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Abstract001

With the continuous advancement in the per-002
formance of large language models (LLMs),003
their demand for computational resources and004
memory has significantly increased, which005
poses major challenges for efficient infer-006
ence on consumer-grade devices and legacy007
servers. These devices typically feature rela-008
tively weaker GPUs and stronger CPUs. Al-009
though techniques such as parameter offload-010
ing and partial offloading can alleviate GPU011
memory pressure to some extent, their effec-012
tiveness is limited due to communication la-013
tency and suboptimal hardware resource utiliza-014
tion. To address this issue, we propose Dove-015
tail—a lossless inference acceleration method016
that leverages the complementary characteris-017
tics of heterogeneous devices and the advan-018
tages of speculative decoding. Dovetail de-019
ploys a draft model on the GPU to perform020
preliminary predictions, while a target model021
running on the CPU validates these outputs.022
By reducing the granularity of data transfer,023
Dovetail significantly minimizes communica-024
tion overhead. To further improve efficiency,025
we optimize the draft model specifically for026
heterogeneous hardware environments by re-027
ducing the number of draft tokens to lower028
parallel verification latency, increasing model029
depth to enhance predictive capabilities, and030
introducing a Dynamic Gating Fusion (DGF)031
mechanism to improve the integration of fea-032
ture and embedding information. We conduct033
comprehensive evaluations of Dovetail across034
various consumer-grade GPUs, covering mul-035
tiple tasks and mainstream models. Experi-036
mental results on 13B models demonstrate that037
Dovetail achieves inference speedups ranging038
from 1.79× to 10.1× across different devices,039
while maintaining consistency and stability in040
the distribution of generated texts.041

1 Introduction042

In recent years, with the continuous growth of043

model parameter scales, large language models044
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Figure 1: The architecture of Dovetail, highlighting a
collaborative inference mode where the target model is
deployed on the CPU, and the draft model is deployed
on the GPU.

(LLMs) (Touvron et al., 2023; Achiam et al., 2023) 045

have achieved significant performance improve- 046

ments across multiple domains. However, their 047

substantial computational and memory demands 048

impose higher requirements on hardware, pos- 049

ing severe challenges for deployment on personal 050

or consumer-grade devices, including outdated 051

servers from the pre-large-model era. 052

We observe that these devices and small-scale 053

servers are typically equipped with GPUs with lim- 054

ited memory, making it difficult to fully load LLMs. 055

For instance, a 7B model requires approximately 056

14GB of memory at 16-bit precision, far exceed- 057

ing the capacity of consumer-grade GPUs such as 058

the NVIDIA RTX 2080. Currently, the primary 059

strategies for conducting inference without com- 060

promising model performance are offloading and 061

partial offloading. The former temporarily stores a 062

portion of parameters in host memory and dynami- 063

cally loads them into the GPU, while the latter di- 064

rectly executes part of the computation on the CPU, 065

thereby alleviating memory pressure. As shown in 066

Figure 2, compared to pure CPU inference, offload- 067

ing1 reduces inference speed to 0.45x the original 068

due to high communication latency between the 069

1https://github.com/yandex-research/specexec
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Figure 2: The speedup ratios of different models were tested on consumer-grade devices with temperature = 0.
"Vanilla" refers to the existing lossless inference method, while "SD" stands for speculative decoding, including the
effects when applying the SD algorithm on top of the Vanilla method.

