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ABSTRACT

This paper introduces a novel graph-based filter method for automatic feature se-
lection (abbreviated as GB-AFS) for multi-class classification tasks. The method
determines the minimum combination of features required to sustain prediction
performance while maintaining complementary discriminating abilities between
different classes. It does not require any user-defined parameters such as the
number of features to select. The methodology employs the Jeffries–Matusita
(JM) distance in conjunction with t-distributed Stochastic Neighbor Embedding
(t-SNE) to generate a low-dimensional space reflecting how effectively each fea-
ture can differentiate between each pair of classes. The minimum number of fea-
tures is selected using our newly developed Mean Simplified Silhouette (abbre-
viated as MSS) index, designed to evaluate the clustering results for the feature
selection task. Experimental results on public data sets demonstrate the superior
performance of the proposed GB-AFS over other filter-based techniques and auto-
matic feature selection approaches. Moreover, the proposed algorithm maintained
the accuracy achieved when utilizing all features, while using only 7% to 30%
of the features. Consequently, this resulted in a reduction of the time needed for
classifications, from 15% to 70%.

1 INTRODUCTION

Feature selection is a crucial step in the process of developing effective machine-learning models.
Selecting the most relevant features from a data set helps to reduce model complexity, prevent over-
fitting, and improve model interpretability and performance (Saeys et al., 2007). In recent years,
with the explosion of big data, feature selection has become an increasingly important technique in
machine learning, as it can significantly reduce the time and resources required for model develop-
ment and at the same time maintain prediction accuracy (Liu & Motoda, 2012).

The primary objective of feature selection is to identify the most suitable k-sized subset of features
that can accurately depict the input data (Chandrashekar & Sahin, 2014). This process seeks to
mitigate the effects of irrelevant variables and noise while preserving the accuracy of predictions
(Miao & Niu, 2016). Feature selection methods are generally classified as one of three types: filter,
wrapper, or embedded (Pereira et al., 2018).

Wrapper methods evaluate feature subsets by using a model’s performance as the criterion (Li et al.,
2017). These methods are computationally expensive, as they involve training and evaluating the
model multiple times with different feature subsets. Embedded methods combine feature selection
and model training into a single process. The features are selected during training, with the classifier
performing the selection (Jović et al., 2015). However, the selection process depends on the specific
classifier used, making it less suitable when off-the-shelf classification methods and separate feature
selection algorithms are preferred. Filter methods rank features based on statistical properties or rel-
evance to the target variable, but might not consider the predictive power in the context of a specific
algorithm, leading to suboptimal feature selection for some models (Yang & Pedersen, 1997).

Filter methods apply a statistical measure to rank the features according to their relevance to the
task at hand. ReliefF (Robnik-Šikonja & Kononenko, 2003), for instance, ranks the importance of
each feature by measuring how well it distinguishes between instances of different classes while

1



Under review as a conference paper at ICLR 2024

considering the proximity of those instances to each other. The Fisher score method (Longford,
1987) ranks features independently based on their Fisher criterion scores, which is the ratio of inter-
class separation and intra-class variance. Correlation-based feature selection (CFS) (Hall, 1999)
selects features with low linear relationships with other features that are correlated with the label.

Lately, researchers have been exploring using graph-based techniques to apply filter-based feature
selection methods. Graph-based techniques have emerged as a promising field due to their ad-
vantages, such as improved interpretability, capturing complex relationships between features (You
et al., 2020), and the potential to handle high-dimensional data more effectively (Cai et al., 2010).
These methods involve constructing a graph that captures pairwise relationships between features
in the data, while also considering their relevance and redundancy. Numerous graph-based models
that rank features based on specific criteria and select the k features with the highest score have been
proposed recently (Hashemi et al., 2020; via Invertible, 2020). A main drawback of these meth-
ods, however, is that selecting features with the highest score may result in selecting features with
identical characteristics that do not cover the entire feature space, leading to a loss of information.

Friedman et al. (2023) proposed a potential solution to the aforementioned limitation through a
filter-based feature selection technique that utilizes diffusion maps (Coifman & Lafon, 2006). This
method encompasses the entire feature space by constructing a feature space based on the features’
separation capabilities. It then selects features with complementary separation capabilities that cover
the entire feature space. One major shortcoming that remains open is how to find the size of the
subset of features we want to find, without relying on user input or making assumptions such as
believing that a certain percentage of all features contains all necessary information or that the
optimal size lies within a predetermined range.

The responsibility for determining the appropriate k value for filter-based feature selection methods,
however, is often delegated to the user. Thus, the latter must balance retaining valuable information
and minimizing the impact of irrelevant features. This limitation poses a considerable challenge as
the optimal k value can vary depending on the data and the task at hand, leading to a trial-and-error
approach that requires long running times and resources. Hence, there is a growing demand for
a filter-based feature selection algorithm that can determine the minimal combination of features
required to sustain prediction performance automatically.

