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ABSTRACT

Normalising Flows are non-parametric statistical models characterised by their
dual capabilities of density estimation and generation. This duality requires an
inherently invertible architecture. However, the requirement of invertibility imposes
constraints on their expressiveness, necessitating a large number of parameters
and innovative architectural designs to achieve good results. Whilst flow-based
models predominantly rely on neural-network-based transformations for expressive
designs, alternative transformation methods have received limited attention. In this
work, we present Ferumal flow, a novel kernelised normalising flow paradigm that
integrates kernels into the framework. Our results demonstrate that a kernelised
flow can yield competitive or superior results compared to neural network-based
flows whilst maintaining parameter efficiency. Kernelised flows excel especially
in the low-data regime, enabling flexible non-parametric density estimation in
applications with sparse data availability.

1 INTRODUCTION

Maximum likelihood is a fundamental approach to parameter estimation in the field of machine
learning and statistics. However, its direct application to deep generative modelling is rare due to the
intractability of the likelihood function. Popular probabilistic generative models such as Diffusion
Models (Dai & Seljak, [2020b) and Variational Autoencoders (Kingma & Welling| [2022)) instead
resort to optimising the Evidence Lower Bound (ELBO), a lower bound on the log-likelihood, due to
the challenges in evaluating likelihoods.

The change of variables theorem offers a neat and elegant solution to compute the exact likelihood
for deep generative modelling. These models, known as normalising flows, employ invertible
architectures to transform complex probability distributions into simpler ones. Normalising flows
(Papamakarios et al., |2021}; [Kobyzev et al., 2021)) excel in efficient density estimation and exact
sampling, making them suitable for various applications.

Whilst flow-based models possess appealing properties rooted in invertibility, they also impose
limitations on modelling choices, which can restrict their expressiveness. This limitation can be
mitigated by employing deeper models with a higher number of parameters. For instance, the Glow
model [Kingma & Dhariwal| (2018)) utilised approximately 45 million parameters for image generation
on CIFAR-10 Krizhevsky|(2009a), whereas StyleGAN3 [Karras et al.|(2019), a method that doesn’t
use likelihood optimisation, achieved a superior FID score with only about a million parameters.

The issue of over-parameterisation in flow-based models hinders their effectiveness in domains with
limited data, such as medical applications. For example, normalising flows can be used to model
complex phenotypic or genotypic data in genetic association studies (Hansen et al.| 2022} [Kirchler
et al.,|2022)); collection of high-quality data in these settings is expensive, with many studies only
including data on a few hundred to a few thousand instances. In scenarios with low data availability, a
flow-based network can easily memorise the entire dataset, leading to an unsatisfactory performance
on the test set. While existing research has focused on enhancing the expressiveness of flows through
clever architectural techniques, the challenge of achieving parameter efficiency has mostly been
overlooked with few exceptions Lee et al.|(2020). Most normalising flows developed to date rely on
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neural networks to transform complex distributions into simpler distributions. However, there is no
inherent requirement for flows to use neural networks. Due to their over-parameterisation and low
inductive bias, neural networks tend to struggle with generalisation in the low-data regime, making
them inapplicable to many real-world applications.

In this work, we propose a novel approach to flow-based distribution modelling by replacing neural
networks with kernels. Kernel machines work well in low-data regimes and retain expressiveness even
at scale. We introduce Ferumal flows, a kernelised normalising flow paradigm that outperforms or
achieves competitive performance in density estimation for tabular data compared to other efficiently
invertible neural network baselines like ReaNVP and Glow. Ferumal flows require up to 93% fewer
parameters than their neural network-based counterparts whilst still matching or outperforming them
in terms of likelihood estimation. We also investigate efficient training strategies for larger-scale
datasets and show that kernelising the flows works especially well on small datasets.

2 BACKGROUND

2.1 MAXIMUM LIKELIHOOD OPTIMISATION WITH NORMALISING FLOWS

A normalising flow is an invertible neural network, f : R® — R? that maps real data = onto noise
variables z. The noise variable z is commonly modelled by a simple distribution with explicitly
known density, such as a normal or uniform distribution, while the distribution of x is unknown and
needs to be estimated. As normalising flows are maximum likelihood estimators, for a given data set
of instances z1, .. ., ,, we want to maximise the log-likelihood over model parameters,

maleog (px () -

i=1

With the change of variables formula,

px(z) = pz (f(x)) |det Jy(x)],

where J(z) is the Jacobian of f in z, we can perform this optimisation directly:

maleog pz (f () +log (|det Iy (z;)]).

i=1

The first part, log(pz (f(z;))), can be computed in closed form due to the choice of p. The second
part, log(| det J¢(z;)|), can only be computed efficiently if f is designed appropriately.

2.2 COUPLING LAYERS

One standard way to design such an invertible neural network f with tractable Jacobian is affine
coupling layers (Dinh et al., 2017). A coupling layer C; : R — RP? is an invertible layer that
maps an input y,_1 to an output y, (¢ is the layer index): first, permute data dimensions with a fixed
permutation 7y, and split the output into the first d and second D — d dimensions:

[ug, uf] = [me(ye—1)1:d» Te(Ye—1)dt+1:D)-

Commonly, the permutation is either a reversal of dimensions or picked uniformly at random. Next,
we apply two neural networks, sg,t, : R — RP~¢ to the first output, uy, and use it to scale and
translate the second part, uf:

y,?:exp( ( ))®u§+t4(u}g).

