
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ψDAG: PROJECTED STOCHASTIC APPROXIMATION IT-
ERATION FOR DAG STRUCTURE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning the structure of Directed Acyclic Graphs (DAGs) presents a significant
challenge due to the vast combinatorial search space of possible graphs, which
scales exponentially with the number of nodes. Recent advancements have rede-
fined this problem as a continuous optimization task by incorporating differentiable
acyclicity constraints. These methods commonly rely on algebraic characteriza-
tions of DAGs, such as matrix exponentials, to enable the use of gradient-based
optimization techniques. Despite these innovations, existing methods often face
optimization difficulties due to the highly non-convex nature of DAG constraints
and the per-iteration computational complexity. In this work, we present a novel
framework for learning DAGs, employing a Stochastic Approximation approach
integrated with Stochastic Gradient Descent (SGD)-based optimization techniques.
Our framework introduces new projection methods tailored to efficiently enforce
DAG constraints, ensuring that the algorithm converges to a feasible local mini-
mum. With its low iteration complexity, the proposed method is well-suited for
handling large-scale problems with improved computational efficiency. We demon-
strate the effectiveness and scalability of our framework through comprehensive
experimental evaluations, which confirm its superior performance across various
settings.

1 INTRODUCTION

Learning graphical structures from data using Directed Acyclic Graphs (DAGs) is a fundamental
challenge in machine learning (Koller & Friedman, 2009; Peters et al., 2016; Arjovsky et al., 2019;
Sauer & Geiger, 2021). This task has a wide range of practical applications across fields such as
economics, genome research (Zhang et al., 2013; Stephens & Balding, 2009), social sciences (Morgan
& Winship, 2015), biology (Sachs et al., 2005a), and causal inference (Pearl, 2009; Spirtes et al.,
2000). Learning the graphical structure is essential because the resulting models can often be given
causal interpretations or transformed into representations with causal significance, such as Markov
equivalence classes. When graphical models cannot be interpreted causally (Pearl, 2009; Spirtes
et al., 2000), they can still offer a compact and flexible representation for decomposing the joint
distribution.

Structure learning methods are typically categorized into two approaches: score-based algorithms
searching for a DAG minimizing a particular loss function and constraint-based algorithms relying
on conditional independence tests. Constraint-based methods, such as the PC algorithm (Spirtes &
Glymour, 1991) and FCI (Spirtes et al., 1995; Colombo et al., 2012), use conditional independence
tests to recover the Markov equivalence class under the assumption of faithfulness. Other approaches,
like those described in Margaritis & Thrun (1999) and Tsamardinos et al. (2003), employ local Markov
boundary search. On the other hand, score-based methods frame the problem as an optimization of a
specific scoring function, with typical choices including BGe (Kuipers et al., 2014), BIC (Chickering
& Heckerman, 1997), BDe(u) (Heckerman et al., 1995), and MDL (Bouckaert, 1993). Given the vast
search space of potential graphs, many score-based methods employ local heuristics, such as Greedy
Equivalence Search (GES) (Chickering, 2002), to efficiently navigate this complexity. Additionally,
Tsamardinos et al. (2006), Gámez et al. (2011) propose hybrid methods combining elements of both
constraint-based and score-based learning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Recently, Zheng et al. (2018) introduced a smooth formulation for enforcing acyclicity, transforming
the structure learning problem from its inherently discrete nature into a continuous, non-convex
optimization task. This formulation allows for the use of gradient-based optimization techniques,
enabling various extensions and adaptations to various domains, including nonlinear models (Yu
et al., 2019; Ng et al., 2022b; Kalainathan et al., 2022), interventional datasets (Brouillard et al., 2020;
Faria et al., 2022), unobserved confounders (Bhattacharya et al., 2021; Bellot & Van der Schaar,
2021), incomplete datasets (Gao et al., 2022a; Wang et al., 2020), time series analysis (Sun et al.,
2021; Pamfil et al., 2020), multi-task learning (Chen et al., 2021), multi-domain settings (Zeng
et al., 2021), federated learning (Ng & Zhang, 2022; Gao et al., 2023), and representation learning
(Yang et al., 2021). With the growing interest in continuous structure learning methods (Vowels
et al., 2022), a variety of theoretical and empirical studies have emerged. For instance, Ng et al.
(2020) investigated the optimality conditions and convergence properties of continuously constrained
approaches such as Zheng et al. (2018). In the bivariate case, Deng et al. (2023b) demonstrated
that a suitable optimization strategy converges to the global minimum of the least squares objective.
Additionally, Zhang et al. (2022) and Bello et al. (2022) identified potential gradient vanishing issues
with existing DAG constraints (Zheng et al., 2018) and proposed adjustments to overcome these
challenges.

Contributions. In this work, we focus on the graphical models represented as Directed Acyclic
Graphs (DAGs). Our main contributions can be summarized as follows:

1. Problem reformulation: We introduce a new reformulation (8) of the discrete optimization
problem for finding DAG as a stochastic optimization problem and we discuss its properties in
detail in Section 3.1. We demonstrate that the solution of this reformulated problem recovers the
true DAG (Section 3.1).

2. Novel algorithm: Leveraging insights from stochastic optimization, we present a new framework
(Algorithm 1) for DAG learning (Section 4) and present a simple yet effective algorithm ψDAG
(Algorithm 3) within the framework. We proved that Algorithm ψDAG converges to a local
minimum of problem (8).

3. Experimental comparison: In Section 5, we demonstrate that the method ψDAG scales very
well with graph size, handling up to 10000 nodes. At that scale, the primary limitation is not
computation complexity but the memory required to store the DAG itself. As a baseline, we com-
pare ψDAG with established DAG learning methods, including NOTEARS (Zheng et al., 2018),
GOLEM (Ng et al., 2020) and DAGMA (Bello et al., 2022). We show a significant improvement
in scalability, as baseline methods struggle with larger graphs. Specifically, NOTEARS (Zheng
et al., 2018), GOLEM (Ng et al., 2020) and DAGMA (Bello et al., 2022) require more than 100
hours for graphs with over 3000 nodes, exceeding the allotted time.

2 BACKGROUND

2.1 GRAPH NOTATION

Before discussing the connection to the most relevant literature, we formalize the graph notation
associated with DAGs.

Let G def
= (V,E,w) represent a weighted directed graph, where V denotes the set of vertices with

cardinality d
def
= |V |, E ∈ 2V×V is the set of edges, and w : V × V → R \ {0} assigns weights to

the edges. The adjacency matrix A(G) : Rd×d is defined such that [A(G)]ij = 1 if (i, j) ∈ E and
0 otherwise. Similarly, the weighted adjacency matrix W(G) is defined by [W(G)]ij = w(i, j) if
(i, j) ∈ E and 0 otherwise.

When the weight function w is binary, we simplify the notation to G def
= (V,E). Similarly, when the

graph G is clear from context, we shorthand the notation to A
def
= A(G) and W

def
= W(G).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We denote the space of DAGs as D. Since we will be utilizing topological sorting of DAGs1, we also
denote the space of vertex permutations Π.

2.2 LINEAR DAG AND SEM

A Directed Acyclic Graph (DAG) model, defined on a set of n random vectors X ∈ Rn×d, where

X
def
= (X1, . . . , Xn) and Xi ∈ Rd, consists of two components:

1. A DAG G = (V,E), which encodes a set of conditional independence relationships among
the variables.

2. The joint distribution P (X) with density p(x), which is Markov with respect to the DAG
G and factors as p(x) =

∏d
i=1 p(xi | xPAG(i)), where PAG(i) = {j ∈ V : Xj → Xi ∈ E}

represents the set of parents of Xi in G.

This work focuses on the linear DAG model, which can be equivalently represented by a set of linear
Structural Equation Models (SEMs). In matrix notation, the linear DAG model can be expressed as

X = XW +N, (1)

where W = [W1| · · · |Wd] is a weighted adjacency matrix, and N
def
= (N1, . . . , Nn) is a matrix

where each Ni ∈ Rd represents a noise vector with independent components. The structure of graph
G is determined by the non-zero coefficients in W; specifically Xj → Xi ∈ E if and only if the
corresponding coefficient in Wi for Xj is non-zero. The classical objective function is based on the
least squares loss applied to the linear DAG model,

l(W;X)
def
=

1

2n
∥X−XW∥2F . (2)

2.3 MOST RELATED LITERATURE

A significant body of research in DAG learning revolves around non-convex continuous optimization
frameworks, such as NOTEARS (Zheng et al., 2018), GOLEM (Ng et al., 2020), and DAGMA (Bello
et al., 2022). These approaches address the DAG constraint using either smooth approximations or
novel penalty functions, but they are often computationally expensive and lack scalability.

Zheng et al. (2018) formulated the DAG learning problem as a constrained optimization task,
minimizing the least squares loss while enforcing acyclicity through the matrix exponential. While
this method achieves state-of-the-art results for smaller graphs, its cubic complexity for computing
the acyclicity term severely limits its scalability. Ng et al. (2020) enhanced the scoring function by
incorporating a log-determinant term aligned with the Gaussian likelihood, which improves efficiency
but does not guarantee acyclic solutions. Similarly, Bello et al. (2022) introduced a differentiable and
exact log-determinant-based acyclicity constraint, but its reliance on augmented Lagrangian methods
introduces hyperparameter tuning challenges and potential numerical instability.

