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ABSTRACT

Domain shift degrades classification models on new data distributions. Conven-
tional unsupervised domain adaptation (UDA) aims to learn features that bridge
labeled source and unlabeled target domains. In contrast to feature learning, gradual
domain adaptation (GDA) leverages extra continuous intermediate domains with
pseudo-labels to boost the source classifier. However, real intermediate domains
are sometimes unavailable or ineffective. In this paper, we propose Gradual Do-
main Adaptation via Gradient Flow (GGF) to generate intermediate domains with
preserving labels, thereby enabling us a fine-tuning method for GDA. We employ
the Wasserstein gradient flow in Kullback-Leibler divergence to transport samples
from the source to the target domain. To simulate the dynamics, we utilize the
Langevin algorithm. Since the Langevin algorithm disregards label information
and introduces diffusion noise, we introduce classifier-based and sample-based
potentials to avoid label switching and dramatic deviations in the sampling process.
For the proposed GGF model, we analyze its generalization bound. Experiments
on several benchmark datasets demonstrate the superiority of the proposed GGF
method compared to state-of-the-art baselines.

1 INTRODUCTION

Unsupervised Domain Adaptation (UDA) stands as a fundamental and classical problem in machine
learning ( , ). Its primary objective revolves around the transfer of the knowledge
from a well-trained source domain to a related yet unlabeled target domain, thereby reducing the
need for time-consuming manual labeling and data preprocessing.

Early discrepancy-based UDA methods ( s ; s ; s ;

; , ; s ) have shown promise in learning domain-invariant feature
representations. However recent studies ( , ; ,

, ) reveal that simply aligning source and target domains likely reduces d1scr1m1nab1hty To
address this issue, transport-based ( , ; , ; s ) and
synthetic sample-based ( , ; s ; ; ;

; , ; ; , ) approaches have been developed Apart frorn
them, ( ) proposed a learnrng paradigm called Gradual Domain Adaptation (GDA),
which resorts to an extra sequence of continuous unlabeled samples as intermediate domains to adapt
the source classifier to the target domain via self-training instead of feature alignment.

However, in many real-world scenarios where only unlabeled data from the target domain are available,
constructing appropriate intermediate domains remains an open question ( , ), which
transforms the UDA setting into the GDA setting. Prior studies have demonstrated that generating
additional intermediate domains through generative models or interpolation algorithms offers viable
approaches and improves the learning performance of the target domain. For instance,

( ) utilized Continuous Normalizing Flow (CNF) ( , ) to interpolate between
the source and target domains. GIFT ( s ) and GOAT ( s ) use optimal
transport and linear interpolation within a mini-batch to form geodesic paths. Those methods share a
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Figure 1: Illustration of the proposed GGF method. (a) The three designed energies collectively
define a gradient flow in latent space. (b) The training strategy of GGF involves gradual fine-tuning
of the classifier by utilizing the intermediate domains constructed in the GGF method.

similar spirit to transport-based and synthetic sample-based UDA methods. Unfortunately, they suffer
from two limitations. Firstly, one-step interpolation and CNFs with minimal constraints can result
in ambiguous labels for synthetic samples. Secondly, self-training with multiple pseudo-labeling
iterations may lead to training instability ( , ).

To address the limitations above, we propose Gradual domain adaptation via Gradient Flow (GGF), a
novel method to construct intermediate domains when intermediate domains are absent. Gradient flow
refers to the continuous process of gradient descent, which follows the steepest descent direction to
minimize a given energy function. As shown in Figure 1, in the proposed GGF method, the designed
gradient flow transports feature representations from the source domain to the target domain along
a curve to minimize the following three designed energies: (1) distribution-based energy that is to
shift the features from the source domain to the target domain, (2) classifier-based energy that is to
preserve label information, and (3) sample-based energy that is to avoid large noise in generated
samples. To the best of our knowledge, we are the first to propose the construction of intermediate
domains, while meantime allowing the source classifier to be gradually fine-tuned to align with the
target distribution. We provide theoretical analysis on the generalization bound of the proposed GGF
method, showing that the gradient flow with smaller continuous discriminability and transport loss
contributes a lower target error. We conduct comprehensive experiments to evaluate the proposed
GGF on various domain adaptation scenarios, where GGF outperforms state-of-the-art methods.

2 PRELIMINARIES AND BACKGROUND

2.1 SETTING AND NOTATION

In the context of GDA, we consider the data of the labeled source domain, 7" unlabeled intermediate
domains, and the unlabeled target domain to be sampled from the distribution 1, { Ht}thl and pr41
over X, respectively. We denote the target distribution by 7. Consider the hypothesis class H, where
for any classifier h € H,h : X — ) maps inputs to predictions. We assume that there exists a
labeling function in each domain: f,,, = f; € H. Given a loss function £(-, -), the generalization error
is defined as €, (h) = €, (h, fu.) = Ezpl(R(x), fu(x)). The source classifier kg can be learned with
minimal error €, (ho) using supervised learning, and the objective of GDA is to evolve this classifier
ho to hr over the intermediate domains so as to minimize the target error €, (h7). The UDA problem
shares the objective and can be converted into a GDA problem by generating intermediate domains.

Self-training Self-training (ST) ( ; ; ; s
) (a.k.a. pseudo-labeling) is a domain adaptat10n method that does not rely on feature learning.
We use the Wasserstein-2 distance Wa(p, v) (see Appendix. A.1) to quantlfy the domain shift. Under
the assumption that the shift between adjacent domains is small, previous studies (
, ) have shown that ST can effectively update the classifier h;_ to adapt to the next
domain with samples S;, as expressed mathematically below:

= 3 ), b () (M)
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where h;_1(x) denotes pseudo labels of x by h;_1. ( ) proposed Gradual Self-
Training (GST) as the baseline algorithm for GDA, which updates the classifier using ST with
pseudo-labels on the intermediate domains in sequence. In this paper, we generate intermediate
domains gradually while preserving labels, enabling us to update the classifier in a distinct manner by
fine-tuning it directly on the transformed samples.

2.2  WASSERSTEIN GRADIENT FLOW (WGF)

A flow describes a time-dependent diffeomorphic map of particles in a system. Let ®;(x) : [0, 1] X
R™ — R™ denote a flow, so that a vector field of position and time u;(x) defines a flow via an
ordinary differential equation (ODE), i.e.,

d
%@t(x) =w (Pi(x)), Po(x)=x. )
Let P (R™) denote the space of probability measures on R™ with finite second moments. For a metric
space (P2(R™), Ws), ( ) first proposed WGF to solve the porous medium equation. The
vector field of WGF is defined as u; = —Vyy, & (), where a general energy £(f1;) consisting of the
following three terms associates with a distribution p; or a group of particles ( , ),
g = [ Hu@dx+ [Veodux) + 5 [[We-yauduty). &)

The three terms represent the internal, (external) potential, and interaction energy, respectively.
Simply put, internal energy (e.g. entropy H (u) = plog ) is related to distribution density, potential
energy is related to the potential field V' in Euclidean space, and interaction energy captures the
interactions between particles. Correspondingly, the vector field can be calculated as

W =V, & () = —VE () = =V(H (1)) = VV — (VW) * py, “4)
where * denotes the convolution operator. We can conceptualize the Kullback—Leibler (KL) diver-
gence, maximum mean discrepancy (MMD) ( s ), or other related metrics (

, , ) as the energy functional. Leveraging the
gradient ﬂow S descent property, we can establish a progressive flow that reduces the difference
between distributions over time. This approach proves valuable for dataset transformation and data
augmentation ( , ). In the next section, we will delve into
our proposed method in the context of domaln adaptation.