The first part of y, remains unchanged, i.e., y; = u}, and we get the output of the coupling layer as:
ye = Cp(ye—1) = [?J}; ye] = [U}, €xXp (SZ (U})) QUE +t (U})] :

The J acobian matrix of this transformation is a permutation of a lower triangular matrix resulting
from ué undergoing an identity transformation and u? getting transformed elementwise by a function
of uj. The Jacobian of the permutation has a determinant with an absolute value of 1 by default.
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The diagonal of the remaining Jacobian consists of d elements equal to unity and the other D — d
elements equal the scaling vector s, (u%) Thus, the determinant can be efficiently computed as the

product of the elements of the scaling vector sy (uj).

The coupling layers are also efficiently invertible as only some of the dimensions are transformed
and the unchanged dimensions can be used to obtain the scaling and translation factors used for the
forward transformation to reverse the operation.

Multiple coupling layers can be linked in a chain of L layers such that all dimensions can be
transformed:

fx)=CpLo-- 0C(x),
ie,yo=xand y, = f(x).

2.3 KERNEL MACHINES

Kernel machines (Scholkopf et al.; 2002) implicitly map a data vector u € R? into a high-dimensional
(potentially infinite-dimensional) reproducing kernel Hilbert space (RKHS), H, by means of a fixed
feature map ¢ : RP — . The RKHS # has an associated positive definite kernel k(u,v) =
((u), d(v))q, where (-, -)3 : H x H — Ris the inner product of . The kernel & can oftentimes be
computed in closed form without requiring the explicit mapping of u, v into H, making computation
of many otherwise intractable problems feasible. In particular, as many linear learning algorithms,
such as Ridge Regression or Support Vector Machines, only require explicit computations of norms
and inner products, these algorithms can be efficiently kernelised. Instead of solving the original
learning problem in RP, kernel machines map data into the RKHS and solve the problem with a linear
algorithm in the RKHS, offering both computational efficiency (due to linearity and kernelisation) and
expressivity (due to the nonlinearity of the feature map and the high dimensionality of the RKHS).

3 FERUMAL FLOWS: KERNELISATION OF FLOW-BASED ARCHITECTURES

In this section, we extend standard coupling layers to use kernel-based scaling and translation
functions instead. Whilst neural networks are known to perform well in large-data regimes or when
transfer-learning from larger datasets can be applied, kernel machines perform well even at small
sample sizes and naturally trade-off model complexity against dataset size without losing expressivity.

3.1 KERNELISED COUPLING LAYERS

We keep the definition of coupling layers in Section[2] and only replace the functions s, and t; by
functions mapping to and from an RKHS #H. We have to deal with two main differences to the
kernelisation of many other learning algorithms: firstly, the explicit likelihood optimisation does
not include a regularisation term that penalises the norm of the prediction function. And secondly,
instead of a single mapping from origin space to RKHS to single-dimensional output, we aim to
combine multiple layers, in each of which the scaling and translation map from origin space to RKHS
to multi-dimensional output. As a result, the optimisation problem will not be convex in contrast
to standard kernel learning, and we have to derive a kernelised and tractable representation of the
learning objective.

In particular, in layer ¢, we introduce RKHS elements V2, V/} € HP ~ and define scaling and
translation as

D—d D—d
se(uf) = (Vg0 (uh)), | RV and ot (u) = (Vi (ud),] e RO

We summarise Vy = [V#, V/}] and V = [V4, ..., V] for the full flow f(z) = Cpo---0C;(x). Since
elements V' € H2L(P—4) and H’s dimensionality is potentially infinite, we cannot directly optimise
the objective:

m‘9x2p2 (Cpo...oC(x;)) + log (|det Jopo.. .00, (zi)]) = L(V). )
i=1

However, we can state a version of the representer theorem (Scholkopf et al., [2001)) that allows us to
kernelise the objective:
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Proposition 3.1. Given the objective L in equation (1)), for any V' = [V/, ..., V]] € HFP=D there
also exists a V with L(V') = L (V") such that

n

Vo= k() Aei
i=1
for some A;; = [AZZ-,AE’Z} € R2P=d_ Here, up; = m(Co—1 0+ 0 Cr(xi))1.4, L€, the first

part of the permutated input to layer { for data point i. In particular, if there exists a solution
V' € argmaxy, L(V), then there’s also a solution V* of the form

Proof. Let V' € H*(P=9 and &, = span{¢(u;,),...,¢(uj,)} be the space spanned by the
feature maps of layer ¢ inputs, and let ®;- denote its orthogonal complement in . We can then
represent each element VZSJ’ e H (G e{l,...,D —d}) as an orthogonal sum of an element of ¥,
and <I>j-,

Vi = e + 91, with ér; = ZAM d(up ;) and (¢, d(uf ) =0 Vi=1,.

for some values A7 ; . € R. In the objective (I), we only use V;?;" to compute (V,2,", ¢(uj ;))# as

part of the computation of s g(ue ;)- But due to orthogonality, it holds that

(Vi o(ug ) = (be + by d(ug )y = (Do d(ug ) + (67, d(ug.))w = (be g, d(ug ) a.

Hence, replacing V;? j/ by ge; =Dy Aj 0 (u%l) keeps the objective unchanged. The reproducing

property of the RKHS H now states that (gb(u}’i), D())m = k(ug ).

Repeating this forall { = 1,...,L,all j = 1,..., D — d and also for translations ¢, yields a version
of V' that can be represented as a linear combination of the stated form. O

In contrast to the classical representer theorem, the objective doesn’t contain a regulariser of the
model’s norm, which would ensure that any solution can necessarily be represented as a linear
combination of kernel evaluations. However, if a solution exists, Proposition @] ensures that there
also exists a solution that can be expressed as a linear combination of kernel evaluations. Therefore,
we can re-insert this solution V* into the objective[T]to get a kernelised objective.