Other works, such as Chen et al. (2019), proposed variance-ordering procedures for estimating
topological orderings under equal error variances. While these methods naturally extend to high-
dimensional settings, their reliance on controlling the maximum in-degree of the graph becomes
computationally intensive as graph density increases. In contrast, ψDAG avoids these assumptions
and demonstrates scalability to graphs with up to 10, 000 nodes. Gao et al. (2022b) focused on
theoretical guarantees for Gaussian DAG models, deriving minimax optimal bounds for structure
recovery. Although their work offers valuable insights into sample efficiency, it does not address the
computational challenges of large-scale DAG learning. Our approach complements this by providing
a scalable stochastic optimization framework applicable to broader settings.

Wei et al. (2020) examined optimization challenges in NOTEARS by analyzing KKT conditions
and proposed the KKTS algorithm as a post-processing enhancement. While this method improves
structural Hamming distance (SHD), its reliance on specific constraints and post-hoc refinements

1Topologial sorting of a graph G def
= (V,E,w) refers to vertex ordering V1, V2, . . . , Vd such that E contains

no edges of the form Vi → Vj , where i ≤ j. Importantly, every DAG has at least one topological sorting.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

limits its applicability. By contrast, ψDAG reformulates DAG learning as a stochastic optimization
problem, seamlessly integrating gradient-based methods for large-scale graphs.

Additionally, Deng et al. (2023a) introduced a bi-level algorithm that iteratively refines topological
orders via node swaps, achieving local minima or KKT points. However, this approach is constrained
by a specific function h(B) =

∑d
i=1 ciTr(B

i), which is computationally expensive and limits its
scalability to applications involving larger graphs. Consequently, their experiments are restricted to
synthetic datasets with graphs containing up to d = 100 nodes. Moreover, the algorithm initializes
the W matrix using linear regression coefficients in the least squares case, resulting in a different
starting point for optimization, which makes direct comparisons with other methods challenging. Our
method addresses these limitations by generalizing the DAG learning framework and demonstrating
superior scalability and performance on both synthetic and real datasets.

While many of these works focus on specific assumptions, penalty terms, or theoretical guarantees,
our framework prioritizes scalability, flexibility, and applicability. The integration of stochastic
optimization enables ψDAG to tackle large graphs effectively, establishing it as a robust and practical
solution for DAG learning challenges. For additional details of related work, see Appendix A.

3 STOCHASTIC APPROXIMATION FOR DAGS

Our framework is built on a reformulation of the objective function as a stochastic optimization
problem, aiming to minimize the stochastic function F (w),

min
w∈Rd

{
F (w)

def
= Eξ [f(w, ξ)]

}
, (3)

where ξ ∈ Ξ is a random variable that follows the distribution Ξ. This formulation is common in
stochastic optimization where computing the exact expectation is infeasible, but the values of f(w, ξ)
and its stochastic gradients g(w, ξ) can be computed. Linear and logistic regressions are classical
examples of such problems.

To address this problem, two main approaches exist: Stochastic Approximation (SA) and Sample
Average Approximation (SAA). The SAA approach involves sampling a fixed number n of random
variables or data points ξi and then minimizing their average F̃ (w):

min
w∈Rd

{
F̃ (w)

def
= 1

n

n∑
i=1

f(w, ξi)

}
. (4)

Now, the problem (4) becomes deterministic and can be solved using various optimization methods,
such as gradient descent. However, the main drawback of this approach is that the solution of (4) w̃∗

is not necessarily equal to the solution of the original problem (3). Even with a perfect solution of
(4), there will still be a gap ∥w̃∗ − w∗∥ = δx and F (w̃∗)− F ∗ = δF between approximate and true
solution. These gaps are dependent on the sample size n.
Stochastic Approximation (SA) minimizes the true function F (w) by utilizing the stochastic gradient
g(w, ξ). Below, we provide the formal definition of a stochastic gradient.
Assumption 1. For all w ∈ Rd, we assume that stochastic gradients g(w, ξ) ∈ Rd satisfy

E[g(w, ξ) | w] = ∇F (w), E
[
∥g(w, ξ)−∇F (w)∥2 | w

]
≤ σ2

1 . (5)

We use these stochastic gradients in SGD-type methods:
wt+1 = wt − htg(wt, ξi), (6)

where ht is a step-size schedule. SA originated with the pioneering paper by Robbins & Monro (1951).
For convex and L-smooth function F (w), Polyak (1990); Polyak & Juditsky (1992); Nemirovski
et al. (2009); Nemirovski & Yudin (1983) developed significant improvements to SA method in the
form of longer step-sizes with iterate averaging, and obtained the convergence guarantee

E [F (wT)− F (x∗)] ≤ O
(

σ1R√
T

+ L1R
2

T

)
.

Lan (2012) developed an optimal method with a guaranteed convergence rate O
(

σ1R√
T

+ L1R
2

T 2

)
,

matching the worst-case lower bounds. The key advantage of SA is that it provides convergence
guarantees for the original problem (3). Additionally, methods effective for the SA approach tend to
perform well for the SAA approach as well.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 STOCHASTIC REFORMULATION

Using the perspective of Stochastic Approximation, we can rewrite the linear DAG (1) as

x = Xi =
[
I−W⊤

∗
]−1

Ni, (7)

where W∗ is a true DAG that corresponds to the full distribution, and our goal is to find DAG W
that is close to W∗. If we assume that x = Xi is a random vector sampled from a distribution D, we
can express the objective function as an expectation,

min
W∈D

Ex∼D

[
l(W;x)

def
= 1

2∥x−W⊤x∥2 = 1
2∥x

⊤ − x⊤W∥2
]
. (8)

For x from (7) we can calculate ∥x − W⊤x∥ = ∥(I − W⊤)x∥ = ∥(I − W)
[
I−W⊤

∗
]−1

Ni∥,
which implies that the minimizer of (8) recovers the true DAG. Conversely, this is not the case for
methods such as Zheng et al. (2018), Ng et al. (2020), and Bello et al. (2022), which are based on
SAA approaches with losses (2), (10), (11), (12).

4 SCALABLE FRAMEWORK

Instead of strictly enforcing DAG constraints throughout the entire iteration process, we propose a
novel, scalable optimization framework that consists of three main steps:

1. Running an optimization algorithm A1 without any DAG constraints, only forcing the
diagonal to be zero (diag(Wk) = 0), A1 : Rd×d → Rd×d.

2. Finding a DAG that is close to the current iterate using a projection ψ : Rd×d → (D,Π),
which also returns its topological sorting π.

3. Running the optimization algorithm A2 while preserving the vertex order, A2 : (D; Π) → D.

Algorithm 1 ψDAG framework

1: Requires: Initial model W0 ∈ Rd×d, such that diag(W0) = 0.
2: for k = 0, 1, 2 . . . ,K − 1 do
3: W

(1/3)
k = A1(Wk) ▷W

(1/3)
k ∈ Rd×d.

4: (W
(2/3)
k , πk) = ψ(W

(1/3)
k) ▷W

(2/3)
k ∈ D

5: Wk+1 = A2(W
(2/3)
k ;πk) ▷Wk+1 ∈ D ⊂ Rd×d.

6: end for
7: Output: WK .

4.1 OPTIMIZATION FOR THE FIXED VERTEX ORDERING

Let us clarify how to optimize while preserving the vertex order in step 3 of the framework. Given
a DAG G, we can construct its topological ordering, denoted as ord(G). In this ordering, for every
edge, the start vertex appears earlier in the sequence than the end vertex. In general, this ordering is
not unique. In the space of DAGs with d vertices D, there are d! possible topological orderings.

Once we have a topological ordering of the DAG, we can construct a larger DAG, Ĝ, by performing the
transitive closure of G. This new DAG Ĝ contains all the edges of the original DAG, and additionally,
it includes an edge between vertices Vi and Vj if there exists the path from Vi to Vj in G. Thus, Ĝ is
an expanded version of G.

Now, the question arises: is it possible to construct an even larger DAG that contains both G and
Ĝ? The answer is yes! We call this graph the Full DAG, denoted by G̃, which is constructed via full
transitive closure2. In G̃, there is an edge from vertex Vi to vertex Vj if i < j in topological ordering

2Informally, for set of edges E, the transitive closure E+ is the smallest set that includes edges (a, b)
whenever there is a path from a to b within E. Note that E+ is the smallest superset of E that satisfies that
(a, c) ∈ E+ whenever (a, b) ∈ E+, (b, c) ∈ E+.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Epoch

10 2

10 1

100

101

102

f(x
k)

f(x
)

Random order, seeds 0-99
Correct order

10 2 10 1 100 101

Suboptimality after 100 SGD epochs

0

50

100

150

200

Co
un

t

Vertices: 100
Random order
Correct order

Figure 1: Minimization of (8) using SGD over a fixed topological ordering of vertices on graph type
ER4 with d = 100 vertices with Gaussian noise. Plots demonstrate that minimizing (8) over a fixed
random vertex ordering does not approach the true solution of (8).

ord(G). This makes G̃ the maximal DAG that includes G. Note that for every topological sort, there
is a corresponding full DAG. So, there are a total of d! different full DAGs in the space of DAGs with
d vertices D.

We are now ready to discuss the optimization part. Let us formulate the following optimization
problem

min
W∈Rd×d

Ex∼D
[
l(W ·A;x) = 1

2∥x− (W ·A)⊤x∥2
]
, (9)

where (·) denotes elementwise matrix multiplication. In this formulation, A acts as a mask, speci-
fying coordinates that do not require gradient computation. The problem (9) is a quadratic convex
stochastic optimization problem, which can be efficiently solved using stochastic gradient descent
(SGD)-type methods. These methods guarantee convergence to the global minimum, with a rate of
O
(

σ1R√
T

+ L1R
2

T

)
.