Covões & Hruschka (2011), henceforth referred to as Thiago (name of the first author) technique
in our paper, introduced a filter-based algorithm that employs the Simplified Silhouette (SS) index
to overcome this specific limitation. The technique requires the user to specify a search range by
determining both a minimum and maximum k, with the method subsequently identifying the optimal
k within this range. This approach exhibits two primary shortcomings. Firstly, if the user selects a
minimum and maximum k that fail to encompass the optimal k value, the ideal k is not identified.
Secondly, although the SS index is effective for assessing clustering quality, it is not designed to
evaluate clustering quality for feature selection tasks in classification problems.

In this paper, we propose a novel filter-based feature selection method for multi-class classifica-
tion tasks that automatically determines the minimum combination of features required to sustain
the prediction performance when using the entire feature set. We thus remove the need for user-
defined parameters or for generating the classification results for every potential candidate solution.
Our method defines the contribution of each feature according to its ability to separate each pair
of classes, which is calculated using the Jeffries–Matusita (JM) distance. To visualize the distribu-
tion of features in relation to their ability to separate pairs of classes, we incorporate t-distributed
Stochastic Neighbor Embedding (t-SNE) (Van der Maaten & Hinton, 2008), a graph-based learning
technique, into our method. The method seeks to identify a set of features with complementary
discrimination abilities that can separate pairs of classes, rather than selecting those with the high-
est separation scores as is common in other filtering methods. To do so, the K-medoids algorithm,
which allows features from different areas of space to be selected, is used.

In addition, this work proposes a new index called the Mean Simplified Silhouette (MSS), which is
based on the SS index (Hruschka et al., 2006). The MSS index evaluates clustering outcomes in the
context of feature selection for classification problems. It assesses the effectiveness of the selected
subset of features obtained from clustering results, aiming to preserve the separability between each
pair of classes when using the entire feature space. The Kneedle algorithm (Satopaa et al., 2011) is
then applied to the MSS values to determine the minimum set of k features.
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To summarize, this paper makes the following contributions:

• A graph-based feature selection method is proposed to identify the minimum set of k fea-
tures required to preserve the accuracy of predictions when using the entire feature set.

• A novel Silhouette-based index that can assess the diversity and complementary discrimi-
nation capabilities of the obtained features to separate each pair of classes in classification
problems is offered.

• The effectiveness and superior performance of our approach compared to state-of-the-art
filtering methods are demonstrated via an experimental analysis.

The remainder of this paper is organized as follows. Section 2 presents the preliminaries, Section 3
outlines our proposed model, Section 4 discusses the results and comparisons, and Section 5 con-
cludes the paper and offers potential future directions.

2 PRELIMINARIES

In this section, we outline the techniques used in our proposed method. First, we present JM dis-
tance, which is used to create a new feature space based on each feature’s ability to distinguish
between each pair of classes. We then discuss t-SNE, a dimension-reduction technique that we use
to capture complex relationships between features which are then utilized for clustering implemen-
tation. We then introduce the Silhouette index, which serves as the basis for our new MSS index
aimed at assessing the quality of the clustering for the feature selection task in classification prob-
lems. Lastly, we discuss the Kneedle algorithm, which we utilize to identify the “knee” point of the
MSS index curve to determine the subset of k features to be used in the classification phase.

2.1 NOTATION

Denote the learned data set by (X,Y ), where X is a N × M data set, with N representing the
number of samples and M representing the features’ dimension. The label is stored in the N × 1
vector Y , which assumes C classes. The data set X comprises M feature vectors, represented by
F = {f1, ..., fM}, where each fi is of size 1×N .

2.2 JEFFRIES–MATUSITA DISTANCE

The JM distance is a statistical measure of the similarity between two probability distributions (Wang
et al., 2018; Tolpekin & Stein, 2009). Given a feature fi ∈ F , we use the JM distance to construct a
C×C matrix, JMi, which defines how well the feature fi differentiates between all pairs of classes.
Specifically, the matrix entry JMi(c, c̃) indicates how well the feature fi differentiates between the
two classes c and c̃, where 1 ≤ c, c̃ ≤ C. The matrix entries are computed by

JMi(c, c̃) = 2(1− e−Bi(c,c̃)) (1)
where

Bi(c, c̃) =
1

8
(µi,c − µi,c̃)

2 2

σ2
i,c + σ2

i,c̃

+
1

2
ln(

σ2
i,c + σ2

i,c̃

2σi,cσi,c̃
) (2)

is the Bhattacharyya distance. The values µi,c, µi,c̃ and σi,c, σi,c̃ are the mean and variance values
of two given classes c and c̃ from the feature fi.