For layer ¢ and arbitrary a € RY,

n D—d n
SZ( ) [<‘/€ YR ( )>]]D:71d = Z Az,i,jk (uéﬂﬁ CL)‘| Z uZ i a A£ i
i=1 j=1 =l
As in the objective (IJ), s¢ gets only evaluated in points a € u%ﬂ- li=1,... ,n}, this simplifies to

se(uf ) = k(uf,up,,) Al = ALK (U,UY,

i=1
1 n
where K (U},U}) = {k (uii,wm) } is the kernel matrix at layer ¢ and A =
i,m=1
[AZU cee A;n] € R(P=d)xn ig the weight matrix. A similar derivation holds for ;.

In total, we can kernelise the objective () and optimise over parameters A € R” xnx2(D=d) instead
of over V € H2L(P=d) 1In contrast to neural network-based learning, the number of parameters,
2Ln(D — d), is fixed except for the number of layers (since d is usually set to | D/2]), but increases
linearly with the dataset size, n. This makes kernelised flows especially promising for learning
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in the low-data regime, as their model complexity naturally scales with dataset size and does not
over-parametrise as much as neural networks (as long as one does not employ an excessive number
of layers).

Since the resulting objective function is not convex, optimisers targeted to standard kernel machines
such as Sequential Minimal Optimisation (Platt, [ 1998)) are not applicable. Instead, we optimise
with variations of stochastic gradient descent (Kingma & Ba,[2014).

3.2 EFFICIENT LEARNING WITH AUXILIARY POINTS

The basic kernelised formulation can be very computationally expensive even at moderate dataset sizes
and can tend towards overfitting in the lower-data regime. In Gaussian Process (GP) regression, this
problem is usually addressed via sparse GPs and the introduction of inducing variables (Quifionero+
Candela & Rasmussen, |2005). In a similar spirit, we introduce auxiliary points. In layer ¢, instead
of computing the kernel with respect to the full data u%’l, cee U%W we take N < n new variables

W} =[w},,...,w} y] € RN and compute the scaling transform as
Se(ut,n) = AFK (UL, W)
Se\Up Y s Ve )m

with A‘g € RIP=4xN (analogously for ;). We make these auxiliary points learnable and initialise
them to a randomly selected subset of u},u cey uén This procedure reduces the learnable parameters

from 2n(D — d)L (for both sy and t;) to 2N DL.

In another variation we make these auxiliary points shared between layers. In particular, instead
of selecting L times N points wy ;, ..., w} y, we instead only select W' = [wf], ..., wy] € RPN
once and compute at layer ¢

Se(uf ) = ALK (UL, W),

This further reduces the learnable parameters to 2N (D — d)L + 2dN.

4 RELATED WORKS

We are unaware of any prior work that attempts to replace neural networks with kernels in flow-based
architectures directly. However, there is a family of flow models based on Iterative Gaussianisation
(IG) |Chen & Gopinath|(2000) that utilise kernels. Notable works using Iterative Gaussianisation
include Gaussianisation Flows Meng et al.| (2020), Rotation-Based Iterative Gaussianisation (RBIG)
Laparra et al.[(2011), and Sliced Iterative Normalising Flows |Dai & Seljak|(2020a). These IG-based
methods differ significantly from our methodology. They rely on kernel density estimation and
inversion of the cumulative distribution function for each dimension individually and incorporate
the dependence between input dimensions through a rotation matrix, which aims to reduce inter-
dependence. In contrast, our method integrates kernels into coupling layer-based architectures.
Furthermore, IG-based methods typically involve a large number of layers, resulting in inefficiency
during training and a comparable number of parameters to neural network-based flow architectures.
In contrast, the Ferumal flow approach of incorporating kernels can act as a drop-in replacement
in many standard flow-based architectures, ensuring parameter efficiency without compromising
effectiveness. Another generative model using kernels is the work on kernel transport operators
(Huang et al.,2021)). demonstrated promising results in low-data scenarios and favourable empirical
outcomes. However, their approach differs from ours as they employed kernel mean embeddings and
transfer operators, along with a pre-trained autoencoder.

Other works focusing on kernel machines in a deep learning context are deep Gaussian processes
Damianou & Lawrence|(2013)) and deep kernel learning (Wilson et al., |2016; [Wenliang et al., 2019).
Deep GPs concatenate multiple layers of kernelised GP operations; however, they are Bayesian, non-
invertible models for prediction tasks instead of density estimation and involve high computational
complexity due to operations that require inverting a kernel matrix. Some works Rudi & Ciliberto
(2021)); Marteau-Ferey et al.[(2021); [Tsuchida et al.| (2023 use kernels for nonnegative functions for
modelling densities but are also not invertible. Deep kernel learning, on the other hand, designs new
kernels that are parametrised by multilayer perceptrons.
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Maronas et al.|(2021) integrated normalising flows within Gaussian processes. Their approach differs
significantly from ours as they aimed to exploit the invertibility property of flows by applying them
to the prior or the likelihood. Their combined models consist of kernels in the form of GPs but also
involve neural networks in the normalising flows network, resembling more of a hybrid model.

NanoFlow |Lee et al.[(2020) also targets parameter efficiency in normalising flows. They rely on
parameter sharing across different layers, whereas we utilise kernels. We also attempted to implement
the naive parameter-sharing technique suggested by [Lee et al.| (2020), but we found no improvement
in performance.