Assume that G∗ is the true DAG with a weighted adjacency matrix W∗, which is the solution we aim
to find. Next, we can have the true ordering ord(G∗) and the true full DAG G̃∗ with its adjacency
matrix A(G̃∗). The optimization problem (8), with the solution W∗, can be addressed by solving the
optimization problem (9) with A = A(G∗). This result indicates that, if we know the true topological
ordering ord(G∗), then we can recover the true DAG W∗ with high accuracy. From a discrete
optimization perspective, this approach significantly reduces the space of constraints from 2d

2−d

to d!. To illustrate the specificity of the minimizer of the proposed problem, Figure 1 demonstrates
that minimizing (8) over a fixed random vertex ordering does not approach the true solution of (8).
"Correct order" curve demonstrates the convergence of (9) when the true ordering ord(G∗) is known.

Note that for a fixed vertex ordering and fixed adjacency matrix A, the objective (9) becomes
separable, enabling parallel computation for large-scale problems. In this work, we solved the
minimization problem (9) for the number of nodes up to d = 104, at which point the limiting factor
was the memory to store W ∈ Rd×d. Through parallelization and efficient memory management, it
is possible to solve even larger problems.

4.2 METHOD

We now introduce the method ψDAG, which implements the framework outlined in Algorithm 1.

For simplicity, we select algorithm A1 as τ1 steps of Stochastic Gradient Descent (SGD). Similarly,
A2 consists of τ2 steps SGD, where gradients are projected onto the space spanned by DAG’s
topological sorting, thus preserving the vertex order. It is important to reiterate that SGD is guaranteed
to converge to the neighborhood of the solution. In the implementation, we employed an advanced
version of SGD, Universal Stochastic Gradient Method from (Rodomanov et al., 2024).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The implementation of the projection method is simple as well. We compute a “closest” topological
sorting and remove all edges not permitted by this ordering. The topological sorting is computed by a
heuristic that calculates norms of all rows and columns to find the lowest value vi. The corresponding
vertex i is then assigned to the ordering based on the following rule:

• If vi was the column norm, i is assigned to the beginning of the ordering.

• If vi was the row norm, i is assigned to the end of the ordering.

This step reduces the number of vertices, and the remaining vertices are topologically sorted using a
recursive call. We formalize this procedure in Algorithm 2. Note that this procedure can be efficiently
implemented without recursion and with the computation cost O(d2).

Algorithm 2 Projection ψ(W) computing the “closest” vertex ordering (recursive form)

1: Requires: Model W ∈ Rd×d, (optional) weights L ∈ Rd×d with default value L = 11⊤.
2: for k = 1, . . . , d do
3: Set rk = ∥ (W ◦ L) [k][:]∥2
4: Set ck = ∥ (W ◦ L) [:][k]∥2
5: end for
6: Set ic = argmink∈{1,...,d} ck
7: Set ir = argmink∈{1,...,d} rk
8: if rir <= cic then
9: Output: [ψ(W(ic, ic),L(ic, ic)), ir]

10: else
11: Output: [ic, ψ(W(ic, ic),L(ic, ic))]
12: end if

▷ By A(i, j) we denote the submatrix A[1, . . . , i− 1, i+ 1, . . . , d][1, . . . , j − 1, j + 1, . . . , d]

Algorithm 3 ψDAG

1: Requires: initial model W0 ∈ Rd×d, numbers or iterations τ1, τ2.
2: for k = 0, 1, 2 . . . ,K − 1 do
3: W

(1/3)
k = SGD(Wk) ▷ τ1 iterations over Rd×d.

4: (W
(2/3)
k , πk) = Algorithm 2 (W

(1/3)
k)

5: Wk+1 = SGDπk
(Wk) ▷ τ2 iterations preserving ordering πk.

6: end for
7: Output: WK

5 EXPERIMENTS

We experimentally compare our newly proposed algorithm ψDAG3 to other score-based methods for
computing linear DAGs, NOTEARS (Zheng et al., 2018), GOLEM4 (Ng et al., 2020) and DAGMA
(Bello et al., 2022). As it is established that DAGMA Bello et al. (2022) is an improvement over
NOTEARS Zheng et al. (2018), we use mostly the former one in our experiments. As the baseline
algorithms were implemented without extensive hyperparameter tuning, we avoided hyperparameter
tuning as much as possible. In particular, we apply the same threshold as the one in Zheng et al.
(2018), Ng et al. (2020), Bello et al. (2022) across all scenarios.

Figure 2 shows that ψDAG consistently exhibits faster convergence across different noise distributions.
Appendix D extends this result across different graph sizes and graph types.

3Code implementing the proposed algorithm is available at https://anonymous.4open.science/
r/psiDAG-8F42. We use the Universal Stochastic Gradient Method from (Rodomanov et al., 2024) as the
inner optimizer.

4In all experiments we consider GOLEM-EVwhere the noise variances are equal.

7

https://anonymous.4open.science/r/psiDAG-8F42
https://anonymous.4open.science/r/psiDAG-8F42

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 1000 2000 3000
Runtime, s

101

102

103

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 1000 2000 3000
Runtime, s

101

102

103

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 1000 2000 3000
Runtime, s

101

102

103

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 1 2 3
Stoch. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 1 2 3
Stoch. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 1 2 3
Stoch. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

Figure 2: Linear SEM methods of ψDAG, GOLEM and DAGMA on graphs of type ER4 with
d = 1000 number of nodes and with different noise distributions: Gaussian (first), exponential
(second), and Gumbel (third).

5.1 SYNTHETIC DATA GENERATION

We generate ground truth DAGs to have d nodes and an average of k × d edges, where k ∈ {2, 4, 6}
is a sparsity parameter. The graph structure is determined by the choice of the graph models to be
either Erdős-Rényi (ER) or Scale Free (SF), and together with sparsity parameter k, we refer to them
as ERk or SFk. Each of the edges has assigned a random weight uniformly sampled from the interval
[−1,−0.05] ∪ [0.05, 1].

Following the linear Structural Equation Model (SEM), the observed data X has form X = N(I−
W)−1, where N ∈ Rn×d represents n d-dimensional independent and identically distributed (i.i.d.)
noise samples drawn from either Gaussian, exponential or Gumbel distributions. In this study, we
focus on an equal variance (EV) noise setting, with a scale factor of 1.0 applied to all variables.
Unless otherwise specified, we generate the same number of samples n ∈ {5000, 10000} for training
and validation datasets, respectively. A more detailed description can be found in Appendix C.

5.2 SCALABILITY COMPARISON

In this section, we discuss the runtime of the proposed ψDAG algorithm. We run compared algorithms
until the function value converges close to the solution, f(xk)− f(x) ≤ 0.1 · f(x).
Figures 3a and 3b compare the performance of ψDAG against GOLEM and DAGMA on smaller
graphs with various structures and noise distributions. Meanwhile, Figure 4 illustrates the scalability
of ψDAG on the large graphs.

Both Figures 3 and 4 clearly demonstrate that ψDAG significantly outperforms GOLEM and DAGMA
in terms of runtime across both sparse and dense ER graphs in nearly all considered scenarios. The
only exception occurs with very small graphs d < 100 and high sparsity (ER2, SF2), where DAGMA
is marginally faster than ψDAG. However, as graph size and density increase, ψDAG scale efficiently
across all scenarios even up until d = 10000 nodes. In the case of sparse graphs (Figures 4a, 4b),
ψDAG consistently converges within a few hours, even for d = 10000 nodes.

In contrast, increasing graph size causes the computational cost of both GOLEM and DAGMA to
skyrocket. Notably, across all tested graphs (4a), GOLEM exceeds allocated runtime of 36 hours for
d ≥ 3000 nodes, while DAGMA exceeds for d ≥ 5000 nodes.

In several experimental scenarios, we also observed that both GOLEM and DAGMA occasionally
failed to meet the stopping criterion, even for smaller graphs. For very small ER6 graphs (d = 100,
Figure 4c), neither method consistently achieved the stopping criterion – DAGMA failed to converge
once, and GOLEM failed twice out of three random seeds. With d = 1000 nodes, DAGMA again
failed to converge in one out of three runs. All non-converging runs were excluded from the figures.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
d (number of nodes)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ti
m

e
(h

ou
rs

)

DAG
GOLEM
DAGMA

0 200 400 600 800 1000
d (number of nodes)

0.0

0.5

1.0

1.5

Ti
m

e
(h

ou
rs

)

DAG
GOLEM
DAGMA

0 200 400 600 800 1000
d (number of nodes)

0.0

0.5

1.0

1.5

Ti
m

e
(h

ou
rs

)

DAG
GOLEM
DAGMA

(a) ER2 graph type

0 200 400 600 800 1000
d (number of nodes)

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(h

ou
rs

)

DAG
GOLEM
DAGMA

0 200 400 600 800 1000
d (number of nodes)

0

1

2

3

4

Ti
m

e
(h

ou
rs

)

DAG
GOLEM
DAGMA

0 200 400 600 800 1000
d (number of nodes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(h

ou
rs

)

DAG
GOLEM
DAGMA

(b) ER4 graph type

Figure 3: Runtime (hours) of ψDAG, GOLEM and DAGMA for ER2 and ER4 graph types with
small number of nodes d = {10, 50, 100, 500, 1000}. Noise distributions vary in different columns:
Gaussian (first), exponential (second), and Gumbel (third). Method ψDAG showcases much better
scalability when the number of nodes increases.

