Gaussian.

Next, we derive the mean and variance of J(xin). Trivially, E[J(xin)i] = 0 since the mean of an
entry of P out is zero. We derive the variance by comparing E[f(x)2i ] and E[(

∑d
j=1 J(x

in)ijx
in
j )2].

Recall f(x)i :=
∑d

j=1 J(x
in)ijx

in
j . As a preliminary, with a Gaussian variable z ∼ N (0, σ2) and

its probabilistic density function g(z), we derive the following equation:

Ez∼N (0,σ2)[ϕ(z)
2] =

∫ ∞

−∞
ϕ(z)2g(z;σ2)dz (A34)

=

∫ ∞

0

u2z2g(z;σ2)dz +

∫ 0

−∞
v2z2g(z;σ2)dz (A35)

=
u2

2
σ2 +

v2

2
σ2 (A36)

= ασ2. (A37)

In addition, if P out and z are independent, then

Ez∼N (0,σ2)


 N∑

j=1

P out
ij ϕ(z)j

2
 =

N∑
j=1

E[(P out
ij )2]E[ϕ(z)2j ] = ασ2. (A38)

As shown in the discussion above, each entry of W (1)x(0) follows the Gaussian. Moreover, we can
simply derive its variance as σ2

w∥xin∥2/d. Thus,

E[f(x)2i ] = E


 N∑

j=1

P out
ij ϕ(W (1)x(0))j

2
 = ασ2

w∥xin∥2/d. (A39)

Since f(x)i :=
∑d

j=1 J(x
in)ijx

in
j , E[f(x)2i ] is also expanded as:

E[f(x)2i ] = E


 d∑

j=1

J(xin)ijx
in
j

2
 =

d∑
j=1

E[J(xin)2ij ](x
in
j )2 = E[J(xin)2ij ]∥xin∥2. (A40)

Comparing the two equations above, we obtain E[J(xin)2ij ] = ασ2
w/d. Therefore, the claim is

established.

22



E Derivation of Thm 4.1 for vanilla networks

E.1 Preliminary

First, we introduce some lemmas. These results are more general and not restricted to the context of
neural networks. The notation in this section is independent of that in other sections.

We refer to a random matrix where the mean of an entry is zero as a zero-mean matrix. Formally, this
is defined as follows:
Definition E.1 (zero-mean matrix/vector). A random matrix/vector A is called a zero-mean ma-
trix/vector if E[Aij ] = 0 for any i and j.

For zero-mean matrices, the following properties hold:
Remark E.2 (Properties of zero-mean matrix). Let A be a zero-mean matrix.

• Let B be a zero-mean matrix. Then, their sum, A+B, is a zero-mean matrix.

• Let B be a random matrix. If A and B are independent, then their products, AB and BA, are
zero-mean matrices.

Then, we review several properties of Gaussian variables.
Remark E.3 (Properties of Gaussian variables). The following statements hold:

• Any linear combination of multiple Gaussian variables follows a Gaussian if and only if they are
jointly distributed Gaussian.

• A weighted sum of independent Gaussian variables is Gaussian distributed.

• Gaussian variables are jointly distributed and uncorrelated if and only if they are independent.

Next, we examine the properties of random matrices/vectors with i.i.d. Gaussian entries, called a
Gaussian matrix/vector. Their formal definitions are as follows:
Definition E.4 (Gaussian matrix/vector). A matrix/vector is called a Gaussian matrix/vector if all the
entries are i.i.d. and follow a Gaussian.

Gaussian matrices and vectors satisfy the following lemmas.
Lemma E.5. If A and B are independent Gaussian matrices, then A+B is a Gaussian matrix. In
particular, when A and B are zero-mean, A+B is a zero-mean Gaussian matrix.

Proof. By Remarks E.2 and E.3, this is trivial.

The following lemmas are derived for the proof of Thm 4.1.
Lemma E.6. Suppose that random matrices A ∈ Rm×n and B ∈ Rn×l satisfy the following
properties: (a) A and B are independent. (b) A is a zero-mean matrix. (c) All the entries of A
are i.i.d. (d) All the entries of B are identically distributed. (e) Any two entries of B from different
rows are independent. (f) For any i ∈ [n], j, k ∈ [l], j ̸= k, the dependence between Bij and Bik is
invariant to i, j, k. (g) For any i ∈ [n], j, k ∈ [l], j ̸= k, E[BijBik] = 0 holds. Then, for a sufficiently
large n, AB is a zero-mean Gaussian matrix.

Proof. By (a), (b), and Remark E.2, AB is a zero-mean matrix. The linear combination of all the
entries of AB is expressed as

c :=

m∑
i=1

l∑
j=1

sijAi·B·j =

m∑
i=1

l∑
j=1

sij

n∑
k=1

AikBkj =

n∑
k=1

 m∑
i=1

l∑
j=1

sijAikBkj

, (A41)

where sij ∈ R is a constant. By (a), (c), (d), (e), and (f),
∑m

i=1

∑l
j=1 sijAikBkj is i.i.d. with

respect to k. By the central limit theorem, c follows a Gaussian. By Remark E.3, all the entries of
AB are jointly Gaussian distributed. Moreover, by (c) and (d), the entries of AB follow the same
Gaussian. By (a), (b), (c), (e), and (g), the covariance between any two entries of AB is zero. Thus,
by Remark E.3, the claim is established.

23



Lemma E.7. Suppose that random matrices A ∈ Rm×n, B ∈ Rn×l1 , and C ∈ Rn×l2 satisfy the
following properties: (a) A, B, and C are independent. (b) A is a zero-mean matrix. (c) All the
entries of A are i.i.d. (d) All the entries of B are identically distributed. (e) All the entries of C
are identically distributed. (f) Any two entries of B from different rows are independent. (g) Any
two entries of C from different rows are independent. (h) For any i ∈ [n], j, k ∈ [l1], j ̸= k, the
dependence between Bij and Bik is invariant to i, j, k. (i) For any i ∈ [n], j, k ∈ [l2], j ̸= k,
the dependence between Cij and Cik is invariant to i, j, k. (j) For any i ∈ [n], j ∈ [l1], k ∈ [l2],
E[BijCik] = 0 holds. Then, for a sufficiently large n, AB and AC are independent.

Proof. By (a), (c), (d), (e), (f), (g), (h), and (i), similar to Lemma E.6, all the entries of AB and AC
are jointly Gaussian distributed. By (a), (b), (c), and (j), the covariance between any two entries from
AB and AC is zero. Thus, by Remark E.3, the claim is established.

Lemma E.8. Let w,x ∈ Rm be Gaussian vectors. Let ϕ′(z) := u (z ≥ 0); v (z < 0). Then, for a
sufficiently large m, ϕ′(w⊤x)w and x are independent.

Proof. We prove P[ϕ′(w⊤x)w = a | x = b] = P[ϕ′(w⊤x)w = a]. For any x, w = a/u+x/
√
m

or w = a/v − x/
√
m satisfy ϕ′(w⊤x)w = a. Since m is sufficiently large, w = a/u + x/

√
m

and w = a/v − x/
√
m asymptotically approach w = a/u and w = a/v, respectively. Thus, the

claim is established.

E.2 Definitions of J(xin) and a(xin) for vanilla networks

Here, we define (derive) J(xin) and a(xin) for vanilla networks. The l-th pre- and post-activation
are defined as follows:

h(l)(xin) := W (l)x(l−1)(xin) + b(l), x(l)(xin) := ϕ(h(l)(xin)). (A42)

Using ϕ(h(l)(xin)) = D(ϕ′(h(l)(xin)))h(l)(xin), the l-th pre-activation can be rearranged as
follows:

h(l)(xin) = W (l)D(ϕ′(h(l−1)(xin)))h(l−1)(xin) + b(l). (A43)

Because ReLU-like networks are piecewise linear, the l-th pre-activation is also represented as
follows:

h(l)(xin) = J (l)(xin)x(0)(xin) + a(l)(xin). (A44)

Substituting Eq. (A44) for Eq. (A43), the equation can be rearranged as follows:

h(l)(xin) =W (l)D(ϕ′(h(l−1)(xin)))J (l−1)(xin)x(0)(xin)

+W (l)D(ϕ′(h(l−1)(xin)))a(l−1)(xin) + b(l). (A45)

Comparing Eq. (A44) and Eq. (A45), the following equations can be derived:

J (l)(xin) := W (l)D(ϕ′(h(l−1)(xin)))J (l−1)(xin), (A46)

a(l)(xin) := W (l)D(ϕ′(h(l−1)(xin)))a(l−1)(xin) + b(l), (A47)

where J (1)(xin) := W (1) and a(1)(xin) := b(1). Finally, J(xin) and a(xin) are defined as follows:

f(xin) = J(xin)xin + a(xin), (5)

J(xin) := P outD(ϕ′(h(L)(xin)))J (L)(xin)P in, (6)

a(xin) := P outD(ϕ′(h(L)(xin)))a(L)(xin). (A48)

E.3 Main derivation

First, we remark several fundamental properties of weights, biases, random projections, and pre-
activations in a network.
Remark E.9. By definition in Sec. 3.1, the following statements hold for any l ∈ [L]:

24



• (Gaussian matrix/vector) W (l), P in, and P out are zero-mean Gaussian matrices and b(l) is a
zero-mean Gaussian vector.

• (Variance) The variance of W (l), P in, and P out is σ2
w/N , 1/d, and 1/N , respectively.

• (Independence) W (l) and b(l) are independent of each other, as is any random variable in the
layer before the l-th. In addition, P out is independent of any random variable without a network
output.

• (Dependence between pre-activation and bias) For i = j, the dependence between h
(l)
i and b

(l)
i

is invariant to i. For i ̸= j, h(l)
i and b

(l)
j are independent.

Lemma E.10. Consider a vanilla network. For any l ∈ [L], the following hold:

(a) J (l)(xin) is a zero-mean Gaussian matrix.

(b) a(l)(xin) is a zero-mean Gaussian vector.

(c) J (l)(xin) and a(l)(xin) are independent.

Proof. We prove the claim by induction. As a preliminary, see Remark E.9. The case with l = 1 is
trivial. Suppose that all the claims hold for l − 1 ∈ [L− 1].

(a) By Lemma E.6, the claim is established. Note that E[ϕ′(h
(l)
i )2J (l)(xin)ijJ

(l)(xin)ik] =

E[ϕ′(h
(l)
i )2]E[J (l)(xin)ij ]E[J (l)(xin)ik] = 0 since N is sufficiently large.

(b) By Lemma E.6, the claim is established.

(c) By Lemma E.7, the claim is established.

Lemma E.11. The mean squared network output is given by:

E[f(xin)2i ] =
ωL

d

∥∥xin
∥∥2
2
+ ασ2

b

L∑
i=1

ωi−1. (A49)

Proof. By Remark E.9, the mean squared pre- and post- activation are calculated as follows (cf.
Eq. (A34)):

E[(h(l)
i )2] = σ2

wE[(x
(l−1)
i )2] + σ2

b , (A50)

E[(x(l)
i )2] =

{
αE[(h(l)

i )2] (vanilla)

E[(x(l−1)
i )2] + αE[(h(l)

i )2] (residual)
. (A51)

Recursively calculating Eqs. (A50) and (A51), the mean squared post-activation in a vanilla network
is calculated as follows:

E[(x(l)
i )2] = αE[(h(l)

i )2] = ωvE[(x(l−1)
i )2] + ασ2

b = ωl
vE[(x

(0)
i )2] + ασ2

b

l∑
i=1

ωi−1
v . (A52)

The mean squared post-activation in a residual network is calculated as follows:

E[(x(l)
i )2] = E[(x(l−1)

i )2] + α(σ2
wE[(x

(l−1)
i )2] + σ2

b ) (A53)

= ωrE[(x(l−1)
i )2] + ασ2

b (A54)

= ωl
rE[(x

(0)
i )2] + ασ2

b

l∑
i=1

ωi−1
r . (A55)

Using x(0) := P inxin, the above results are expanded as follows:

E[(x(l)
i )2] = ωl

d∑
j=1

E[(P in
ij )

2](xin
j )2 + ασ2

b

l∑
i=1

ωi−1 =
ωl

d

∥∥xin
∥∥2
2
+ ασ2

b

l∑
i=1

ωi−1. (A56)

25



The mean squared network output is rearranged to the mean squared L-th post-activation as follows:

E[f(xin)2i ] =

N∑
j=1

E[(P out
ij )2]E[(x(L)

j )2] = E[(x(L)
i )2]. (A57)

By Eqs. (A56) and (A57), the claim is established.

