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Fig. 1: An example robotic planetary surface exploration mission scenario to provide motivation for the proposed
hybrid learning and physics-based approaches. (a) shows ignoring semantic information completely may be
detrimental towards overall mission success, (b) shows failure of learning-based approaches to adapt to out-of-
distribution hazards during runtime, (c) shows viability of the proposed hybrid approaches.

Abstract— Safe, reliable navigation in extreme, unfamiliar
terrain is required for future robotic space exploration mis-
sions. Recent generative-AI methods learn semantically aware
navigation policies from large, cross-embodiment datasets,
but offer limited safety guarantees. Inspired by human cogni-
tive science [1], we propose a risk-guided diffusion framework
that fuses a fast, learned “System-1” with a slow, physics-
based “System-2,” sharing computation at both training
and inference to couple adaptability with formal safety.
Hardware experiments conducted at the NASA JPL’s Mars-
analog facility, Mars Yard, show that our approach reduces
failure rates by up to 4× while matching the goal-reaching
performance of learning-based robotic models by leveraging
inference-time compute without any additional training.

I. Introduction

NASA’s surface exploration missions currently rely on
pre-mission maps and ground supervision. This limits
robotic exploration of distant worlds like Enceladus or
Europa, where one-way communication latency nears
50 minutes and outages can persist for weeks [2, 3].
Future robots need to autonomously traverse GNSS-
denied, visually degraded terrain with no prior maps
to successfully conduct their missions. Robotic founda-
tion models trained on cross-embodiment datasets have
demonstrated strong vision-language reasoning [4, 5, 6],
but their reliability drops for out-of-distribution sce-
narios. This work asks: Can foundation models deliver

adaptive autonomous mobility in space environments
without compromising safety?

Adding safety to learning-based navigation methods
has seen considerable work over the years. Prior works
like [7, 8] have shown the benefits of using a traversability
estimation module to plan safe paths. Several foundation
models have benefited from test time compute scaling
[9]. Works such as [10] use a binary traversability mask
at training time and modify the loss function of a
diffusion model to output trajectories in traversable re-
gions. SafeDiffuser [11] provides safety guarantees using
a Control Barrier Function (CBF) [12] at inference time,
but does not account for stochasticity in traversability
estimation. Furthermore, CBF construction can be chal-
lenging for stochastic systems.

Inspired by Kahneman [1], several recent works have
been proposed to combine slow and fast thinking [13, 14,
15]. In this work, we explore the possibility of using a
learning based navigation foundation model as fast Sys-
tem 1 and physics-based risk-assessment as slow System
2. Contributions: (1) We enable safe adaptation to out-
of-training-distribution terrains by leveraging stochastic
physics-based traversability estimation [7]. (2) [16, 17]
achieve cross-embodied transfer by abstracting the action
space to a sequence of waypoints with an underlying
low-level tracking controller. However, every robot has



Fig. 2: Risk-Guided Diffusion Architecture Overview.

a different size and traversability capability. To address
this, we leverage a diffusion-based action head to learn a
multi-modal action distribution that represent different
homotopy classes of candidate trajectories. (3) We lever-
age inference-time compute with physics-based models to
improve performance without additional training data.
Using an intuitive 1-D example, we show that standard
classifier guidance [18] is insufficient for constraint sat-
isfaction and propose an extension of a projection-based
guidance strategy [19]. (4) Experimental validation in
NASA JPL’s Mars-analog facility shows our approach
reduces failure rates up to 4× without reducing the goal-
reaching performance of learning-based models.

II. Approach
Inspired by Kahneman [1], this section presents a

framework that combines a fast, intuitive “System 1”
(pre-trained foundation model) with a slow, deliberate
“System 2” (physics-based risk estimator).

A. System 1: Learning-based Foundation Model
Mathematically, System 1 is a pre-trained control

policy π(u|o, g) that outputs Nu waypoints uNu
∈ R2×Nu

given No image observations oNo
and goal image og.

Following [16], we encode high-dimensional observations
in a latent representation z. The policy uses a latent
diffusion model π(u|z) defined by the score function
εθ(u

t, t|z), which is trained with standard techniques [20],

min
θ

Eu,z∼D,t∼Uniform(0,T )[||ε− εθ(u
t, t|z)||2], (1)

ut = σtu0 + αtε, ε ∼ N(0, I), (2)

where uT ∼ N (0, I), u0 ∼ π(u|z), and αt, σt are noise
schedule parameters. We use (.)

tdiffusion

ttrajectory
notation for

diffusion vs. trajectory time.
This system has three key features: (1) it uses train-

time compute to learn a foundation model that excels
at intuitive reasoning in high-dimensional observation

spaces like images; (2) diffusion action-heads provide
flexibility in learning multi-modal action distributions,
capturing multiple homotopy classes; (3) the foundation
model can leverage data from multiple robot embodi-
ments of different sizes and traversability capabilities.
However, System 1 is a black-box model, which cannot
provide any safety guarantees.