0 2000 4000 6000 8000 10000
d (number of nodes)

0

2

4

6

Ti
m

e
(h

ou
rs

)

DAG
GOLEM
DAGMA

(a) ER2

0 2000 4000 6000 8000 10000
d (number of nodes)

0

2

4

6

8

Ti
m

e
(h

ou
rs

)

DAG
GOLEM
DAGMA

(b) SF2

0 2000 4000 6000 8000 10000
d (number of nodes)

0

10

20

30
Ti

m
e

(h
ou

rs
)

DAG
GOLEM
DAGMA

(c) ER6

Figure 4: Runtime (hours) of ψDAG, GOLEM, and DAGMA for different graph types as the
graph size increases. The noise distribution is always Gaussian. Figure 4a extends Figure 3a to a
large number of nodes d ∈ {3000, 5000, 10000}, Figure 4b presents graph type SF2 and Figure 4c
showcases a more dense graph structure. Method ψDAG demonstrates much better scalability as the
number of nodes increases. In several scenarios, both GOLEM and DAGMA failed to consistently
meet the stopping criterion. For ER6 graphs with d = 100 nodes, GOLEM failed to converge in two
out of three runs, while DAGMA failed once. Additionally, DAGMA failed to converge in one out of
three runs for d = 1000. All non-converging runs were excluded from the figures.

5.3 REAL DATA

We also evaluate the proposed method against baselines NOTEARS (Zheng et al., 2018), GOLEM
(Ng et al., 2020), and DAGMA (Bello et al., 2022) on a real-world dataset, causal protein signaling
network data, provided by Sachs et al. (2005b) that captures the expression levels of proteins and
phospholipids in human cells. This dataset is widely used in the literature on probabilistic graphical
models, with experimental annotations that are well-established in the biological research community.

The dataset comprises 7,466 samples, of which we utilize the first 853, corresponding to a network
with 11 nodes representing proteins and 17 edges denoting their interactions. Despite its relatively
small size, it is considered to be a challenging benchmark in recent studies (Zheng et al., 2018; Ng
et al., 2020; Gao et al., 2021). For all experiments, we used the first 853 samples for training and the
subsequent 902 samples for testing. After the training phase, we employed the same default threshold
of 0.3 as was used by the other baseline approaches NOTEARS, GOLEM, DAGMA.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 1: Performance of the top-performing methods on the causal protein signaling
network dataset Sachs et al. (2005b). The threshold for all methods is 0.3.

SHD(↓) TPR (↑) FPR (↓) Total edges Reference
GOLEM 26 0.294 0.47 23 Ng et al. (2020)

NOTEARS 15 0.294 0.26 15 Zheng et al. (2018)

ψDAG 14 0.411 0.18 14 Algorithm 3

As shown in Table 1, our method outperforms both baselines GOLEM (Ng et al., 2020) and
NOTEARS (Zheng et al., 2018) in all metrics, the SHD (lower is better), TPR (higher is bet-
ter) and FPR (smaller is better). A more detailed description can be found in Appendix C. We report
the total number of edges of the output DAG. We do not report the performance of DAGMA because
it fails to optimize the problem (its iterate W diverges from the feasible domain during the first
iteration). The results for the whole dataset are shown in Appendix D.4.

6 CONCLUSION

We introduce a novel framework for learning Directed Acyclic Graphs (DAGs) that addresses the
scalability and computational challenges of existing methods. Our approach leverages Stochastic
Approximation techniques in combination with Stochastic Gradient Descent (SGD)-based meth-
ods, allowing for efficient optimization even in high-dimensional settings. A key contribution of
our framework is the introduction of new projection techniques that effectively enforce DAG con-
straints, ensuring that the learned structure adheres to the acyclicity requirement without the need for
computationally expensive penalties or constraints seen in prior works.

The proposed framework is theoretically grounded and guarantees convergence to a feasible local
minimum. One of its main advantages is its low iteration complexity, making it highly suitable for
large-scale structure learning problems, where traditional methods often struggle with runtime and
memory limitations. By significantly reducing the per-iteration cost and improving convergence
behavior, our framework demonstrates superior scalability when applied to larger datasets and more
complex graph structures.

We validate the effectiveness of our method through extensive experimental evaluations across a
variety of settings, including both synthetic and real-world datasets. These experiments show that our
framework consistently outperforms existing methods such as GOLEM (Ng et al., 2020), NOTEARS
(Zheng et al., 2018), and DAGMA (Bello et al., 2022), both in terms of objective loss and runtime,
particularly in scenarios involving large and dense graphs. Furthermore, our method exhibits robust
performance across different types of graph structures, highlighting its potential applicability to
various practical fields such as biology, finance, and causal inference.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286
(5439):509–512, 1999.

Kevin Bello, Bryon Aragam, and Pradeep Ravikumar. DAGMA: Learning DAGs via M-matrices and
a log-determinant acyclicity characterization. Advances in Neural Information Processing Systems,
35:8226–8239, 2022.

Alexis Bellot and Mihaela Van der Schaar. Deconfounded score method: Scoring DAGs with dense
unobserved confounding. arXiv preprint arXiv:2103.15106, 2021.

Dimitri Bertsekas, William Hager, and Olvi Mangasarian. Nonlinear programming. Athena Scientific,
1999.

Rohit Bhattacharya, Tushar Nagarajan, Daniel Malinsky, and Ilya Shpitser. Differentiable causal
discovery under unmeasured confounding. In International Conference on Artificial Intelligence
and Statistics, pp. 2314–2322. PMLR, 2021.

Ernesto Birgin, Romulo Castillo, and José Martínez. Numerical comparison of augmented Lagrangian
algorithms for nonconvex problems. Computational Optimization and Applications, 31(1):31–55,
2005.

Remco Bouckaert. Probabilistic network construction using the minimum description length principle.
In European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty,
pp. 41–48. Springer, 1993.

Philippe Brouillard, Sébastien Lachapelle, Alexandre Lacoste, Simon Lacoste-Julien, and Alexandre
Drouin. Differentiable causal discovery from interventional data. Advances in Neural Information
Processing Systems, 33:21865–21877, 2020.

Wenyu Chen, Mathias Drton, and Y Samuel Wang. On causal discovery with an equal-variance
assumption. Biometrika, 106(4):973–980, September 2019. ISSN 1464-3510. doi: 10.1093/
biomet/asz049. URL http://dx.doi.org/10.1093/biomet/asz049.

Xinshi Chen, Haoran Sun, Caleb Ellington, Eric Xing, and Le Song. Multi-task learning of order-
consistent causal graphs. Advances in Neural Information Processing Systems, 34:11083–11095,
2021.

David Chickering. Optimal structure identification with greedy search. Journal of Machine Learning
Research, 3(Nov):507–554, 2002.

David Chickering and David Heckerman. Efficient approximations for the marginal likelihood of
Bayesian networks with hidden variables. Machine Learning, 29:181–212, 1997.

Diego Colombo, Marloes Maathuis, Markus Kalisch, and Thomas Richardson. Learning high-
dimensional directed acyclic graphs with latent and selection variables. The Annals of Statistics,
pp. 294–321, 2012.

Chang Deng, Kevin Bello, Bryon Aragam, and Pradeep Ravikumar. Optimizing notears objectives
via topological swaps, 2023a. URL https://arxiv.org/abs/2305.17277.

Chang Deng, Kevin Bello, Pradeep Ravikumar, and Bryon Aragam. Global optimality in bivariate
gradient-based DAG learning. Advances in Neural Information Processing Systems, 36:17929–
17968, 2023b.

Gonçalo Faria, Andre Martins, and Mário Figueiredo. Differentiable causal discovery under latent
interventions. In Conference on Causal Learning and Reasoning, pp. 253–274. PMLR, 2022.

José Gámez, Juan Mateo, and José Puerta. Learning Bayesian networks by hill climbing: efficient
methods based on progressive restriction of the neighborhood. Data Mining and Knowledge
Discovery, 22:106–148, 2011.

11

http://dx.doi.org/10.1093/biomet/asz049
https://arxiv.org/abs/2305.17277

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Erdun Gao, Ignavier Ng, Mingming Gong, Li Shen, Wei Huang, Tongliang Liu, Kun Zhang, and
Howard Bondell. MissDAG: Causal discovery in the presence of missing data with continuous
additive noise models. Advances in Neural Information Processing Systems, 35:5024–5038, 2022a.

Erdun Gao, Junjia Chen, Li Shen, Tongliang Liu, Mingming Gong, and Howard Bondell. FedDAG:
Federated DAG structure learning. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/forum?id=MzWgBjZ6Le.

Ming Gao, Wai Ming Tai, and Bryon Aragam. Optimal estimation of gaussian dag models, 2022b.
URL https://arxiv.org/abs/2201.10548.

Yinghua Gao, Li Shen, and Shu-Tao Xia. DAG-GAN: Causal structure learning with generative
adversarial nets. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3320–3324. IEEE, 2021.

David Heckerman, Dan Geiger, and David Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning, 20(3):197–243, 1995.

Diviyan Kalainathan, Olivier Goudet, Isabelle Guyon, David Lopez-Paz, and Michèle Sebag. Struc-
tural agnostic modeling: Adversarial learning of causal graphs. Journal of Machine Learning
Research, 23(219):1–62, 2022.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
Press, 2009.