5 EXPERIMENTS

We assess the performance of our Ferumal flow kernelisation both on synthetic 2D toy datasets and
on five real-world benchmark datasets sourced from Dua & Graffi (2017). The benchmark datasets
include Power, Gas, Hepmass, MiniBoone, and BSDS300. To ensure consistency, we adhere to the
preprocessing procedure outlined by Papamakarios et al.|(2018).

Implementation details We kernelised the ReaNVP and Glow architectures. For comparison
purposes, RealNVP and Glow act as direct comparisons being the neural-net counterparts of our
models. We have also included basic autoregressive methods, Masked Autoregressive Flows (Papa-
makarios et al.,|2018), and Masked Autoregressive Distribution Estimation (Germain et al., |2015)),
FFJORD (Grathwohl et al.l [2018)) as a continuous normalising flow, and Gaussianisation Flows
(Meng et al.,[2020), Rotation-based Iterative Gaussianisation (Laparra et al., 2011), Sliced Iterative
Normalising Flows (Dai & Seljak,|2020b) as iterative gaussianisation methods for our evaluations.
Most autoregressive flow models outperform non-autoregressive flow models. However, they usually
come with the trade-off of either inefficient sampling or inefficient density estimation, i.e., either the
forward or the inverse computation is computationally very expensive.

layers, the number of nodes in each sub-layer,

residual connections, type of normalisation,

activation function, dropout, and many more.

Coupled with longer convergence times this

necessitates considerably more time and re-

sources in hyperparameter tuning than our

proposed kernel methods. In our study, we
utilised either the Squared Exponential kernel
or Matern Kernels exclusively for all exper-

iments. We learnt all the kernel hyperparam-  Figyre 1: Histogram of 2D toy datasets. Left:

eters using the GPyTorch library for Python  Trye distribution. Middle: NN-based. Right: FF-
for the main experiments. Throughout the yanelisation

experiments, we used the Adam (Kingma &
Bal, 2014) optimiser, whilst adjusting the [3;
and (o parameters of the optimiser. Additionally, we decayed the learning rate either with predefined
steps (StepLR) or with cosine annealing. In all the experiments, we incorporated auxiliary points as
we observed that they provided better results. In most cases, we persisted with 150 auxiliary points.

Training details Our Ferumal Flow ker-
nelisation has a negligible number of hyper-
parameters. Apart from learning rate hyper-
parameters (i.e., learning rate, 31, f2 for
Adam) and the number of layers, that are
central to both kernelised and neural-net-
based flows, we only need to choose a ker-
nel with its corresponding hyperparameters
(and a number of auxiliary points for large-
scale experiments). This is in contrast with
neural-net-based flows where choices for a
flow layer include a number of hidden sub-
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We coded our method in PyTorch (Paszke et al.| 2019) and used existing implementations for the
other algorithms. We ran all experiments for Ferumal flows and other baselines on CPUs (Intel Xeon
3.7 GHz). For more comprehensive training details, please refer to the Table[3]

5.1 2D TOY DATASETS

Initially, we conducted density estimation
experiments on three synthetic datasets that  Table 1: Results on toy datasets. Log Likelihood in nats,
were sampled from two-dimensional distri- pjgher is better

butions exhibiting diverse shapes and num-
bers of modes. Figure[T|showcases the orig-
inal data distribution alongside the samples

Dataset Ours (#params) NN-based (#params)

generated using the Ferumal flow kernelisa-  Line 3.75 (5K) 3.15 (44K)
tion and the corresponding neural network ~ Pinwheel -2.44 (4K) -2.48 (44K)
counterpart. The neural-net-based archi- Moons -2.43 (5K) -2.54 (44K)

tecture clearly shows the distortion of den-
sity in many regions whereas the kernelised
counterpart has much better modelling. Table [T] shows the corresponding log-likelihood in nats,
quantitatively showing the enhancement from our kernelisation. The results demonstrate that Ferumal
flow kernelisation can outperform its neural net counterpart on these toy datasets. All the toy datasets
were trained with a batch size of 200 and for 10K iterations. We also investigated the effect of our
kernelisation on highly discontinuous densities strengthening our argument for kernelisation. Please
refer to Appendix [B]

5.2 REAL-WORLD DATASETS

We conducted density estimation experiments on five real-world tabular benchmark datasets (descrip-
tion can be found in Appendix [I[), employing the preprocessing method proposed by [Papamakarios
et al.|(2018)). In our experiments, we kernelised two flow architectures, i.e., ReaNVP and Glow, that
utilise the coupling layer for efficient sampling and inference and making direct comparisons with
them. Additionally, we also considered comparisons with GF (Gaussianisation Flows) (Meng et al.|
2020), RBIG (Rotation-based Iterative Gaussianisation) (Laparra et al.,|2011), GIS (Gaussianied Itera-
tive Slicing/Sliced Iterative Normalising Flows) (Dai & Seljak, |2020b), MAF (Masked Autoregressive
Flows) (Papamakarios et al.,|2018)), and MADE (Masked Autoregressive Distribution Estimation)
(Germain et al., 2015)), FFJORD (Grathwohl et al., 2018]), architectures that do not use coupling
layers. These methods are not directly comparable to the coupling-layer-based methods, as they have
significantly higher computational costs. In particular, Gaussianisation-based methods, require many
more layers (up to 100, in our settings), whilst autoregressive flows are slow to sample from, due
to their autoregressive nature. In contrast to Gaussianisation-based methods, our kernelisation of
coupling layers does not increase the computational complexity and the training time under a fixed
number of epochs is similar to neural-net-based coupling layers. Run-time comparisons under a fixed
number of epochs are provided in Table [9]in Appendix [F)..