CPU and GPU. Partial offloading improves this to070

1.68x, but the acceleration effect is constrained by071

GPU memory capacity, diminishing as available072

memory decreases.073

Speculative Decoding (Leviathan et al., 2023;074

Chen et al., 2023) is an emerging method for ac-075

celerating LLM inference. It leverages a smaller076

model to generate multiple draft tokens, which are077

then verified in parallel by the target model, en-078

abling the generation of multiple tokens in a sin-079

gle forward pass without losing performance. Al-080

though SpecExec (Svirschevski et al., 2024) applies081

this technique to offloading scenarios to acceler-082

ate inference, it still suffers from high communi-083

cation latency, inefficient utilization of hardware084

resources, and requires at least 5.9 GB of GPU085

memory in the current test environment, making086

it difficult to deploy effectively on devices with087

lower memory. To address these issues, we propose088

Dovetail2, a heterogeneous CPU-GPU collabora-089

tive speculative decoding mechanism, as illustrated090

in Figure 1. In this setup, the draft model is de-091

ployed on a consumer-grade GPU, while the target092

model executes on the CPU. By reducing the gran-093

ularity of data transfer from Transformer blocks to094

tokens, Dovetail significantly reduces communica-095

tion overhead. Additionally, thanks to the flexible096

parameter scale of the draft model (ranging from097

68M to 3B), Dovetail can operate efficiently on098

most consumer-grade GPUs.099

As shown in Figure 2, when directly applying100

speculative decoding algorithms on heterogeneous101

architectures, the acceleration effect is only im-102

proved by 1.57 times. To further enhance inference103

2https://anonymous.4open.science/status/
test-ED55

speed on such architectures, we explore the char- 104

acteristics of speculative decoding algorithms in 105

this context and optimize the existing approach as 106

follows: By reducing the number of candidate draft 107

tokens, we linearly decrease the latency of paral- 108

lel verification, effectively mitigating performance 109

bottlenecks on low-end hardware. Given the sig- 110

nificant increase in target model latency, adopting 111

a larger draft model becomes feasible. Based on 112

EAGLE-2 (Li et al., 2024a), we redesign the draft 113

model by introducing DGF to dynamically adjust 114

the fusion weights between hidden states and token 115

embeddings, avoiding information loss and imbal- 116

ance in feature representation fusio. Furthermore, 117

by expanding the draft model’s Transformer blocks 118

from single to multiple, we significantly narrow 119

the performance gap between the draft and target 120

models while improving prediction performance 121

and increasing the average acceptance length. 122

Our main contributions include: 123

1. We propose a novel heterogeneous speculative 124

decoding paradigm that fully leverages the 125

characteristics of heterogeneous architectures 126

and speculative decoding. By deploying the 127

target model’s verification phase on the CPU, 128

this paradigm significantly improves hardware 129

resource utilization efficiency. 130

2. We optimize the existing draft model for low- 131

end hardware in heterogeneous architectures, 132

achieving a better balance between latency 133

and performance. 134

3. We develop a system that requires only 3GB 135

of VRAM to achieve an inference speed of 136

4.62 to 5.86 tokens per second for models such 137

as LLaMA2-Chat 7B, demonstrating a 2.25x 138
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performance improvement on MT-bench com-139

pared to existing methods. When the VRAM140

is increased to 7GB, the inference speed fur-141

ther improves to 6.5 to 8 tokens per second,142

resulting in a performance enhancement of143

3.08x. On the GeForce RTX 3090, tests on144

LLaMA2-Chat 13B indicate that our method145

achieves a maximum speedup ratio of 10.14x.146

2 Preliminaries147

2.1 Effectiveness of Heterogeneous148

Speculative Decoding149

In resource-constrained environments, computa-150

tional resources typically consist of a combina-151

tion of CPUs and small-scale GPUs, such as CPUs152

paired with discrete GPUs (dGPUs) or integrated153

GPUs (iGPUs) in personal devices, as well as CPUs154

paired with small-scale GPUs in servers. These155

configurations are not specifically designed for AI,156

and mainstream methods achieve large language157

model (LLM) inference through parameter offload-158

ing. Given the characteristics of computational159

resource configurations and the properties of specu-160

lative decoding, we propose a heterogeneous spec-161

ulative decoding method to accelerate LLM infer-162

ence. However, this method may not perform well163

in all combinations of main processors and acceler-164

ators. Therefore, we employ stochastic analysis to165

reveal the correlation between hardware and com-166

putational configurations. For a detailed analysis,167

please refer to Appendix B.168

2.2 Factors Affecting Speculative Decoding169

Speedup170

The time for the target model to decode a single to-171

ken is TT , while the time for the speculative decod-172

ing algorithm to decode a single token is T SD
Avg . The173

performance analysis formula (Sadhukhan et al.,174

2025) can be expressed as:175

T SD
Avg

TT
=

1

Ω(γ, α)

(
γ · TD

TT
+

TV (γ)

TT

)
(1)176

where α is the acceptance rate, γ is the number of177

candidate draft tokens, Ω(γ, α) is the number of178

accepted tokens in a single parallel verification, TD179

is the time for the draft model to decode a single180

token, and TV (γ) is the time for the target model181

to verify γ tokens in parallel.182
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Figure 3: Explore the interrelationship between the aver-
age acceptance length Ω(γ, α), parallel validation time
TV (γ), and speedup ratio of the target model under
different candidate draft tokens γ.

The key factors influencing the acceleration ef- 183

fect include: TD/TT , TV (γ)/TT , and Ω(γ, α). Ex- 184

periments show that in resource-constrained het- 185

erogeneous architectures, TD/TT approaches zero, 186

and Ω(γ, α) remains constant. However, due to 187

the low parallelism of CPUs (Yin et al., 2021), 188

TV (γ)/TT increases significantly, leading to a de- 189

cline in overall acceleration performance. 190

The increase in TV (γ) shifts the primary bot- 191

tleneck of heterogeneous speculative decoding to 192

the parallel verification process of the target model. 193

Reducing the number of draft tokens can lower 194

TV (γ), but it also shortens Ω(γ, α). Therefore, a 195

balance must be struck between the two. As shown 196

in Figure 3, reducing the number of draft tokens lin- 197

early decreases verification latency. Although the 198

average acceptance length is reduced, the overall 199

inference speed still improves. 200

As TV (γ) decreases and stabilizes, the primary 201

bottleneck shifts to Ω(γ, α). Increasing α is typi- 202

cally accompanied by an increase in TD. Research 203

by DSD (Yan et al., 2024) indicates that enlarg- 204

ing the parameter size of the draft model can en- 205

hance Ω(γ, α). However, the continuous rise in TD 206

causes the overall inference speed to first increase 207

and then decrease. In heterogeneous architectures, 208

the increase in TT is much greater than that in 209

TD, resulting in a significant reduction in TD/TT . 210

This allows for the deployment of draft models 211

with larger parameter sizes, thereby increasing α, 212

extending Ω(γ, α), and ultimately improving the 213

overall inference speed. 214

Based on this, the key to optimizing the per- 215

formance of heterogeneous speculative decoding 216

lies in: linearly reducing TV (γ) by decreasing γ, 217

while employing draft models with larger parame- 218

ter sizes to increase α, thereby enhancing Ω(γ, α) 219

and achieving overall performance optimization. 220
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Figure 4: The pipeline of heterogeneous collaborative
speculative decoding depicts the computational proce-
dure. In this context, N and M denote the number of
layers in the target model and the draft model, respec-
tively.