Jack Kuipers, Giusi Moffa, and David Heckerman. Addendum on the scoring of Gaussian directed
acyclic graphical models. The Annals of Statistics, 42(4):1689–1691, 2014.

Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical Pro-
gramming, 133:365–397, 2012. ISSN 1436-4646. doi: 10.1007/s10107-010-0434-y. URL
https://doi.org/10.1007/s10107-010-0434-y.

Po-Ling Loh and Peter Bühlmann. High-dimensional learning of linear causal networks via inverse
covariance estimation. The Journal of Machine Learning Research, 15(1):3065–3105, 2014.

Dimitris Margaritis and Sebastian Thrun. Bayesian network induction via local neighborhoods.
Advances in Neural Information Processing Systems, 12, 1999.

Stephen Morgan and Christopher Winship. Counterfactuals and causal inference. Cambridge
University Press, 2015.

A Nemirovski, A Juditsky, G Lan, and A Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM Journal on Optimization, 19:1574–1609, 2009. doi: 10.1137/
070704277. URL https://doi.org/10.1137/070704277.

Arkadi Semenovich Nemirovski and David Borisovich Yudin. Problem Complexity and Method
Efficiency in Optimization. A Wiley-Interscience publication. Wiley, 1983.

Ignavier Ng and Kun Zhang. Towards federated Bayesian network structure learning with continuous
optimization. In International Conference on Artificial Intelligence and Statistics, pp. 8095–8111.
PMLR, 2022.

Ignavier Ng, AmirEmad Ghassami, and Kun Zhang. On the role of sparsity and DAG constraints
for learning linear DAGs. Advances in Neural Information Processing Systems, 33:17943–17954,
2020.

Ignavier Ng, Sébastien Lachapelle, Nan Ke, Simon Lacoste-Julien, and Kun Zhang. On the conver-
gence of continuous constrained optimization for structure learning. In International Conference
on Artificial Intelligence and Statistics, pp. 8176–8198. Pmlr, 2022a.

Ignavier Ng, Shengyu Zhu, Zhuangyan Fang, Haoyang Li, Zhitang Chen, and Jun Wang. Masked
gradient-based causal structure learning. In Proceedings of the 2022 SIAM International Conference
on Data Mining (SDM), pp. 424–432. SIAM, 2022b.

12

https://openreview.net/forum?id=MzWgBjZ6Le
https://arxiv.org/abs/2201.10548
https://doi.org/10.1007/s10107-010-0434-y
https://doi.org/10.1137/070704277

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Roxana Pamfil, Nisara Sriwattanaworachai, Shaan Desai, Philip Pilgerstorfer, Konstantinos Geor-
gatzis, Paul Beaumont, and Bryon Aragam. Dynotears: Structure learning from time-series data.
In International Conference on Artificial Intelligence and Statistics, pp. 1595–1605. Pmlr, 2020.

Judea Pearl. Causality. Cambridge University Press, 2009.

Jonas Peters and Peter Bühlmann. Identifiability of Gaussian structural equation models with equal
error variances. Biometrika, 101(1):219–228, 2014.

Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant
prediction: identification and confidence intervals. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 78(5):947–1012, 2016.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM Journal on Control and Optimization, 30:838–855, 1992. doi: 10.1137/0330046. URL
https://doi.org/10.1137/0330046.

Boris Teodorovich Polyak. A new method of stochastic approximation type. Avtomatika i Tele-
mekhanika, 51:98–107, 1990.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22:400–407, 1951. ISSN 0003-4851. URL http://www.jstor.org/stable/
2236626.

Anton Rodomanov, Ali Kavis, Yongtao Wu, Kimon Antonakopoulos, and Volkan Cevher. Universal
gradient methods for stochastic convex optimization. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=Wnhp34K5jR.

Karen Sachs, Omar Perez, Dana Pe’er, Douglas Lauffenburger, and Garry Nolan. Causal protein-
signaling networks derived from multiparameter single-cell data. Science (New York, N.Y.),
308(5721):523—529, April 2005a. ISSN 0036-8075. doi: 10.1126/science.1105809. URL
https://doi.org/10.1126/science.1105809.

Karen Sachs, Omar Perez, Dana Pe’er, Douglas Lauffenburger, and Garry Nolan. Causal protein-
signaling networks derived from multiparameter single-cell data. Science, 308(5721):523–529,
2005b.

Axel Sauer and Andreas Geiger. Counterfactual generative networks. arXiv preprint
arXiv:2101.06046, 2021.

Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs. Social
Science Computer Review, 9(1):62–72, 1991.

Peter Spirtes, Christopher Meek, and Thomas Richardson. Causal inference in the presence of latent
variables and selection bias. In Conference on Uncertainty in Artificial Intelligence, 1995. URL
https://api.semanticscholar.org/CorpusID:11987717.

Peter Spirtes, Clark Glymour, Richard Scheines, and David Heckerman. Causation, prediction, and
search. MIT Press, 2000.

Matthew Stephens and David Balding. Bayesian statistical methods for genetic association studies.
Nature Reviews Genetics, 10(10):681–690, 2009.

Xiangyu Sun, Oliver Schulte, Guiliang Liu, and Pascal Poupart. NTS-NOTEARS: Learning nonpara-
metric DBNS with prior knowledge. arXiv preprint arXiv:2109.04286, 2021.

Ioannis Tsamardinos, Constantin Aliferis, Alexander Statnikov, and Er Statnikov. Algorithms for
large scale Markov blanket discovery. In FLAIRS, volume 2, pp. 376–81, 2003.

Ioannis Tsamardinos, Laura Brown, and Constantin Aliferis. The max-min hill-climbing Bayesian
network structure learning algorithm. Machine Learning, 65:31–78, 2006.

Matthew Vowels, Necati Camgoz, and Richard Bowden. D’ya like DAGs? A survey on structure
learning and causal discovery. ACM Computing Surveys, 55(4):1–36, 2022.

13

https://doi.org/10.1137/0330046
http://www.jstor.org/stable/2236626
http://www.jstor.org/stable/2236626
https://openreview.net/forum?id=Wnhp34K5jR
https://doi.org/10.1126/science.1105809
https://api.semanticscholar.org/CorpusID:11987717

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yuhao Wang, Vlado Menkovski, Hao Wang, Xin Du, and Mykola Pechenizkiy. Causal discovery
from incomplete data: A deep learning approach. arXiv preprint arXiv:2001.05343, 2020.

Dennis Wei, Tian Gao, and Yue Yu. Dags with no fears: A closer look at continuous optimization for
learning bayesian networks, 2020. URL https://arxiv.org/abs/2010.09133.

Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and Jun Wang. CausalVAE:
Disentangled representation learning via neural structural causal models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9593–9602, 2021.

Yue Yu, Jie Chen, Tian Gao, and Mo Yu. DAG-GNN: DAG structure learning with graph neural
networks. In International Conference on Machine Learning, pp. 7154–7163. PMLR, 2019.

Yan Zeng, Shohei Shimizu, Ruichu Cai, Feng Xie, Michio Yamamoto, and Zhifeng Hao. Causal
discovery with multi-domain LiNGAM for latent factors. In Causal Analysis Workshop Series, pp.
1–4. PMLR, 2021.

Bin Zhang, Chris Gaiteri, Liviu-Gabriel Bodea, Zhi Wang, Joshua McElwee, Alexei Podtelezhnikov,
Chunsheng Zhang, Tao Xie, Linh Tran, Radu Dobrin, et al. Integrated systems approach identifies
genetic nodes and networks in late-onset Alzheimer’s disease. Cell, 153(3):707–720, 2013.

Zhen Zhang, Ignavier Ng, Dong Gong, Yuhang Liu, Ehsan Abbasnejad, Mingming Gong, Kun
Zhang, and Javen Qinfeng Shi. Truncated matrix power iteration for differentiable DAG learning.
Advances in Neural Information Processing Systems, 35:18390–18402, 2022.

Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric Xing. DAGs with no tears: Continuous
optimization for structure learning. Advances in Neural Information Processing Systems, 31, 2018.

14

https://arxiv.org/abs/2010.09133

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

2 Background 2

2.1 Graph Notation . 2

2.2 Linear DAG and SEM . 3

2.3 Most Related Literature . 3

3 Stochastic Approximation for DAGs 4

3.1 Stochastic Reformulation . 5

4 Scalable Framework 5

4.1 Optimization for the fixed vertex ordering . 5

4.2 Method . 6

5 Experiments 7

5.1 Synthetic Data Generation . 8

5.2 Scalability Comparison . 8

5.3 Real Data . 9

6 Conclusion 10

A Related Work 15

B Theoretical Results 16

C Detailed Experiment Description 17

D Experiments 19

D.1 Small to Moderate Number of Nodes . 19

D.2 Large Number of Nodes . 19

D.3 Denser Graphs . 19

D.4 Real Data . 19

E Weighted Projection 31

A RELATED WORK

Zheng et al. (2018) addressed the constrained optimization problem

min
W∈Rd×d

ℓ(W;X)NOTEARS
def
=

1

2n
∥X−XW∥2F + λ∥W∥1 subject to h(W) = 0, (10)

where ℓ(W;X) represents the least squares objective and h(W) := tr(eW⊙W) − d enforces the
DAG constraint. Additionally, an ℓ1 regularization term λ∥W∥1, where ∥ · ∥1 is the element-wise ℓ1-
norm and λ is a hyperparameter incorporated into the objective function. This formulation addresses

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

the linear case with equal noise variances, as discussed in Loh & Bühlmann (2014) and Peters &
Bühlmann (2014). This constrained optimization problem is solved using the augmented Lagrangian
method (Bertsekas et al., 1999), followed by thresholding the obtained edge weights. However, since
this approach computes the acyclicity function via the matrix exponential, each iteration incurs a
computational complexity of O(d3), which significantly limits the scalability of the method.