Theorem 4.1 (Properties and distributions of J(xin) and a(xin)). Suppose that the width N is
sufficiently large. Then, for any xin ∈ Rd, (I) J(xin) and a(xin) are independent. (II) each entry of
J(xin) and a(xin) is i.i.d. and follows the Gaussian below:

J(xin)ij ∼ N
(
0,

ωL

d

)
, a(xin)i ∼ N

(
0, ασ2

b

L∑
k=1

ωk−1

)
, (7)

where α := (u2 + v2)/2 (cf. Defn 3.1) and ω is ωv := ασ2
w for vanilla networks and ωr := 1+ασ2

w
for residual networks.

Proof. Similar to Lemma E.8, P in and a(xin) are independent. Similar to Lemmas E.10 and F.2,
J(xin) and a(xin) are a zero-mean Gaussian matrix and vector, respectively, and J(xin) and a(xin)
are independent. The mean squared network output can be expanded as follows:

E[f(xin)2i ]

=E


 d∑

j=1

J(xin)ijx
in
j + a(xin)i

2
 (A58)

=

d∑
j=1

d∑
k=1

E[J(xin)ijJ(x
in)ik]x

in
j xin

k + 2

d∑
j=1

E[J(xin)ija(x
in)i]x

in
j + E[a(xin)2i ] (A59)

=

d∑
j=1

E[J(xin)2ij ](x
in
j )2 + E[a(xin)2i ]. (A60)

Using the symmetry of entries of J(xin) and a(xin), the equation can be simplified as follows:

E[f(xin)2i ] = E[J(xin)2ij ]
∥∥xin

∥∥2
2
+ E[a(xin)2i ]. (A61)

Comparing Lemma E.11, Eq. (7) is obtained. Thus, the claim is established.

F Derivation of Thm 4.1 for residual networks

F.1 Definitions of J(xin) and a(xin) for residual networks

Similar to Appx. E.2, we define (derive) J(xin) and a(xin) for residual networks. For notational
simplicity, we omit the argument xin. First, we represent x(l) as follows:

x(l) = (I + V (l))x(0) + c(l), (A62)

where V (0) := 0 and c(0) := 0. With V (l) and c(l), we can represent h(l) as follows:

h(l) = W (l)x(l−1) + b(l) (A63)

= W (l)((I + V (l−1))x(0) + c(l−1)) + b(l) (A64)

= W (l)(I + V (l−1))x(0) +W (l)c(l−1) + b(l). (A65)

Then, we derive recurrence representations of V (l) and c(l) as follows:

x(l) =x(l−1) + P (l)ϕ(h(l)) (A66)

=(I + V (l−1))x(0) + c(l−1)

+ P (l)D(ϕ′(h(l)))(W (l)(I + V (l−1))x(0) +W (l)c(l−1) + b(l)). (A67)

26



For reference, we denote

U (l) := P (l)D(ϕ′(h(l)))W (l), d(l) := P (l)D(ϕ′(h(l)))b(l). (A68)

With the notations above,

x(l) = (I + V (l−1))x(0) + c(l−1) +U (l)(I + V (l−1))x(0) +U (l)c(l−1) + d(l) (A69)

= (I +U (l))(I + V (l−1))x(0) + (I +U (l))c(l−1) + d(l) (A70)

= (I +U (l) + V (l−1) +U (l)V (l−1))x(0) + c(l−1) +U (l)c(l−1) + d(l). (A71)

Thus,

V (l) := U (l) + V (l−1) +U (l)V (l−1), c(l) := c(l−1) +U (l)c(l−1) + d(l). (A72)

Finally, J(xin) and a(xin) are defined as follows:

J(xin) := P out(I + V (L))P in, a(xin) := P outc(L). (A73)

F.2 Main derivation

First, we note the properties of random projections in shortcuts.
Remark F.1. By definition (cf. Appx. C), the following statements hold for any l ∈ [L]:

• (Gaussian matrix/vector) P (l) is a zero-mean Gaussian matrix.

• (Variance) The variance of P (l) is 1/N .

• (Independence) P (l) is independent of W (l), b(l), and h(l), as is any random variable in the
layer before the l-th.

Finally, we introduce a lemma similar to Lemma E.10. A subsequent discussion to derive Thm 4.1 is
the same as the proof in Appx. E.3.
Lemma F.2. Consider a residual network. For any l ∈ [L], the following statements hold:

(a) J (l)(xin) is a zero-mean Gaussian matrix.

(b) a(l)(xin) is a zero-mean Gaussian vector.

(c) J (l)(xin) and a(l)(xin) are independent.

Proof. As a preliminary, please refer to Remarks E.9 and F.1 and Lemma E.10.

Note that effects of all the random variables in the layer before the l-th, such as P (l−1), h(l−1),
W (l−1), and b(l−1), are aggregated to x(l−1). By Lemma E.8, U (l) and d(l) are independent of U (l′)

and d(l′) for any l′ ̸= l. Similarly, as V (l) and c(l) consist of U (1), . . ., U (l), d(1), . . ., d(l), U (l+1)

and d(l+1) are independent of V (l) and c(l). In addition, similar to Lemma E.10, U (l) and d(l) are
independent by Lemma E.7.

We prove the claim by induction. Assume that V (l−1) is a Gaussian matrix. This holds for l′ = 1
because of V (1) = U (1). Similar to Lemma E.8, Uij is independent of Ui·V·j . Since U (l) and
V (l−1) are independent Gaussian matrices and N is sufficiently large, V (l) is a Gaussian matrices.
Similarly, c(l) is a Gaussian vector. By Lemma E.7, V (l) and c(l) are independent. Thus, similar to
Lemma E.10, J(xin) and a(xin) are independent Gaussian matrices.

G Derivation of the theorems in Sec. 5

G.1 Derivation of the theorems in Sec. 5.1

First, we introduce the following lemma, which is required to derive the maximum ℓ∞ norm of a
column of J(xin).
Lemma G.1. The maximum absolute value of n ∈ N i.i.d. Gaussian variables with zero mean and
variance σ2 > 0 is smaller than

√
2σ2 lnn.

27



Table A3: Computable combination of a (p, q)-operator norm [91].
q = 1 q = 2 q = ∞

p = 1 max. ℓ1 norm of a column max. ℓ2 norm of a column max. ℓ∞ norm of a column
p = 2 NP-hard max. singular value max. ℓ2 norm of a row
p = ∞ NP-hard NP-hard max. ℓ1 norm of a row

Proof. Let z ∈ R be a Gaussian variable with zero mean and variance σ2 and a > 0 be a positive
value. First, we compute the upper bound of probability of z > a as follows:

P[z > a] =

∫ ∞

a

g(z;σ2)dz (A74)

≤
∫ ∞

a

z

a
g(z;σ2)dz (A75)

=
1

a
√
2πσ2

[
−σ2 exp

(
− z2

2σ2

)]∞
a

(A76)

=
1

a

√
σ2

2π
exp

(
− a2

2σ2

)
. (A77)

Then, we compute the lower bound of probability of |z| < a as follows:

P[|z| < a] =

∫ a

−a

g(z;σ2)dz (A78)

= 2

∫ a

0

g(z;σ2)dz + 2

∫ 0

−∞
g(z;σ2)dz − 1 (A79)

= 2

∫ a

−∞
g(z;σ2)dz − 1 (A80)

= 2

(
1−

∫ ∞

a

g(z;σ2)dz

)
− 1 (A81)

= 1− 2

∫ ∞

a

g(z;σ2)dz (A82)

≥ 1− 1

a

√
2σ2

π
exp

(
− a2

2σ2

)
. (A83)

Let {zi}ni=1 be n i.i.d. Gaussian variables. Finally, we compute the upper bound of probability of
maxi∈[n] |zi| > a as follows:

P
[
max
i∈[n]

|zi| > a

]
= (1− P[|z| < a])n ≤

(
1

a

√
2σ2

π
exp

(
− a2

2σ2

))n

. (A84)

In particular, when a =
√
2σ2 lnn,

P
[
max
i∈[n]

|zi| >
√
2σ2 lnn

]
≤
(

1

n
√
π lnn

)n
n→∞−−−−→ 0. (A85)

Thus, the claim is established.

Theorem 5.1 (Upper bounds of adversarial loss). Suppose that the input dimension d, output
dimension K, and width N are sufficiently large. Then, for any xin ∈ Rd, the following inequality
holds:

Ladv(x
in) ≤ ϵβp,qω

L/2 =

{
ϵβp,q(

α
LN

∑
W∈W W 2)L/2 (vanilla)

ϵβp,q(1 +
α

LN

∑
W∈W W 2)L/2 (residual)

, (9)

where W := {W (1)
1,1 ,W

(1)
1,2 , . . . ,W

(L)
N,N} denotes the set of all network weights. The constant βp,q for

each norm pair (p, q) is described in Tab. 1.

28



Proof. We note the following:

• By Thm 4.1, each entry of J(xin) is i.i.d. and follows a Gaussian with zero mean and variance
V[J(xin)ij ] = ωL/d.

• The input and output dimensions, d and K, are sufficiently large (cf. Sec. 3.1).

• For some combinations of (p, q), (p, q)-operator norms are computable (cf. Tab. A3) [91].

In addition, we note the following upper bound (cf. Sec. 5.1):

Ladv(x
in) ≤ ϵmax

x∈Rd
∥J(x)∥p,q. (Ineq. (8))

As a preliminary, we compute the mean absolute value of J(xin)ij as follows:

E[|J(xin)ij |] =
√

2ωL

πd
. (A86)

In the above derivation, we use the following equation

Ez∼N (0,σ2)[|z|] =
√

2σ2

π
. (A87)

Based on Tab. A3, we compute ∥J(xin)∥p,q as follows:

Maximum ℓ1 norm of a column, ∥J(xin)∥1,1.

max
j∈[d]

K∑
i=1

|J(xin)ij | = max
j∈[d]

K
1

K

K∑
i=1

|J(xin)ij | (A88)

= max
j∈[d]

KE[|J(xin)ij |] (A89)

= max
j∈[d]

K

√
2ωL

πd
(A90)

=

√
2

πd
KωL/2. (A91)

Maximum ℓ2 norm of a column, ∥J(xin)∥1,2.

max
j∈[d]

√√√√ K∑
i=1

J(xin)2ij = max
j∈[d]

√√√√K
1

K

K∑
i=1

J(xin)2ij (A92)

= max
j∈[d]

√
KE[J(xin)2ij ] (A93)

= max
j∈[d]

√
K

ωL

d
(A94)

=

√
K

d
ωL/2. (A95)

Maximum ℓ∞ norm of a column, ∥J(xin)∥1,∞. By Lemma G.1,

max
i∈[K]

|J(xin)ij | ≤
√
2V[J(xin)ij ] lnK =

√
2 lnK

d
ωL/2. (A96)

Maximum singular value, ∥J(xin)∥2,2. By the Marchenko—Pastur law,

∥J(xin)∥2 ≤
(
1 +

√
K

d

)
ωL/2, (A97)

29



where ∥ · ∥2 denotes the spectral norm (largest singular value).