3 Method221

In this section, we provide a detailed description of222

the implementation of Dovetail.223

3.1 CPU/GPU Heterogeneous Architecture224

Dovetail adopts a CPU/GPU heterogeneous archi-225

tecture, deploying the draft model on the GPU and226

the target model on the CPU to fully leverage the227

advantages of heterogeneous computing. As shown228

in Figure 4, the target model processes the input229

prompt and generates the hidden states required by230

the draft model, which are transmitted to the GPU231

along with the tokens for draft token generation.232

The draft model generates multiple tokens through233

multi-round autoregressive decoding, dynamically234

organizing them into a tree structure. Subsequently,235

the top-γ tokens with the highest probabilities are236

selected as candidates and sent to the CPU-based237

target model for parallel verification. The target238

model computes the logits of the candidate tokens239

in a single forward pass and applies a speculative240

sampling algorithm to determine the accepted to-241

kens. The accepted tokens are returned to the GPU-242

based draft model for the next round of draft tree243

generation.244

3.2 Dynamic Gated Fusion245

In EAGLE-2, the draft model requires the fusion of246

hidden states and token embeddings to address the247

uncertainty of hidden states before inference. The248

current method simply concatenates the two and249

maps them to the hidden state dimension through250

a single linear transformation. However, this ap-251

proach has limitations: (1) it may cause the model252

to overly rely on linear transformations, neglect-253

ing the deep interaction between hidden states and254

Linear

X X

+

1-

Linear

||

Linear

σ

h1 h2

Hidden State Token Embedding

SiLU

Figure 5: Schematic diagram of the DGF. Hidden State
represents the second-to-top hidden state in the target
LLM, “||” denotes concatenation, “σ” represents the
sigmoid function, and “x” denotes the multiplication
mechanism.

token embeddings; (2) the fixed linear layer lacks 255

flexibility when processing features from differ- 256

ent levels, unable to dynamically adjust the fusion 257

process based on context, which may lead to insuf- 258

ficient emphasis on critical information and affect 259

fusion performance. To address these issues, we 260

propose the Dynamic Gated Fusion (DGF) module, 261

inspired by multimodal feature fusion (Ovalle et al., 262

2017). As shown in Figure 5, the DGF module 263

first applies linear transformations to the hidden 264

states and token embeddings, generating feature 265

representations h1 and h2, which are then concate- 266

nated into a joint feature vector. A linear layer 267

and sigmoid activation function generate gating 268

values to dynamically adjust the contribution ra- 269

tios of h1 and h2, and a weighted sum produces 270

the fused feature representation, effectively captur- 271

ing their interaction. Compared to the method of 272

concatenation followed by linear transformation, 273

DGF adaptively regulates the interaction strength 274

between hidden states and token embeddings and 275

dynamically adjusts the fusion ratio based on in- 276

put scenarios, enhancing the model’s expressive 277

power in complex contexts while reducing the risk 278

of information loss or fusion imbalance caused by 279

global linear transformations. 280

3.3 Multiple Transformer Blocks 281

In high-performance hardware environments, the 282

latency of the draft model is the primary bottleneck 283

for the speedup ratio of speculative decoding al- 284

gorithms. Therefore, designing the draft model re- 285

quires balancing parameter scale and prediction ac- 286

curacy. Typically, the draft model adopts a smaller 287

parameter scale, such as a single Transformer block 288

of the target model, to achieve significant inference 289
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Category Details
Server Intel Xeon Silver 4214R @ 2.40GHz (24 cores)

NVIDIA RTX 2080 SUPER (8GB VRAM)
PCIe Gen 3x16

Server Intel Xeon Silver 4310 @ 2.10GHz (24 cores)
NVIDIA RTX 3090 (24GB VRAM)

PCIe Gen 4x16
PC Intel Core i5-9300H @ 2.40GHz (4 cores)

NVIDIA GTX 1050 Mobile (4GB VRAM)
PCIe Gen 3x8

Table 1: Hardware Configurations Employed in the
Experiment.