Ng et al. (2020) introduced the GOLEM method, which enhances the scoring function by incorporat-
ing an additional log-determinant term, log |det(I−W)| to align with the Gaussian log-likelihood,

min
W∈Rd×d

ℓ(W;X)GOLEM
def
=

d

2
log ∥X−XW∥2F − log |det(I−W)|+λ1∥W∥1+λ2h(W), (11)

where λ1 and λ2 serve as regularization hyperparameters within the objective function. Although the
newly added log-determinant term is zero when the current model W is a DAG, this score function
does not provide an exact characterization of acyclicity. Specifically, the condition log |det(I −
W)| = 0 does not imply that W represents a DAG.

Bello et al. (2022) introduces a novel acyclicity characterization for DAGs using a log-determinant
function,

min
W∈Rd×d

ℓ(W;X)DAGMA
def
=

1

2n
∥X−XW∥2F + λ1∥W∥1 subject to hsldet(W) = 0, (12)

where hsldet(W)
def
= − log det(sI−W ◦W) + d log s, and it is both exact and differentiable.

In practice, the augmented Lagrangian method enforces the hard DAG constraint by increasing the
penalty coefficient towards infinity, which requires careful parameter fine-tuning and can lead to
numerical difficulties and ill-conditioning (Birgin et al., 2005; Ng et al., 2022a). As a result, existing
methods face challenges across several aspects of optimization, including the careful selection of
constraints, high computational complexity, and scalability issues.

To overcome these challenges, we propose a novel framework for enforcing the acyclicity constraint,
utilizing a low-cost projection method. This approach significantly reduces iteration complexity and
eliminates the need for expensive hyperparameter tuning.

B THEORETICAL RESULTS

In this section, we present some theoretical properties of the DAG set and analyze the convergence of
the proposed method.

Lemma 2. The DAG set D is a conic set. Specifically, for any W ∈ D and α ≥ 0, we have αW ∈ D.
Additionally, the DAG set D includes the entire line, meaning that for any W ∈ D and α ∈ R,
αW ∈ D.

Proof. We begin by observing that 0 ∈ D, as a graph with no edges is trivially a DAG. Next, consider
any W ∈ D and α ∈ R \ {0}. Scaling W by α does not alter the structure of the graph; it only
changes the edge weights. Since the graph remains acyclic, αW ∈ D. Thus, the DAG set D satisfies
the stated properties.

Now, let us move to the subsets of DAG, which are based on a topological ordering π.
Definition 3. A topological ordering π of a directed graph is a linear ordering of its vertices such
that, for every directed edge (u, v) from vertex u to vertex v, u comes before v in the ordering. We
call Ord(W) a set of all possible topological orderings for DAG W and ord(W) is one of the
orderings.

For the graphs with d vertices, there are exactly d! distinct topological orderings.
Every topological ordering π corresponds to subspace of all DAGs which can have this topological
ordering, we call it π-subspace DAG.
Definition 4. A π-subspace Dπ is a set of all DAGs W such that π ∈ Ord(W).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Let us prove that π-subspace Dπ is a linear subspace.
Lemma 5. Dπ is a linear subspace, meaning for any W1 ∈ Dπ,W2 ∈ Dπ, α ∈ R, β ∈ R,
W = αW1 + βW2 ∈ Dπ .

Proof. We should simply note that any non-zero value in W1 corresponds to an edge between vertices
u and v such that v is after u in the ordering π. The same holds for W2. Hence, any non-zero value
in W holds the ordering π.

Next, we highlight that the DAG set D is a union of π-subspaces for all possible orderings π.
Lemma 6. The DAG set D is a union of all π-subspaces.

D = ∪πDπ.

Proof. For any DAG W ∈ D there exists a topological ordering π, hence W ∈ Dπ ∈ ∪πDπ . On the
other side, all elements of ∪πDπ are DAGs by definition and belongs to D.

Now, we move to the proposed method.

Theorem 7. For an L1-smooth function F (W) = Ex∼D [l(W;x)] restricted in a domain of radius
R, ∥x− y∥ ≤ R, ∀x, y ∈ dom F , consider A2 in the Algorithm 1 be chosen as Universal Stochastic
Gradient Method (Rodomanov et al., 2024). Running A2 for T SGD-type steps accessing σ1-
stochastic gradients (Assumption 1) in the π-subspace Dπ converges to a minimum of problem (8)
with additional subspace constraints at the rate

E

F (WT)− argmin
W∈Dπ,

ord(W)=π

F (W)

 ≤ O
(

σ1R√
T

+ L1R
2

T

)
.

Proof. A direct consequence of the convergence guarantees of the Universal Stochastic Gradient
Method, Theorem 4.2 of Rodomanov et al. (2024).

Theorem 8. For an L1-smooth function F (W) = Ex∼D [l(W;x)] restricted in a domain of radius
R, ∥x− y∥ ≤ R, ∀x, y ∈ dom F , Algorithm Algorithm 3 with Universal Stochastic Gradient
Method (Rodomanov et al., 2024) as A1 and A2 with converges to a local minimum of problem (8).

C DETAILED EXPERIMENT DESCRIPTION

Computing. Our experiments were carried out on a machine equipped with 80 CPUs and one
NVIDIA Quadro RTX A6000 48GB GPU. Each experiment was allotted a maximum wall time of 36
hours as in DAGMA Bello et al. (2022).

Graph Models. In our experimental simulations, we generate graphs using two established random
graph models:

• Erdős-Rényi (ER) graphs: These graphs are constructed by independently adding edges
between nodes with a uniform probability. We denote these graphs as ERk, where kd
represents the expected number of edges.

• Scale-Free (SF) graphs: These graphs follow the preferential attachment process as de-
scribed in Barabási & Albert (1999). We use the notation SFk to indicate a scale-free
graph with expected kd edges and an attachment exponent of β = 1, consistent with the
preferential attachment process. Since we focus on directed graphs, this model corresponds
to Price’s model, a traditional framework used to model the growth of citation networks.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

It is important to note that ER graphs are inherently undirected. To transform them into Directed
Acyclic Graphs (DAGs), we generate a random permutation of the vertex labels from 1 to d, then
orient the edges according to this ordering. For SF graphs, edges are directed as new nodes are added,
ensuring that the resulting graph is a DAG. After generating the ground-truth DAG, we simulate the
structural equation model (SEM) for linear cases, conducting experiments accordingly.

Metrics. The performance of each algorithm is assessed using the following four key metrics:

• Structural Hamming Distance (SHD): A widely used metric in structure learning that
quantifies the number of edge modifications (additions, deletions, and reversals) required to
transform the estimated graph into the true graph.

• True Positive Rate (TPR): This metric calculates the proportion of correctly identified
edges relative to the total number of edges in the ground-truth DAG.

• False Positive Rate (FPR): This measures the proportion of incorrectly identified edges
relative to the total number of absent edges in the ground-truth DAG.

• Runtime: The time taken by each algorithm to complete its execution provides a direct
measure of the algorithm’s computational efficiency.

• Stochastic gradient computations: Number of gradient computed.

Linear SEM. In the linear case, the functions are directly parameterized by the weighted adjacency
matrix W . Specifically, the system of equations is given by Xi = XWi + Ni, where W =
[W1| · · · |Wd] ∈ Rd×d, and Ni ∈ R represents the noise. The matrix W encodes the graphical
structure, meaning there is an edge Xj → Xi if and only if Wj,i ̸= 0. Starting with a ground-truth
DAG B ∈ {0, 1}d×d obtained from one of the two graph models, either ER or SF, edge weights were
sampled independently from Unif[−1,−0.05] ∪ [0.05, 1] to produce a weight matrix W ∈ Rd×d.
Using this matrix W, the data X = XW +N was sampled under the following three noise models:

• Gaussian noise: Ni ∼ N(0, 1) for all i ∈ [d],

• Exponential noise: Ni ∼ Exp(1) for all i ∈ [d],

• Gumbel noise: Ni ∼ Gumbel(0, 1) for all i ∈ [d].

Using these noise models, random datasets X ∈ Rn×d were generated by independently sampling
the rows according to one of the models described above. Unless specified otherwise, each simulation
generated n = 5000 training samples and a validation set of 10, 000 samples.

The implementation details of the baseline methods are as follows:

• NOTEARS Zheng et al. (2018)was implemented using the authors’ publicly available
Python code, which can be found at https://github.com/xunzheng/notears.
This method employs a least squares score function, and we used their default set of
hyperparameters without modification. We used the default choice of λ = 0.1 as in authors’
code.

• GOLEM Ng et al. (2020) was implemented using the authors’ Python code, avail-
able at https://github.com/ignavierng/golem, along with their PyTorch
version at https://github.com/huawei-noah/trustworthyAI/blob/
master/gcastle/castle/algorithms/gradient/notears/torch/
golem_utils/golem_model.py. We adopted the default hyperparameter settings
provided by the authors, specifically λ1 = 0.02 and λ2 = 5. For additional details of their
method, we refer to Appendix F in Ng et al. (2020)

• DAGMA Bello et al. (2022) was implemented using the authors’ Python code, which
is available at https://github.com/kevinsbello/dagma. We used the default
hyperparameters provided in their implementation.