3 GRADUAL DOMAIN ADAPTATION VIA GRADIENT FLOW (GGF)

In this section, we present the novel GGF method, designed to construct intermediate domains along
the gradient flow of three energy functions and gradually adapt a source classifier to the target domain.
We commence by providing a comprehensive exposition of the three energies and their corresponding
sampling techniques. Subsequently, we unify these components into a cohesive framework. To allow
the versatility and extensive applicability of our approach in both data and latent spaces, we utilize
the symbol "x" to represent both samples and features in the subsequent sections.

3.1 DISTRIBUTION-BASED ENERGY FOR SHIFTING FEATURES FROM SOURCE TO TARGET

Considering the high computation cost of MMD ( , ) and KSD ( ,
), we opt KL (4 |m) as the distribution-based energy with the resulting vector field given as,

u; = =V, KL(ue|m) = =V, /log ( )dut —Vlog p; + Vlog . ®)

This vector field consisting of the above two log-density components drives the distribution z; towards
the target distribution 7 under the influence of both diffusion and drift ( , ). We
simulate the associated flow following the common practice of Langevin Monte Carlo (LMC) (

, ) as a time-discretized sampling method. The LMC guarantees convergence in the

Wasserstein distance, as described in Eq. (32) ( , ). Concretely, given a
set of samples o from the source distribution 1, the LMC iteratively updates the samples as
Xep1 = X¢ + 11 Vi, logm(xe) + /201, (6)
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where 7, £, and 7; represent the distribution of the target domain, a noise sampled from a standard
Gaussian distribution, and the step size, respectively. The log-density Vy log 7(x), also known as
the (Stein) score function s, (x), can be estimated via various methods (

, ), even when the probability density function is not avallable Here
we resort to Den01se Score Matching (DSM) ( s ) with a neural network s(x; ¢) to model
the score function. The core idea of DSM is to minimize the discrepancy between the score and the
model’s predicted score after injecting noise to clean x, whose objective follows,

1 - -
Jpsm = Eq, (x,%) §||3(X; ¢) — Vzlog ¢, (X[x)|°| - @)

Simple augmentation methods such as Gaussian noise € ~ N (0, ) can be employed to compute
the latter term (i.e., Vzlog ¢, (X|x) = —%5 i i i
ds (%, %) = q,(X|x)p(x), we can efficiently estimate the scores of perturbed data X in those low-
density areas of the target distribution. Once the score network has been trained, we can readily
construct intermediate domains following the sampling process in Eq. (6).

Challenges There still remain two main challenges with the sampled intermediate domains. Firstly,
the sampling disregards the label information of the samples, which likely introduces either condition
shift P,,, (y|x) # Px(y|x) or prior shift P, (y) # Pr(y) between the source and target domains and
thereby puts the decision boundary in danger of collapse. Secondly, The noise (a.k.a. diffusion) term
introduced by LMC may cause some samples to deviate drastically from the true data distribution,
given that the score network cannot accurately estimate the shifted points. To address both issues, we
propose the following classifier-based and sample-based energy.

3.2 CLASSIFIER-BASED ENERGY FOR PRESERVING LABEL INFORMATION

We use the cross-entropy loss and the entropy of the logits as the classifier-based potential energy:

Lee(p, h,y) = —/y(X) log h(x)du(x), Lu(p,h) = —/h(X) log h(x)du(x),  (8)

where y(x) denotes the corresponding label of input x, and h(x) denotes its prediction. For the
cross-entropy loss, lower energy ensures that the predictions of the shifted samples remain consistent
with the original labels. Meanwhile, lower entropy of logits yields higher prediction confidence,
avoiding excessively smooth predictions. By introducing A , we balance between the two potentials
to accommodate different distribution characteristics of datasets. The flow that implements this
classifier-based energy is exactly the gradient with respect to inputs via backpropagation, i.e.,

X1 = Xt — N2((1 = ANV, Ler(Xe, he, yi) + AV, Lu (X, he)). 9

Observation Our experiments show that the LMC monotonically reduces the Wasserstein distance
between the constructed intermediate domains to the target domain. Including the classifier-based
energy, however, results in an initial decrease in the distance to a minimum but followed by an
increase, indicating a balance between feature shift and label preserving. We resolve this issue in
Section 3.4 by setting a proper number of intermediate domains using this stationary point.

3.3 SAMPLE-BASED ENERGY FOR REDUCING NOISE AND RECTIFYING FLOW

To mitigate the noise of generated samples, we borrow the idea from stochastic interpolant (

, ; Liu, ; , ; ) ; , )
where flows connecting two distributions do not deviate too much. Those methods use interpolation
techniques to create interpolants x,, based on which they directly estimate the vector field of the
samples through a neural network vy different from WGF that derives a flow from a prior energy.
Specifically, we adopt the rectified flow approach ( , ; Liu, ) to generate interpolants
attime 7 € [0,1] as x, = (1 — 7)xo + 7X1, and subsequently estimates the vector field vy (x,) with
the following flow matching objective:

1
Trat = Bxg oy oo [ [ o ) = v o) P (10)
0

4
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where the conditional vector field v(x | x;) = X, = X1 — Xo. The estimated vector field vy (X )
defines a flow, which can be discretized using the Euler method as x¢11 = x: + 7309 (x¢). Even
without explicit prior energy like WGEF, this flow guarantees high energy for source samples and low
energy for target samples for each interpolation pair.

3.4 COMPLETE ALGORITHM

We summarize the three energies above into a unified Wasserstein gradient flow. To balance the
three terms, we use step sizes 71, 12, 13, and halt the iterated sampling process once the minimum
Wasserstein distance to the target domain is reached. We construct each intermediate domain with «
iterations, resulting in a total of /T iterations across 7" intermediate domains. Each iteration follows

Xe41 = X¢ +NSx (X3 0) + v/ 2mE — 12V, L(X¢, hay ye) + 1309 (X¢) - (11)

Distribution-based Classifier-based Sample-based

A comprehensive algorithm and complexity analysis are described in Appendix C.

4 THEORETICAL ANALYSIS

This section provides a theoretical analysis of the proposed GGF method The primary distinction
between our analy51s and prior theoretical works ( , ) is that we do
not use any given intermediate domains. Instead, we design Wassersteln gradient flows to generate
the intermediate domains, which incrementally shift the source distribution while preserving labels.

We set the labeling function f7 of the last intermediate and target domains to be the same, which is
reasonable considering the synthetic nature of the intermediate domain. Our analysis, with detailed
proof in Appendix B, has two main steps: first, we offer an upper-bound of the target error in Lemma 1,
using the risk on the last intermediate domain €,,,, (hr) and the final Wasserstein distance Wy (p7, 7).
Then, we derive the two terms and provide a generahzatlon bound in Theorem 1. To facilitate our
analysis, we adopt the assumptions consistently with prior works ( , ;

bl 5 ’ )'

Assumption 1 Each predictor function h € H and labeling function f € H is R-Lipschitz in {5
norm, i.e., Vx,z' € X : |h(z) — h(z')| < R||x — /||

Assumption 2 The loss function { is p-Lipschitz, i.e., Yy,y' € YV : [l(y,") =Ly, )| < plly — ¥,
and [((-y) =L y)| < plly =¥l

Assumption 3 The Rademacher complexity ( , ) of hypothesis class H
denoted by R,,(H) is bounded by %, Le, R,(H) < %

Assumption 4 The potential V' is m-strongly convex, and M-Lipschitz smooth, i.e., Vx,z' € X :
1. V(z) V(@) = (VV(z),2’ —z) — 2|z —a'||* (m-strongly convex)
2. V(z) < V(2) +(VV(2),2" — ) + &|lz — 2/||> (M-Lipschitz smooth)