Maximum ℓ2 norm of a row, ∥J(xin)∥2,∞.

max
i∈[K]

√√√√ d∑
j=1

J(xin)2ij = max
i∈[K]

√√√√d
1

d

d∑
j=1

J(xin)2ij (A98)

= max
i∈[K]

√
dE[J(xin)2ij ] (A99)

= max
i∈[K]

√
d
ωL

d
(A100)

= ωL/2. (A101)

Maximum ℓ1 norm of a row, ∥J(xin)∥∞,∞.

max
i∈[K]

d∑
j=1

|J(xin)ij | = max
i∈[K]

d
1

d

d∑
j=1

|J(xin)ij | (A102)

= max
i∈[K]

dE[|J(xin)ij |] (A103)

= max
i∈[K]

d

√
2ωL

πd
(A104)

=

√
2d

π
ωL/2. (A105)

In addition, we try to derive equalities rather than inequalities (upper bounds). First, we note the
following equation:

Ladv(x
in) := max

∥η∥p≤ϵ

∥∥f(xin + η)− f(xin)
∥∥
q

(Eq. (3))

= max
∥η∥p≤ϵ

∥∥J(xin + η)(xin + η) + a(xin + η)− J(xin)xin − a(xin)
∥∥. (A106)

Because J(xin) and a(xin) are the slope and bias of a piecewise linear region, respectively, for
sufficiently small η, J(xin + η) and a(xin + η) are identical to J(xin) and a(xin), respectively.
Therefore, for sufficiently small η, we can derive the following equation:

Ladv(x
in) = max

∥η∥p≤ϵ

∥∥J(xin)η
∥∥ = ϵ

∥∥J(xin)
∥∥
p,q

. (A107)

Proposition G.2. Suppose that the perturbation constraint ϵ is sufficiently small. For any xin ∈ Rd

and (p, q) = (1, 1), (1, 2), (2,∞), and (∞,∞), the following equality holds:

Ladv(x
in) = ϵβp,qω

L/2. (A108)

Proof. As shown in Eq. (A107), the adversarial loss (Eq. (3)) is equal to the (p, q)-operator norm
of J(xin) under this assumption. For (p, q) = (1, 1), (1, 2), (2,∞), and (∞,∞), we can obtain the
equalities of the (p, q)-operator norms (cf. the proof of Thm 5.1). Thus, the claim is established. Note
that, for (p, q) = (1,∞) and (2, 2), we can derive only upper bounds (cf. the proof of Thm 5.1).

Proposition G.3. Suppose that the perturbation constraint ϵ is sufficiently small and the output
dimension is one. For any xin ∈ Rd, and (p, q) = (2,∞) and (∞,∞), the following equality holds:

Ladv(x
in) = ϵβp,qω

L/2. (A109)

In addition, for any xin ∈ Rd and (p, q) = (2, 2), the following equality holds:

Ladv(x
in) = ϵωL/2. (A110)

30



Proof. Similar to Prop G.2, the upper bounds for (p, q) = (2,∞) and (∞,∞) become equalities.
The upper bounds for (p, q) = (1, 1) and (1, 2) require sufficiently large K, and thus, they do not
become equalities. In addition, as Tab. A3 shows, the (2, 2)-operator norm is a maximum singular
value. When K = 1, the maximum singular value is identical to the Frobenius norm (ℓ2 norm),
which is calculated as follows:

∥∥J(xin)
∥∥
F
=

√√√√ d∑
j=1

J(xin)21j (A111)

=

√√√√d
1

d

d∑
j=1

J(xin)21j (A112)

=
√

dE[J(xin)21j ] (A113)

= ωL/2. (A114)

Thus, in contrast to the proof of Thm 5.1, we can obtain the equality of the (2, 2)-operator norm
instead of the inequality (upper bound).

G.2 Derivation of the theorems in Sec. 5.2

In the following, we set Ladv := ϵβp,qω
L/2. As a preliminary, we state the following two lemmas.

These are used to solve the differential equation derived from gradient flow.
Lemma G.4. For t, a, b ∈ R, x : R → R, and x(0) := x0, the following holds:

dx(t)

dt
= −ax(t)b ⇔ x(t) = (a(b− 1)t+ x

−(b−1)
0 )−1/(b−1). (A115)

Proof.

dx(t)

dt
= −ax(t)b (A116)∫

x−bdx = −a

∫
dt (A117)

1

−(b− 1)
x−(b−1) = −at+ C1 (A118)

x(t) = (a(b− 1)t+ C2)
−1/(b−1). (A119)

By the initial value,

x(0) := x0 = C
−1/(b−1)
2 (A120)

C2 = x
−(b−1)
0 . (A121)

Thus,

x(t) = (a(b− 1)t+ x
−(b−1)
0 )−1/(b−1). (A122)

Lemma G.5. For t, c ∈ R, a, b ≥ 0, x : R → R, x(0) := x0, and 0 ≤ bx(0) ≪ 1, the following
holds:

dx(t)

dt
= −a(1 + bx(t))cx(t) ⇔ x(t) =

x0

(1 + bcx0) exp(at)− bcx0
. (A123)

Proof. By −a(1 + bx(t))cx(t) ≤ 0, x(t) does not increase with t. That is, bx(t) ≤ bx(0) ≪ 1.
Therefore, we can approximate (1 + bx(t))c as 1 + bcx(t) using the binomial theorem. Thus, we try
to solve the following differential equation:

dx(t)

dt
= −a(1 + bcx(t))x(t), (A124)

31



whose solution is as follows:

x(t) =
C1

bc(exp(at)− C1)
. (A125)

By the initial value,

x(0) := x0 =
C1

bc(1− C1)
(A126)

bc(1− C1)x0 = C1 (A127)
bcx0 = (1 + bcx0)C1 (A128)

C1 =
bcx0

1 + bcx0
. (A129)

Thus,

x(t) =
bcx0

1+bcx0

bc(exp(at)− bcx0

1+bcx0
)

(A130)

=
bcx0

bc((1 + bcx0) exp(at)− bcx0)
(A131)

=
x0

(1 + bcx0) exp(at)− bcx0
. (A132)

Then, using the update equation of parameters (Eq. (10)), we consider the differential equation of
weight variance as follows:
Lemma G.6. Suppose that Asm 5.2 holds. Let L1, . . . ,Ln : R → R be the n loss functions and
W := {W (1)

11 ,W
(1)
12 , . . . ,W

(L)
NN} be the set of all network weights. A network is trained by minimizing

the sum of loss functions,
∑n

i=1 Li(x
in). The network parameters are updated similarly to Eq. (10).

The differential equation of σ2
w(t) is given by:

dσ2
w(t)

dt
= −NEW∈W

[
W (t)

n∑
i=1

∂Li(x
in)

∂W (t)

]
(A133)

Proof. Since Asm 5.2 holds and the number of weights, LN2, is sufficiently large, σ2
w(t+ dt) can

be represented as follows:

σ2
w(t+ dt) = N

σ2
w(t+ dt)

N
= NVW∈W [W (t+ dt)] = NEW∈W [W (t+ dt)2]. (A134)

We can expand W (t+ dt) using Eq. (10) and rearrange the above equation as follows:

σ2
w(t+ dt) = NEW∈W

(W (t)−
n∑

i=1

∂Li(x
in)

∂W (t)
dt

)2
 (A135)

= NEW∈W

[
W (t)2 −W (t)

n∑
i=1

∂Li(x
in)

∂W (t)
dt+O(dt2)

]
(A136)

= σ2
w(t)−NEW∈W

[
W (t)

n∑
i=1

∂Li(x
in)

∂W (t)
dt

]
+O(dt2) (A137)

≈ σ2
w(t)−NEW∈W

[
W (t)

n∑
i=1

∂Li(x
in)

∂W (t)

]
dt. (A138)

Thus,

dσ2
w(t)

dt
= −NEW∈W

[
W (t)

n∑
i=1

∂Li(x
in)

∂W (t)

]
. (A139)

32



Lemma G.7. For Ladv := ϵβp,qω
L/2, the following equality holds:

∂Ladv

∂W
=

ϵαβp,qω
L/2−1

N
W. (A140)

Proof. If the number of network weights, i.e., LN2, is sufficiently large, we can represent the weight
variance as follows:

σ2
w

N
=

1

LN2

∑
W∈W

W 2. (A141)

The derivative of ω with respect to W ∈ W can be calculated as follows:

∂ωv

∂W
=

∂(ασ2
w)

∂W
=

∂(αN
σ2
w

N )

∂W
= αN

∂
(

1
LN2

∑
V ∈W V 2

)
∂W

=
2α

LN
W, (A142)

∂ωr

∂W
=

∂(1 + ασ2
w)

∂W
=

2α

LN
W. (A143)

The derivative of ωL/2 with respect to W ∈ W can be calculated as follows:

∂ωL/2

∂W
=

L

2
ωL/2−1 ∂ω

∂W
=

L

2
ωL/2−1 2α

LN
W =

αωL/2−1

N
W. (A144)

Thus,

∂Ladv

∂W
= ϵβp,q

∂ωL/2

∂W
=

ϵαβp,qω
L/2−1

N
W. (A145)

Lemma G.8. Suppose that Asm 5.2 holds. Let Lstd : Rd → R be the standard loss function
and Ladv : Rd → R be the adversarial loss function. Suppose that Asm B.1 applies to Lstd.
The adversarial loss function is defined as Ladv(x

in; t) := ϵβp,qω(t)
L/2. A network is trained by

minimizing Lstd+Ladv. Network parameters are updated by Eq. (10). Then, the differential equation
of σ2

w(t) is given by:

dσ2
w(t)

dt
= −ϵαβp,q

N
ω(t)L/2−1σ2

w(t). (A146)

Proof. By Lemma G.6,

dσ2
w(t)

dt
= −NE

[
W (t)

∂Lstd

∂W (t)

]
−NE

[
W (t)

∂Ladv

∂W (t)

]
. (A147)

Since the standard loss satisfies Asm B.1, E
[
W (t) ∂Lstd

∂W (t)

]
= 0 and

dσ2
w(t)

dt
= −NE

[
W (t)

∂Ladv

∂W (t)

]
. (A148)

By Lemma G.7,

dσ2
w(t)

dt
= −NE

[
W (t)

ϵαβp,qω(t)
L/2−1

N
W (t)

]
(A149)

= −ϵαβp,qω(t)
L/2−1E[W (t)2] (A150)

= −ϵαβp,q

N
ω(t)L/2−1σ2

w(t). (A151)

Theorem 5.4 (Weight time evolution of vanilla network in adversarial training). Suppose that
Asms 5.2 and 5.3 hold. Then, the time evolution of σ2

w of a vanilla network in adversarial training is
given by:

σ2
w(t) =

(
1− ϵαβp,qωv(0)

L/2−1

N
t

)
σ2
w(0). (11)

33



Proof. By Lemma G.8, the time evolution of weight variance in a vanilla network is represented as
follows:

dσ2
w(t)

dt
= −ϵαβp,q

N
ωv(t)

L/2−1σ2
w(t) (A152)

= −ϵαβp,q

N
αL/2−1σ2

w(t)
L/2−1σ2

w(t) (A153)

= −ϵαL/2βp,q

N
σ2
w(t)

L/2. (A154)

Denote L′ := L/2− 1. By Lemma G.4, we can obtain

σ2
w(t) =

(
ϵαL/2βp,q

N
(L/2− 1)t+ σ2

w(0)
−(L/2−1)

)−1/(L/2−1)

(A155)

=

(
ϵαL′+1βp,qL

′

N
t+ σ2

w(0)
−L′

)−1/L′

(A156)

=

(
1 +

ϵαL′+1σ2
w(0)

L′
βp,qL

′

N
t

)−1/L′

σ2
w(0) (A157)

=

(
1 +

ϵαωv(0)
L′
βp,qL

′

N
t

)−1/L′

σ2
w(0). (A158)

By t ≤ T ≪ N ,

σ2
w(t) ≈

(
1− 1

L′
ϵαβp,qωv(0)

L′
L′

N
t

)
σ2
w(0) =

(
1− ϵαβp,qωv(0)

L′

N
t

)
σ2
w(0). (A159)

Theorem G.9 (Weight time evolution of a residual network in adversarial training). Suppose that
Asm 5.2 holds and ασ2

w(0) ≪ 1. The time evolution of σ2
w of a residual network in adversarial

training is given by:
σ2
w(t) =

(
1− (1 + αL′σ2

w(0))ϵαβp,qt/N
)
σ2
w(0). (A160)

Proof. By Lemma G.8, the time evolution of weight variance in a residual network is represented as
follows:

dσ2
w(t)

dt
= −ϵαβp,q

N
ω(t)L/2−1σ2

w(t) = −ϵαβp,q

N
(1 + ασ2

w(t))
L/2−1σ2

w(t). (A161)

By Lemma G.5, we can obtain

σ2
w(t) =

σ2
w(0)

(1 + α(L/2− 1)σ2
w(0)) exp

(
ϵαβp,q

N t
)
− α(L/2− 1)σ2

w(0)
(A162)

= ((σ2
w(0)

−1 + αL′) exp(ϵαβp,qt/N)− αL′)−1. (A163)
By the Maclaurin expansion of the exponential function and t ≤ T ≪ N ,

σ2
w(t) ≈

(
(σ2

w(0)
−1 + αL′)

(
1 +

ϵαβp,qt

N

)
− αL′

)−1

(A164)

=

(
σ2
w(0)

−1 + (σ2
w(0)

−1 + αL′)
ϵαβp,qt

N

)−1

(A165)

=

(
1 + (1 + αL′σ2

w(0))
ϵαβp,qt

N

)−1

σ2
w(0). (A166)

By t ≤ T ≪ N ,

σ2
w(t) =

(
1− (1 + αL′σ2

w(0))
ϵαβp,qt

N

)
σ2
w(0). (A167)

34



Then, we consider the time evolution of weight variance, Thms 5.4 and G.9, at initialization satisfying
(M,m)-trainability condition (Lemma 5.6). Here, we assume ω(0) ≈ 1 satisfying Lemma 5.6. Under
this assumption, the time evolution of weight variance in vanilla networks, Eq. (11), can be rearranged
as follows:

σ2
w(t) = (1− ϵαβp,qωv(0)

L/2−1t/N)σ2
w(0)

ωv(0)≈1−−−−−→ (1− ϵαβp,qt/N)σ2
w(0). (A168)

In addition, the time evolution of weight variance in residual networks, Eq. (A160), can be rearranged
as follows:

σ2
w(t) =

(
1− (1 + αL′σ2

w(0))ϵαβp,qt/N
)
σ2
w(0)

ωr(0)≈1−−−−−→ (1− ϵαβp,qt/N)σ2
w(0). (A169)

Thus, the time evolution of weight variance is consistent in vanilla and residual networks at initializa-
tion satisfying Lemma 5.6.