2.3 T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING

t-SNE (Van der Maaten & Hinton, 2008) is a widely used nonlinear dimensionality reduction algo-
rithm that maps high-dimensional data to a low-dimensional space while preserving local structure.
The t-SNE algorithm is an improvement over the original SNE (Stochastic Neighbor Embedding)
(Hinton & Roweis, 2002) algorithm, providing more accurate and interpretable visualizations by
mitigating the crowding problem and simplifying the optimization process (Van Der Maaten, 2009).

The t-SNE algorithm works by embedding points from a high-dimensional space RM into a lower-
dimensional space RR, while preserving the pairwise similarities between the points (R ≪ M ).
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Given a data set of N points {u1, u2, ..., uN} ∈ RM in the high-dimensional space, the t-SNE
algorithm aims to find a corresponding set of points {v1, v2, ..., vN} ∈ RR in the low-dimensional
space that best reflects the similarities in the original space.

The algorithm defines pairwise conditional probabilities pj|i as the likelihood that point uj is ui’s
neighbor in the high-dimensional space. These probabilities are defined as:

pj|i =
exp(−∥ui−uj∥2/2σ2

i )

Σk ̸=i exp(−∥ui−uk∥2/2σ2
i )

(3)

where σi is the variance of the Gaussian centered at point ui. The value of pj|i is influenced by the
distance between points ui and uj , with closer points having higher probabilities. The algorithm
defines a symmetric pairwise similarity pij , which measures the similarity between points ui and uj

in the high-dimensional space, defined as the average of the conditional probabilities pi|j and pj|i:

pij =
pi|j + pj|i

2N
(4)

The use of the symmetric pairwise similarity allows for a more balanced representation of similar-
ities between points, mitigating the effects of differences in local densities. In the low-dimensional
space, pairwise similarities between points vi and vj are defined as qij :

qij =
(1 + ∥vi − vj∥2)−1

Σk ̸=l(1 + ∥vk − vl∥2)−1
(5)

The t-SNE algorithm seeks to minimize the divergence between the distributions P and Q, which is
measured by the Kullback-Leibler (KL) divergence:

KL(P ||Q) =
∑
i ̸=j

pij log
pij
qij

(6)

Minimizing the KL divergence ensures that the low-dimensional embedding preserves the pairwise
similarities between points as accurately as possible.

2.4 SILHOUETTE

The Silhouette index (Rousseeuw, 1987) evaluates clustering quality by measuring how similar a
data point is to its own cluster compared to other clusters. It has a value between −1 and 1, indicating
the level of separation between the clusters and the level of cohesion within each cluster. Specifically,
the index calculates, for each point i, the average distance of the point from all other points in
the same cluster, a(i), and the average distance of the point from all other points in the closest
neighboring cluster, b(i). Thus, the Silhouette value for point i is computed as follows:

sil(i) =
b(i)− a(i)

max{a(i), b(i)}
(7)

where −1 indicates a data point closer to the neighboring cluster, 0 indicates a boundary point, and
1 indicates a data point that is much closer to the other points in the same cluster than to the points
of the closest cluster. The Silhouette value of a full clustering is the average value of sil(i) across
all data points.

The Silhouette index, being computationally expensive and sensitive to outliers, prompted the devel-
opment of the Simplified Silhouette (SS) index (Hruschka et al., 2006; Wang et al., 2017), a faster
and more robust alternative. The SS index for a point i is computed as follows:

ss(i) =
b(i)

′ − a(i)
′

max{a(i)′ , b(i)′}
(8)
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Figure 1: The GB-AFS architecture: (A) Generate a JM matrix and reduce the dimensionality. (B)
Perform K-medoids clustering for every k ∈ [2,M ] and calculate MSS. (C) Find the optimal k and
return the corresponding k features found during clustering.

where a(i)
′

is the distance of point i from the centroid of its own cluster and b(i)
′

is the distance
of point i from the centroid of the nearest neighboring cluster (in this work, centroids replaced by
medoids). The ss(i) value ranges from −1 to 1. Because at the end of K-means or K-medoids
clustering, the distance of a data point to its closest neighboring cluster’s centroid or medoid b(i)

′

is always greater than or equal to the distance to its own cluster’s centroid or medoid a(i)
′
, the

term max{a(i)′ , b(i)′} can be simplified to b(i)
′

(Wang et al., 2017). Therefore, after executing the
K-means or K-medoids algorithms, the SS value for a single point can also be simplified as follows:

ss(i) = 1− a(i)
′

b(i)′
(9)

Similarly to the Silhouette index, the SS index is the average of the SS over all data points.