B. System 2: Physics-based Risk Estimation
System 2 complements System 1 by providing inter-

pretable safety guarantees for our specific robot and task.
Like the thoughtful, deliberate System 2 described in
[1], our System 2 leverages inference-time compute to
estimate the risk associated with given actions.

Specifically, we use a physics-based stochastic
traversability estimate [7] to create risk maps from ego-
centric 2.5D maps m. This estimate is based on a
traversability cost r = R(m,x, u) representing the degree
to which the robot can traverse a given state. This
becomes a random variable R : (M× U) → R via the
belief p(m|u, o). We employ CVaR as a risk metric:

ρ(R) = CVaRα(R) = inf
z∈R

E
[
z +

(R− z)+
1− α

]
(3)

where (.)+ = max(., 0) and α ∈ (0, 1] denotes the
risk probability level. Finally, we obtain a safe set of
control inputs by obtaining a user-defined risk-tolerance
threshold γ as follows:

1u∈USAFE
(u) =

{
1 ρ(R(u)) ≤ γ

0 otherwise
(4)

C. Thinking fast and slow: combining System 1 and 2
We develop a unified mathematical approach that

integrates both systems for safe and adaptive navigation.
Mathematically, this can be formulated as a constrained
sampling problem:

u ∼ p(u|z) = π(u|z)1u∈USAFE
(u), (5)
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Fig. 3: Langevin sampling dynamics for different guidance strategies in 1D rover navigation.

where π is the unconstrained policy of System 1’s latent
diffusion model.

A straight-forward approach is to use Classifier-like
Risk Guidance [18] by converting 1u∈USAFE

(u) to differ-
entiable crisk(u) where crisk(u) ≤ 0 ⇐⇒ u ∈ USAFE .
This enables sampling from u ∼ pt,θ(u|z)e−ηcrisk(u) by
modifying the diffusion score:

ε = εθ(u, z, t)︸ ︷︷ ︸
foundation model

+ η∇ucrisk(u)︸ ︷︷ ︸
risk guidance

. (6)

However, this penalty approach cannot guarantee
constraint satisfaction since the implicit task objective
min J(u, z) in π(u|z) ∝ exp(−J(u, z)) trades off with risk
penalty. Parameter sensitivity is severe: low η violates
constraints, while high η eliminates valid modes (Fig. 3).

These limitations can be addressed with a projection-
based guidance strategy [19]. The procedure: before
each diffusion step, check if the next action violates
the risk constraint. If so, project to a nearby safe
action; otherwise continue diffusion. This guarantees
constraint satisfaction by keeping actions in the safe
set. This strategy is effective (Fig. 3, last row). Unlike
naive safety filters, enforcing constraints during diffusion
spreads probability from constraint boundaries, encour-
aging exploration in informative areas. A key challenge
in applying this strategy is that projecting actions to the
safe set is non-unique and in general the robot motion
planning problem is PSPACE-hard [21, 22].

Algorithm 1 Risk-Guidance Algorithm
Require: Current sample ut, risk map 1u∈USAFE

(u)
1: if t > t2 then
2: while crisk(û, z, t) > 0 do . Rejection sample
3: w ∼ N (0, I)

4: û← 1√
αt

(
ut − 1−αt

√
1−ᾱt εθ(u

t, z, t
)
+ σtw

5: end while
6: else if t > t1 then
7: while crisk(û, z, t) > 0 do
8: û← (1− α)û+ αut . Previous projection
9: end while

10: else
11: while crisk(û, z, t) > 0 do
12: û← (1− α)û . Small-action projection
13: end while
14: end if
15: return ut−1

We address these challenges by employing three
domain-specific projection strategies, as outlined in Al-
gorithm 1. Rejection sampling: draws new noise values
w until constraints are satisfied—this is inefficient for
narrow passages but effective in early iterations. Previous
projection: assuming the robot started in the safe set and
no actions enter unsafe set during the diffusion process,
the previous action from the diffusion process will also
be safe. Small action projection: exploits the fact that



Fig. 4: Test setups: simulation (top-left) and Mars Yars—Hard (top-right) Easy (bottom) with goal images.
.