acceleration. However, in resource-constrained het-290

erogeneous architectures, this design often leads291

to insufficient performance. As discussed in Sec-292

tion 2.2, the increased parallel verification time of293

the target model provides opportunities for opti-294

mizing the draft model. Although the Dynamic295

Gated Fusion (DGF) module can effectively inte-296

grate information from different layers to improve297

performance, its single-Transformer-block architec-298

ture limits its ability to learn deep abstract features299

of the target model and align feature distributions,300

constraining prediction accuracy.301

Based on this, we propose extending the draft302

model to a multi-block architecture with M Trans-303

former blocks, as shown in Figure 4. This extension304

significantly increases the parameter scale, enhanc-305

ing the nonlinear representation capability of the306

draft model, enabling it to more accurately approxi-307

mate the complex representation space of the target308

model and more effectively capture and align its309

feature distributions, thereby improving prediction310

accuracy, extending the average acceptance length,311

and accelerating overall inference. However, in312

heterogeneous architectures, when the number of313

Transformer blocks in the draft model exceeds a314

certain threshold, computational latency becomes315

a bottleneck. Detailed analysis and justification are316

provided in Section 4.2.2.317

4 Experiments318

Hardware: To validate the versatility of Dovetail319

in low-end hardware environments, tests were con-320

ducted in two representative scenarios: a server321

from the pre-large-model era and a personal com-322

puter. Detailed configurations are presented in Ta-323

ble 1.324

Models: In the evaluation process, LLaMA2-325

Chat 7B, 13B and Vicuna 13B were selected as326

target models to cover the performance of models327

at different scales.328

Tasks: To comprehensively assess the perfor- 329

mance of the models across various tasks, multiple 330

datasets were utilized: MT-bench (Zheng et al., 331

2023) for dialogue tasks, HumanEval (Chen et al., 332

2021) for code generation, GSM8K (Cobbe et al., 333

2021) for mathematical reasoning, and the Alpaca 334

dataset (Taori et al., 2023) for instruction-following 335

tasks. 336

Metrics: Given that speculative decoding inher- 337

ently achieves lossless acceleration, the average 338

acceptance length τ and the speedup ratio were 339

chosen as the primary metrics to evaluate the accel- 340

eration performance of the target LLMs. 341

In the server configuration, the dynamic tree 342

width and depth were set to 10 and 7, respectively, 343

with 16 candidate draft tokens. In terms of model 344

precision, the target model on the CPU employed 345

32-bit weights, while the draft model on the GPU 346

used 16-bit weights. For the personal computer, the 347

dynamic tree width and depth were adjusted to 10 348

and 4, respectively, with 7 candidate draft tokens. 349

Due to the memory constraints of the personal com- 350

puter, the target model on the CPU utilized 8-bit 351

weights (obtained through PyTorch (Paszke et al., 352

2017) dynamic quantization), while the draft model 353

on the GPU continued to use 16-bit weights. 354

4.1 Result 355

Table 2 presents the average acceptance lengths and 356

speedup ratios of various methods across different 357

models and temperatures. Our method achieves the 358

highest speedup ratio in all tasks presented in the 359

table. Specifically, the draft model optimized for 360

heterogeneous architectures outperforms Vanilla 361

EAGLE-2. Vanilla EAGLE-2 applies the EAGLE- 362

2 algorithm directly on heterogeneous architectures 363

with 60 draft tokens, whereas other methods utilize 364

16 draft tokens. Although reducing the number 365

of draft tokens decreases the average acceptance 366

length of EAGLE-2, its average speedup ratio im- 367

proves from 1.67x to 2.06x. 368

A straightforward approach to increasing the 369

parameter size of the draft model is to employ 370

smaller models from the same series as the draft 371

model. These smaller models exhibit behavioral 372

characteristics highly consistent with the target 373

model, significantly enhancing the average accep- 374

tance length. However, while TinyLlama-1.1B 375

(Zhang et al., 2024b) and ShearedLlama-1.3B (Xia 376

et al., 2024b) achieve average acceptance lengths 377

of 4.88 and 4.78, respectively, the higher draft la- 378

tency offsets the speedup gains from increased ac- 379
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MT-bench HumanEval GSM8K Alpaca Mean

Model Method Speedup τ Speedup τ Speedup τ Speedup τ Speedup τ

Temperature=0

L2 7B

Vanilla EAGLE-2 1.62x 4.75 1.90x 5.61 1.63x 4.97 1.54x 4.65 1.67x 5.00
ShearedLlama-1.3B 1.80x 4.75 2.10x 5.48 1.69x 4.41 1.68x 4.47 1.82x 4.78

TinyLlama-1.1B 1.89x 4.89 2.17x 5.70 1.69x 4.38 1.69x 4.57 1.86x 4.88
EAGLE-2 1.99x 3.95 2.32x 4.69 1.99x 4.01 1.93x 3.83 2.06x 4.12

Ours 2.25x 4.73 2.77x 5.90 2.20x 4.71 2.17x 4.62 2.35x 4.99

V 13B
EAGLE-2 2.19 4.25 2.60 4.91 2.01x 4.22 1.88x 3.77 2.17x 4.29

Ours 2.50x 5.00 3.19x 6.25 2.57x 5.12 2.35x 4.51 2.65x 5.22

Temperature=1

L2 7B

Vanilla EAGLE-2 1.54x 4.49 1.77x 5.23 1.63x 4.90 1.50x 4.41 1.61x 4.76
ShearedLlama-1.3B 1.69x 4.37 1.87x 4.83 1.71x 4.52 1.61x 4.21 1.72x 4.48

TinyLlama-1.1B 1.78x 4.53 1.94x 5.00 1.66x 4.35 1.67x 4.33 1.76x 4.55
EAGLE-2 1.88x 3.67 2.14x 4.25 1.96x 3.98 1.81x 3.60 1.95x 3.89

Ours 2.12x 4.38 2.49x 5.34 2.16x 4.68 2.02x 4.24 2.20x 4.66

V 13B
EAGLE-2 2.01x 3.62 2.27x 4.18 1.92x 3.73 1.71x 3.43 1.98 3.74

Ours 2.21x 4.17 2.62x 5.02 2.24x 4.43 2.07x 4.04 2.29 4.42

Table 2: A comparison of speedup ratios and average acceptance length τ for different methods on heterogeneous
architectures with GeForce RTX 2080 SUPER, where L2 represents LLaMA2-Chat and V represents Vicuna.