Table [2] presents the results of our experiments, revealing that Ferumal flow kernelisation consistently
achieves better or competitive outcomes across all five datasets. Despite its straightforward coupling
layer architecture, our approach surpasses RBIG, GIS, and MADE on all the datasets and achieves
competitive performance to the much more expensive MAF, GF, and FFJORD methods, underscoring
the efficacy of integrating kernels. Please refer to Table[T2]for error bars on coupling and non-coupling
experiments.

5.3 INITIAL PERFORMANCE

Figure [3| presents the learning curves of the train and test loss for our Ferumal flow kernelisation
and the two neural-network counterparts. These findings demonstrate that the Ferumal-flow-based
architecture exhibits faster convergence compared to the neural network baselines. This may be
due to the parameter efficiency provided by our kernelisation or due to the stronger inductive biases
provided by kernel machines. Throughout our experiments, we maintained default settings and
ensured consistent batch sizes across all models.
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Table 2: Log-likelihood measured in nats. Larger values are better. Methods prepended with FF are
our kernelised versions and the results with * are taken from existing literature.

Datasets
Method Power Gas Hepmass Miniboone BSDS300
Coupling RealNVP 0.17 833  -18.7 -13.55 153.28
FF-RealNVP (ours) 0.24 9.55 -18.20 -11.19 154.30
Glow 0.17 815 -18.92 -11.35 155.07
FF-Glow (ours) 0.35 10.75  -17.11 -10.76 154.71
Non-coupling MADE* -3.08 356  -20.98 -15.59 148.85
MAF 0.24 10.08 -17.70 -11.75 155.69
FFJORD 0.46 859 -14.92 -10.43 157.40
Gaussianisation GF 0.57 10.08 -17.59 -10.32 152.82
methods GIS* 0.32 1030 -19.00 -14.26 157.31
RBIG -1.02 -0.05 -24.59 -25.41 115.96

5.4 LOW-DATA REGIME

In certain applications, such as medical settings, data availability is often limited. Neural-
network-based flows typically suffer from over-parameterisation, leading to challenges in gen-
eralisation within low-data regimes. To assess the generalisation capability of our model un-
der such conditions, we trained our model using only 500 examples and evaluated its per-
formance on the same benchmark datasets. To address the challenges of limited data, we
opted to tie the learned auxiliary variables across layers in this setting. This approach helped
mitigate parameter complexity whilst maintaining the benefits of utilising auxiliary points.
As highlighted by Meng et al.|(2020),

Glow and RealNVP struggled to gen- Taple 3: Results on a small subset of 500 examples. LL in
eralise in low-data regimes, evidenced pats, higher the better

by increasing validation and test losses
whilst the training losses decreased. To Dataset Ours (#params) FFJORD (#params)
provide a stronger benchmark, we in-

cluded the FFJORD model (Grathwohl Miniboone -27.75 (58K) -39.92 (821K)

et al] 2018)). FFJORD is a continu- Hepmass -27.90 (41K) -28.17 (197K)

ous normalising flow method with a Gas 0.22 (11K) -7.50 (279K)
full-form Jacobian and exhibits supe- Power -2.91 (8K) -11.33 (43K)

rior performance to Glow or ReaNVP BSDS300  121.22 (85K) 100.32 (3,127K)

in density estimation and generation
tasks. For our model, we used a ker-
nelised version of ReaNVP which is notably weaker than the Glow version. This also proves that
kernelisation can make flow-based models more data-efficient.

Table 3| presents the results, demonstrating that our method achieves superior generalisation. This may
be attributed to the significantly lower number of parameters required compared to the continuous
FFJORD method.

5.5 PARAMETER EFFICIENCY

Table [d] shows the parameter counts of Ferumal flows against the baseline methods. Kernelising the
models results in a parameter reduction of up to 93%. The parameter efficiency consequently results
in less data requirement, better generalisation, and faster convergence. This reduction can be further
improved by implementing strategies such as sharing auxiliary variables between layers or potentially
with low-rank approximations, particularly in scenarios where data is limited and concerns about
overfitting arise (see Appendix [C|for additional details).
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Table 4: Number of parameters. Methods prepended with FF are our kernelised versions with %
reduction in brackets

Architectures
Dataset RealNVP FF-RealNVP (ours) Glow FF-Glow (ours)
Miniboone 377K 117K (69%) 395K 141K (64%)
Hepmass 288K 76K (74%) 293K 79K (73%)
Gas 236K 22K (91%) 237K 23K (90%)
Power 228K 16K (93%) 228K 20K (91%)
BSDS300 458K 171K (63%) 497K 279K (44%)

6 DISCUSSION AND LIMITATIONS

We have introduced Ferumal flows, a novel approach to integrate kernels into flow-based generative
models. Our study highlighted that Ferumal flows exhibit faster convergence rates, thanks to the
inductive biases imparted by data-dependent initialisation and parameter efficiency. Moreover, we
have demonstrated that kernels can significantly reduce the parameter count without compromising
the expressive power of the density estimators. Especially in the low-data regime, our method
shows superior generalisation capabilities, while Glow and RealNVP fail entirely, and FFJORD lags
significantly in performance. We also demonstrate the application of our method in hybrid modelling.
(Please refer to Appendix

In contrast to neural-network-based flows, kernelised flows require a different hyperparameter
selection. In classical kernel machines, the choice of kernel usually implies a type of inductive bias
(e.g., for specific data types (Vishwanathan et al.| 2010)). Consequently, in this work, we mostly
focus on Squared Exponential kernels and Matern kernels, but incorporating kernels with strong
inductive biases may be a promising avenue for future research. In particular, parameter sharing for
highly structured modalities such as images is another potential direction for future research.