2.5 KNEEDLE ALGORITHM

The Kneedle algorithm (Satopaa et al., 2011) is used to identify the points of maximum curvature in a
given discrete data set, commonly referred to as “knees”. These knees are generally the set of points
on a curve that represent local maxima if the curve is rotated by an angle of θ degrees clockwise
about the point (xmin, ymin) through the line that connects (xmin, ymin) and (xmax, ymax) points.
The identified points are those that differ most from the straight-line segment connecting the first
and last data points, representing the points of maximum curvature for a discrete set of points.

3 METHOD

We now present our graph-based filter method for automatic feature selection (GB-AFS). As ex-
plained above, the method determines the optimal subset of features that best represent the data,
achieving an effective balance between model performance and computational efficiency. The over-
all architecture of our method is presented in Figure 1, while Algorithm 1 outlines the specific steps
for implementing the method.

3.1 SEPARABILITY-BASED FEATURE SPACE

Our aim is to preprocess the input data and move them into a reduced feature space that retains the
original feature space’s ability to distinguish between each pair of classes. For this goal, we define a
new feature space by calculating the JM matrix. For each feature i in X , we compute a JM i matrix
of size C×C that captures the separation capabilities of each feature with respect to all possible pairs
of classes in the input data. Each JM i matrix is reshaped to be a vector fi of size 1×(C2) so that the
JM matrix now holds the reshaped matrices as its rows. To visualize and organize the separability
characteristics of the features, we use the t-SNE dimensionality reduction method. We chose t-
SNE for its fast runtime, flexible perplexity parameter, and superior visualization capabilities. The
compact representation of the input data in the new feature space is used as input for the clustering
evaluation stage of the GB-AFS method.

3.2 CLUSTERING EVALUATION USING MSS

The GB-AFS aims to identify the minimal subset of kmin features that retain the ability of the entire
M features to separate and distinguish different classes. To identify this subset, we follow a two-step
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procedure for every k ∈ [2,M ] to obtain a score reflecting the capability of a k-sized feature subset
to represent the entire feature space’s ability to separate and distinguish between different classes.

In the first step, features are selected using the K-medoids algorithm, which selects features from
different regions in the low-dimensional space, with complementary separation capabilities. The K-
medoids algorithm, however, has a significant drawback in that it is sensitive to the initialization of
centers. To mitigate this issue, we utilize the K-means++ initialization algorithm, which initializes
the algorithm more effectively by selecting the initial centers using a probability distribution based
on the distances between data points. We then move on to the next stage of the GB-AFS method.
Since K-medoids is designed to minimize the sum of distances between features and the nearest
medoids, the objective of the second step is to use a measure to evaluate the effectiveness of the k
subset of features obtained from the K-medoids algorithm in representing the entirety of the feature
space by also considering the separation between clusters. Thiago (Covões & Hruschka, 2011)
proposed an approach that combines K-medoids and the SS measure for the feature selection task.

We propose a new metric, named Mean Simplified Silhouette (MSS) index, which is a variation of
the SS index that evaluates the clustering outcome in the context of feature selection in classification
problems. Thus, we anticipate that the MSS index will have a positive correlation with classifica-
tion performance. By performing multiple runs for K-medoids, we can identify the kmin subset
of features that most effectively represents the original feature set and maintain the classification
performance when using the entire set of features.

Algorithm 1: Implementation of the GB-AFS method
Input : Feature vectors F = {f1, ..., fM}
Output: A subset of kmin selected features

1 For each feature fi compute JM-matrix JMi of size C × C

2 Reshape JMi to a 1× (C2) vector, and construct a data set Z with the reshaped JMi matrices as its rows
3 Apply the t-SNE algorithm to Z , resulting in a new data setQ with a lower-dimensional space RR

4 S ← ∅ /* Store MSS values */
5 for k ← 2 to M do
6 Apply k-Medoid toQ
7 S ← Calculate MSS value

8 kmin ←Apply Kneedle Algorithm to S
9 Return the kmin features that were found in line 6

3.2.1 MEAN SIMPLIFIED SILHOUETTE

The goal of feature selection is to identify a set of features that are represented by the accepted
medoids, which can cover the entire feature space and eliminate redundant features while provid-
ing complementary capabilities. Therefore, when evaluating the output of a clustering algorithm
for feature selection, the criterion should consider the distance between each omitted feature and
its nearest medoid, as well as the distance between each feature and all other obtained medoids.
Typically, the quality of the clustering output is evaluated using metrics such as the Silhouette index
or the SS index. These metrics, however, may not be as effective when clustering is employed for
feature selection in classification problems. First, they only consider the distance between every
feature to the closest cluster, without taking into account the distance to all other clusters, which
is very important when evaluating the complementary capabilities of the chosen features. Second,
they set the value of a feature to zero (Rousseeuw, 1987; Hruschka & Covoes, 2005) if it happens
to be the sole feature present in a cluster, which causes the indices to tend to zero as the number of
clusters in the space approaches the number of features in the space.