Method MT-bench HumanEval

Speedup τ PM Speedup τ PM

L2 7B (GeForce RTX 2080 SUPER)

CPU-only 1x(2.14t/s) - - 1x(2.12t/s) - -
Offload 0.45x - 7.44 0.45x - 7.44

SpecExec 2.36x 7.43 7.14 2.98x 10.10 7.32
Dovetail 3.08x 4.61 7.40 3.78x 5.90 7.44

L2 7B (GeForce RTX 3090)

CPU-only 1x(2.35t/s) - - 1x(2.34t/s) - -
Offload 0.83x - 7.44 0.83x - 7.44

SpecExec 3.95x 7.38 7.14 4.92x 10.05 7.32
Dovetail 4.05x 4.60 7.40 4.99x 5.91 7.44

L2 13B (GeForce RTX 3090)

CPU-only 1x(1.20t/s) - - 1x(1.22t/s) - -
SpecExec 4.85x 8.23 22.5 7.10x 13.38 22.7
Dovetail 7.66x 4.53 21.9 10.14x 6.26 22.0

Table 3: Speedup ratios of different methods at temper-
ature = 0, with PM (peak memory) in GB and tokens
generated per second denoted as t/s, where L2 repre-
sents LLaMA2-Chat.

ceptance lengths in heterogeneous architectures,380

resulting in overall speedup performance that is381

only marginally better than Vanilla EAGLE-2. In382

contrast, Dovetail achieves an average acceptance383

length of 4.99 across four tasks, surpassing the384

smaller models in the same series while maintain-385

ing low draft latency, thus delivering the best per-386

formance across all tasks.387

In Table 2, the peak memory consumption for388

Dovetail-related experiments is 2.95GB. When the389

memory capacity of consumer-grade GPUs ex- 390

ceeds 3GB, certain layers of the target model can 391

be loaded onto the GPU for further acceleration. 392

As shown in Table 3, on the GeForce RTX 3090, 393

our method achieves a speedup ratio of 10.14x 394

for LLaMA2-Chat 13B on HumanEval, surpass- 395

ing SpecExec’s 7.10x. This is primarily because 396

SpecExec, based on offloading methods, still incurs 397

significant communication latency, which partially 398

offsets the speedup gains from increased average 399

acceptance lengths. 400

In configurations where GPU performance sig- 401

nificantly exceeds CPU performance, scenarios of 402

CPU-GPU performance imbalance can be simu- 403

lated. As illustrated in Table 3, with enhanced 404

GPU performance and improved PCIe bandwidth, 405

the performance of offloading methods improves, 406

with the speedup ratio for LLaMA2-Chat 7B in- 407

creasing from 0.45x on the GeForce RTX 2080 SU- 408

PER to 0.83x on the GeForce RTX 3090. However, 409

this also results in a less pronounced speedup ratio 410

improvement for Dovetail compared to SpecExec 411

on the GeForce RTX 3090 than on the GeForce 412

RTX 2080 SUPER. Nevertheless, Dovetail still 413

maintains a superior speedup ratio over SpecExec, 414

demonstrating its robust adaptability. 415

In personal computing environments, LLM in- 416

ference is constrained by CPU memory and GPU 417

VRAM capacity, necessitating the use of quantiza- 418

tion techniques to reduce computational and stor- 419
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Draft/Tragt Model Method Tokens/Sec Speedup τ

- / L2 7B gtqp-4bit Offload 0.45 0.12x -
- / L2 7B-8bit - / CPU-only 3.65 1x -

EAGLE-2 / L2 7B-8bit GPU/CPU 6.10 1.67x 3.51
Ours / L2 7B-8bit GPU/CPU 6.35 1.74x 3.78

- / V 13B-8bit - / CPU-only 1.88 1x -
EAGLE-2 / V 13B-8bit GPU/CPU 3.19 1.69x 3.61

Ours / V 13B-8bit GPU/CPU 3.36 1.79x 3.85

Table 4: The speedup ratios of different methods
were evaluated on an NVIDIA GTX 1050 using the
HumanEval dataset, with the temperature set to 0.
Here, L2 denotes LLaMA2-Chat, V represents Vicuna.
GPU/CPU represents the heterogeneous deployment
method.

age overhead. It is important to emphasize that420

quantization algorithms directly affect model ac-421

curacy, and our primary optimization goal is to422

enhance the inference speed of quantized models423

in resource-constrained environments rather than424

their accuracy. As shown in Table 4, applying Py-425

Torch dynamic quantization to convert the target426

model to 8-bit allows it to be fully loaded into the427

CPU memory of most personal computers. When428

combined with heterogeneous speculative decoding429

algorithms, the inference speeds of LLaMA2-Chat430

7B and Vicuna 13B increase to 6.35 and 3.36 to-431

kens per second, respectively. However, due to432

the limited parallel computing capability of CPUs433

in personal computing environments, the number434

of candidate tokens during the verification phase435

is constrained, leading to reduced average accep-436

tance lengths and significantly lower speedup per-437

formance compared to server environments. For438

more details, please refer to Appendix C.3.439

4.2 Ablation Study440

In this section, we conducted an ablation study441

to explore the impact of DGF and multiple Trans-442

former blocks on model performance. For more443

details on the tests, please refer to Appendix C.444

4.2.1 Dynamic Gating Fusion445

To validate the effectiveness of DGF, we conducted446

a comparative analysis against a baseline method447

from EAGLE-2, in which token embeddings are448

linearly combined with hidden states. As shown in449

Table 5, the results demonstrate that incorporating450

DGF significantly improves both the average ac-451

ceptance length and speedup ratio on the MT-bench452

and HumanEval datasets. These findings highlight453

the ability of DGF to effectively leverage input in-454

formation from multiple sources and dynamically455

Method Lparameters MT-bench HumanEval

Speedup τ Speedup τ

w/o both 0.22B 1.99x 3.95 2.32x 4.69
w/ DGF 0.25B 2.05x 4.06 2.42x 4.89

w/ DGF + 1 0.44B 2.13x 4.31 2.62x 5.38
w/ DGF + 2 0.63B 2.21x 4.53 2.72x 5.65
w/ DGF + 3 0.81B 2.23x 4.62 2.74x 5.82
w/ DGF + 4 1.00B 2.25x 4.73 2.77x 5.90
w/ DGF + 5 1.19B 2.26x 4.83 2.75x 5.98