G.3 Derivation of the theorems in Sec. 5.3

Lemma 5.6 (Vanilla and residual (M,m)-trainability condition). Suppose that the width N is
sufficiently large. Then, the (M,m)-trainability conditions for vanilla and residual networks are
respectively given by:

m1/L ≤ ασ2
w ≤ M1/L (vanilla), ασ2

w ≤ M1/L − 1 (residual). (12)

Proof. Applying Eq. (A38) to Eqs. (2) and (A19), we can obtain the following equations:

χ(l)

χ(l+1)
=

{
σ2
wE[ϕ′(h(l+1))] = ασ2

w = ωv (vanilla)

1 + σ2
wE[ϕ′(h(l+1))2] = 1 + ασ2

w = ωr (residual)
. (A170)

Then, recursively computing the above equation, we can derive the following equations:

χ(0)

χ(L)
= ωL =

{
(ασ2

w)
L (vanilla)

(1 + ασ2
w)

L (residual)
. (A171)

Applying this equation to Defn 5.5,

m ≤ χ(0)

χ(L)
≤ M ⇔ m1/L ≤ ω ≤ M1/L. (A172)

For a vanilla network,
m1/L ≤ ασ2

w ≤ M1/L. (A173)
For a residual network,

m1/L − 1 ≤ ασ2
w ≤ M1/L − 1. (A174)

In particular, for a residual network, by m1/L − 1 ≤ 0 and ασ2
w ≥ 0,

(0 ≤)ασ2
w ≤ M1/L − 1. (A175)

Theorem 5.7 (Vanilla networks are not adversarially trainable). Consider a vanilla network. Suppose
that Asms 5.2 and 5.3 hold, and the (M,m)-trainability condition holds at t = 0 and ασ2

w(0) = 1. If

T ≥ (1−m1/L)N

ϵαβp,q
, (13)

then there exists 0 < τ ≤ T such that the (M,m)-trainability condition does not hold for τ ≤ t ≤ T .

Proof. Let us consider T breaking the (M,m)-trainability condition. As Thm 5.4 claims, σ2
w(t)

decreases monotonically with t. Thus, we consider T such that σ2
w(T ) is less than the lower bound.

m1/L ≥ ασ2
w(T ) =

(
1− ϵαβp,qT

N

)
ασ2

w(0) = 1− ϵαβp,qT

N
(A176)

ϵαβp,qT

N
≥ 1−m1/L (A177)

T ≥ (1−m1/L)N

ϵαβp,q
. (A178)

35



Theorem 5.8 (Residual networks are adversarially trainable). Consider a residual network. Suppose
that Asms 5.2 and 5.3 hold, and the (M,m)-trainability condition holds at t = 0 and ασ2

w(0) ≪ 1.
Then, (M,m)-trainability condition always holds for 0 ≤ t ≤ T .

Proof. By Thm G.9, σ2
w(t) decreases monotonically. Thus, the following inequality holds, and, by

Lemma 5.6, the (M,m)-trainability condition always holds in 0 ≤ t ≤ T :

ασ2
w(t) ≤ ασ2

w(0) ≤ M1/L − 1. (A179)

Proposition G.10 (Residual networks are adversarially trainable without careful weight initialization).
Suppose that Asm 5.2 holds, the network is residual, and the (M,m)-trainability condition is not
satisfied at t = 0. If

T ≥ (ασ2
w(0)− (M1/L − 1))N

ϵαL/2+1βp,qσ2
w(0)

L/2
, (A180)

there exists 0 < τ ≤ T such that the (M,m)-trainability condition hold for τ ≤ t ≤ T .

Proof. Denote the time evolution of the weight variance on a vanilla network by σ2
w,v and the variance

on a residual network by σ2
w,r. By Eq. (A161),

dσ2
w(t)

dt
= −ϵαβp,q

N
(1 + ασ2

w(t))
L/2−1σ2

w(t) ≤ −ϵαL/2βp,q

N
σ2
w(t)

L/2. (A181)

Recall that the following differential equation represents the time evolution of weight variance on a
vanilla network (cf. Thm 5.4):

dσ2
w(t)

dt
= −ϵαL/2βp,q

N
σ2
w(t)

L/2. (A182)

From the above, σ2
w,r(t) ≤ σ2

w,v(t) if σ2
w(0) is the same. Here, we consider T such that σ2

w,v(T ) is
less than the upper bound of the (M,m)-trainability condition. By Thm 5.4,

ασ2
w,v(T ) ≤ M1/L − 1 (A183)(

1− ϵαβp,qωv(0)
L′
T

N

)
ασ2

w,v(0) ≤ M1/L − 1 (A184)

1− ϵαβp,qα
L′
σ2
w(0)

L′
T

N
≤ M1/L − 1

ασ2
w(0)

(A185)

1− M1/L − 1

ασ2
w(0)

≤ ϵαβp,qα
L′
σ2
w(0)

L′
T

N
(A186)

(ασ2
w(0)−M1/L + 1)N

ασ2
w(0)ϵαβp,qαL′σ2

w(0)
L′ ≤ T (A187)

(ασ2
w(0)−M1/L + 1)N

ϵαL/2+1βp,qσ2
w(0)

L/2
≤ T. (A188)

G.4 Derivation of the theorems in Sec. 5.4

First, we state the following two lemmas as a preliminary.
Lemma G.11. Consider a vanilla network. Suppose that Asm B.1 is applied to the network output.
For any l ∈ [L], the mean squared gradient of fi with respect to h

(l)
j is given by:

E

( ∂fi

∂h
(l)
j

)2
 = αωL−l

v χ(L). (A189)

36



Proof.

E

( ∂fi

∂h
(l)
j

)2
 = E

( ∂fi
∂h(l+1)

∂h(l+1)

∂x
(l)
j

∂x
(l)
j

∂h
(l)
j

)2
 (A190)

= E

( N∑
k=1

∂fi

∂h
(l+1)
k

W
(l+1)
kj

)2

ϕ′(h
(l)
j )2

. (A191)

By Asm B.1 and Eq. (A38),

E

( ∂fi

∂h
(l)
j

)2
 = σ2

wE[ϕ′(h
(l)
j )2]E

( ∂fi

∂h
(l+1)
k

)2
 (A192)

= ωvE

( ∂fi

∂h
(l+1)
k

)2
 (A193)

= ωL−l
v E

( ∂fi

∂h
(L)
k

)2
. (A194)

Moreover, by Asm B.1,

E

( ∂fi

∂h
(L)
j

)2
 = E

( ∂fi

∂x
(L)
j

∂x
(L)
j

∂h
(L)
j

)2
 = E

( ∂fi

∂x
(L)
j

)2

ϕ′(h
(L)
j )2

 = αχ(L). (A195)

Thus,

E

( ∂fi

∂h
(l)
i

)2
 = αωL−l

v χ(L). (A196)

Lemma G.12. Suppose that Asm B.1 is applied to the network output. For any l ∈ [L], the mean
squared gradient of fi with respect to a weight is given by:

E

( ∂fi

∂W
(l)
jk

)2
 = αωL−1χ(L)E[(x(0)

j )2] + α2ωL−lχ(L)σ2
b

l−1∑
m=1

ωm−1. (A197)

Proof. Vanilla. By Asm B.1,

E

( ∂fi

∂W
(l)
jk

)2
 = E

( ∂fi

∂h
(l)
j

∂h
(l)
j

∂W
(l)
jk

)2
 = E

( ∂fi

∂h
(l)
j

)2
E[(x(l−1)

k )2]. (A198)

By Lemmas E.11 and G.11,

E

( ∂fi

∂W
(l)
jk

)2
 = αωL−l

v χ(L)

(
ωl−1
v E[(x(0)

j )2] + ασ2
b

l−1∑
m=1

ωm−1
v

)
(A199)

= αωL−1
v χ(L)E[(x(0)

j )2] + α2ωL−l
v χ(L)σ2

b

l−1∑
m=1

ωm−1
v . (A200)

37



Residual. By Asm B.1,

E

( ∂fi

∂W
(l)
jk

)2
 = E

( ∂fi

∂x
(l)
j

∂x
(l)
j

∂h
(l)
j

∂h
(l)
j

∂W
(l)
jk

)2
 (A201)

= E

( ∂fi

∂x
(l)
j

)2

ϕ′(h
(l)
j )2(x

(l−1)
k )2

 (A202)

= E

( ∂fi

∂x
(l)
j

)2
E[ϕ′(h

(l)
j )2]E[(x(l−1)

k )2] (A203)

= χ(l)E[ϕ′(h
(l)
j )2]E[(x(l−1)

k )2]. (A204)

By Eq. (A38),

E

( ∂fi

∂W
(l)
jk

)2
 = αχ(l)E[(x(l−1)

k )2]. (A205)

By Eqs. (A19) and (A38),

χ(l) = ωL−l
r χ(L). (A206)

Thus, by Lemma E.11,

E

( ∂fi

∂W
(l)
jk

)2
 = αωL−l

r χ(L)

(
ωl−1
r E[(x(0)

j )2] + ασ2
b

l−1∑
m=1

ωm−1
r

)
(A207)

= αωL−1
r χ(L)E[(x(0))2] + α2ωL−l

r χ(L)σ2
b

l−1∑
m=1

ωm−1
r . (A208)

Now, we can simply represent the mean of the Fisher–Rao norm.

Lemma G.13. Suppose that Asm B.1 is applied to the network output. Suppose
∥∥xin

∥∥
2
=

√
d and

σ2
b = 0. The mean of the Fisher–Rao norm is given by:

E[∥w∥FR] = LKασ2
wω

L−1. (A209)

Proof. The following discussion is based on [49]. We rearrange and expand their discussion for a
ReLU-like network. We also consider it for a residual network. Note that w := (W

(1)
11 , . . . ,W

(L)
NN )⊤.