Our MSS index addresses the two aforementioned drawbacks of the Silhouette and SS indices. To
overcome the first issue, we consider the distances between a feature and all clusters in the feature
space except the cluster to which the former belongs. This modification allows for a more reliable
assessment of the selected features, ensuring that they are diverse and complementary enough to
provide complete coverage of the entire feature space. To overcome the second issue, we exclude
clusters that have only a single feature from the MSS calculation. The reasoning behind this is that
by separating out a feature that is distant from the centroid of its cluster and creating a new cluster
with just that feature should improve the clustering outcome and increase the MSS index.
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Figure 2: Silhouette, SS, MSS and accuracy re-
sults obtained by three classifiers. A vertical
dotted line represents the minimum k value, the
”knee” point found by the Kneedle algorithm.

Running Time (seconds)

Knee Point All Features Time Saving

Cardiotocography
(k=7)

KNN 0.392 0.518 24.32%
Decision Tree 0.485 0.521 6.91%
Random Forest 0.523 0.599 12.68%

Mice Protein Expression
(k=16)

KNN 0.491 0.799 38.54%
Decision Tree 0.908 1.022 11.15%
Random Forest 0.909 1.189 23.54%

Microsoft Malware Sample
(k=32)

KNN 0.734 1.763 58.36%
Decision Tree 2.152 2.989 28.02%
Random Forest 2.747 3.723 26.21%

Music Genre Classification
(k=33)

KNN 0.624 1.383 54.88%
Decision Tree 2.101 2.624 19.93%
Random Forest 2.957 3.759 21.33%

Isolet
(k=44)

KNN 0.888 3.654 75.69%
Decision Tree 2.551 8.750 70.84%
Random Forest 4.415 11.805 62.60%

Table 1: The running times and the percentage of
time saved when using a set of kmin features ob-
tained by GB-AFS in comparison to the running
times when using all features.

The MSS index design specifically addresses feature selection in classification problems by priori-
tizing a comprehensive understanding of the feature distribution throughout the entire space. It thus
creates an index that is correlated with the classification results.

The MSS index is calculated based on the distances between each feature and the medoids of each
cluster, similar to the SS index. It differs from the Silhouette index, which calculates distances
between each feature and other features within the same cluster. We believe that our approach is
preferable because it is more reasonable to calculate distances from the medoids, which are the
representative features, rather than the excluded features. In addition, GB-AFS reduces the compu-
tational complexity, i.e., when computing distances from the medoids, the computational complex-
ity is estimated as O(kRM), as opposed to O(RM2), when computing distances from all features
within each cluster. This difference is significant when k is much smaller than the original number
of features, M .

To compute the MSS index, we begin by defining the values a(i) and b(i) for every point i in the
data set. The value of a(i) corresponds to the distance d(·, ·) between point i and the center of the
cluster to which it belongs, Ch, whereas the value of b(i) denotes the average distance of point i
from the centers of all other clusters Cl, l ̸= h; namely:

a(i) = d(xi, Ch) (10)
b(i) = average

l ̸=h
d(xi, Cl) (11)

mss(i) = 1− a(i)

b(i)
(12)

where the MSS index is the average of the MSS coefficients over all data points.

Figure 2 presents the Silhouette, SS, and MSS values depicted as solid lines and the accuracy ob-
tained by three classifiers depicted as dashed lines over different values of k. These results were
obtained by executing the first two steps of GB-AFS (Figure 1) on the Microsoft Malware Predic-
tion data set. It can be observed that as the value of k increases, both the Silhouette and SS values
decrease rapidly toward zero, indicating an increase in single-point clusters. A clear correlation was
observed between the MSS index and the accuracy results of the classifiers, which emphasizes the
effectiveness of the MSS index in solving feature selection tasks in classification problems.

It is important to note that our objective is not solely focused on pinpointing the k value that results
in the highest accuracy value. Our objective is also to find the smallest k value that is sufficient for
obtaining acceptable accuracy. Even if a higher k value may lead to marginally better accuracy, it
may demand excessive resources and computational power, which would not be practical or worth-
while. That is why we utilize the Kneedle algorithm developed by Satopaa et al. (2011) as explained
in the next section. It enables us to achieve a balance between accuracy and resource usage.
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Table 2: Results over the 5 data sets. A comparison of the Accuracy (left) and Balanced F-score
(right) results of our method vs. state-of-the-art methods. The results of the best method are in bold
for each data set and experimental setup. Paired t-test significance at p-value < 0.05 indicated by *.