Table 5: Ablation experiment results on a heterogeneous
architecture using GeForce RTX 2080 SUPER, with the
temperature set to 0 for LLaMA2-Chat-7B. Lparameters
denotes the model’s learnable parameters. w/o both
indicates using only one layer, w/ DGF indicates using
one layer with DGF, w/ DGF + m indicates using w/
DGF with an additional m Transformer blocks.

adjust the contribution of each source, enabling 456

more efficient and adaptive feature fusion. 457

4.2.2 Multiple Transformer Blocks 458

To evaluate the impact of the draft model’s pa- 459

rameter scale on inference speed, we gradually in- 460

creased the number of Transformer blocks in the 461

draft model from 1 to 6. As shown in Table 5, in- 462

creasing the number of Transformer blocks from 463

1 to 5 led to a gradual improvement in prediction 464

accuracy, which in turn resulted in a correspond- 465

ing increase in average acceptance length and a 466

steady rise in the speedup ratio. This indicates 467

that increasing the number of Transformer blocks 468

enables the model to capture more complex fea- 469

tures, thereby aligning the draft model’s feature 470

distribution more closely with that of the target 471

model. However, when the number of Transformer 472

blocks reached 6, while both the average accep- 473

tance length and speedup ratio improved signifi- 474

cantly on the MT-bench dataset, the speedup ratio 475

on the HumanEval dataset slightly decreased de- 476

spite a marked improvement in average acceptance 477

length. This phenomenon can be attributed to the 478

fact that, at this stage, the inference time during 479

the draft phase becomes the primary bottleneck. 480

The additional parameters significantly increase 481

the draft computation time, which offsets the accel- 482

eration benefits gained from the improved average 483

acceptance length. 484

5 Related work 485

5.1 Heterogeneous Architecture 486

Transformer (Vaswani, 2017) and its variants have 487

emerged as the dominant architecture for LLMs. 488

7



However, the increasing scale of these models has489

led to inference speed being constrained by the490

memory capacity of accelerators. To address this491

challenge, researchers have proposed various com-492

pression techniques, such as quantization (Hubara493

et al., 2018; Xiao et al., 2023; Frantar et al., 2022;494

Liu et al., 2024; Yuan et al., 2024), pruning (Gale495

et al., 2019; Liu et al., 2023), and knowledge distil-496

lation (Sanh et al., 2019; Tu et al., 2020; Wen et al.,497

2023). However, these methods often come at the498

cost of degraded generation quality. To achieve499

lossless inference, offloading stores parameters ex-500

ceeding GPU capacity in CPU memory and dy-501

namically loads them to the GPU when needed.502

However, 99.5% of the time in single-batch infer-503

ence is spent on data transfer (Song et al., 2024),504

significantly increasing latency. Partial offloading505

(Gerganov, 2023) directly computes the excess pa-506

rameters on the CPU and transfers intermediate507

results to the GPU for further processing, but its508

performance remains constrained by the computa-509

tional capabilities of the CPU and the memory ca-510

pacity of the GPU. Future research aims to combine511

the characteristics of models with the specific ad-512

vantages of heterogeneous architectures to achieve513

more efficient inference acceleration. For further514

details, please refer to Appendix D.515

5.2 Speculative Decoding516

Speculative decoding is an emerging lossless ac-517

celeration method based on the draft-then-verify518

paradigm (Xia et al., 2024a), which can be outlined519

from the following three aspects.520

5.2.1 Obtaining Draft Tokens521

For certain target models (Touvron et al., 2023;522

Yang et al., 2024), smaller models from the same se-523

ries can be directly used as draft models (Leviathan524

et al., 2023) without requiring additional training525

or modification. When small models from the same526

series are unavailable, the draft model must be527

trained from scratch, or draft models or draft to-528

kens can be derived from the target model. Draft529

models can be obtained from target models using530

knowledge distillation (Zhou et al., 2023) or quan-531

tization (Miao et al., 2023), or by incorporating532

early exit mechanisms (Zeng et al., 2024) and layer-533

skipping techniques (Zhang et al., 2024a) to con-534

clude the inference process earlier, thus generating535

draft tokens.Additionally, non-autoregressive or au-536

toregressive prediction heads (Cai et al., 2024; Li537

et al., 2024b) can be incorporated into the target538

model to generate draft tokens. A draft model can 539