As a preliminary, see Remark E.9. The Fisher–Rao norm is calculated as follows:

∥w∥FR := w⊤Fw =

LN2∑
i=1

LN2∑
j=1

wiFijwj =

LN2∑
i=1

LN2∑
j=1

K∑
k=1

∂fk
∂wi

∂fk
∂wj

wiwj . (A210)

By Asm B.1,

E[∥w∥FR] =
LN2∑
i=1

LN2∑
j=1

K∑
k=1

E
[
∂fk
∂wi

∂fk
∂wj

wiwj

]
(A211)

=

LN2∑
i=1

LN2∑
j=1

K∑
k=1

E
[
∂fk
∂wi

∂fk
∂wj

]
E[wiwj ] (A212)

= K
σ2
w

N

LN2∑
i=1

E

[(
∂fk
∂wi

)2
]
. (A213)

38



By Lemma G.12, E[(∂fi/∂W (l)
jk )

2] is invariant to l if σ2
b = 0. In other words, E[(∂fk/∂wi)

2] does
not depend on i if σ2

b = 0. Thus,

E[∥w∥FR] = LNKσ2
wE

[(
∂fk
∂wi

)2
]
= LNKασ2

wω
L−1χ(L)E[(x(0)

i )2]. (A214)

Moreover,

χ(L) := E

( ∂fi

∂x
(L)
j

)2
 = E

(∂
∑N

k=1 P
out
ik x

(L)
k

∂x
(L)
j

)2
 = E[(P out

ij )2] =
1

N
, (A215)

E[(x(0)
i )2] = E


 d∑

j=1

P in
ij x

in
j

2
 =

d∑
j=1

E[(P in
ij )

2](xin
j )2 = 1. (A216)

Thus,

E[∥w∥FR] = LKασ2
wω

L−1. (A217)

Theorem 5.9 (Adversarial training degrades network capacity). Consider a vanilla network. Suppose
that Asms 5.2 and 5.3 hold, Asm B.1 is applied to the network output, and the (M,m)-trainability
condition holds at t = 0 and ασ2

w(0) = 1. Assume
∥∥xin

∥∥
2
=

√
d and σ2

b (t) = 0. Then, the
expectation of the Fisher–Rao norm is given by:

E[∥w(t)∥FR] = LK

(
1− ϵαβp,qL

N
t

)
. (15)

Proof. By Lemma G.13,

E[∥w∥FR] = LKασ2
w(t)ωv(t)

L−1 = LKαLσ2
w(t)

L. (A218)

By Thm 5.4,

E[∥w∥FR] = LKαLσ2
w(0)

L

(
1− ϵαβp,qt

N

)L

= LK

(
1− ϵαβp,qt

N

)L

. (A219)

By ϵαβp,qt/N ≪ 1,

E[∥w∥FR] ≈ LK

(
1− Lϵαβp,qt

N

)
. (A220)

Theorem G.14 (Adversarial training degrades network capacity). Consider a residual network.
Suppose that Asm 5.2 holds, Asm B.1 is applied to the network output, and the (M,m)-trainability
condition holds at t = 0, e.g., ασ2

w(0) ≪ 1. Suppose
∥∥xin

∥∥
2
=

√
d and σ2

b (t) = 0. Then, the mean
of the Fisher–Rao norm is given by:

E[∥w∥FR] =LKασ2
w(0)

 1 + (L− 1)ασ2
w(0)

−(2(L− 1)ασ2
w(0) + 1)

(
1 +

(
L

2
− 1

)
ασ2

w(0)

)
ϵαβp,qt

N

.

Proof. By Lemma G.13,

E[∥w∥FR] = LKασ2
w(t)ωr(t)

L−1 (A221)

= LKασ2
w(t)(1 + ασ2

w(t))
L−1 (A222)

≈ LKασ2
w(t)(1 + (L− 1)ασ2

w(t)). (A223)

39



Temporally, denote A := (1 + (L/2− 1)ασ2
w(0))ϵαβp,qt/N . By Thm G.9,

E[∥w∥FR] = LKα(1−A)σ2
w(0)(1 + (L− 1)α(1−A)σ2

w(0)) (A224)

= LKασ2
w(0)(1−A)(1 + (L− 1)ασ2

w(0)− (L− 1)Aασ2
w(0)) (A225)

= LKασ2
w(0)

(
1−A+ (L− 1)(1−A)ασ2

w(0)

−(L− 1)Aασ2
w(0) +O(A2)

)
. (A226)

By O(1/N2) ≈ 0, O(A2) ≈ 0. Thus,

E[∥w∥FR] ≈LKασ2
w(0)(1−A+ (L− 1)(1−A)ασ2

w(0)− (L− 1)Aασ2
w(0)) (A227)

=LKασ2
w(0)(1−A+ (L− 1)ασ2

w(0)− 2(L− 1)Aασ2
w(0)) (A228)

=LKασ2
w(0)(1 + (L− 1)ασ2

w(0)− (2(L− 1)ασ2
w(0) + 1)A) (A229)

=LKασ2
w(0)

 1 + (L− 1)ασ2
w(0)

−(2(L− 1)ασ2
w(0) + 1)

(
1 +

(
L

2
− 1

)
ασ2

w(0)

)
ϵαβp,qt

N

. (A230)

H Comparison with matrix decomposition approaches

Here, we analyze Ineq. (8) with another approach, which decomposes J(xin) into products of
matrices, and consider norm of each matrix. As related studies based on this approach, we cite
the literature on certified adversarial defense [3, 18, 93] and spectral regularization [60, 108]. We
consider the case of (p, q) = (2, 2) for simplicity. In comparison to them, our approach is different
in two ways. First, their bound is not tractable due to a deterministic approach. For example, they
consider the spectral norm of J(xin) by decomposing J(xin) and computing the norm of each matrix
consisting J(xin) as follows:∥∥J(xin)

∥∥
2
=
∥∥∥P outD(ϕ′(h(L)(xin)))W (L) · · ·D(ϕ′(h(1)(xin)))W (1)P in

∥∥∥
2

(A231)

≤
∥∥P out

∥∥
2

∥∥∥D(ϕ′(h(L)(xin)))
∥∥∥
2

∥∥∥W (L)
∥∥∥
2

· · ·
∥∥∥D(ϕ′(h(1)(xin)))

∥∥∥
2

∥∥∥W (1)
∥∥∥
2

∥∥P in
∥∥
2

(A232)

≤max(|u|, |v|)L
∥∥P in

∥∥
F

∥∥P out
∥∥
F

L∏
l=1

∥∥∥W (l)
∥∥∥
F
. (A233)

Because Eqs. (A232) and (A233) are hard to theoretically manage, we cannot derive some theorems
in this study such as Thms 5.4, 5.7 and 5.9. Second, because we calculate the spectral norm of
J(xin) directly in Thm 5.1 instead of considering the norm of each matrix and the spectral norm is
submultiplicative, our upper bounds are always tighter than those derived from Eq. (A232).

Here, we proceed with the discussion of tightness of their bound using probabilistic theory. One
approach is the rearrangement of Eq. (A232) using the Marchenko–Pastur law. As a preliminary, we
note the following:

∥∥P in
∥∥
2
≤ 1 +

√
N

d
,

∥∥P out
∥∥
2
≤ 1 +

√
K

N
,

∥∥∥W (l)
∥∥∥
2
≤ 2
√
σ2
w. (A234)

Using the above equations, Eq. (A232) can be rearranged as follows:

∥∥J(xin)
∥∥
2
≤ max(|u|, |v|)L

(
1 +

√
N

d

)(
1 +

√
K

N

)
2L(σ2

w)
L/2. (A235)

This is exponentially looser than Thm 5.1.

40



Another approach is the rearrangement of Eq. (A233) using the assumption that each matrix is
sufficiently large. As a preliminary, we note the following:

∥∥P in
∥∥
F
=

√√√√Nd
1

Nd

N∑
i=1

d∑
j=1

(P in
ij )

2 =
√
NdE[(P in

ij )
2] =

√
Nd

1

d
=

√
N, (A236)

∥∥P out
∥∥
F
=

√√√√KN
1

KN

K∑
i=1

N∑
j=1

(P out
ij )2 =

√
KNE[(P out

ij )2] =

√
KN

1

N
=

√
K, (A237)

∥∥∥W (l)
∥∥∥
F
=

√√√√N2
1

N2

N∑
i=1

N∑
j=1

(W
(l)
ij )2 =

√
N2E[(W (l)

ij )2] =

√
N2

σ2
w

N
=
√
Nσ2

w. (A238)

Using the above equations, Eq. (A233) can be rearranged as follows:∥∥J(xin)
∥∥
2
≤ max(|u|, |v|)L

√
N
√
K
√

Nσ2
w

L
= max(|u|, |v|)LK1/2N (L+1)/2(σ2

w)
L/2. (A239)

This is also exponentially looser than Thm 5.1.

I Comparison with ℓ2 weight regularization

As stated in Secs. 5.1 and 5.2, adversarial training serves the role of a weight regularizer. Here, we
compare adversarial training with ℓ2 weight regularization. First, we define ℓ2 weight regularization
as follows:

Lw(W;λ) := λ
∑

W∈W
W 2, (A240)

where λ > 0 is a scaling factor. Then, we determine the scaling factor λ based on the concept of
gradient vanishing and explosion. The mean of Lw(W;λ) is calculated as follows:

E[Lw(W;λ)] = λ
∑

W∈W
E[W 2] = λLN2E[W 2] = λLN2σ

2
w

N
= λLNσ2

w. (A241)

To prevent (gradient) vanishing and explosion of E[Lw(W;λ)] under sufficiently large L and N , λ
should be 1/(LN). Moreover, for simplicity of the derivation, we set λ := 1/(2LN). Finally, ℓ2
regularized training tries to minimize the following loss function:

L := Lstd +
1

2LN

∑
W∈W

W 2 (A242)

Next, we consider the time evolution of σ2
w with ℓ2 weight regularization. Similar to Thms 5.4

and G.9, we can derive the following proposition:
Proposition I.1 (Weight time evolution with ℓ2 weight regularization). Suppose that Asm 5.2 holds.
Let Lstd be the standard loss function and Lw(W) := 1/(2LN)

∑
W∈W W 2 be the ℓ2 regularization

loss function. Suppose that Asm B.1 applies to Lstd, but not to Lw. A network is trained by minimizing
Lstd + Lw(W). Then, the time evolution of σ2

w is given by:

σ2
w(t) =

(
1− t

LN

)
σ2
w(0). (A243)

Proof. Similar to Lemma G.8,
dσ2

w(t)

dt
= −NE

[
W (t)

∂Lw(W)

∂W (t)

]
(A244)

= −NE
[
W (t)

W (t)

LN

]
(A245)

= − 1

L
E[W (t)2] (A246)

= − 1

LN
σ2
w(t). (A247)

41



Thus,

σ2
w(t) = exp

(
− t

LN

)
σ2
w(0). (A248)

By t ≤ T ≪ N , using Maclaurin expansion of the exponential function,

σ2
w(t) =

(
1− t

LN

)
σ2
w(0). (A249)

Here, we consider the adversarial loss defined as Ladv(x
in) := ϵβp,qω

L/2 (cf. Thm 5.1). The
difference between adversarial training and ℓ2 regularization lies in the scale: ϵαβp,q/N in adversarial
training (cf. Thm 5.4) and 1/(LN) in ℓ2 regularized training. Adversarial training with strong
adversarial examples (e.g., ℓ∞ constrained ones) reduces σ2

w(t) more drastically than ℓ2 regularized
training. For example, with L = 100, N = 1, 000, d = 3× 224× 224, ϵ = 0.1, α = 1/2, p = ∞,
q = ∞, then Θ(ϵαβp,q/N) = 10−2 and Θ(1/(LN)) = 10−5.

Finally, we compare adversarial training and ℓ2 regularization in terms of stability of gradient descent.
The derivations of both losses with respect to the weight W ∈ W are given by (cf. Lemma G.7):

∂Ladv

∂W
=

ϵαβp,qω
L/2−1W

N
,

∂Lw

∂W
=

W

LN
. (A250)

This indicates that the derivation of ℓ2 regularizer is smooth across the entire weight space, whereas
the derivation of adversarial loss changes significantly at the ω = 1 boundary. Note that ω evolves
during training (cf. the definition in Thm 4.1). The steep derivation in adversarial training prevents
the gradient descent from reaching a minimum.

J Revisiting trainability condition in adversarial training

Here, we revisit Defn 5.5. Recall that this condition can be derived exclusively under Asm B.1. This
is because χ(l) can only be computed under Asm B.1 [81]. In this study, we assume that Asm B.1
applies to the standard loss Lstd, but not to the adversarial loss Ladv. Consequently, the composite
loss L := Lstd + Ladv does not satisfy Asm B.1, implying that strictly speaking, Defn 5.5 is not
valid for L and considering Defn 5.5 in adversarial training might not be entirely accurate.

However, we must emphasize that Defn 5.5 continues to be a determining factor in the success
of adversarial training, or in other words, training with L. This is primarily due to the fact that if
Defn 5.5 is not met, networks will be unable to adequately fit the training dataset owing to gradient
vanishing or explosion.

Examining this from a mathematical standpoint, the necessity of Defn 5.5 is underlined by the
linearity of the differential operator. The update equation for the parameter θ(t) is formulated as
follows:

dθ(t)

dt
:= − ∂L

∂θ(t)
= −∂Lstd

∂θ(t)
− ∂Ladv

∂θ(t)
(A251)

As demonstrated by the equation above, updates with Lstd and Ladv are conducted independently.
Although Defn 5.5 may not be considered for Ladv, it can be for Lstd. In order to forestall gradient
vanishing or explosion in the standard loss and to ensure classification ability for clean images,
Defn 5.5 remains a necessity. Therefore, it can be concluded that Defn 5.5 continues to dictate the
success of training, even within the context of adversarial training.