Assumption 5 Consider the vector field uy is bounded, i.e,

With Assumptions 1 and 2 as well as the shared labeling function f7, we present Lemma 1. Despite
the seemingly similarity with Lemma 1 in ( , ), we note that this paper considers the
Wasserstein distance over A’

Lemma 1 For any classifier h € H, the generalization error on the target domain is bounded by the
error on the last generated intermediate domain and the Wasserstein distance:

ex (R) < €up (h) + 2pRW1 (pr, ) (12)

Our method gradually refines the source classifier hy from the source p to the last intermediate
domain pp_1, enabling iteration analysis. Therefore, we introduce Proposition 1, which states the
bounded variance of generalization error after updating a classifier on a domain.
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Proposition 1 (The Stability of GGF) Consider {(x;,y;){, } are i.i.d. samples from a domain with
distribution , and h,, is a classifier. GGF provides a map T, that transports x; to the next domain
v and updates the classifier to h, by empirical risk minimization (ERM) on the shifted samples as
hy, = argming,eqy Y1y L(TY (), ys). Denote the labeling functions of the two domains are f,, and
fu, then, for any 6 € (0,1), with probability at least 1 — 6, the following bound holds true:

e () = €0 ()] < p(Bam (2) = full)] + RAL) +O (’)“ W) (13)

where A, = 71L Zl 1 Hx, —TY(x; H means the average shift distance for x; on T ;.

In comparing the stability of the GST algorithm ( , ) with ours, we note that the
primary difference lies in the first term. Specifically, the GST algorithm bounds the error difference
by the Wasserstein distance W), (1, v) over the joint distribution between adjacent domains. For
our method, the error is bounded using two parts: 1) an expected difference in labeling functions
Eyp | fu(z) — fu(x)|, bounded by the Continuous Discriminability defined in B.2 and 2) a transport
cost A, bounded by the vector field limit.

Theorem 1 (Generalization Bound for GGF) Under Assumptions 1-5, if hr is the classifier on the
last intermediate domain updated by GGF, then for any § € (0, 1), with probability at least 1 — 0, the
generalization error of hp on target domain is upper bounded as:

3.3M
ex (hr) < Qm(ho)*‘Qm(h})4-Pf3(UQYYJ-%Q(l—-UWUQTVVQ(MOaW)+"/ﬁp

o (pB + /log(1/9) T)
vn

(14)

Based on the above results, we derive the generalization bound for GGF in Theorem 1. The first two
terms €, (ho) and €, (h}.) represent the source generalization errors of the source classifier and
the target labeling function. Besides, the €, (h7.) term can also be replaced with a lower term pK,
representing the continuous discriminability above. The naT'U term corresponds to the transport cost
of samples across intermediate domains through a7 iterations with a step size of 1; and abbreviated
as 7. Meanwhile, W5 (o, ) denotes the Wasserstein distance between the source and target over X'

Remark: Prior theoretical works ( , ; ; , ) link the
generalization bound to the Wasserstein distance over X X Y across glven intermediate domains. For
the GST algorithm, disregarding the O(1/ VnT ) term introduced in the online learning framework
for improved sample complexity, the bound proposed in ( , ) simplifies to

ex (h1) < €y (ho) + pVRZ T T Wi(ue 1,ut)+0<”3+ “\/ﬁg“/‘”T) (15)

which suggests that the optimal intermediate domains should be along the Wasserstein geodesic
path from the source to target domains, which is unfortunately non-trivial to pinpoint on unlabeled
domains. Instead, the novel upper bound we establish in Eq. (14) provides a promising and practical
error bound for analyzing GDA when intermediate domains are generated along the Wasserstein
gradient flow. Moreover, our analysis offers insights into minimizing the upper bound through the
optimization of the hyperparameters «, 7', and 7. By fixing two of them, the optimal value for the
remaining one is deterministic aligning with the lowest upper bound.

5 EXPERIMENTS

In Section 5.2, we evaluate the effectiveness of the proposed GGF on three GDA benchmarks and
pre-trained features of the UDA task, Office-Home. The experimental results demonstrate that GGF
constructs practical intermediate domains and gradually updates the initial classifier more accurately.
In Section 5.3, we conduct the ablation studies for the three kinds of energy, pseudo-labeling, multiple
iterations, and the number of intermediate domains.
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Figure 3: Accuracy (%) and W5 distance to target Figure 4: The adaptation example of the "pen"
domain over intermediate domains on Portraits.  category samples from Art to Clipart domain.

To aid understanding, we construct two toy Source Domain Adapted Source Domain Target Domain
datasets: a mixture of Gaussian blobs and two- o ; ;
moon (details in Appendix D.1). Figure 2 illus- % &

trates how GGF transports source samples to the )

target and updates the classifier. g %

5.1 EXPERIMENTAL SETTINGS

Datasets We mainly evaluate our method on
five datasets. Portraits is a gender (binary) clas-

sification dataset with 37,921 facing portraits _, . .
from 1905 to 2013. We follow the chronolog- ljllg%re 2 "(li“wohtoy elxamp les. The d?jshedhlll}e_s .H}
ical split from ( ), creating a the first and other columns correspond to the initia

source domain (first 2000 images), intermedi- and updated classifiers, respectively.
ate domains (14000 images not used here), and
a target domain (next 2000 images). Rotated
MNIST is a variant of the MNIST dataset ( , ) consisting of 4000 source images and
4000 target images rotated by 45° to 60° degrees, as per ( ) and ( ).
Office-Home ( ) is a well-known UDA dataset with 65 categories across
four domains: Artistic (Ar), Chpart (C1), Product (Pr), and Real-World (Rw). VisDA-2017 (

, ) is a large-scale dataset including a simulation-to-real UDA task with 152,397 synthetic
training images and 72,372 real-world test images across 12 categories.

Implementation Following the setting in Table 1: Accuracy (%) on GDA tasks

( , ), we use semi- ; '
supervised UMAP ( ) Portraits  MNIST 45°  MNIST 60°
as the feature extractor to reduce the dimen- SS}‘;‘%:; . ;g-gg gg‘gg g;g
sionality of input data while preserving the  Ggr (4) ( ' 0020) 8145 66.45 56.87
class discriminability. For the UDA datasets, GOAT ( ) 317 6145 2629
we use the extracted features as input for ex- CNF( ,2022)  84.57 62.55 42.18
periments. Further implementation details GGF (Ours) 86.16 67.72 54.21

are deferred to Appendix E.

5.2 MAIN RESULTS

Results in Table 1 reveal that all three methods can generate efficient intermediate domains for GDA,
and the proposed GGF outperforms the others, especially for large domain shifts. Notably, our
method is competitive with the baseline GST algorithm with about four real intermediate domains. In
Figure 3, we observe the accuracy evolution with the number of intermediate domains on Portraits for
each method. GOAT creates samples along the Wasserstein geodesic but has smaller improvements
in datasets with small shifts. CNF’s fluctuating accuracy indicates some ineffective domains, while
our gradient flow-based method consistently reduces domain differences and improves accuracy.

We evaluate GGF on Office-Home tasks and notice that it further improves the accuracy by up to
0.5%, as shown in Table 2. Additionally, we provide visual evidence of source sample adaptation in
Figure 4, demonstrating that GGF proficiently transfers source features to the target domain, achieving
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Table 2: Classification accuracy (%) on Office-Home dataset with ResNet-50. The best accuracy is
indicated in bold, and the second best is underlined.

Method Ar—Cl  Ar—Pr Ar—Rw Cl—Ar Cl=Pr Cl-Rw Pr—Ar Pr—Cl Pr—Rw Rw—Ar Rw—Cl Rw—Pr Avg.