also be composed of multiple smaller models, lever- 540

aging a staged (Spector and Re, 2023) or cascaded 541

approach(Chen et al., 2024) to generate draft to- 542

kens. 543

5.2.2 Organizing Draft Tokens 544

In early studies (Leviathan et al., 2023; Chen et al., 545

2023), the draft model sampled only one draft to- 546

ken per step and used a chain structure. To increase 547

average acceptance length, later studies (Miao et al., 548

2023; Cai et al., 2024) proposed sampling multi- 549

ple draft tokens per step and organizing them in a 550

predefined tree structure. However, static tree struc- 551

tures do not consider contextual information. Stud- 552

ies (Svirschevski et al., 2024; Li et al., 2024a)have 553

suggested dynamically constructing a draft tree 554

based on the cumulative confidence of tokens in 555

their context. 556

5.2.3 Verifying Draft Tokens 557

Early studies (Stern et al., 2019; Xia et al., 2023) 558

strictly required that draft tokens match the greedy 559

decoding output of the target model exactly. Later, 560

speculative sampling (Leviathan et al., 2023; Chen 561

et al., 2023) adopted nucleus sampling and theoret- 562

ically demonstrated that this criterion preserves the 563

same output distribution as the target LLM, also 564

achieving lossless acceleration. To further enhance 565

acceleration, some studies (Xia et al., 2023; Kim 566

et al., 2024) have proposed moderately relaxing the 567

verification criteria. Judge decoding (Bachmann 568

et al., 2025) can determine whether to accept a 569

draft token directly based on its token embedding, 570

without relying on logits. 571

6 Conclusion 572

This paper proposes a lossless acceleration method 573

named Dovetail, which employs speculative decod- 574

ing to optimize the inference efficiency of target 575

models under resource-constrained conditions. Tai- 576

lored for low-end hardware characteristics, Dove- 577

tail reduces the number of draft tokens, thereby 578

linearly decreasing the latency of parallel verifica- 579

tion, and utilizes DGF to efficiently integrate multi- 580

source information. Additionally, by increasing 581

the parameter size of the draft model, it enhances 582

prediction accuracy, achieving a higher speedup ra- 583

tio. Experimental results demonstrate that Dovetail 584

outperforms existing lossless acceleration methods 585

across multiple datasets and achieves the highest 586

speedup ratio in all benchmark tests. 587
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Limitations588

Although the proposed method has achieved rel-589

atively superior performance, achieving optimal590

inference speed in resource-constrained environ-591

ments still needs more effect. Due to the limitations592

of CPU parallelism, inference methods face chal-593

lenges when dealing with long text scenarios be-594

cause the delay in the pre-filling stage is relatively595

large. This is a task that needs to be addressed in596

the future.597
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A Dovetail 869

Figure 6 is an illustrative description of Dovetail. 870

B Analysis of Dovetail Effectiveness 871

Given the sequence length S, batch size B, a target 872

model consisting of m Transformer blocks, hidden 873

dimension H , and the number of candidate draft 874

tokens γ, the average decoding latency per token 875

based on the theoretical formula of MagicDec is 876

defined as: 877

T SD
Avg =

γ · TD + TV (γ)

Ω(γ, α)
(2) 878

where α is the acceptance rate, Ω(γ, α) is the num- 879

ber of accepted tokens in a single parallel verifica- 880

tion, TD is the time for the draft model to decode 881

a single token, and TV (γ) is the time for the target 882

model to verify γ tokens in parallel. 883

The offloading method employs a strategy of 884

overlapping computation and data loading to op- 885

timize efficiency, with the latency per token de- 886

noted as TOffload . To ensure the advantage of the 887

heterogeneous speculative decoding method, the 888

following condition must be satisfied: 889

T SD
Avg < TOffload (3) 890

i.e., the average latency per token of heterogeneous 891

speculative decoding must be lower than that of the 892

offloading method. 893

In a heterogeneous architecture, the parallel ver- 894

ification time TV (γ) of the target model on the 895

main processor can be decomposed into computa- 896

tion time Tc and memory access time Tp: 897

Tc =
F

Pc · Ec
, Tp =

P

Bm · Em
, (4) 898

where F is the computational cost of a single Trans- 899

former block, P is the parameter size, Pc is the 900
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peak computational performance of the main pro-901