K Other theoretical results

Scaled effect of input and output dimensions. In Tab. 1, we showed a wide effect of the input
dimension d and the output dimension K on the upper bounds of the adversarial loss. In practice, the
perturbation budget ϵ and the adversarial loss are scaled based on the chosen p and q. For example,
we can rearrange the definition of the adversarial loss (Eq. (3)) as follows:

Ladv(x
in) := max

∥η∥p≤λpϵ
λq

∥∥f(xin + η)− f(xin)
∥∥
q
, (A252)

42



Table A4: Values of β′
p,q . The description is the same as Tab. 1

q = 1 q = 2 q = ∞

p = 1
√

2d
π

† √
d
† √

2d lnK

p = 2
√

d
K

♢
+ 1

√
d
†♢

p = ∞
√

2d
π

†♢

where λp and λq denote the scaling factors. In this context, the upper bound (Thm 5.1) can be
rearranged as follows:

Ladv(x
in) ≤ ϵ · λpλqβp,q · ωL/2 = ϵβ′

p,qω
L/2, (A253)

where β′
p,q := λpλqβp,q . For example, we consider the following λp and λq:

λp :=


d (p = 1)√
d (p = 2)

1 (p = ∞)

, λq :=


1/K (q = 1)

1/
√
K (q = 2)

1 (q = ∞)

. (A254)

Under these conditions, β′
p,q corresponds to Tab. A4. This table reveals that (i) the input dimension

impacts the upper bounds with Θ(
√
d), but the output dimension has little or no effects; (ii) although

the dimensions generally exert a similar influence on the bounds, the specific factors vary widely;
(iii) for (p, q) = (1,∞) and (2, 2), the output dimension behaves in a distinctive manner. In
conclusion, our upper bounds, even inclusive of scaling effects, provide several insights into the
relationship between the adversarial loss and input/output dimensions.

Other metrics of capacity. Here, we consider capacity metrics other than the Fisher–Rao norm.
Norm-based metrics, such as the path norm [66], the group norm [67], and spectral norm [8], have
a similar definition to the Fisher–Rao norm. They are constructed by the sum and product of the
weights of a network. The trajectory length [73] is defined by the arc length of a network output with
change of parameters. A similar definition based on curvature was also used in [71]. These metrics
concluded that capacity increases with the weight variance of a network, despite differences in speed.
Therefore, we can derive similar results as in Sec. 5.4 for metrics other than the Fisher–Rao norm.

Mitigation of adversarial risk. Here, we consider the mitigation of adversarial risk, i.e., the
mitigation of the upper bounds of the adversarial loss. There are three solutions: (i) sample each entry
of P in from N (0, 1/d2) instead of N (0, 1/d); (ii) sample each entry of W (l) from N (0, σ2

w/N
2)

instead of N (0, σ2
w/N) for l ∈ [L]; (iii) sample each entry of P out from N (0, 1/N2) instead of

N (0, 1/N).

First, let us examine scenario (i). In this setting, the variance of J(xin) is transformed into
V[J(xin)ij ] = ωL/d2 from V[J(xin)ij ] = ωL/d (cf. the proof of Thm 4.1). In addition, β∞,∞
changes to Θ(β∞,∞) = 1 from Θ(β∞,∞) =

√
d (cf. the proof of Thm 5.1). These modifications

suggest a potential reduction in adversarial risk in scenario (i).

However, this leads to a training failure. Let us consider the variance of a network output under no
bias (for simplicity). For sufficiently large input dimension d and xin ∈ [0, 1]d, it can be calculated
as follows:

V[f(xin)] = V[J(xin)xin] = V[J(xin)ij ]∥xin∥22 =
∥xin∥22
d2

≈ 0. (A255)

This equation implies that the network always outputs a zero vector for any input xin. In other words,
input information is lost during signal propagation in the network. In this situation, networks cannot
learn the data structure well, and thus training does not proceed (cf. [71, 81, 105]).

Situations (2) and (3) are also similar to (1); they can mitigate the adversarial risk, but they break
input information during forward and backward. Therefore, we conclude that it is not feasible to
mitigate the adversarial effect without compromising the network’s trainability.

43



Extension to Lipschitz continuous activations. In this study, we primarily established our theo-
rems for networks employing ReLU-like activations. Here, we attempt to generalize these theorems
to encompass networks with Lipschitz continuous activations. However, this extension involve looser
upper bounds or potentially unrealistic assumptions.

First, we examine the upper bounds for p = 2 and q = 2. Since J(xin) is a Jacobian at xin, Ineq. (8)
remains valid for Lipschitz continuous activations. Denote the Lipschitz constant by k ≥ 0. Similar
to the discussion in Appx. H, we can derive the following upper bound:∥∥J(xin)

∥∥
2
≤ kL

(
1 +

√
N

d

)(
1 +

√
K

N

)
2L(σ2

w)
L/2. (A256)

An important observation here is that ωL/2, which dictates the training properties, is common to
networks with both ReLU-like and Lipschitz continuous activations. Consequently, we claim that our
theorems also extend to Lipschitz continuous activations, despite differences in the factor. However,
this bound is exponentially loose, casting doubt on its ability to accurately represent the properties of
adversarial loss.

Second, we use the analysis of a network Jacobian [69]. For a comprehensive comparison between
our approach and theirs, see Sec. 5.1. Here, we adopt their assumption where the variance V[h(l)] is
constant for any l ∈ [L]. Drawing from the results expressed in Eq. (22) of [69], we can assert that∥∥J(xin)

∥∥
2
≤ Θ((σ2

w)
L/2) holds. Similar to the first proposition, this implies that our theorems hold

to general activations including Lipschitz continuous activations. However, the assumption clearly
does not hold in our theorems such as Thm 5.4.

Single-gradient descent attack can find adversarial examples. Here, we demonstrate that a
single-gradient descent attack, such as the fast gradient sign method [38], can find adversarial
examples. This is not a substantially novel contribution. For example, see [7, 11, 24, 25, 61, 84, 112].
However, to introduce a new approach based on Thm 4.1, we attempt it.
Proposition K.1 (Single-gradient descent attack can find adversarial examples). Suppose that∥∥xin

∥∥
2
=

√
d, the perturbation constraint ϵ is sufficiently small, and the input dimension d is

sufficiently large. Then, the single-gradient descent attack finds ℓ∞ constrained adversarial examples
that flip the prediction of a single-output random deep neural network with high probability

erf

ϵ

√√√√ ωLd

π
(
ωL + ασ2

b

∑L
k=1 ω

k−1
)
 d→∞−−−→ 1, (A257)

where erf is the error function.

Proof. Since η is sufficiently small, the same linear regions in a ReLU-like network encompass both
xin and xin + η, i.e., J(xin) = J(xin + η). When an ℓ∞ constrained adversarial example flips
the prediction of a classifier, the inequality |J(xin)xin + a(xin)| < |J(xin)η| holds for |η|∞ ≤ ϵ.
The perturbation generated by a single-gradient descent is defined as η := ϵ sgn(J(xin)). Note that
J(xin) is a one-dimensional vector in single-output networks. Using this perturbation, by Eq. (A87)
and Thm 4.1, the right term of the inequality can be transformed into:

|J(xin)η| ≤ ϵd
1

d

d∑
i=1

|J(xin)i| = ϵdE[|J(xin)i|] = ϵd

√
2ωL

πd
= ϵ

√
2ωLd

π
. (A258)

Then, let us consider |J(xin)xin+a(xin)|. By the reproductive property of the Gaussian, J(xin)xin+

a(xin) follows a Gaussian N (0,
∥∥xin

∥∥2
2
V[J(xin)] + V[a(xin)]). The variance can be rearranged as

follows:∥∥xin
∥∥2
2
V[J(xin)ij ] + V[a(xin)i] =

∥∥xin
∥∥2
2
ωL

d
+ ασ2

b

L∑
k=1

ωk−1 = ωL + ασ2
b

L∑
k=1

ωk−1. (A259)

Note that the c.d.f of the folded normal distribution based on the Gaussian N (0, σ2) is given by
erf(x/

√
2σ2). Thus, we can compute the probability such that |J(xin)xin + a(xin)| is less than

44



ϵ
√

2ωLd/π as follows:

erf

 ϵ
√
2ωLd/π√

2
(
ωL + ασ2

b

∑L
k=1 ω

k−1
)
 = erf

ϵ

√√√√ ωLd

π
(
ωL + ασ2

b

∑L
k=1 ω

k−1
)
 (A260)

d→∞−−−→ 1. (A261)

L Other experimental results

L.1 Setting

We focused on ReLU networks, i.e., u = 1, v = 0, and α = 1/2. Adversarial examples were
generated using auto projected gradient descent [20] and the loss function defined in Eq. (3). Networks
were initialized to satisfy the (M,m)-trainability condition (Lemma 5.6), i.e., σ2

w = 2 for vanilla
networks and σ2

w = 0.1 or σ2
w = 0.01 for residual networks. The initial bias variance was set

to σ2
b = 0.01. We employed MNIST [26] and Fashion-MNIST [99] as the training dataset. All

experiments are conducted on an NVIDIA A100.

L.2 Verification of Thm 4.1 (new mean field-based framework)

As shown in Fig. 1, the empirical distribution of J(xin) in the vanilla network aligned well with
Thm 4.1. To further verify Thm 4.1, we provide additional results. We sampled 10, 000 vanilla
networks with d = 1, 000 and K = 1. For vanilla networks, we set σ2

w = 2, and for residual networks,
we set σ2

w = 0.01. The network width N and depth L were set to 5, 000 and 10, respectively.

The empirical distributions of J(xin) and a(xin) for different network depths, L = 10 and 100, and
two randomly generated inputs, xin

1 and xin
2 , are shown in Figs. A5 and A6. The accuracy of Thm 4.1

in predicting these distributions remains consistent across varying network depths. Moreover, the
distributions of J(xin) and a(xin) did not depend on the input xin, even though they are defined as
functions of xin.

We should note that our theory operates under the assumption of infinite network width. To assess
the influence of network width on Thm 4.1, please refer to Fig. A7. We found that for smaller
values of N , for instance N = 10, the empirical distribution of J(xin) and a(xin) deviates from the
theoretical prediction as provided by Thm 4.1. As network width increases, the alignment between
empirical results and predictions from Thm 4.1 improves.

It is important to clarify that while Thm 4.1 asserts that the distributions of J(xin) and a(xin) do not
depend on xin, it does not necessarily imply that random variables J(xin) and a(xin) are independent
of J(yin) and a(yin), respectively, when xin ̸= yin. For slightly different inputs (yin := xin×0.999,
xin × 0.99, and xin × 0.5), we computed the correlation coefficients between J(xin), a(xin)
and J(yin), a(yin), respectively.4 These findings can be found in Figs. A8 and A9, and clearly
demonstrate that more similar inputs result in higher correlation coefficients. However, this does not
contravene the claims made in Thm 4.1. Further, for two randomly generated inputs, xin

1 and xin
2 ,

the random variables J(xin), a(xin) and J(xin
2 ), a(xin

2 ) were found to be relatively uncorrelated,
respectively. The theoretical prediction for this correlation is currently unclear, which is a topic for
future work.

To validate the independence of different entries of J(xin) and a(xin), we computed the correlation
coefficient between two distinct entries.4 As presented in Fig. A10, we found that the two unique
entries of J(xin) and a(xin) were indeed uncorrelated, corroborating the claims in Thm 4.1. Fur-
thermore, Fig. A10 illustrates that the entries of J(xin) and a(xin) were uncorrelated, which also
aligned with Thm 4.1.

An examination of the distributions of J(xin) and a(xin) after training may yield interesting insights.
However, as trained networks have different weight and bias variances, the observed J(xin) and

4While the correlation coefficient is not necessarily indicative of dependence, we regard it as a conveniently
measurable value. For more information, please refer to Remark E.3.

45



−0.1 0.0 0.1
0

5

10

x
in 1

J(xin)1,1, L=10

−0.1 0.0 0.1
0

5

10

J(xin)1,1, L=100

−0.5 0.0 0.5
0

1

2
a(xin)1, L=10

−2 0 2
0.00

0.25

0.50

a(xin)1, L=100

Exp.