Thresholding. Following the approach taken in previous studies, including the baseline methods
(Zheng et al., 2018; Ng et al., 2020; Bello et al., 2022), for all the methods, we apply a final
thresholding step of 0.3 to effectively reduce the number of false discoveries.

18

https://github.com/xunzheng/notears
https://github.com/ignavierng/golem
https://github.com/huawei-noah/trustworthyAI/blob/master/gcastle/castle/algorithms/gradient/notears/torch/golem_utils/golem_model.py
https://github.com/huawei-noah/trustworthyAI/blob/master/gcastle/castle/algorithms/gradient/notears/torch/golem_utils/golem_model.py
https://github.com/huawei-noah/trustworthyAI/blob/master/gcastle/castle/algorithms/gradient/notears/torch/golem_utils/golem_model.py
https://github.com/kevinsbello/dagma

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D EXPERIMENTS

Plots show performance of the algorithms ψDAG, GOLEM, DAGMA for combinations of number of
vertices d ∈ {10, 50, 100, 500, 1000, 3000, 5000, 10000}, graph types ∈ {ER,SF}, average density
of graphs k ∈ {2, 4, 6}, and noise types to be either Gaussian, Exponential, or Gumbel.

Plots are grouped by the noise type and the number of vertices of the graph and arranged into figures.

ER graph types: Figures 5 and 6 show performance on ER2 graphs, Figures 7 and 8 show perfor-
mance on ER4 graphs, Figure 9 shows performance on ER6 graphs.

SF graph types: Figures 10 and 11 show performance on SF2 graphs, Figures 12 and 13 show
performance on SF4 graphs, Figure 14 shows performance on SF6 graphs.

We report a functional value decrease compared to i) time elapsed and ii) number of gradients
computed, which also serves as a proxy of time.

Figure 6b shows that DAGMA requires a significantly larger amount of gradient computations
compared to both ψDAG and GOLEM.

D.1 SMALL TO MODERATE NUMBER OF NODES

Our experiments demonstrate that while number of nodes is small, d < 100, GOLEM is more stable
than DAGMA, and ψDAG method is the most stable. While DAGMA shows impressive speed for
smaller node sets, the number of iterations required is still higher than both GOLEM and our method.
Across all scenarios, ψDAG consistently demonstrates faster convergence compared to the other
approaches, requiring fewer iterations to reach the desired solution.

D.2 LARGE NUMBER OF NODES

For graphs with a large number of nodes d ∈ {5000, 10000}, we were unable to run neither of the
baselines, and consequently, Figure 15 includes only one algorithm. GOLEM was not feasible due to
its computation time exceeding 350 hours. DAGMA was impossible as its runs led to kernel crashes.
In all cases, we utilized a training set of 5,000 samples and a validation set of 10,000 samples.

D.3 DENSER GRAPHS

For a thorough comparison, in Figures 9 and 14, we compare graph structures ER6 and SF6 under
the Gaussian noise type. Plots indicate that while DAGMA exhibits a fast runtime when the number
of nodes is small, d < 100, it requires more iterations to achieve convergence. Algorithm ψDAG
consistently outperforms GOLEM and DAGMA in both training time and a number of stochastic
gradient computations, and the difference is more pronounced for a larger number of nodes and
denser graphs.

D.4 REAL DATA

In addition to demonstrating the effectiveness of our method on the most challenging subset of the
dataset Sachs et al. (2005b), we also evaluated its performance using the entire dataset of n = 7, 466
samples for training. As shown in Table 2, our method consistently outperforms the baselines
GOLEM and NOTEARS in terms of the FPR metric while achieving the same SHD as NOTEARS
and matching the TPR across all methods. Moreover, similar to previous results, DAGMA fails to
optimize the problem when applied to the entire dataset, further highlighting the robustness and
reliability of our approach.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Runtime, s

10 2

10 1

100
f(x

k)
f(x

)
DAG

GOLEM
DAGMA

0 1 2 3 4 5 6 7 8
Runtime, s

10 2

10 1

100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 1 2 3 4 5
Runtime, s

10 2

10 1

100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoch. gradient computations 1e7

10 2

10 1

100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoch. gradient computations 1e7

10 2

10 1

100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoch. gradient computations 1e7

10 2

10 1

100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(a) d = 10 vertices

0 1 2 3 4 5 6
Runtime, s

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 10 20 30 40 50
Runtime, s

10 1

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 1 2 3 4 5 6
Runtime, s

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Stoch. gradient computations 1e7

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Stoch. gradient computations 1e7

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoch. gradient computations 1e7

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(b) d = 50 vertices

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Runtime, s

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Runtime, s

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 5 10 15 20 25
Runtime, s

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5
Stoch. gradient computations 1e7

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5
Stoch. gradient computations 1e7

101f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(c) d = 100 vertices

Figure 5: Linear SEM methods on graphs of type ER2 with different noise distributions: Gaussian
(first), exponential (second), Gumbel (third).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
Runtime, s

101

102
f(x

k)
f(x

)

DAG
GOLEM
DAGMA

0 100 200 300 400 500 600
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 200 400 600 800 1000
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5
Stoch. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Stoch. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5
Stoch. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(a) d = 500 vertices

0 200 400 600 800 1000 1200 1400 1600
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 1000 2000 3000 4000 5000 6000 7000
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 1000 2000 3000 4000 5000 6000
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5
Stoch. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Stoch. gradient computations 1e7

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(b) d = 1000 vertices

0 10000 20000 30000 40000
Runtime, s

102f(x
k)

f(x
)

DAG
DAGMA

0 5000 10000 15000 20000 25000 30000 35000 40000
Runtime, s

102

103

f(x
k)

f(x
)

DAG
DAGMA

0 10000 20000 30000 40000 50000
Runtime, s

102

103

f(x
k)

f(x
)

DAG
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5
Stoch. gradient computations 1e7

102f(x
k)

f(x
)

DAG
DAGMA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Stoch. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
DAGMA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Stoch. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
DAGMA

(c) d = 3000 vertices

Figure 6: Linear SEM methods on graphs of type ER2 with different noise distributions: Gaussian
(first), exponential (second), Gumbel (third).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Runtime, s

10 1

100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Runtime, s

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 1 2 3 4 5 6
Runtime, s

10 1

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

10 1

100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Stoh. gradient computations 1e7

10 1

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Stoh. gradient computations 1e7

10 1

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(a) d = 10 vertices

0 20 40 60 80 100
Runtime, s

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 10 20 30 40 50 60
Runtime, s

100

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 20 40 60 80 100
Runtime, s

100

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

10 1

100

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

100

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(b) d = 50 vertices

0 10 20 30 40
Runtime, s

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 5 10 15 20 25
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 5 10 15 20 25 30
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

100

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5
Stoch. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Stoch. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(c) d = 100 vertices

Figure 7: Linear SEM methods on graphs of type ER4 with different noise distributions: Gaussian
(first), exponential (second), Gumbel (third).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500 600 700
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 200 400 600 800
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 100 200 300 400 500 600
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(a) d = 500 vertices

0 500 1000 1500 2000 2500 3000 3500
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 250 500 750 1000 1250 1500 1750 2000
Runtime, s

102

103

f(x
k)

f(x
) DAG

GOLEM
DAGMA

0 500 1000 1500 2000 2500 3000
Runtime, s

101

102

103

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(b) d = 1000 vertices

0 10000 20000 30000 40000 50000 60000
Runtime, s

102

103

f(x
k)

f(x
)

DAG
DAGMA

0 5000 10000 15000 20000 25000 30000 35000 40000
Runtime, s

102

103

f(x
k)

f(x
)

DAG
DAGMA

0 10000 20000 30000 40000 50000
Runtime, s

102

103

f(x
k)

f(x
)

DAG
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
DAGMA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Stoch. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
DAGMA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Stoch. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
DAGMA

(c) d = 3000 vertices

Figure 8: Linear SEM methods on graphs of type ER4 with different noise distributions: Gaussian
(first), exponential (second), Gumbel (third).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 2: Performance of the top-performing methods on the causal protein signaling
network dataset Sachs et al. (2005b). The threshold for all methods is 0.3.