GB-AFS ReliefF Fisher CFS Random
Accuracy B. F-score Accuracy B. F-score Accuracy B. F-score Accuracy B. F-score Accuracy B. F-score

Cardiotocography
(k=7)

KNN 0.585 0.551 0.470 0.438 0.419 0.386 0.582 0.553 0.356 0.297
Decision Tree 0.675 * 0.688 * 0.561 0.561 0.514 0.517 0.592 0.614 0.432 0.413
Random Forest 0.746 * 0.761 * 0.633 0.629 0.582 0.574 0.679 0.703 0.525 0.490

Mice Protein Expression
(k=16)

KNN 0.553 * 0.582 * 0.529 0.537 0.528 0.552 0.518 0.528 0.434 0.435
Decision Tree 0.518 0.516 0.521 0.509 0.509 0.511 0.510 0.501 0.454 0.455
Random Forest 0.696 * 0.690 0.666 0.690 0.637 0.650 0.641 0.643 0.579 0.472

Microsoft Malware Sample
(k=32)

KNN 0.786 0.728 0.783 0.729 0.671 0.681 0.720 0.716 0.627 0.605
Decision Tree 0.809 * 0.785 * 0.771 0.756 0.690 0.700 0.769 0.740 0.677 0.685
Random Forest 0.900 * 0.795 * 0.833 0.760 0.743 0.744 0.763 0.747 0.664 0.679

Music Genre Classification
(k=33)

KNN 0.476 * 0.551 * 0.414 0.413 0.437 0.443 0.391 0.380 0.280 0.294
Decision Tree 0.374 * 0.456 * 0.272 0.290 0.316 0.331 0.339 0.381 0.239 0.248
Random Forest 0.507 * 0.525 * 0.463 0.434 0.370 0.411 0.376 0.406 0.199 0.219

Isolet
(k=44)

KNN 0.837 0.815 0.830 0.802 0.518 0.544 0.701 0.756 0.412 0.512
Decision Tree 0.859 * 0.802 * 0.451 0.501 0.555 0.573 0.779 0.737 0.460 0.499
Random Forest 0.875 * 0.807 * 0.834 0.779 0.598 0.685 0.712 0.711 0.438 0.503

3.3 OPTIMAL K DETERMINATION

In this third step, our goal is to determine the minimal subset of kmin features that can classify
different classes effectively without incurring a drop in performance. As presented in Section 3.2,
the MSS index exhibits a correlation with the accuracy results over all possible values of k. Thus,
in this step of the proposed GB-AFS, illustrated in Figure 1, we apply the Kneedle algorithm from
Section 2.5 to the MSS graph to find the minimal subset of kmin features.

Applying the Kneedle algorithm to the MSS graph enables the identification of the knee point, as
illustrated in Figure 2 by the vertical dashed line. This knee point corresponds to a specific k value
representing the minimal number of features needed for classification. Subsequently, the k medoids
associated with this k value are retrieved as the minimal subset of features required for classification.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Data Sets. Our proposed method is assessed using five data sets from varied domains. You can find
more details about these data sets in Appendix A.1.

Parameter Settings. We utilized t-SNE in our experiments following the author’s recommenda-
tions (Van der Maaten & Hinton, 2008) with slight adjustments. You can find more details about
these settings in Appendix A.2.

4.2 BASELINE METHODS

The predictive efficacy of our GB-AFS method is evaluated against a total of four filter-oriented
methodologies for addressing the feature selection task: ReliefF (Robnik-Šikonja & Kononenko,
2003), Fisher Score (Longford, 1987), Correlation-based Feature Selection (CFS) (Hall, 1999), and
a randomized approach where a specified number of features is chosen randomly. In each of the four
benchmarked methods, we utilize the kmin value obtained from our GB-AFS approach. We refer to
these techniques as ”filter methods with pre-defined k”.

To evaluate our proposed technique for selecting the kmin using the MSS and Kneedle algorithms,
we compare it to the technique recommended in Thiago’s paper, which involves selecting the k value
that yields the highest SS value. To accomplish this, we conducted two separate runs of the GB-AFS,
each utilizing one of the two techniques, and compared the obtained results.