Theory

−0.1 0.0 0.1
0

5

10

x
in 2

−0.1 0.0 0.1
0

5

10

−0.5 0.0 0.5
0

1

2

−2 0 2
0.00

0.25

0.50

Figure A5: Distributions of J(xin)1,1 and a(xin)1 in the vanilla ReLU network with d = 1, 000,
K = 1, N = 5, 000, σ2

w = 2, and σ2
b = 0.01. The description is the same as Fig. 1.

−0.1 0.0 0.1
0

5

10

x
in 1

J(xin)1,1, L=10

−0.1 0.0 0.1
0

5

10

J(xin)1,1, L=100

−0.5 0.0 0.5
0

1

2
a(xin)1, L=10

−2 0 2
0.0

0.2

0.4

a(xin)1, L=100

Exp.

Theory

−0.1 0.0 0.1
0

5

10

x
in 2

−0.1 0.0 0.1
0

5

10

−0.5 0.0 0.5
0

1

2

−2 0 2
0.0

0.2

0.4

Figure A6: Distributions of J(xin)1,1 and a(xin)1 in the residual ReLU network with d = 1, 000,
K = 1, N = 5, 000, σ2

w = 0.01, and σ2
b = 0.01. The description is the same as Fig. 1.

a(xin) in each network do not follow the same distribution. Consequently, empirically evaluating the
validity of Thm 4.1 for trained networks presents substantial challenges. Despite this, we consider,
based on experimental findings such as those presented in Fig. A18, that Thm 4.1 offers an accurate
representation of the early stages of the training process.

L.3 Verification of Thm 5.1 (upper bounds of adversarial loss)

As shown in Fig. 2, the upper bounds in Thm 5.1 indicates the significant tightness in vanilla networks.
To further verify Thm 5.1, we provide additional results. We generated 100 adversarial examples
and calculated the adversarial losses defined in Eq. (3). For vanilla networks, we set σ2

w = 2, and for
residual networks, we set σ2

w = 0.01. The network width N was set to 40, 000 for vanilla networks
and 35, 000 for residual networks, and the network depth L was set to 3. We set the perturbation
constraint ϵ to 0.1 and iterations of projected gradient descent to 50.

In Fig. 2, we illustrate the tightness of the bounds with varying input dimensions in vanilla networks.
We provide further results for residual networks, as shown in Fig. A11. Additionally, Figs. A12
and A13 demonstrate the adversarial loss as a function of varying output dimensions in vanilla and
residual networks, respectively. Overall, our findings affirm the tightness of our bounds across both
network types. For some (p, q) combinations, empirically observed adversarial loss samples exceeded
the theoretical upper bounds. We consider that this discrepancy can be mitigated by expanding the
network width, a topic elaborated upon in the following paragraph.

46



−0.1 0.0 0.1
0

50

100

150

J
(x

in
) 1
,1

N=10

−0.1 0.0 0.1
0

5

10

15

N=100

−0.1 0.0 0.1
0

5

10

N=1,000

−0.1 0.0 0.1
0

5

10

N=10,000

Exp.

Theory

−0.5 0.0 0.5
0

1

2

3

a
(x

in
) 1

−0.5 0.0 0.5
0.0

0.5

1.0

1.5

2.0

−0.5 0.0 0.5
0.0

0.5

1.0

1.5

−0.5 0.0 0.5
0.0

0.5

1.0

1.5

Figure A7: Distributions of J(xin)1,1 and a(xin)1 in the vanilla ReLU network with d = 1, 000,
K = 1, L = 10, σ2

w = 0.01, and σ2
b = 0.01. The description is the same as Fig. 1.

The derivation of Thm 5.1 assumes a network of infinite width. However, in practical implementation,
an infinite network width is unachievable, leading to instances where empirical results do not coincide
with Thm 5.1. Specifically, certain samples were observed to exceed the theoretical upper bounds,
as shown in Fig. 2. To evaluate the influence of network width, we varied it while sampling the
adversarial losses, with the results displayed in Fig. A14. In the case of (p, q) = (2, 2), it was observed
that a wider network width diminished the discrepancy between sampled losses and theoretical bounds.
For other (p, q) pairings, even with a relatively small width (e.g., N = 100), empirical results aligned
with Thm 5.1.

The impact of the perturbation constraint ϵ can be found in Fig. A15. It was confirmed that larger
ϵ values corresponded to a greater divergence between empirically sampled adversarial losses and
theoretical bounds. This is because for larger ϵ, it was harder for the projected gradient descent to
tune adversarial examples well.

The effect of the network depth L can be confirmed in Fig. A16. For (p, q) = (2, 2), as the
number of layers increased, the value exceeded the upper bounds. In contrast, for (p, q) = (∞,∞),
the value fell below the bounds. These differences can be attributed to the varying complexities
of optimizing the adversarial loss for each combination of p and q. That is, for (p, q) = (2, 2),
the optimization of adversarial examples is relatively straightforward, enabling the generation of
adversarial losses that exceed the upper bound, which is imposed by the constraints of finite width.
However, for (p, q) = (∞,∞), the optimization is challenging, and it is difficult to generate high-
quality adversarial examples. The underlying reasons for these disparities in optimization complexity
remain a topic for future work.

Furthermore, we assessed adversarial loss during training on the MNIST dataset, as shown in Fig. A17.
Vanilla networks were trained using stochastic gradient descent with a learning rate of 0.001. While
Thm 5.1 broadly holds for (p, q) = (1, 2), the disparity between theoretical prediction and empirical
results expands as training progresses for (p, q) = (2, 2), (2,∞), and (p, q) = (∞,∞). Determining
a theoretical prediction that provides a tight bound on the adversarial loss for fully trained deep neural
networks remains an open challenge for future research.

L.4 Verification of Thms 5.4 and G.9 (time evolution of weight variance)

As shown in Fig. 3, the empirical weight variance observed in the vanilla network aligns well with
Thm 5.4. To verify Thm G.9, we provide Fig. A18. We trained 10-layers vanilla and residual networks.
The vanilla networks were initialized with σ2

w(0) = 2 and σ2
b (0) = 0.01. Residual networks are

initialized with σ2
w(0) = 0.1 and σ2

b (0) = 0.01. For standard training, N was set to 1, 000. For

47



−0.15 0.00 0.15

J(xin
1 )1,1

−0.15

0.00

0.15

J
(x

in 1
×

0.
99

9)
1,

1

Correlation coefficient: 0.99

−0.15 0.00 0.15

J(xin
1 )1,1

−0.15

0.00

0.15

J
(x

in 1
×

0.
99

) 1
,1

Correlation coefficient: 0.91

Experiment

Theory

−0.15 0.00 0.15

J(xin
1 )1,1

−0.15

0.00

0.15

J
(x

in 1
×

0.
5)

1,
1

Correlation coefficient: 0.5

−0.15 0.00 0.15

J(xin
1 )1,1

−0.15

0.00

0.15
J

(x
in 2

) 1
,1

Correlation coefficient: 0.03

Figure A8: Correlation coefficient of J(·)1,1 for two inputs in the vanilla ReLU network with
d = 1, 000, K = 1, N = 5, 000, L = 10, σ2

w = 2, and σ2
b = 0.01. The description of the histogram

is the same as Fig. 1.

adversarial training, we designated p = ∞, q = ∞, and ϵ = 0.3. In both training, we used stochastic
gradient descent with a small learning rate, 0.001. Note that gradient flow assumes an infinitesimal
learning rate (cf. Eq. (10)). A theoretically defined training step t under gradient flow is not equal to
a training step in the experiment. We have linked them by t := training steps× learning rate. In
practice, setting the weight variance precisely is not feasible. For example, in a vanilla network, σ2

w(0)
might be set to 1.999 even though we tried to initialize it to satisfy σ2

w(0) = 2. Thus, for visibility,
the experimental results (curves) were shifted parallel to meet σ2

w(0) = 2 in vanilla networks and
σ2
w(0) = 0.1 in residual networks.

From Fig. A18, it is evident that adversarial training facilitates weight regularization for both vanilla
and residual networks. Compared to the ℓ2 weight regularization discussed in Appx. I, it offers
stronger regularization. We can verify that Thm 5.1 can predict these empirical behaviors in the initial
stage of training. The validity of Thms 5.4 and G.9, which underpin our theorems such as Thms 5.7
and 5.9, lends credence to our theoretical assertions.

48



−1 0 1

a(xin
1 )1

−1

0

1

a
(x

in 1
×

0.
99

9)
1

Correlation coefficient: 0.99

−1 0 1

a(xin
1 )1

−1

0

1

a
(x

in 1
×

0.
99

) 1

Correlation coefficient: 0.9

Experiment

Theory

−1 0 1

a(xin
1 )1

−1

0

1

a
(x

in 1
×

0.
5)

1

Correlation coefficient: 0.53

−1 0 1

a(xin
1 )1

−1

0

1

a
(x

in 2
) 1

Correlation coefficient: 0.42

Figure A9: Correlation coefficient of a(·)1 for two inputs in the vanilla ReLU network with d =
1, 000, K = 1, N = 5, 000, L = 10, σ2

w = 2, and σ2
b = 0.01. The description of the histogram is

the same as Fig. 1.

L.5 Verification of Thms 5.7 and 5.8 (adversarial trainability)

As shown in Fig. 4, vanilla networks with small width and large depth were not adversarially trainable,
which aligned well with Thm 5.7. To verify Thms 5.7 and 5.8, we provide Fig. A19. We trained
vanilla and residual networks under various width and depth settings, and observed training accuracy.
For fast training convergence, we used Adam [51]. The training was stopped if training accuracy was
not improved in the last 200 steps. We set the learning rates to 0.001 or 0.0001, adopting the highest
training accuracy at the final training step. The vanilla networks were initialized with σ2

w(0) = 2 and
σ2
b (0) = 0.01. The residual networks were initialized with σ2

w(0) = 0.01 and σ2
b (0) = 0.01. This

initialization satisfied the (M,m)-trainability conditions (Lemma 5.6). In adversarial training, we set
p = ∞, q = ∞, ϵ = 0.1, and the iterations of projected gradient descent to 10.

From Fig. A19, we can confirm that vanilla networks with large depth and small width were not
adversarially trainable and the training difficulty was unique to adversarial training of such vanilla
networks. Note that Prop G.10 could not be verified as the condition in which training persists without
machine errors and the trainability condition not being satisfied at t = 0 is challenging to implement
in practical scenarios.

49



−0.15 0.00 0.15
J(xin)1,1

−0.15

0.00

0.15
J

(x
in

) 1
,2

Correlation coefficient: -0.01

−1 0 1
a(xin)1

−1

0

1

a
(x

in
) 2

Correlation coefficient: 0.0

−0.15 0.00 0.15
J(xin)1,1

−1

0

1

a
(x

in
) 1

Correlation coefficient: 0.0

Experiment

Theory

Figure A10: Correlation coefficient of two different entries of J(xin) in the vanilla ReLU network
with d = 1, 000, K = 1, N = 5, 000, L = 10, σ2

w = 2, and σ2
b = 0.01. The description of the

histogram is the same as Fig. 1.

250 500 750 1000

0.25

0.50

0.75

p = 1, q = 1

250 500 750 1000

0.05

0.10

p = 1, q = 2

250 500 750 1000

0.01

0.02

0.03
p = 1, q =∞

Theory

Exp.

250 500 750 1000

0.15

0.20
p = 2, q = 2

250 500 750 1000
0.0

0.2
p = 2, q =∞

250 500 750 1000

1

2

p =∞, q =∞

Input dimension d

A
dv

er
sa

ri
al

lo
ss
L a

d
v

Figure A11: Adversarial loss (Eq. (3)) in residual networks with N = 35, 000, K = 100, L = 3,
σ2
w = 0.01, σ2

b = 0.01, and ϵ = 0.1. The description is the same as Fig. 2.

L.6 Verification of Thms 5.9 and G.14 (capacity degradation)

To verify the degradation of network capacity during adversarial training, we trained vanilla and
residual networks on MNIST with p = ∞, q = ∞, and ϵ = 0.1, and observed the Fisher–Rao norm
as a measure of capacity. The training steps were set to 500. As Thms 5.9 and G.14 are derived
under sufficiently small learning rate (cf. Eq. (10)), we employed small learning rate, 0.0001. Vanilla
networks were initialized with σ2

w(0) = 2 and σ2
b (0) = 0.01. Residual networks were initialized

with σ2
w(0) = 0.01 and σ2

b (0) = 0.01. During the derivation of Thms 5.9 and G.14, using Asm B.1,
we calculated E[ ∂f

∂wi

∂f
∂wj

wiwj ] = E[ ∂f
∂wi

∂f
∂wj

]E[wiwj ] = 0, for i ̸= j. Nevertheless, in practice,
this calculation does not always hold. Therefore, for the computation of the Fisher–Rao norm, we
employed a diagonal matrix of F instead of F itself.