DANN ( s ) 456 59.3 70.1 47.0 585 60.9 46.1 437 68.5 63.2 51.8 76.8 57.6
MSTN ( N ) 49.8 70.3 76.3 60.4 68.5 69.6 614 489 75.7 70.9 55.0 81.1 65.7
GVB-GD (¢ N ) 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4
RSDA ( s ) 532 717 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 854 70.9
LAMDA ( N ) 572 784 82.6 66.1 80.2 81.2 65.6 55.1 82.8 71.6 59.2 83.9 72.0
SENTRY ( s ) 61.8 774 80.1 66.3 71.6 74.7 66.8 63.0 80.9 74.0 66.3 84.1 72.2
FixBi ( s ) 58.1 713 80.4 67.7 79.5 781 65.8 579 81.7 76.4 62.9 86.7 72.7
CST ( s ) 59.0 79.6 834 68.4 77.1 76.7 68.9 56.4 83.0 753 622 85.1 73.0
CoVi ( s ) 58.5 78.1 80.0 68.1 80.0 71.0 66.4 60.2 82.1 76.6 63.6 86.5 73.1
RSDA + GGF 60.1 779 822 68.4 783 772 67.8 60.3 82.5 75.8 61.0 85.2 73.1

Covi + GGF 592 79.0 80.4 69.3 80.1 78.1 66.8 61.7 83.1 76.2 62.8 86.5 73.6

superior feature alignment. In Appendix D, we provide GGF’s performance on large-scale datasets
(D.2), along with a comparative analysis of different feature extractors (D.3) and visualizations (D.5).

5.3 ABLATION STUDY

Different Energy Functions
We conduct an ablation study
on the three types Of energy Distribution-based Classifier-based Sample-based }
in GGF, as outlined in Table 3.

Table 3: Ablation study on different energies.

Accuracy
Portraits MNIST 45° MNIST 60°

v 82.69 (£0.38)  66.19 (£0.99) 46.95 (+0.77)

: : : f v v 84.02 (+1.42) 66.88 (+0.56) 53.15 (+0.73)

Our ﬁndlngs hlghhght the m v v 84.60 (£0.21)  67.45 (x0.60) 50.82 (+0.33)
portance of both the classifier- v v v 86.16 (£0.19) 67.72 (2034) 5421 (0.86)

based and sample-based ener-

gies in achieving optimal performance with GGF. Notably, the classifier-based energy, functioning as
a regularization term, significantly enhances the performance in the MNIST 60° task by preserving
category information. This is crucial given the substantial domain shift between the source and target
domains, as well as the unsatisfactory predictions of the initial classifier in the target domain.

Sensitivity Analysis on Step Sizes 7 We

perform a sensitivity analysis by rescaling Taple 4: Sensitivity analysis on step sizes 7. The

each step size while keeping the other tWo  default setting of rescale ratio is 100%.
fixed on Portraits datasets. The results, 5% S0 75% 100% 150% 200% 400%

shown n Table 4, demonstrate the numeri- m =003 | 7900 79.15 8645 86.35 84.85 8475 84.10
cal proximity and robustness of our hyperpa-  ;, — 008 | 8475 8580 86.15 8635 7445 7890 68.00
rameters. Notably’ we observe a signiﬁcant n3 =0.01 | 8585 86.05 86.50 86.35 86.40 86.15 85.80
decrease in performance only when reduc-

ing 71 or increasing 72, indicating that the classifier-based energy dominates the distribution-based
energy. This suggests that the former induces larger velocity components, pushing samples away
from the decision boundary. Fortunately, our hyperparameter optimization method avoids converging
to solutions where the classifier-based energy dominates, as these solutions do not lead to a reduction
in the Wasserstein distance from samples to the target domain.

Comparison of Self-Training (ST) and Fine-Tuning (FT) Figure 5 compares the two updating
methods of GGF: ST with pseudo-labels and FT with preserving labels. In the Portraits task with
smaller , ST with a smaller confidence threshold outperforms FT, but as « increases, FT is stable
and better. In the MNIST 60° task, ST performs poorly with small a due to cumulative instability.
These results demonstrate that ST is less effective with larger domain gaps and more pseudo-labeling
processes, highlighting the advantages of our preserving labels approach. Additionally, a sufficiently
large o represents the one-step adaptation. As shown in the figures, gradually updating the classifier
as in the GDA setting works better than updating the classifier only in the last intermediate domain.

6 RELATED WORK

Unsupervised Domain Adaptation (UDA) UDA aims to facilitate knowledge transfer from a
source domain to a target one with only unlabeled instances. Early UDA methods, divided into the two
major categories of discrepancy-based and adversarial-based, center around learning domain-invariant
representations. The discrepancy being minimized in discrepancy-based ways includes the Maximum
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Figure 5: Accuracy comparison of two updating methods with varying hyperparameter a on Portraits
and MNIST 60° tasks, using different confidence thresholds c for self-training. With fixed sampling
iterations o7, the number of intermediate domains 7" decreases as « increases.

Mean Discrepancy (MMD) ( ; , ), second-order statistics (
R ), and optimal transport dlstances ( s ; s
s ). Instead, adversarial-based methods pursue domain- 1nvar1ant features
that are indistinguishable by a domain discriminator ( , ; , ;
; , ). Recent research ( s ;
, ) suggests a negative impact on discriminability when dealing with two wrldly dlssrmrlar
domains, which motivates the transport- and synthetic sample-based methods.

o Transport-based methods preserve domain-specific features by training a feature extractor without
transfer loss and then transferring these features from the target to the source domain using optimal
transport or sampling techniques. For instance, ( ) and
( ) trained an optimal transport map between conditional distributions in feature space and
performs reweighting for label matching and robust pre-training. Recently, ( ) and

( ) leveraged diffusion and energy-based models to shift target data for test-time
input adaptation and preserve the image structure and latent variables related to class information.

o Synthetic sample-based methods create intermediate samples at the input or feature levels by
employing techniques such as geodesic flow kernels ( , ), adaptors ( ,

), generative models ( s ; s : s ; s
) or data augmentatron ( s ; s ; ; s
; ; , ). The generated samples are
utilized for 1rnpr0ved feature learnrng, consrstency regularization, or robust discriminator training.

Gradual Domain Adaptation (GDA) Unlike UDA methods prioritizing feature learning, GDA
updates the model using unlabeled sequential intermediate domains, allowing more fine-grained
adaptation. ( ) first introduced the setting with a straightforward gradual self-training
(GST) algorithm. Meanwhile, ( ) proposed an adversarial-based method for a similar
settrng with continuous indexed domains. Based on the assumption of gradually shifting distributions,
prior works ( ; , ) provide and improve the upper
generalization bound. Researchers have explored various algorithms for challenging scenarios to
obtain the ideal intermediate domains. For instance, when the sequence of extra unlabeled data is
unavailable, ( ) proposed an Intermediate Domain Labeler (IDOL) module to index
them. In cases where intermediate domains are insufficient, prior studies have shown that generating
additional intermediate domains through continuous normalizing flow ( , ) or
optimal transport and linear interpolation ( , ; , ) can reduce the distance
between adjacent domains and improve the performance of GST.

7 CONCLUSION

We introduce gradual domain adaptation via gradient flow (GGF), a novel approach to create con-
tinuous intermediate domains and incrementally finetune the classifier. Theoretically, We offer
an upper-bound analysis of target error. Empirically, we demonstrate that GGF outperforms prior
synthetic-based GDA methods and enhances performance compared to state-of-the-art UDA baselines.
Our results underscore GGF’s ability to generalize effectively across various pre-trained features.
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A  MATHEMATICAL BACKGROUND

A.1 WASSERSTEIN METRIC

P2 (R™) denote the space of probability measures on R™ with finite second moments, i.e. Po (R™) =
{peP R, [|lz|*du(z) < co}. Given p,v € P2(R"), the Wasserstein-p distance between
them is defined as

W) =t [ e ylrasen) (16)

€ (w) Jrn x

where I'(u, v) is the set of all possible couplings between u and v. For all joint distribution 7= €
I(u,v), we have p(x) =[5, m(x,y)dy and v(y) = [, (x,y)dx. The integral on the right-hand
side is also con51dered as the cost of the optimal transport (OT) problem (Kantorovitch’s formulation),
and the 7* is the optimal transport plan. Besides, the monotonicity of the Wasserstein-p distance can
be easily shown using Jensen’s inequality, which implies that for 1 < p < g, W, (i, v) < Wy (u,v).