The present work introduces kernels only for some affine coupling layer architectures such as
RealNVP and Glow. However, the concepts also directly apply to other coupling-layer-type networks,
such as neural spline flows (Durkan et al.| 2019), ButterflyFlows (Meng et al.|[2022)), or invertible
attention (Sukthanker et al.| [2022) for greater expressiveness and parameter efficiency. Ferumal flow
kernelisation can also be directly enhanced with other building blocks such as MixLogCDF-coupling
layers (Ho et al.| [2019).

Whilst our method can be applied to coupling-type flow-based architectures, it poses challenges when
it comes to ResFlow-like architectures Behrmann et al.| (2019); |Chen & Gopinath| (2000), which
require explicit control of Lipschitz properties of the residual blocks. As a result, extending our
approach to ResFlow-like architectures is left as a direction for future research.

One major drawback of existing normalising flow algorithms is their dependence on an abundance
of training data. The introduction of kernels into these models may allow the application of flows
in low-data settings. Additionally, in the era of increasingly large and complex models, energy
consumption has become a significant concern. Faster convergence can contribute to energy savings.
Notably, our models, owing to their faster convergence and few hyperparameters needed fewer
training runs than the neural-network counterparts. We anticipate that future research will continue to
explore efficient methodologies and strive for reduced energy and data demands.
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A ADDITIONAL EXPERIMENTAL DETAILS FOR OUR METHOD

We employed the Adam optimiser exclusively for all our experiments. The other hyperparameters
are chosen using a random grid search, i.e. Ir € [0.01,0.005,0.001], 81, B2 € [0.85,0.9,0.95,0.99],
kernel € [matern32, matern52, rbf]. We used Cosine decay for all experiments with the minimum
learning rate equalling zero. In initial experiments, we found that 150 auxiliary points performed
satisfactorily and we persisted with it for the majority of datasets and tried 200 for datasets with
high-dimensionality. For comprehensive information, please refer to Table 5]

For the experiments presented in Table[I] we employed Glow-based architectures for both approaches.
We trained these datasets for 1000 training steps, with the data synthesised at every training step
(as done in existing implementations). For experiments in Table [T} Table[3] we exclusively use the
RBF/Squared-Exponential kernel and randomly sampled the kernel length scale from a log-uniform
distribution, i.e., v ~ exp(U), where U ~ U2

Table 5: Model Architectures and hyperparameters for our method.

Datasets
Method Power Gas Hepmass Miniboone BSDS300
Dimensionality 6 8 21 43 63
Training Points 1,615,917 852,174 315,123 29,556 1,000,000
layers 14 12 15 12 12
kernel matern52  matern32 matern32 matern52 rbf
auxiliary points 150 150 150 150 200
learning rate(Ir)  0.005 0.005 0.01 0.005 0.005
51 0.95 0.9 0.99 0.99 0.95
5o 0.9 0.99 0.99 0.90 0.85
Ir schedular cosine cosine cosine cosine cosine
min Ir 0 0.95 0.95 0.95 0
epochs 200 200 500 600 400
batchsize 2000 2000 1024 2000 1024

B MODELLING DISCONTINUOUS DENSITIES

We consider two toy datasets with dis-

continuous densities, CheckerBoard Table 6: Results on discontinuous densities. Log Likelihood
and Diamond. We used 4 flow steps  in nats, higher is better

for all the models and piecewise poly-

nomial kernel and learnt its hyperpa-

. . Dataset Ours (#params) NN-based (#params)
rameters. Figure 2] showcases the orig-
inal data samples(Left) alongside the ~ Checkerboard -3.61 (1.8K) -3.68 (18.4K)
modelled density(Middle) and the sam-  Diamond -3.24 (1.8K) -3.39 (18.4K)

ples generated using the flow(Right).
The neural-net-based architecture for
the checkerboard dataset in the first row shows blurry boundaries and ill-defined corners. The
kernelised counterpart in the second row has better-defined boundaries in some cases. However,
this effect is even more pronounced in the diamond dataset with the kernelised counterpart in the
fourth row modelling the discontinuity way better. Table [2] shows the corresponding log-likelihood in
nats, quantitatively showing the enhancement from our kernelisation. The results demonstrate that
Ferumal flow kernelisation can outperform its neural net counterpart on these toy datasets. All the toy
datasets were trained with a batch size of 512 and for 100K iterations. We found that the piecewise
polynomial kernel was better suited for discontinuous densities than Matern kernels. This provides
another evidence of better performance due to inductive biases of a kernel.
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1. Neural-Net-based flow for the Checkerboard dataset

4. Our Kernelised flow for the Diamond dataset

Figure 2: Discontinuous distributions. Shown are training data (left column), flow density (center
column), and and histogram of flow samples (right column)
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Table 7: Results on a small subset of 500 examples. Log-Likelihood in nats, Higher the better

Dataset shared auxiliary (#params) low rank (#params) no auxiliary (#params)
Miniboone -27.75 (58K) -28.53 (19K) -41.83 (345K)
Hepmass -27.90 (41K) -27.91 (14K) -29.01 (126K)

Gas +0.22 (11K) -1.85 (6K) -10.19 (32K)

Power -2.91 (8K) -3.13 (6K) -9.26 (36K)
BSDS300  +121.22 (85K) +111.91 (17K) +109.265 (505K)

C LOW-RANK APPROXIMATIONS

For datasets characterised by high dimensionality and complex structures, relying solely on auxiliary
points for the weight matrix (A € R2P~9*N) i inefficient. When half of the dimensions are
transformed (as is the case in any coupling layer), this matrix becomes excessively large.