4.3 EXPERIMENT RESULTS

The details of the experimental methodology guiding this study are outlined in Appendix B. Follow-
ing this, we evaluated the performance of our GB-AFS method based on two key metrics: accuracy
and balanced F-score. The performance of the classifiers was determined by calculating the average
values over 10 test sets. The accuracy and balanced F-score of the proposed GB-AFS compared
to the filter methods with pre-defined k, using the same kmin determined by GB-AFS, are reported

8
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Figure 3: Comparison of the accuracy of various classifiers utilizing k features selected by the GB-
AFS with the MSS index, k features selected by the GB-AFS using Thiago’s proposed approach and
the complete feature set available in the data set.

in Table 2. For each data set and classifier, the results of the best method are shown in bold. Sta-
tistically significant differences at a p-value < 0.05 based on paired t-test are indicated by *. In
14 out of 15 combinations of data sets and classifiers, we observed that the GB-AFS method per-
forms better in terms of accuracy compared to the other methods, with improvements ranging from
0.4% to 14%, and an average improvement of 6.5%. In 11 of these 14 combinations, GB-AFS out-
performed the other filter methods with a statistically significant difference (p-value < 0.05). In
terms of the balanced F-score, we observe that the GB-AFS method achieved better results in 13
of the 15 combinations of data sets and classifiers, with improvements ranging from 1% to 24.4%
and an average improvement of 9.5%. Of these 13 combinations, 10 were found to be statistically
significant. The superior results achieved by the proposed GB-AFS method, in comparison to other
baseline methods, can be attributed to its ability to identify automatically a subset of features with
complementary separation capabilities. For a visual representation of this ability, please refer to the
graphical analysis provided in Appendix C.

Figure 3 displays the average accuracy of the proposed GB-AFS method with a ±95% confidence
interval, in comparison to GB-AFS method, using Thiago’s approach (Covões & Hruschka, 2011)
for determination of k and using all features in the data set. The results show that the GB-AFS
method achieved significantly better accuracy than when incorporating Thiago’s method for deter-
mination of k, with improvements ranging from 3.7% to 29.3%, and an average improvement of
12.7%. Moreover, the GB-AFS method selected between 7% and 30% of the features in each data
set. In 14 of 15 combinations of data sets and classifiers, there was no statistically significant differ-
ence (p-value < 0.05) in accuracy results between the GB-AFS method and when using all features.
While the accuracy results are similar, the percentage of time saved on average by using a set of
kmin features ranges from 15% for the smallest data set to 70% for the largest (Table 1).

5 CONCLUSIONS AND FUTURE WORK

This paper presents a novel graph-based filter method for automatic feature selection (GB-AFS) for
multi-class classification problems. An algorithm is developed to apply the proposed method to find
the minimal subset of features that are required to retain the ability to distinguish between each pair
of classes. The experimental results on five data sets show that the proposed algorithm outperformed
other filter methods with an average accuracy improvement of 6.5%. Moreover, in 14 of 15 cases,
the GB-AFS method was able to identify 7% to 30% of the features that retained the same level of
accuracy as when using all features, while reducing the classification time by 15% to 70%.

Future work could utilize the proposed method for constraint-based classification problems. In many
real-world situations, each feature incurs an economic cost for collection, with limited resources
being available to tackle the problem at hand. Thus, the adaption of the proposed algorithm, such
that the total cost of the selected features meets the constraint, is an interesting direction to explore.
Additionally, it would be worthwhile investigating the potential of incorporating asymmetric error
costs between pairs of classes into the proposed method.
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A ADDITIONAL EXPERIMENT SETUP DETAILS

A.1 DATA SETS

We use five data sets from different domains. Table 3 presents, for each data set, the number of
instances, the number of features, and the number of classes. Below is a short description of each
data set.

Isolet is a data set of 617 voice recording features from 150 subjects reciting the English alphabet,
with the goal of classifying the correct letter among the 26 classes.

Cardiotocography comprises 23 distinct assessments of fetal heart rate (FHR) and uterine con-
traction (UC) characteristics, as documented on cardiotocograms. They were categorized into 10
separate classes by experienced obstetricians.

Mice Protein Expression measures the expression levels of 77 proteins in the cerebral cortex of
eight classes of mice undergoing context fear conditioning for evaluating associative learning.
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Table 3: Overview of the data sets

Data Set #Instances #Classes #Features

Isolet (Dua & Graff, 2017) 7797 26 617
Cardiotocography (Dua & Graff, 2017) 2126 10 23
Music Genre Classification (Olteanu, 2020) 1000 10 197
Microsoft Malware Sample (Microsoft, 2019) 1642 9 257
Mice Protein Expression (Higuera et al., 2015) 1080 8 77

Microsoft Malware Prediction, released in 2018, is a comprehensive collection containing 257
file attributes and nine malware identification classes. It was created by Microsoft to facilitate the
development of machine-learning models for predicting malware.

Music Genre Classification is a data set of 1,000 labeled audio segments, each lasting 30 seconds
and containing 197 features. Covering 10 distinct genres, this data set is frequently employed in
machine-learning projects aimed at classifying music genres.