SHD(↓) TPR (↑) FPR (↓) Total edges Reference
GOLEM 21 0.29 0.39 20 Ng et al. (2020)

NOTEARS 19 0.29 0.39 21 Zheng et al. (2018)

ψDAG 19 0.29 0.34 17 Algorithm 3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Runtime, s

101

2 × 100

3 × 100

4 × 100

6 × 100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

10 1

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(a) d = 10 vertices

0 10 20 30 40 50
Runtime, s

101

f(x
k)

f(x
) DAG

GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(b) d = 50 vertices

0 5 10 15 20 25 30
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(c) d = 100 vertices

0 100 200 300 400 500 600
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(d) d = 500 vertices

0 500 1000 1500 2000 2500
Runtime, s

102

103

f(x
k)

f(x
) DAG

GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(e) d = 1000 vertices

0 10000 20000 30000 40000 50000 60000 70000
Runtime, s

103

f(x
k)

f(x
)

DAG
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Stoch. gradient computations 1e7

103

f(x
k)

f(x
)

DAG
DAGMA

(f) d = 3000 vertices

Figure 9: Linear SEM methods on graphs of type ER6 with the Gaussian noise distribution.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Runtime, s

10 1

100
f(x

k)
f(x

)
DAG

GOLEM
DAGMA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Runtime, s

10 2

10 1

100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 1 2 3 4 5 6
Runtime, s

10 1

100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoh. gradient computations 1e7

10 1

100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoh. gradient computations 1e7

10 3

10 2

10 1

100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Stoh. gradient computations 1e7

10 1

100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(a) d = 10 vertices

0 20 40 60 80 100
Runtime, s

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 1 2 3 4 5
Runtime, s

10 2

10 1

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 5 10 15 20 25 30 35 40
Runtime, s

10 1

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoh. gradient computations 1e7

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 1 2 3 4 5
Stoh. gradient computations 1e6

101

2 × 100

3 × 100

4 × 100

6 × 100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoh. gradient computations 1e7

10 1

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(b) d = 50 vertices

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Runtime, s

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 2 4 6 8 10 12 14
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 2 4 6 8 10 12 14
Runtime, s

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoch. gradient computations 1e7

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoch. gradient computations 1e7

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5
Stoch. gradient computations 1e7

101f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(c) d = 100 vertices

Figure 10: Linear SEM methods on graphs of type SF2 with different noise distributions: Gaussian
(first), exponential (second), Gumbel (third).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500 600 700 800
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 500 1000 1500 2000 2500 3000 3500
Runtime, s

101

102

103

f(x
k)

f(x
)

DAG
GOLEM

0 1000 2000 3000 4000 5000 6000
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM

(a) d = 500 vertices

0 500 1000 1500 2000 2500
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 2000 4000 6000 8000 10000
Runtime, s

101

102

103

f(x
k)

f(x
)

DAG
GOLEM

0 2000 4000 6000 8000 10000 12000 14000 16000
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

101

102

103

f(x
k)

f(x
)

DAG
GOLEM

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM

(b) d = 1000 vertices

0 10000 20000 30000 40000
Runtime, s

102

103

f(x
k)

f(x
)

DAG
DAGMA

0 10000 20000 30000 40000 50000
Runtime, s

102

103

f(x
k)

f(x
)

DAG
DAGMA

0 10000 20000 30000 40000 50000 60000 70000
Runtime, s

102

103

f(x
k)

f(x
)

DAG
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5
Stoch. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5
Stoch. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
DAGMA

(c) d = 3000 vertices

Figure 11: Linear SEM methods on graphs of type SF2 with different noise distributions: Gaussian
(first), exponential (second), Gumbel (third).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Runtime, s

10 1

100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Runtime, s

10 2

10 1

100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 2 4 6 8 10
Runtime, s

10 1

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoh. gradient computations 1e7

10 1

100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoh. gradient computations 1e7

10 1

100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0
Stoh. gradient computations 1e7

100

2 × 100

3 × 100

4 × 100

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(a) d = 10 vertices

0 20 40 60 80 100
Runtime, s

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 10 20 30 40 50
Runtime, s

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 10 20 30 40 50
Runtime, s

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Stoh. gradient computations 1e7

10 1

100

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5
Stoh. gradient computations 1e7

100

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(b) d = 50 vertices

0 10 20 30 40
Runtime, s

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0 2 4 6 8 10 12 14
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5
Stoch. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(c) d = 100 vertices

Figure 12: Linear SEM methods on graphs of type SF4 with different noise distributions: Gaussian
(first), exponential (second), Gumbel (third).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM

0 2000 4000 6000 8000
Runtime, s

102

f(x
k)

f(x
)

DAG
GOLEM

0 500 1000 1500 2000 2500 3000 3500
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

101

102

103

f(x
k)

f(x
)

DAG
GOLEM

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM

(a) d = 500 vertices

0 250 500 750 1000 1250 1500 1750 2000
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM

0 2000 4000 6000 8000 10000 12000 14000
Runtime, s

102

103

f(x
k)

f(x
)

DAG
GOLEM

0 2000 4000 6000 8000 10000
Runtime, s

102

103

f(x
k)

f(x
)

DAG
GOLEM

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
GOLEM

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
GOLEM

(b) d = 1000 vertices

Figure 13: Linear SEM methods on graphs of type SF4 with different noise distributions: Gaussian
(first), exponential (second), Gumbel (third).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5
Runtime, s

10 1

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Stoh. gradient computations 1e7

10 1

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(a) d = 10 vertices

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Runtime, s

3 × 101

4 × 101

5 × 101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Stoh. gradient computations 1e7

100

101

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(b) d = 50 vertices

0 5 10 15 20 25
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM
DAGMA

(c) d = 100 vertices

0 1000 2000 3000 4000
Runtime, s

101

102

f(x
k)

f(x
)

DAG
GOLEM

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoh. gradient computations 1e7

101

102

f(x
k)

f(x
)

DAG
GOLEM

(d) d = 500 vertices

0 500 1000 1500 2000 2500 3000 3500
Runtime, s

102

103

f(x
k)

f(x
)

DAG
GOLEM

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Stoch. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
GOLEM

(e) d = 1000 vertices

0 10000 20000 30000 40000 50000 60000
Runtime, s

102

103

f(x
k)

f(x
)

DAG
GOLEM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Stoh. gradient computations 1e7

102

103

f(x
k)

f(x
)

DAG
GOLEM

(f) d = 3000 vertices

Figure 14: Linear SEM methods on graphs of type SF6 with the Gaussian noise distribution.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000 6000 7000
Runtime, s

102

103

f(x
k)

f(x
)

DAG

0 500 1000 1500 2000 2500 3000
Runtime, s

100

101

102

103

f(x
k)

f(x
)

DAG

0 2000 4000 6000 8000 10000
Stoh. gradient computations

101

102

103

f(x
k)

f(x
)

DAG

(a) ER2

0 2000 4000 6000 8000 10000 12000
Stoh. gradient computations

10 1

100

101

102

103

f(x
k)

f(x
)

DAG

(b) SF2

0 25000 50000 75000 100000 125000 150000 175000
Runtime, s

103

f(x
k)

f(x
)

DAG

0 25000 50000 75000 100000 125000 150000 175000
Runtime, s

103

104

f(x
k)

f(x
)

DAG

0 25000 50000 75000 100000 125000 150000 175000 200000
Stoh. gradient computations

103

f(x
k)

f(x
)

DAG

(c) ER4

0 25000 50000 75000 100000 125000 150000 175000 200000
Stoh. gradient computations

103

104

f(x
k)

f(x
)

DAG

(d) SF4

Figure 15: ψDAG method for graph types ER2, ER4, SF2 and SF4 graphs with d = 10000 and
Gaussian noise. Other linear SEM methods do not converge in less than 350 hours.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000
Runtime, s

102
f(x

k)
f(x

) DAG
DAG Weighted

DAGMA

0.0 0.5 1.0 1.5 2.0 2.5
Stoch. gradient computations 1e7

102

f(x
k)

f(x
)

DAG
DAG Weighted

DAGMA

Figure 16: Comparison of ψDAG, ψDAG weighted and DAGMA for ER2 graph with d = 3000
nodes and Gaussian noise.

E WEIGHTED PROJECTION

Inspired by the importance sampling, we considered adjustment of the projection method by weights.
Specifically, we considered the elements of the W to be weighted element-wisely by the second

directional derivatives of the objective function, L[i][j]
def
=

(
d

dW[i][j]

)2

EX∼D [l(W;X)]. As we
don’t have access to the whole distribution D, we approximate it by the mean of already seen samples,

Lk[i][j]
def
=

(
d

dW[i][j]

)2
1

k

k−1∑
k=0

l (W;Xk) =
1

k

k−1∑
t=0

(Xk[j])
2
. (13)

Weights (13) are identical for whole columns; hence, they impose storing only one vector. Updating
them requires a few element-wise vector operations.

0 10000 20000 30000 40000 50000 60000 70000 80000
Runtime, s

102

103

f(x
k)

f(x
)

DAG
DAG Weighted

0 10000 20000 30000 40000
Runtime, s

103

f(x
k)

f(x
)

DAG
DAG Weighted

0.0 0.2 0.4 0.6 0.8 1.0
Stoh. gradient computations 1e6

102

103

f(x
k)

f(x
)

DAG
DAG Weighted

(a) d = 3000 vertices

0 25000 50000 75000 100000 125000 150000 175000 200000
Stoh. gradient computations

103

f(x
k)

f(x
)

DAG
DAG Weighted

(b) d = 5000 vertices

Figure 17: ψDAG method with weighted projection for graph types ER4 and Gaussian noise.

Figures 16 and 17 show that this weighting can lead to an improved convergence (slightly faster
convergence to a slightly lower functional value) without imposing any extra gradient computation.
However, we noticed that the improvement over runtime is not consistent across different experiments;
hence, for simplicity, we deferred this to the appendix.

31

	Introduction
	Background
	Graph Notation
	Linear DAG and SEM
	Most Related Literature

	Stochastic Approximation for DAGs
	Stochastic Reformulation

	Scalable Framework
	Optimization for the fixed vertex ordering
	Method

	Experiments
	Synthetic Data Generation
	Scalability Comparison
	Real Data

	Conclusion
	Related Work
	Theoretical Results
	Detailed Experiment Description
	Experiments
	Small to Moderate Number of Nodes
	Large Number of Nodes
	Denser Graphs
	Real Data

	Weighted Projection