In the measurable space (P2(R™), W) (a.k.a the Wasserstein space), the inner product is defined as:
1:0) = [ (00.)) (), an

A.2 DESCENT PROPERTY OF WASSERSTEIN GRADIENT FLOW

For a measurable space (P2(R™), W3), the vector field of a Wasserstein gradient flow is defined as
u; = —Vy,E(ue). The descent property is a fundamental property of Wasserstein gradient flow,
demonstrating that the rate of change of an energy functional £(u:) over time is always non-positive
along the gradient flow. This property can be mathematically derived using the following equation:

d€ d
flft) <vw25< ), d’ff> = (Vi€ (), ~ V€ (), = — [ Vwa€ ()2, 0. (18)

The first equality is derived using the Chain Rule, while the second equality is obtained by applying
the definition of Wasserstein gradient flow.

A.3 DISCRETIZATION SCHEMES OF WASSERSTEIN GRADIENT FLOW

There are two main discretization methods for Wasserstein Gradient Flow. The forward scheme
utilizes gradient descent in the Wasserstein space to determine the steepest movement direction.
Given an energy functional £(y;) and a step size -, the forward scheme updates the distribution as
follows:

prer1 = (I =YV, € (1)) 4 - (19)
The backward scheme, also known as the Jordan-Kinderlehrer-Otto (JKO) scheme
( ), is a well-known discretization method for Wasserstein gradient flow. It involves solving an

optimization problem to obtain the updated distribution 11,1, and is represented as follows:

. 1
o1 = argming, e p, ey E (1) + ZW% (e, fe) - (20)

B PROOFS

B.1 PROOF OF LEMMA 1 (ERROR DIFFERENCE OVER LAST INTERMEDIATE AND TARGET
DOMAIN)

Lemma 1 For any classifier h € H, the generalization error on the target domain is bounded by the
error on the last generated intermediate domain and the Wasserstein distance:

ex (h) < €up () + 2pRWy (pr, ) (12)
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Note that the generalization error is defined as €, (k) = €,(h, f.) = Ez~pl(h(2), fu(x)), where h
represents the predictor and f,, represents the labeling function defined on the data distribution .

Proof. 'We start by using the definition of the generalization error to get

l€ur (h) = €x(h)] = [Eanpur [(((2), f1(2))] = Bornr [£ (b (2'), fr ()]

’/z ). fola duT—/e ). fr(a)) dr

]/e 2)) — £ (h (&), fr(a)) dy

2

where 7 is any coupling (joint distribution) of 7 and v. Then we have
() = ex ()] < [ 16hGo). f(a)) = £ ), fr(a)|
< [160@). frla)) = (b (o) £ @)

+ 1l (h ("), fr(z)) —L(h ("), fr(z))| dy (22)
s/p(llh(x>—h(x’)||+Hfﬂx)—fﬂsc’)\\)dv

< /2pRHx — | d.

In the above inequalities, we have used the triangle inequality and the Lipschitz continuity property of
the loss function ¢ and the predictor & (label function f) to derive the desired result. After considering
the arbitrary coupling 7y, we can use the definition of the Wasserstein distance to get

er () < e (1) + it [ 2pR 2 — o'
Y

= € (h) + 20RWA (7, )
§ €ur (h) + 2[)RW2(/J,T, 7T).

(23)

B.2 DEFINITION OF CONTINUOUS DISCRIMINABILITY

Definition 1 (Continuous Discriminability) Let fy = h§ and fr = h} be the Bayes optimal
predictors on source and target domain. For R-Lipschitz labelers {f;}1_, on the intermediate
domains, we can define f; to satisfy the following minimization objective and denote the minimum as
K. In particular, we let K be the value of K when all labeling functions within the intermediate
domains are set to h7,, and there exists K < Ky:

T-1

K =00 3" Eom |fo(a) = fiin 0)] < Eump 15 (2) = B ()] = Ko 24)
t=0

In this study, only fy and fr are determined based on the true distributions of the source and target
domains. For theoretical analysis, we need to set appropriate labeling functions f; for intermediate
domains. As stated in Definition 1, we minimize the bound above to specify the labeling function
and obtain the minimum value K. It is worth noting that K depends on the distribution of the
generated intermediate domains. The discriminability of the feature representations can be measured
by the term A = €, (h*) + €, (h*), as described in the classic UDA theory ( , ).
When only one intermediate domain exists, K equals A\. For more intermediate domains, we can
define K to represent the Continuous Discriminability of the model across domains. In an ideal
scenario, minimizing the value K to zero is possible. Figure 1(b) provides such an example, where
Eyp, [ft(x) — fig1(x)| = O for any two adjacent domains, indicating that while two adjacent
labeling functions may differ, they perform equally well on the distribution of the former domain.
However, since K is non-deterministic, we utilize the deterministic upper bound K for further
analysis, which corresponds to the source generalization error of the target labeling function €,,, (7).
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B.3 PROOF OF PROPOSITION 1 (THE STABILITY OF GGF)

Proposition 1 (The Stability of GGF) Consider {(x;,y;)?_, } are i.i.d. samples from a domain with
distribution y, and h,, is a classifier. GGF provides a map T,/ that transports x; to the next domain
v and updates the classifier to h, by empirical risk minimization (ERM) on the shifted samples as
hy, = argminy,eqy Y iy L(T, (), ys). Denote the labeling functions of the two domains are f,, and
fu, then, for any 6 € (0,1), with probability at least 1 — 6, the following bound holds true:

e () = €0 ()] < (B () — o) + RO, + O (’J“ w> (13)

where A, = 1 ZZ 1 sz Y(x; H means the average shift distance for x; on T .

Proof.  We first introduce €, (h,, f,)) and use the triangle inequality to split the left-hand side (LHS)
into two terms as

lew (hy) — €u (ho)| = leu (hys fu) — €0 (Bu, £1)]

25
<1 (s ) = € (s F) + e (s ) = € (S . )
For the first term, we can express it as the difference in the labeling function:
|€u (h;ufu) —€p (huva)| = |Ex~;t€(hu(x) ( )) Eormp ( ;t( ),fz/( ))|
< Epnp |4 (hp(2), fu(z)) — €(hy (2), fu(2))] (26)

< PBor | fu() = fu ()]

For the second term, we introduce the empirical error &, (h, f,) = 2 37" | £(h(x;), f.(z;)), where
x; represents the ¢-th sample drawn from the distribution y. Then, using the triangle inequality, we
can then obtain the following:

|€u (hm fu) — € (hua fz/)l < |€H (h;u fV) - éu (huv fu)l + |€M (h;u fV) - éV (hw fV)|

+ |€l/ (hua fz/) — €y (hz/; fy)| . 27

To bound the difference between the generalization and empirical errors, we utilize the Rademacher

complexity ( , ). This bound is also described in Lemma A.1 of the previous
work by ( ). Then, we can get
R . log(1/6
e s o) = 0 (s )] < 165 (s ) = & (s )] + O (éwom + ;“)

(28)

<y (hpus fo) = & (hu, )| + O <pB—|—\/\/IW) ,

‘We can obtain the second inequality using Talagrand’s Contraction Lemma (

), which bounds the Rademacher complex1ty of the composition of a hypothesis set  and a
Lipschitz function £ by pR,, (#), where p is the Lipschitz constant of £ and ¢, () is the Rademacher
complexity of the hypothesis set 7{ concerning the given dataset.