Mars Sim - Carter

Approach Safety Goal
Failure (%) ↓Success (%) ↑

Vanilla NoMaD 100 0

NoMaD Finetuned 50 46.67

NoMaD with Safety Filter 0 46.67

Our Method 0 50

TABLE I: Simulation environment

Mars Yard - Spot (Easy) Mars Yard - Spot (Hard)

Approach Safety Goal Safety Goal
Failure (%) ↓Success (%) ↑ Failure (%) ↓Success (%) ↑

Vanilla NoMaD 100 0 100 0

NoMaD Finetuned 30 70 48.57 25.92

Our Method 6.67 66.67 14.28 23.07

TABLE II: Real world environment

the robot remains safe if stationary.

III. Experiments & Results
We conduct quantitative analysis in simulation using

Isaac Sim with Carter robot and at the JPL Mars
Yard using the NeBula Spot robot [23] with randomized
start/goal configurations (Fig. 4). We compare against:
(1) Vanilla NoMaD [16], (2) Finetuned NoMaD, (3)
NoMaD with safety filter, and (4) Risk-guided diffu-
sion (Ours). Implementation details are provided in
the appendix. Our primary metrics are Goal Success
rate (GS) and Safety Failure rate (SF). GS quantifies
the percentage of trials where the robot successfully
avoids obstacles and reaches the goal. SF quantifies the
percentage of trials where the robot falls or steps on a
high risk hazard.

Table I and II show vanilla NoMaD leads to collisions
in all of our simulation and real-world test cases. This
shows that such models are very brittle when it comes to
out-of-distribution scenarios. Even after fine-tuning, the
model is not capable of avoiding collisions in a majority
of the test cases. In contrast, the safety filter and our
method reduced the safety violations to 0 in simulation
and by almost 4× for real world environments.

Contrary to expectations, our method only slightly
outperforms the safety filter. The model’s bias to-
ward out-of-distribution obstacles—and the training

data’s failure to learn multimodal actions across ho-
motopies—renders guidance no better than filtering. In
cluttered scenes the robot dodges obstacles but then loses
sight of the goal; with limited memory it fails to re-
acquire it, lowering success. Enhancing policy memory
is a key next step. We expect these limitations to reduce
as foundation models grow in scale and improve archi-
tecturally, our modular risk-guided diffusion framework
should inherit these gains with minimal changes.

IV. Conclusion and Future Work
Risk-Guided Diffusion shows that robot navigation

foundation models can be made mission-safe while re-
taining their semantic navigation capabilities. A sim-
ple projection step—essentially a fast collision check
rather than the quadratic programs typical of CBF
pipelines—lets a learned diffusion policy collaborate with
a physics-based risk map, cutting safety violations up to
4× while maintaining goal success at the JPL Mars Yard.

The current gains over a basic safety filter are modest,
limited by trajectory diversity and short-term memory in
today’s foundation models. We therefore invite the com-
munity to push these fronts—richer multimodal training,
longer-horizon memory, and tighter guarantees—so that
the method can mature into a dependable navigator
for Mars lava tubes, the icy terrains of Europa and
Enceladus, and other uncharted worlds.
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Appendix I
Baseline implementation details

1) Vanilla NoMaD : For the Vanilla NoMaD baseline,
we utilize the publicly available pre-trained weights
released by the original authors and evaluate the
model in a zero-shot setting across both simulated
and real-world environments. We adhere to the
normalization parameters provided in the NoMaD
framework and apply velocity-based unnormaliza-
tion to obtain the final action outputs from the
diffusion model.

2) Finetuned NoMaD : We collect approximately one
hour of driving data in both simulated and real-
world environments via teleoperation of the robot,
following the methodology employed in the open-
source datasets used by the NoMaD framework.
For data preprocessing, we adopt a distance-based
waypoint sampling strategy applied across both
our collected datasets and the original NoMaD
datasets. Waypoints are sampled at uniform in-
tervals of 0.2 meters, or at shorter distances when
the change in heading exceeds a predefined angular
threshold. Using this dataset, we first train the
original NoMaD model using the same hyperpa-
rameters as the baseline, and subsequently fine-
tune the model on our custom dataset.

3) Safety Filter: To ensure safety, we implement a
simple truncation-based safety filter that truncates
the output trajectory at the waypoint immedi-
ately preceding the first predicted collision. This
approach guarantees that the resulting trajectory
remains entirely within safe bounds.

4) Risk Guidance Diffusion : We implement the pro-
jected risk guidance mechanism as described in this
work, utilizing the risk map generated using [7]. In
simulation, we sample a total of 50 trajectories,
while in the real-world setting, we sample 8 trajec-
tories. Risk-guidance is performed in parallel across
all trajectories to ensure fast inference.
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