As shown in Figs. A20 and A21, large network depths (large L) produced high Fisher–Rao norms
but degraded them drastically. Moreover, it was observed that a wider network width could maintain
the Fisher–Rao norm at its initial state. The discrepancy between these experimental values and the
values predicted by Thms 5.9 and G.14 is considered to originate from Asm B.1, which does not hold
in the case where a diagonal matrix of F is used instead of F itself.

Additionally, we assessed the influence of network width on the robust test accuracy of fully-trained
networks. The robust test accuracy was determined using ℓ∞-AutoAttack with ϵ = 0.1. The
adversarial training was conducted under p = ∞, q = ∞, ϵ = 0.1, and 10 iterations. We employed
Adam with a learning rate of 0.001 and epochs set to 200.

From Tabs. A5 and A6, it is evident that the robust test accuracy depends on network width rather
than depth. The same superscripts in the tables indicate results from networks with an identical
number of parameters. For example, the accuracy for (N,L) = (250, 5) significantly surpasses that

50



250 500 750 1000

2.5

5.0

7.5

p = 1, q = 1

250 500 750 1000

0.1

0.2

0.3

p = 1, q = 2

250 500 750 1000
0.02

0.03

0.04
p = 1, q =∞

Theory

Exp.

250 500 750 1000
0.2

0.4

p = 2, q = 2

250 500 750 1000
0.0

0.2
p = 2, q =∞

250 500 750 1000
0.7

0.8

0.9

p =∞, q =∞

Output dimension K

A
dv

er
sa

ri
al

lo
ss
L a

d
v

Figure A12: Adversarial loss (Eq. (3)) in vanilla networks with d = 100, N = 40, 000, L = 3,
σ2
w = 2, σ2

b = 0.01, and ϵ = 0.1. The description is the same as Fig. 2.

250 500 750 1000

2.5

5.0

7.5

p = 1, q = 1

250 500 750 1000

0.1

0.2

0.3

p = 1, q = 2

250 500 750 1000
0.02

0.03

0.04
p = 1, q =∞

Theory

Exp.

250 500 750 1000
0.2

0.4
p = 2, q = 2

250 500 750 1000
0.0

0.2
p = 2, q =∞

250 500 750 1000
0.7

0.8

0.9

p =∞, q =∞

Output dimension K

A
dv

er
sa

ri
al

lo
ss
L a

d
v

Figure A13: Adversarial loss (Eq. (3)) in residual networks with d = 100, N = 35, 000, L = 3,
σ2
w = 0.01, σ2

b = 0.01, and ϵ = 0.1. The description is the same as Fig. 2.

for (N,L) = (125, 20). Although Thms 5.9 and G.14 is primarily applicable to the early stages of
training, these theorems, emphasizing the importance of network width, hold true for fully-trained
networks.

51



0 10000 20000 30000 40000
0.6

0.8

1.0
p = 1, q = 1

0 10000 20000 30000 40000
0.05

0.10

0.15
p = 1, q = 2

0 10000 20000 30000 40000

0.000

0.025

p = 1, q =∞

Theory

Exp.

0 10000 20000 30000 40000

0.200

0.225

p = 2, q = 2

0 10000 20000 30000 40000
0.05

0.10

0.15
p = 2, q =∞

0 10000 20000 30000 40000
0.7

0.8

0.9
p =∞, q =∞

Width N

A
dv

er
sa

ri
al

lo
ss
L a

d
v

Figure A14: Adversarial loss (Eq. (3)) in vanilla networks with d = 500, K = 100, L = 3, σ2
w = 2,

σ2
b = 0.01, p = 2, q = 2, and ϵ = 0.1. The description is similar to Fig. 2.

0.02 0.10 0.20 0.30

1

2

p = 1, q = 1

0.02 0.10 0.20 0.30

0.1

0.2

0.3
p = 1, q = 2

0.02 0.10 0.20 0.30

0.025

0.050

0.075

p = 1, q =∞
Theory

Exp.

0.02 0.10 0.20 0.30

0.25

0.50

p = 2, q = 2

0.02 0.10 0.20 0.30

0.1

0.2

0.3

p = 2, q =∞

0.02 0.10 0.20 0.30

1

2

p =∞, q =∞

Epsilon ε

A
dv

er
sa

ri
al

lo
ss
L a

d
v

Figure A15: Adversarial loss (Eq. (3)) in vanilla networks with d = 500, N = 40, 000, K = 100,
L = 3, σ2

w = 2, σ2
b = 0.01, p = 2, and q = 2. The description is similar to Fig. 2.

3 10 20 40 60 80 100

0.6

0.8

p = 1, q = 1

3 10 20 40 60 80 100
0.05

0.10

0.15
p = 1, q = 2

3 10 20 40 60 80 100

0.000

0.025

p = 1, q =∞

Theory

Exp.

3 10 20 40 60 80 100

0.20

0.25

p = 2, q = 2

3 10 20 40 60 80 100
0.05

0.10

0.15
p = 2, q =∞

3 10 20 40 60 80 100

0.50

0.75

p =∞, q =∞

Depth L

A
dv

er
sa

ri
al

lo
ss
L a

d
v

Figure A16: Adversarial loss (Eq. (3)) in vanilla networks with d = 500, N = 40, 000, K = 100,
σ2
w = 2, σ2

b = 0.01, p = 2, q = 2, and ϵ = 0.1. The description is similar to Fig. 2.

Table A5: Test accuracy (%) on MNIST [26] under ℓ∞-AutoAttack with the perturbation constraint
0.1. We used residual networks with σ2

w = 0.01 and σ2
b = 0.01. For adversarial attack in training,

we used p = ∞, q = ∞, ϵ = 0.1, and 10 iterations. We set an optimizer to Adam, a learning rate to
0.001, and epochs to 200. Values marked with the same superscript denote results from networks
with the same number of parameters LN2.

L = 5 L = 10 L = 15 L = 20
N = 125 13.8 13.1 9.79 8.69♣

N = 250 45.8♣ 49.8 47.0 48.1†

N = 500 79.2† 76.5 75.3 73.4♢

N = 1, 000 89.8♢ 88.4 87.3 87.9

52



0 500 1000
0.02

0.04

p = 1, q = 1

0 500 1000

0.010

0.015

p = 1, q = 2

0 500 1000

0.00

0.01

p = 1, q =∞

Theory

Experiment

0 500 1000

0.11

0.12

p = 2, q = 2

0 500 1000

0.10

0.11
p = 2, q =∞

0 500 1000

2.2

2.4
p =∞, q =∞

Training step

A
dv

er
sa

ri
al

lo
ss
L a

d
v

Figure A17: Adversarial loss (Eq. (3)) calculated with ϵ = 0.1. We used vanilla networks with
d = 28× 28, N = 10, 000, K = 10, L = 3, σ2

w(0) = 2, and σ2
b (0) = 0.01. We trained the vanilla

networks normally (not adversarially) with the learning rate 0.001. The description is similar to
Fig. 2.

0 500 1000 1500 2000
1.9985

1.9990

1.9995

2.0000

Vanilla

0 500 1000 1500 2000

0.10000

0.09995

Residual

Training step

W
ei

gh
t

va
ri

an
ce
σ

2 w

Standard

`2 weight

Adversarial (N = 2k)

Adversarial (N = 1k)

Theory (N = 2k)

Theory (N = 1k)

Figure A18: Time evolution of the weight variance in the vanilla and residual network with L = 10
during adversarial training with p = ∞, q = ∞, and ϵ = 0.3. In standard and adversarial training,
we set the learning rate to 0.0001. In standard training with or without ℓ2 weight regularization,
we set N = 1, 000. In adversarial training, we set p = ∞, q = ∞, and ϵ = 0.3. The vanilla
network was initialized with σ2

w(0) = 2 and σ2
b (0) = 0.01. The residual network was initialized with

σ2
w(0) = 0.1 and σ2

b (0) = 0.01. The orange dashed lines are predicted by Thms 5.4 and G.9. To
derive the theoretical predictions, we calculated t := training steps× learning rate. For visibility,
the experimental results were shifted parallel to satisfy σ2

w(0) = 2 on the vanilla networks and
σ2
w(0) = 0.1 on the residual networks.

100 200 300 400 500 600 700 800

20

40

V
an

ill
a

Standard

100 200 300 400 500 600 700 800

20

40
Adversarial

T
=

100

T = 160

T = 250

100 200 300 400 500 600 700 800

20

40

R
es

id
ua

l

100 200 300 400 500 600 700 800

20

40

0.0

0.2

0.4

0.6

0.8

1.0

T
raining

accuracy

Figure A19: Heat map of the training accuracy on the vanilla and residual networks trained on
MNIST. The description is the same as Fig. 4. The vanilla network was initialized with σ2

w(0) = 2
and σ2

b (0) = 0.01. The residual network was initialized with σ2
w(0) = 0.1 and σ2

b (0) = 0.01. The
horizontal axis represents the width of the network and the vertical axis represents the depth.

53



0 100 200 300 400 500

20

40

60
Vanilla

0 100 200 300 400 500

0.5

1.0

1.5

Residual

Training step

F
is

he
r-

R
ao

no
rm
‖w
‖ F

R

L = 10, N = 1250 L = 20, N = 1250 L = 20, N = 2500 L = 20, N = 5000 L = 20, N = 10000

Figure A20: Fisher–Rao norm of vanilla and residual networks adversarially trained on MNIST. We
set p = ∞, q = ∞, ϵ = 0.1, and the learning rate to 0.0001. The vanilla network was initialized
with σ2

w(0) = 2 and σ2
b (0) = 0.01. The residual network was initialized with σ2

w(0) = 0.1 and
σ2
b (0) = 0.01.

0 100 200 300 400 500

−40

−20

0
Vanilla

0 100 200 300 400 500

−0.15

−0.10

−0.05

0.00
Residual

Training step

F
is

he
r-

R
ao

no
rm
‖w
‖ F

R

L = 10, N = 1250 L = 20, N = 1250 L = 20, N = 2500 L = 20, N = 5000 L = 20, N = 10000

Figure A21: Fig. A20 with the origin shifted parallel to zero.

Table A6: Test accuracy (%) on Fashion-MNIST [99] under ℓ∞-AutoAttack. The description is the
same as Tab. A5.

L = 5 L = 10 L = 15 L = 20
N = 125 7.78 9.22 10.4 11.0♣

N = 250 33.1♣ 33.6 32.6 34.0†

N = 500 51.7† 51.7 51.6 50.8♢

N = 1, 000 67.9♢ 67.3 66.7 66.8

54


	Introduction
	Related work
	Preliminaries
	Setting
	Background

	Theoretical framework
	Limitations of existing mean field-based approaches
	Proposed framework

	Analysis of adversarial training
	Upper bounds of adversarial loss
	Time evolution of weight variance
	Vanilla networks are not adversarially trainable under mild conditions
	Degradation of network capacity

	Experimental results
	Limitations
	Conclusions
	Additional related work
	Random networks and mean field theory
	Adversarial examples
	Adversarial examples in random neural networks
	Adversarial examples and input dimension

	Adversarial training

	Gradient independence assumption
	Setting of residual networks
	Sketch of proof for TEXT
	Derivation of TEXT for vanilla networks
	Preliminary
	Definitions of TEXT and TEXT for vanilla networks
	Main derivation

	Derivation of TEXT for residual networks
	Definitions of TEXT and TEXT for residual networks
	Main derivation

	Derivation of the theorems in TEXT
	Derivation of the theorems in TEXT
	Derivation of the theorems in TEXT
	Derivation of the theorems in TEXT
	Derivation of the theorems in TEXT

	Comparison with matrix decomposition approaches
	Comparison with TEXT weight regularization
	Revisiting trainability condition in adversarial training
	Other theoretical results
	Other experimental results
	Setting
	Verification of TEXT (new mean field-based framework)
	Verification of TEXT (upper bounds of adversarial loss)
	Verification of TEXT (time evolution of weight variance)
	Verification of TEXT (adversarial trainability)
	Verification of TEXT (capacity degradation)