We rely on the fine-tuning classifier updating method to obtain the first term of the inequality in
Eq. (28). This approach involves updating the classifier using the transported samples with preserving
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labels. Specifically, we have h, (z;) = h,, o T,/ (x;). Then, we can get

wz fu IL _726 fu( (L)))

1
ns

|éu (hm fl/) - hzufu ‘ =

3 HM:

(Triangle inequality) <

Z (hu (i), fu(@i)) = £ (R o T (w0), fu o T ()|

3\'—‘

3

Sy () ful@) = € (b o T (@), fol@)|

=1

:\*—‘

(Triangle inequality) <

1 n
ﬁz }L,,OT fl/( 1)) (huonu(wi)vfuonv(xi))‘
i=1 (29)
(Using h, () = hy o Ty (2)) = Z ¢ (n s Fol@)) = € (hy 0 T2 (@), o T(2))|
(Using p-Lipschitz) < Z p|folai) = fo o T (2)]
(Using R-Lipschitz) < ZpR ||:UZ T; ||

(Definition of A,,) = pRAM
(Limitation of u;) < pRnalU

By plugging Eqgs. (26)-(29) into Eq. (25), we reach the conclusion.

B.4 PROOF OF THEOREM 1

Theorem 1 (Generalization Bound for GGF) Under Assumptions 1-5, if hr is the classifier on the
last intermediate domain updated by GGEF, then for any § € (0, 1), with probability at least 1 — 0, the
generalization error of hp on target domain is upper bounded as:

3.3M /np

ex (hr) < € (ho) + €40 (h7) + pR (naTU +2(1 = m)*T Wy (o, ) + -

‘o (pB + /log(1/9) T)
\/ﬁ

(14)

Proof. InLemma 1, we have the inequality €, (hr) < €, (hr) + 2pRW5 (pu, ). To prove this
inequality further, we will bound the first term €,,,. (h7) using the accumulation of Proposition 1, and
bound the second term W5 (ur, ) based on the nature of the gradient flow.

We can apply Proposition 1 recursively to get

t

|€u0 (ho) — €ur (hT)l < {El‘t—l (htfl) — €py (ht)|

t=1

Il
}ﬂ

Il
~

: o8+ \Iog(1/5]

<D Eanpy oy [ (Re-1(2), fim1(2)) — £ (he—1 (2), fe(2))| + pRNQTU + O < NG

t=1

(30)
Only the label functions fy and fr are determined based on the true distributions of the source and
target domains. To select the optimal label functions f; for the intermediate domains, we minimize
the first term of the right-hand side of Eq. (30), similar to the definition of K and K. Therefore, for
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a simple strategy for assigning all labeling functions f; on the intermediate domains be f7, we have'

t=T
ZEW_l 1€ (he—1(2), feo1(2)) = £ (he—y (@), fe())]

<E1~uo € (ho(x), fo()) —é(ho( ), fr(x))] 31)
= LNMO ( (Z‘ 7fT Z‘)) LLNM(J ( ( ) fo(l‘))
<E QJNMD (ho(m

)
) £o(2)) + Eapol (fo(x), f1(2)) = Egnpuo £ (ho(x), fo(x))
$~Mo (fo(l'), ('75)) = €uo (fT = €uo (hT)

To bound W5, (7, ), we use the convergence properties of the LMC in the Wasserstein metric, which
have been investigated extenswely ( s ; s ;
; , ). Suppose the
potentlal is m-strongly convex and M Lipschitz smooth Then by the Theorem 1 from
( ), we have

Wy (pr,7) < (1 —mn)*T Wy (uo, 7) + 1.65(M/m)/np, (32)

where n < ﬁ is the constant step-size, and p is the dimension of samples. This theorem shows
the LMC implies exponential convergence in the Wasserstein distance. Moreover, replacing the LMC
with the JKO scheme ( , ) would further eliminate the second term ( ,

).
Finally, by combining Eq. (30)-(32), we have
ex(hr) < €y (hr) + 20RWa (pr, )

B+ +/log(1/6
< ey (ho) + €4 (W) + pRaTU + O (’WT) + 2pRWy (i, )

3.3M
< €y (ho) + € (h7) + PR (naTU +2(1 — )T W (o, ™) + mﬁp>

o <pB + /log(1/5) T)
\/ﬁ )

(33)

where we conclude.

C COMPLETE ALGORITHM AND COMPLEXITY ANALYSIS

The process to construct intermediate domains is outlined in Algorithm 1. Assuming that [V represents
the size of the source domain dataset, the space and time complexities are O(N) and O(aN),
respectively. In practice, we divide the dataset into multiple batches, keeping consistent complexities.

Algorithm 1: Construct Next Intermediate Domain (X¢, ¥, Sx,¢, hit, Ve, @, 1)

Input: Samples (x;, y;), Classifier h;, Score network s, (x;; ¢), Rectified flow vg(x),
Hyperparameters o, 1, A

Output: Adapted samples (X¢11, Yi+1)

# Simplify the classifier-based potential

E(Xt, htay) = (1 - )\)£CE(Xt, ht7y) + )\ACH(Xt, ht)

# Update samples using three energy functions and construct each domain after « iterations

repeat o times

Xt < Xt — MSx(Xe;0) + /2mE — 2V, L(X¢, b, ye) + n3ve (X¢)

Distribution—based Classifier—based Sample—based

end
(Xe41, Y1) < (Xe, Ut)

'We can use pK to bound this, where K is denoted as inf 3" ' Bz, |fe(z) — fe41(2)|. K is able to
represent the Continuous Discriminability of the intermediate domains. However, since K is non-deterministic,
we analyze the deterministic upper bound €, (h7).
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Algorithm 2: Complete Algorithm with Fixed Hyperparameters

Input: Source samples (Xgpc, Ysrc), target samples Xtqt, €Xxpected number of intermediate
domains 7', fixed hyperparameters 7 and «, learning rate k, evaluation frequency K

Qutput: Target classifier hp
Train initial classifier hy according to cross entropy loss L g on source samples;
Train score network s 4 for distribution-based energy according to Jpsas;
Train rectified flow vy for sample-based energy according to Jpas;
t <0, X0 < Xgre, dis < Wa(Xo, Xegt);
# OR operator is a short-circuit operator
while ¢ mod K # 0 OR W(x;,X1q1) < dis do

if t mod K = 0 then

| dis < Wa(x¢, Xegr)s

end

(Xt4+1,Ye+1) < Construct Next Intermediate Domain (X, ¥¢, Sx,¢, e, Vg, &, 1);

hiy1 < argmingeq £(Xe11, Yer1);

t+—t+1;
end

Algorithm 3: Complete Algorithm with Bilevel Optimization

Input: Source samples (X, Ysrc)> target samples X¢g¢, €xpected number of intermediate
domains 7, initialized hyperparameters 7 and «, learning rate k
Qutput: Target classifier hp
Train initial classifier hg, score network s ¢ and rectified flow vg.
for epoch <+ 0 to MaxEpoch do
t 0, Xo < Xgpe, dis < Wa(Xo, Xegt)s
# Fix n, update o
while ¢t mod K # 0 OR Wy (x¢,X¢g¢) < dis do
if t mod K = 0 then
‘ dis WQ (Xt7 tht);
end
(X¢41,Ye+1) < Construct Next Intermediate Domain (X, ¥¢, Sx,¢, e, Vg, &, 1);
his1 <= argming, cq 0(Xe 41, Yes1):
t+—t+1;
end
Update v as v < [ % ];
# Fix «a, update n
for <+ Oto T do
(Xt4+1, Yr+1) < Construct Next Intermediate Domain (X, y¢, Sx,¢, I, Vg, &, 1);
hiy1 < argmingcq, 0(Xe11, Yev1);
end
Update 17 as ) <— kV,, Wa (X7, Xigt);

end

Algorithm 2 provides a comprehensive overview of our complete algorithm. This approach dy-
namically determines the optimal number of iterations based on the Wasserstein distance within a
mini-batch. To compute this distance, we employ the Sinkhorn solver from the toolbox (

, ), which has demonstrated nearly O(n?) space and time complexities, where n signifies
the batch size. To further alleviate the computational burden associated with distance calculation, we
introduce an evaluation frequency parameter K. Consequently, the space and time complexities be-
come O(N +n?) and O(aTN + Tn?/K), respectively. If we fix the values for the hyper-parameter
T, the space and time complexities reduce to O(N) and O(aT'N ), respectively.