To preserve the desirable quality of generalisation in our models, we propose an alternative approach
to obtaining the weight matrix for a kernelised layer. We suggest using the product of two smaller
matrices (with fewer parameters) instead. For a weight matrix A € RP*¥ responsible for producing
p affine parameters using N auxiliary points, we can learn two smaller matrices: A' € R**" and
A? € R°*P where ¢ < p. By employing the outer product A = A2T A' ~ A as a proxy for a
full-weight matrix, we can effectively reduce the number of parameters.

In Table [/| we present the effectiveness of employing a low-rank approximation on the identical
subset of 500 samples, as depicted in Table 3 in the main manuscript. This technique ensures a
minimal number of parameters while achieving satisfactory generalisation. During the experimental
setup, we endeavoured to utilise the lowest feasible value of ¢ (chosen via a hyperparameter grid of
{4, 8,12}) that would still yield reliable generalisation. Notably, our approach achieves good results
while providing superior control over the parameters, in contrast to the shared auxiliary variable
method.

Learning without auxiliary points We also present a comparison of another variation of our
method, i.e., learning without the use of auxiliary variables. Notably, the sharing of auxiliary
variables yields the best results, followed by the utilisation of low-rank matrices in conjunction
with auxiliary variables. Whilst the results obtained with low matrices are not significantly different
from those obtained with shared auxiliary variables, they offer a further reduction in parameters. As
seen in Table |7} not using auxiliary variables causes a high number of parameters and the model
overfits easily causing comparatively poor results (notably fewer parameters than FFJORD, depicted
in Table [3]in the main manuscript, while achieving somewhat similar performance).

D DENSITY ESTIMATION ON REAL WORLD MEDICAL DATASET

Following our experiments within the low-data regime, as discussed in Section[5.4] we extend our
analysis to a real-world medical dataset—the UK Biobank (Bycroft et al.l 2018} [Kirchler et al., [2022).
This dataset encompasses phenotype and genotype information for a substantial cross-section of the
UK population, encompassing a total of 30 biomarkers. Notably, only 3,240 individuals within the
dataset possess complete information on all biomarkers.

In line with our experiments in Section we conducted a comparative analysis between our
kernelised-RealNVP and FFJORD. The density estimation results presented in Table 8] exhibit better
performance whilst training significantly faster, thereby reinforcing the findings in Table 3]

Table 8: Results on the UKBiobank’s biomarker data. Log Likelihood in nats, higher is better

Method  Ours params train time

Ours -29.11 41K 21 min
FFJORD -31.01 1.1M 13.1 hrs
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E DISCUSSION ON OUR USE OF KERNELS

Effect of kernel length scale As with any kernel machine, the length scale serves as a highly
sensitive hyperparameter in our method. During our investigation, we discovered that in identical
settings, distinct kernel length scales produce varying outcomes. Certain scales have a tendency to
overfit easily on the training set (e.g., -3.76 nats training likelihood on Miniboone), while some tend
to underfit (e.g.,-40.23 nats training likelihood on Miniboone). This diverges from neural-net-based
flows, where overfitting necessitates additional layers or nodes within each layer (bearing in mind
that this results in an increase in parameters unlike our method). Such findings vividly demonstrate
the high expressiveness of kernelisation in flow-based models.

Composite kernels In our experiments, we mostly employed the Squared Exponential Kernel/RBF,
Matern kernels. Nevertheless, it is feasible to employ a combination of kernels, also known as
multiple kernel learning (Sonnenburg et al., | 2006). We defer the comprehensive analysis of kernel
composition and its application to future endeavours.

F RUNTIME COMPARISONS

Power train loss Gas train loss Hepmass train loss
3 ~RealNVP T ~+RealNVP ~+RealNVP
+Glow 25 - +Glow 26 — +Glow
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Figure 3: Negative log-likelihood (loss in nats) on training and test sets over the first 3,000 training
iterations. Methods prepended with FF are our kernelised versions. All models were further trained
until convergence.

Table 9: Training time, hours and minutes

Dataset Glow Ours FFJORD GF

Miniboone 63m 51m 5h2Im  4h37m
Hepmass 8h 23m 8h49m > 1 day > 1 day
Gas 8h45m  9h07m > 1day > 1 day
Power 8h13m  8h50m > 1day > 1 day

BSDS300 10h57m 1049m > 1 day > 1 day

We picked the best models in each category from Table [2]and compared them with our kernelised
Glow model. For fair comparisons, we ran the models for the same number of epochs and used the
same number of flow steps for the neural-net counterpart, Glow model. It is worth noting that our
model has faster convergence up to 3 times than the Glow model. Table0]shows that despite using
kernels, we have comparable run times with the neural-network counterpart. We perform significantly
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better than continuous time normalising flow, FFJORD, and iterative-gaussianisation-based kernel
method, Gaussianisation flow, both take longer than a day on bigger datasets.