A.2 PARAMETER SETTINGS

We utilized t-SNE in our experiments according to the author’s Van der Maaten & Hinton (2008) rec-
ommendations, which suggest setting the number of iterations to 1000 and using a perplexity range
between 5 and 50. We employed two-dimensional parameter settings exclusively for visualization
purposes. For each data set, we chose a perplexity value of 30, except for the Cardiotocography data
set, where a value of 10 was applied.

For K-medoids clustering, we used the PAM method for cluster assignment with K-means++ initial-
ization. This method selects initial medoids farthest from each other, simulating the idea of choosing
features with complementary separation capabilities, which improves the algorithm’s efficiency and
accuracy.

B EXPERIMENT METHODOLOGY

To avoid attributes with large numerical ranges from dominating those with small numerical ranges,
the data were rescaled to lie between 0 and 1 using the min–max normalization procedure. Then,
we split the data randomly such that 75% of the instances (training data set) were used for applying
the GB-AFS to determine the set of kmin features and build the classifiers. The remaining 25% (test
data set) were used to evaluate the performance of the GB-AFS and resulting classifiers.

To find the kmin, we evaluated the MSS over a validation data set for each set of k features found by
applying the GB-AFS on the training set, where k ∈ [2,M ]. To reduce the bias when selecting the
training and validation data, we used a five-fold cross-validation approach (Arlot & Celisse, 2010),
where 80% of the data set was used to identify the set of k features and the remaining 20% was
used for MSS calculation. For each value of k, we calculated the MSS five times, each time using
a different subset as the validation data set. We then averaged these values to generate an averaged
MSS graph. Next, we applied the Kneedle algorithm1 to the averaged MSS graph to obtain the value
of kmin, which represents the number of features in the final data set.

After determining kmin, we applied the GB-AFS to the entire training set to obtain the set of kmin

features and construct three different classifiers (KNN, Decision Tree and Random Forest) based on
the chosen features. It should be noted that these classifiers were chosen to enable the evaluation
of our method in relation to other methods. They are not part of the method we propose, as can
be seen in Figure 1; other classifiers could just have easily been used. The trained classifiers were
then employed to classify instances in the out-of-sample test set and evaluate the accuracy and
balanced F-score metrics. To evaluate the statistical significance of the results in comparison to the
benchmarked methods, we repeated the entire experiment’s methodology 10 times, using a different
random split of the training–test sets for each iteration.

1We use this repository that implement the Kneedle algorithm: https://github.com/arvkevi/
kneed
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C GRAPHICAL ANALYSIS AND INTERPRETATION

Figure 4 shows the features of the Microsoft Malware data set embedded in low-dimensional space
accepted by the t-SNE method. Each feature i is assigned a color based on the mean value of its
computed JMi matrix, in such a way that the higher the value, the darker the color tends to be.
The kmin subset of features chosen by the ReliefF method and the GB-AFS method, assuming that
kmin was found by the proposed method, are indicated by a rhombus and a circle, respectively. The
ReliefF method tends to select features with a high JM mean value, whereas the GB-AFS method
selects features that complement each other in terms of class separability. A similar behavior was
observed in Friedman et al. (2023) when utilizing diffusion maps together with K-means.

Figure 4: Microsoft Malware Sample features are color-coded according to their average JM score
in t-SNE. Our algorithm found 32

257 features based on their complementary separation abilities, while
ReliefF marked features with high JM mean values and not necessarily with complementary abilities.

The clearly defined minimized feature landscape stands as a witness to the organized pattern found
within the lower-dimensional feature arena. To exemplify this, we will showcase it utilizing the
Microsoft Malware Sample data set, depicted in Figure 5. Through the adept organization within
this minimized space, one can note the prominent separation properties, affirming the embedding’s
quality, which retains the local distances evident in the original JM matrices.

This data set is characterized by a composition of 257 features segmented into 9 classes, hence
forming a representation through 257 JM matrices, each manifesting as a 9×9 grid. Each grid ele-
ment articulates the separation degree between two distinct classes, with a pronounced separation
depicted in red and gradually transitioning to yellow as the separation narrows. A feature’s hue is
determined by the mean value encapsulated within its respective JM matrix.

Upon closer examination, it becomes apparent that features bearing similar JM matrices tend to
cluster in proximity within this diminished feature space, elucidating the effectiveness of employing
t-SNE techniques on JM matrices. This approach excels in extracting separation details, facilitating
a thoughtful arrangement of features in alignment with their separation attributes – a foundational
principle of the introduced GB-AFS methodology.
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Figure 5: Application of the Separability-Based Feature Space part of the GB-AFS method to 257
features from the Microsoft Malware Sample dataset. The features are embedded to a 2-dimensional
space by t-SNE and are colored by their average JM value.
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