Due to the monotonicity property, our analysis in Eq. (14) suggests that a hyper-parameter with the
lowest upper bound remains deterministic when others are held constant. We introduce a bi-level
optimization approach, detailed in Algorithm 3, to find appropriate hyper-parameter settings. In
our experiments, we apply this optimization exclusively to the GDA dataset. We do not perform
hyperparameter optimization for the Office-Home and VisDA-2017 datasets due to gradient vanishing
issues caused by numerous iterations. Instead, we use grid search to determine the hyper-parameters.
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D ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

D.1 Toy DATASET

Figure 6 illustrates the two toy datasets. The first dataset is a mixture of three Gaussian blobs (3
classes), while the second dataset is the two-moon dataset (2 classes) implemented using scikit-
learn Pedregosa et al. (2011). Both datasets consist of 1000 samples per class in the source domain.
To construct the target domain, we sample an additional 1000 samples from the same distribution and
then shift the samples. We change the mean and standard variance for the Gaussian blob dataset to
create a shifted distribution. We rotated samples around the origin by 45 degrees for the two-moon
dataset.

Source Target Domain Adaptation

Source Domain

(a) A Mixture of Gaussian Blobs

Source Domain Adaptation

15 Source Domain

-lo -05 00 05 10 15 20

(b) Two Moons

Figure 6: The left figures show the source domain data and initial classifier, the middle ones show the
target domain data and estimated probability density by denoise score matching, and the right ones
show an intuitive comparison between the source and target domains.

D.2 EVALUATION ON THE LARGE-SCALE DATASET ]
Table 5: Accuracy (%) on VisDA-

To further validate the effectiveness of our algorithm, we con- 2017 (ResNet-50).

ducted an additional experiment on this dataset. We utilized the Method Synthetic — Real
state-of-the-art RSDA method for feature extraction and applied  CDAN (Long et al, 2018) 70.0
GGF in the feature space. As shown in Tables 5 and 6, the results NfaDs]])) X(‘y;ﬁ:‘t”«” . (319"';’) ;‘Skg
demonstrate notable improvements, with an average accuracy in- — :

RSDA + GGF 77.6

crease of 2.3% across classes and a 1.8% enhancement in overall
accuracy.

Table 6: The detailed accuracy (%) on VisDA campared with RSDA.

Method aero bicycle bus car horse knife motor person plant skate train truck Avg.  Acc.

RSDA 924 873 889 740 942 0.06 89.1 448 934 931 845 424 7372 575
RSDA +GGF 924 852 87.1 733 941 007 89.7 700 940 90.6 845 439 7598 77.56
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D.3 COMPARATIVE EVALUATION OF VARIOUS FEATURE EXTRACTORS

Table 7: Accuracy (%) on Office-Home dataset with ResNet-50 (Red for increased accuracy).

Method Ar—Cl  Ar—Pr Ar—Rw Cl—-Ar Cl-Pr Cl-Rw Pr—Ar Pr—Cl Pr—Rw Rw—Ar Rw—Cl Rw—Pr Avg.
ResNet-50 (fine-tuned)  46.2 715 74.0 584 68.1 69.7 55.8 423 729 66.9 473 76.0 62.4
ResNet-50 + GGF 48.5 74.0 76.7 61.2 70.0 71.4 60.3 442 75.4 69.1 49.5 77.9 64.9
A for ResNet-50 +2.3 +2.5 +2.7 +2.8 +1.9 +1.7 +4.5 +1.9 +2.5 +2.2 +2.2 +1.9 +2.5
MSTN 575 70.9 77.0 60.4 71.0 69.2 61.4 56.3 79.6 70.9 54.4 80.4 67.4
MSTN + GGF 58.1 759 79.7 66.5 75.7 75.1 65.6 58.6 81.5 743 60.0 842 713
A for MSTN +0.6 +5.0 +2.7 +6.1 +4.7 +5.9 +4.2 +2.3 +1.9 +3.4 +5.6 +4.2 +3.9
RSDA 532 71.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9
RSDA + GGF 60.1 719 822 68.4 783 772 67.8 60.3 825 75.8 61.0 85.2 73.1
A for RSDA +6.9 +0.2 +0.9 +2.0 +4.3 +0.7 -0.1 +6.7 +0.5 0 +3.2 -0.2 +2.2
CoVi 58.5 78.1 80.0 68.1 80.0 77.0 66.4 60.2 82.1 76.6 63.6 86.5 73.1

CoVi + GGF 59.2 79.0 80.4 69.3 80.1 78.1 66.8 61.7 83.1 76.2 62.8 86.5 73.6
A for CoVi +0.7 +0.9 +0.4 +1.2 -0.1 +0.9 +0.4 +1.4 +1.0 -0.4 -0.9 0 +0.5

In Table 7, we reiterate the performance of our method on the Office-Home dataset with three
different feature extractors. Our primary objective and contribution revolve around the generalization
of pre-trained features by any feature extractor, which is readily accessible nowadays, to target
domains. Through the comprehensive empirical evaluation, we provide compelling evidence to
demonstrate the consistent superiority of GGF even when considering pre-trained features generated
by CoVi, which has already shown the SOTA performance in reducing the distribution shift.

D.4 COMPUTATIONAL OVERHEAD ANALYSIS

In this section, we detail the computational overhead

associated with our approach. The training process of  Taple 8: Running time (s) on GDA tasks.
GGF can be broadly divided into two stages. The first
stage involves training the score network and rectified ~ Datasets GOAT CNF  GGF (Ours)
flow, with the time required contingent upon the num- Portraits 2.84 5.5 5.76
ber of training epochs. The second stage entails the =~ MNIST 45° 7.95  14.23 29.53
generation of intermediate domains and the subsequent
gradual fine-tuning of the classifier. GGF discretizes
the Wasserstein gradient flow using a forward scheme, which leads to a time complexity that is
linearly dependent on the number of intermediate domains and the scale of the dataset. During
this stage, our time consumption for generating intermediate domains and updating the classifier is
commensurate with those of the baseline methods, GOAT and CNF. Table 8 presents the running
time for each method on the two GDA datasets.

D.5 VISUALIZATION

To demonstrate the process of generating intermediate domains for the proposed GGF method, we
visualize the evolution of source samples using t-SNE on the Portraits, and MNIST 45° in Figures 7-8,
respectively. We equally generated a small number of intermediate domains and selected them for
visualization. These figures show that the source samples evolve over the intermediate domains,
indicating that the gradual domain adaptation algorithm effectively adapt the source distribution to
the target distribution.

In the UDA task on Office-Home, which involves 65 categories, we conduct a detailed analysis of the
t-SNE visualizations for specific classes. As shown in Figures 9 and 10, we visualize the categories
where the performance can be improved (success cases) and degraded (failure cases).