cessor, Ec is the computational efficiency, Bm is902

the memory bandwidth, and Em is the memory903

utilization efficiency.904

Considering the partial overlap between compu-905

tation time and memory access time, the total time906

is expressed as:907

TV (γ) = max(Tc, Tp) + β ·min(Tc, Tp) (5)908

where β (0 ≤ β ≤ 1) is the overlap coefficient,909

with β = 1 indicating no overlap and β = 0 indi-910

cating complete overlap.911

Equation 3 can be further updated as:912

max(Tc, Tp)+β ·min(Tc, Tp) < Ω(γ, α)· P

Bp · Ep
(6)913

where Tc and Tp are the computation time and914

memory access time of the target model on the915

main processor, β (0 ≤ β ≤ 1) is the overlap co-916

efficient, Bp is the PCIe bandwidth, and Ep is the917

PCIe transmission efficiency.918

In summary, heterogeneous speculative decod-919

ing achieves higher efficiency when the perfor-920

mance of the main processor and the accelerator921

is relatively balanced. However, in scenarios with922

severe hardware resource imbalance (e.g., signif-923

icantly limited computational performance of the924

main processor and high PCIe bandwidth), het-925

erogeneous speculative decoding may not be the926

optimal choice.927

C Additional Implementation Details928

C.1 Training Settings929

We trained the draft model on the ShareGPT930

dataset, where the configuration of the draft model931

under the Dovetail framework involved varying the932

number of blocks M from 1 to 6. The training pro-933

cess utilized eight NVIDIA A800 80G GPUs with934

a batch size of 16 and employed mixed-precision935

training (bf16). The AdamW optimizer was used,936

with momentum parameters set to β1 = 0.9 and937

β2 = 0.95. The model was trained for 24 epochs,938

and the entire training process took approximately939

1 day when M = 6. To ensure a fair compari-940

son, the EAGLE model was retrained under the941

same conditions, providing a consistent experimen-942

tal baseline.943

C.2 Ablation experiments on RTX 2080944

When running the Vicuna 13B on a GeForce RTX945

2080, the parameter scale of the draft model also946

Method Speedup τ

w/o both 2.60x 4.91
w/ DGF 2.69x 4.99

w/ DGF + 1 2.97x 5.71
w/ DGF + 2 3.04x 5.96
w/ DGF + 3 3.08x 6.03
w/ DGF + 4 3.19x 6.25
w/ DGF + 5 3.13x 6.26

Table 6: The ablation experiment results of Vicuna 13B
on a heterogeneous architecture using GeForce RTX
2080 SUPER, with the temperature set to 0 and the test
dataset being HumanEval. “w/o both” denotes using
only a single layer; “w/ DGF” indicates using a single
layer with DGF; and “w/ DGF + m” represents adding
m additional Transformer blocks on the basis of “w/
DGF”.

Method Tokens/Sec Speedup τ

w/o both 3.19 1.69x 3.61
w/DGF 3.36 1.79x 3.85

w/DGF+1 2.85 1.52x 4.09

Table 7: The ablation study results of the Vicuna 13B on
HumanEval, conducted on a heterogeneous architecture
with NVIDIA GTX 1050, where the temperature is set
to 0.

significantly impacts the inference speed, as shown 947

in Table 6. As the number of Transformer blocks in 948

the draft model increases from 1 to 5, the prediction 949

accuracy progressively improves, driving a corre- 950

sponding increase in the average acceptance length, 951

while the speedup ratio steadily rises. However, 952

when the number of Transformer blocks increases 953

to 6, although the average acceptance length shows 954

a notable improvement, the speedup ratio experi- 955

ences a slight decline. This phenomenon aligns 956

with the observations made on the 7B model. 957

C.3 Ablation experiments on GTX 1050 958

We conducted ablation experiments on the Vicuna 959

13B on a platform equipped with an NVIDIA GTX 960

1050 to investigate the impact of the DGF module 961

and multiple Transformer blocks on model perfor- 962

mance. The experimental results are presented in 963

Table 7. Upon integrating the DGF module into 964

EAGLE-2, both the speedup ratio and the average 965

acceptance length of the model exhibited improve- 966

ments. However, when an additional Transformer 967

block was introduced beyond this configuration, 968
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Draft Stage Verify Stage

Precision 16-bit 8-bit
Processors GTX 1050 i5-9300H

Time 0.31 Sec 0.57 Sec

Table 8: On a personal laptop, statistics were gathered
for large-model inference using w/DGF, with a focus on
the average time taken for a single drafting phase and
the average time taken for a single parallel verification
phase.

while the average acceptance length continued to969

increase, the speedup ratio experienced a decline.970

The primary reason for this phenomenon, as shown971

in Table 8, lies in the precision discrepancy be-972

tween the CPU and GPU: the CPU employed int8973

quantization, whereas the GPU utilized fp16 preci-974

sion for computations. This precision mismatch re-975

sulted in an insufficient time difference between the976

drafting phase and the parallel verification phase977

to accommodate the inclusion of an extra Trans-978

former block. As shown in Table 7, further increas-979

ing the number of Transformer blocks prolonged980

the drafting time, thereby diminishing the overall981

acceleration effect. Consequently, to achieve per-982

formance akin to that of a RTX 2080 on a device983

such as the GTX 1050—specifically, to further en-984

hance the speedup ratio by incorporating additional985

Transformer blocks—it is advisable to apply int8986

quantization to the drafting model on the GPU.987

This approach would amplify the time difference988

between the drafting phase and the parallel verifi-989

cation phase, thereby enabling the integration of990

multiple additional blocks.991

D Heterogeneous Architecture992

In heterogeneous architectures, the presence of ac-993

celerators allows for leveraging the advantages of994

multiple computational resources for LLM infer-995

ence. Model compression techniques (Zhang et al.,996

2025) typically focus on fully utilizing accelerator997

performance, often with limited consideration of998

output quality. In contrast, offloading and partial999

offloading strategies combine the performance of1000

accelerators with the memory and computational1001

capabilities of CPUs to achieve lossless output1002

quality, although their acceleration efficiency is1003

generally suboptimal. To address this issue, Pow-1004

erInfer (Song et al., 2024) leverages the locality1005

characteristics of LLM inference by predicting hot1006

neurons to be computed on the GPU, while delegat- 1007

ing cold neurons to the CPU. This approach effec- 1008

tively utilizes the advantages of heterogeneous ar- 1009

chitectures to significantly improve inference speed. 1010

Similarly, KTransformers (KVCache.AI, 2024) fo- 1011

cuses on sparse Mixture of Experts (MoE) models, 1012

employing a heterogeneous computing strategy: 1013

non-shared components (sparse MoE matrices) are 1014

placed on the CPU to conserve GPU memory, while 1015

shared dense components are computed on the 1016

GPU. This method maximizes hardware resource 1017

utilization through heterogeneous computing, en- 1018

abling efficient inference in resource-constrained 1019

environments. 1020
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