G IMPROVING MIXERFLOW’S IMAGE GENERATION

(a) NN-based MixerFlow (b) Our kernelised MixerFlow

Figure 4: Sampled images from MixerFlow

MixerFlow (English et al., [2023)) is a flow architecture for image modelling. Unlike Glow-based
architectures that relies on convolutional neural networks for image generation, MixerFlow offers a
flexible way to integrate any flow method, making it suitable for image generation with our kernelised
coupling layers. In this section, we showcase the application of our kernelisation to the MixerFlow
model on the CIFAR-10 dataset (Krizhevsky|, [2009b). We employed small models(30 layers) and
trained on a single gpu. For fair comparison, we kept the same model architecture with the sole change
being the replacement of the neural-network-based coupling layers with our kernelised coupling
layer. Our results as shown in Table [I0]demonstrate kernelisation can yield better result with faster
convergence attributed to reduction of parameters. The generated samples can be seen in Figure @]
and

Table 10: Results on the CIFAR-10 dataset. Log Likelihood in nats, higher is better

Method Ours params  convergence step

Ours(kernelised) -7644.39 4.85M 103K
NN-based MixerFlow -7665.65 11.43M 195K

H IMPROVING VAE’S ELBO

We also try our kernelised flows in hybrid settings, demonstrating that we can integrate them
with neural-net-based architectures. We apply our kernelised model, FF-GLow, to the variational
autoencoder (Kingma & Welling), 2022)) in the form of flexible prior and approximate posterior
distributions. We apply the methods to Kuzushiji-MNIST, which is a variant of MNIST containing
Japanese script. We investigate the capacity of our kernelisation to improve over the baseline of
standard-normal prior and diagonal-normal approximate posterior, and its neural network counterpart,
Glow. We use 6 flow steps for each flow-based model and the latent hidden dimension equals 16.
The quantitative results are shown in Table[IT]and generated image samples in Figure[7]

Both models (Glow and ours FF-Glow) improve significantly over the standard baseline. However,
there is no considerable quantitative gain by using the kernelised version. We believe that this might

17



Published as a conference paper at ICLR 2024

be due to the Glow model being sufficient to model the latent space on the dataset and having a
little margin for kernelisation to shine. However, our kernelisation still helps in making the model
parameter efficient with only a small increase in parameter complexity compared to the baseline.

Table 11: VAE test-set results (in nats) for the evidence lower bound (ELBO) on the Kuzushiji-Mnist
dataset. Error bars correspond to two standard deviations.

ELBO log p(x) Params
Baseline -195.61+1.25 -182.33+1.30 1.18M
Glow -189.99+1.35 -178.89£1.25 2.05M

FF-Glow (ours) -189.48+1.36 -178.54+1.25 1.23M

I DETAILS OF THE DATASETS

In the following paragraphs, a brief description of the five datasets used in Table 2| (POWER, GAS,
HEPMASS, MINIBOONE, BSDS300) and their preprocessing methods is provided.

Table 12: Log-likelihood measured in nats. larger values are better. Methods prepended with FF are
our kernelised versions and the results with * are taken from existing literature. Error bars correspond
to 2 standard deviations.

Datasets

Method Power Gas Hepmass Miniboone BSDS300
Coupling RealNVP 0.17+0.01 8.33+0.14  -18.7+£0.02 -13.55+0.49  153.284+ 1.78

FF-RealNVP (ours) 0.2440.01 9.55+0.03 -18.20+0.04  1-1.19£ 035 15430+ 2.11

Glow 0.17+0.01 8.15+0.40  -18.924+0.08  -11.35£0.07  155.07 = 1.03

FF-Glow (ours) 0.35+0.01 10.75£0.02 -17.11£0.02  -10.76+0.44  154.71+ 0.28
Non-coupling MADE* -3.08 £0.03 3.56£0.04 -20.98£0.02 -15.59+0.50 148.85+0.28

MAF 0.24+0.01 10.08+0.02 -17.70+0.02  -11.75£0.44 155.69 +0.28

FFJORD 046 £0.01 8.59+£0.12 -1492+0.08 -1043+0.04 157.40+0.19

POWER: The POWER dataset comprises measurements of electric power consumption in a
household spanning 47 months. Although it is essentially a time series, each example is treated as
an independent and identically distributed (i.i.d.) sample from the marginal distribution. The time
component was converted into an integer representing the number of minutes in a day, followed by
the addition of uniform random noise. The date information is omitted and the global reactive power
parameter, as it had numerous zero values that could potentially introduce large spikes in the learned
distribution. Uniform random noise was also added to each feature within the interval [0, ¢;], where
€; 1s chosen to ensure that there are likely no duplicate values for the i-th feature while maintaining
the integrity of the data values.

GAS: The GAS dataset records readings from an array of 16 chemical sensors exposed to gas
mixtures over a 12-hour period. Like the POWER dataset, it is essentially a time series but was treated
as if each example followed an i.i.d. distribution. The data selected represents a mixture of ethylene
and carbon monoxide. After removing strongly correlated attributes, the dataset’s dimensionality was
reduced to 8.

HEPMASS: The HEPMASS dataset characterizes particle collisions in high-energy physics. Half
of the data correspond to particle-producing collisions (positive), while the remaining data originate
from a background source (negative). In this analysis, we utilized the positive examples from the
"1000" dataset, where the particle mass is set to 1000. To prevent density spikes and misleading
results, five features with frequently recurring values were excluded.

MINIBOONE: The MINIBOONE dataset is derived from the MiniBooNE experiment at Fermilab.
Similar to HEPMASS, it comprises positive examples (electron neutrinos) and negative examples
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(muon neutrinos). In this case, only the positive examples were employed. Some evident outliers (11)
with values consistently set to -1000 across all columns were identified and removed. Additionally,
seven other features underwent preprocessing to enhance data quality.

BSDS300: The dataset was created by selecting random 8x8 monochrome patches from the
BSDS300 dataset, which contains natural images. Initially, uniform noise was introduced to dequan-
tize the pixel values, after which they were rescaled to fall within the range [0, 1]. Furthermore, the

average pixel value was subtracted from each patch, and the pixel located in the bottom-right corner
was omitted.
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Figure 5: Original samples after binarisation
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Figure 6: VAE samples from neural-net-based Glow
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Figure 7: VAE samples from our kernelised flow, FF-Glow
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