In the success cases, we observe that same-class samples in the source domain tend to cluster together
with slight variance, while their corresponding target domains are more widely distributed and do not
group as a single cluster. Additionally, the intermediate domains generated by GGF can better cover
the target distribution. In the failure cases, we observe that the performance degradation is mainly
due to the possible diffusion of source domain samples to other similar categories. For instance, in
Figure 10(c), the source samples in the “Bottle” category shift in the opposite direction of the target
domain distribution, resulting in a 6% decrease in accuracy for this category. However, all those
samples are classified into a similar category “Soda”.
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Figure 7: The t-SNE of features from the source, intermediate, and target domains on Portraits.
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Figure 8: The t-SNE of features from the source, intermediate, and target domains on MNIST 45°.

23



Published as a conference paper at ICLR 2024

Category: Clipboards, Accuracy: 74% — 83%

Category: Desk_Lamp, Accuracy: 22% — 83% Category: Table, Accuracy: 42% — 59%

+  Source Domain: Art
«  Target Domain: Real_World
e Adapted Source Domain

Source Domain: Clipart
Target Domain: Product
«  Adapted Source Domain

«  Source Domain: Art
Target Domain: Product
«  Adapted Source Domain

() (b) (©)

Category: Couch, Accuracy: 67% — 76% Category: Flipflops, Accuracy: 70% — 78%

Source Domain: Product Lo

+  Source Domain: Clipart o .
- Target Domain: Real_World - Target Domain: Art LRI
*  Adapted Source Domain *  Adapted Source Domain - * %
5 . e, %
o )
© o B0 0

Source Domain: Real_World
~  Target Domain: Clipart
e Adapted Source Domain

(d) (e ®
Figure 9: Visualization of success cases, with source samples (in yellow), the last shifted intermediate

samples (in red), and target samples (in blue). Each subfigure corresponds to a category in a single
task and displays the corresponding accuracy change for that category.

Category: Bottle, Accuracy: 82% — 76%

Category: TV, Accuracy: 63% — 50%

Category: Monitor, Accuracy: 44% — 37%

Source Domain: Clipart
Target Domain: Real_World
Adapted Source Domain

= Source Domain: Art
«  Target Domain: Clipart
«  Adapted Source Domain

.
e et :
B @ .
Source Domain: Clipart "‘!"'gqn‘}' ® se® MO
.
Target Domain: Product it ©

« Adapted Source Domain

(a) (b) (©)

Figure 10: Visualization of failure cases, and the settings are the same as Figure 9.
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To further validate the effectiveness of our generated intermediate
domains, we present visual representations depicting the relationship
between the transported examples and the pre-existing examples in
the intermediate domains of two GDA datasets. These visualizations
on Portraits and rotated MNIST are depicted in Figure 11 and Fig-
ure 12, respectively. In these figures, ellipses represent the variance
of samples, while transparency indicates the domain index (with
the source domain being the most transparent and the target domain
being the least transparent). Each intermediate domain is represented
solely by its mean and variance within these visualizations.

For Portraits, due to the imperfect alignment of facial features over
the years, previous work (Chen & Chao, 2021) has shown limited
overall improvement when using existing intermediate domains. As
shown, while our transported examples lie along a straight trajectory

o 20

‘.
'® Py

—40

",

-20 40

Figure 11: T-SNE visualiza-
tion of generated (grey) and
existing intermediate domains
(colorful) on Portraits.

in latent space from source to target, they do not precisely match the real intermediate examples. By
generating smoother transport, our method achieves more stable accuracy improvements and even
surpasses the accuracy of using the existing examples. For rotated MNIST, many categories perfectly
align our transported examples and the existing examples in the t-SNE visualizations. This indicates
our model successfully learned the "rotation" features. However, for some categories, the alignment is
still poorer, leading to lower performance than gradual self-training on the real intermediate samples.
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(a) Class 1 (b) Class 4 (c) Class 5 (d) Class 8
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Figure 12: T-SNE visualization of generated (grey) and existing domains (colorful) on rotated MNIST.
First row: categories well-aligned with real domains. Second row: categories with fewer alignments.

In summary, our generated examples are comparable or even superior to the existing intermediate
samples, effectively bridging the gap between the source and target domains.
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Table 9: Hyperparameters of GGF on different datasets.

Dataset Confidence Threshold A o T m 72 n3
Portraits 0.05 0 10 20 0.03 0.08 0.01
MNIST 45° 0.2 1 100 60 0.01 0.005 0.002
MNIST 60° n/a 08 10 500 0.1 0.02  0.005

Ar—Cl n/a 1 10 10 0.1 0.05  0.001
Ar—Pr n/a 1 10 20 0.03 0.01 0.001
Ar—Rw n/a 1 10 20 0.05 0.02 0.0001
Cl—Ar n/a 1 10 20 0.01 0.01 0.001
Cl—Pr n/a 1 10 20 0.01 0.001 0.001
Cl—Rw n/a 1 10 20 0.001 0.001 0.001
Pr—Ar n/a 1 10 20 0.03 0.06 0.001
Pr—Cl n/a 1 100 5 0.2 0.05  0.001
Pr—Rw n/a 1 100 20 0.005 0.005 0.0001
Rw—Ar n/a 1 10 50 0.2 0.2 0.001
Rw—Cl n/a 1 10 10 0.1 0.1 0.001
Rw—Pr n/a 1 10 10 0.01 0.01 0.001

E IMPLEMENTATION

E.1 TRAINING SETTINGS

We use the official implementations”® for the GOAT ( , ) and CNF (

) methods and use UMAP ( , ) to reduce the dimensions of three GDA datasets
to 8. We conduct experiments on a single NVIDIA 2080Ti GPU. In the context of the two UDA
datasets, namely Office-Home and VisDA-2017, we re-implement the RSDA ( s ) and
CoVi ( s ) as feature extractors on a single NVIDIA V100 GPU and then conduct our
methods on the latent space similarly. For the Rectified Flow ( ; Liu, ), we adopt
the official implementation*. Our code is publicly available at https:// glthub com/7web7one/ ggf.

E.2 HYPERPARAMETERS

In our experiments, we train three neural
networks (i.e., score network, rectified flow,

and classifier), each consisting of three Portraits
fully connected layers. For the classifier, 0.86 1

we train it in two steps: training the ini-

tial classifier and then updating it using & g,

the intermediate domains. We apply SGD &

optimizer with a learning rate of 10~* for § 0821 o oo0s

training all modules and updating the clas- << — cta = 0.01

sifier. The batch size for each domain is g0l — eta=002

set to 1024. To improve the training of the eta £ 0.04

score network and rectified flow, we weigh 1 2 4 8 6 32 64 128
the target domain samples using the classi- The value of alpha

fication confidence of the initial classifier.
Figure 13: Accuracy comparison with varying hyperpa-

During the gradual adaptation phase, we rameters on Portraits.

update the classifier in each intermediate

domain using self-training or fine-tuning

with five epochs. For self-training, we set a confidence threshold c to filter out the least confident
examples, which means that ¢ * 100% of the samples will be removed when updating the classifier.
For fine-tuning, we use all generated samples with preserving labels and note that the confidence
threshold c is not applicable in this context.

We have discussed how to optimize hyperparameters in Appendix C. Here, we provide the hyperpa-
rameters in Table 9, where A is the balancing weight between the cross-entropy and entropy in the
class-based energy function, and «, 7', and 7 are used in the sampling process. As shown in Figure 13,
our method is not particularly sensitive to those hyperparameters when setting «v as a small integer.

2https://github.com/yifei-he/GOAT
3https://github.com/ssgw320/gdacnf
*https://github.com/gnobitab/RectifiedFlow
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