Dovetail: A CPU/GPU Heterogeneous Speculative Decoding for LLM
inference

Anonymous ACL submission

Abstract

With the continuous advancement in the per-
formance of large language models (LLMs),
their demand for computational resources and
memory has significantly increased, which
poses major challenges for efficient infer-
ence on consumer-grade devices and legacy
servers. These devices typically feature rela-
tively weaker GPUs and stronger CPUs. Al-
though techniques such as parameter offload-
ing and partial offloading can alleviate GPU
memory pressure to some extent, their effec-
tiveness is limited due to communication la-
tency and suboptimal hardware resource utiliza-
tion. To address this issue, we propose Dove-
tail—a lossless inference acceleration method
that leverages the complementary characteris-
tics of heterogeneous devices and the advan-
tages of speculative decoding. Dovetail de-
ploys a draft model on the GPU to perform
preliminary predictions, while a target model
running on the CPU validates these outputs.
By reducing the granularity of data transfer,
Dovetail significantly minimizes communica-
tion overhead. To further improve efficiency,
we optimize the draft model specifically for
heterogeneous hardware environments by re-
ducing the number of draft tokens to lower
parallel verification latency, increasing model
depth to enhance predictive capabilities, and
introducing a Dynamic Gating Fusion (DGF)
mechanism to improve the integration of fea-
ture and embedding information. We conduct
comprehensive evaluations of Dovetail across
various consumer-grade GPUs, covering mul-
tiple tasks and mainstream models. Experi-
mental results on 13B models demonstrate that
Dovetail achieves inference speedups ranging
from 1.79x to 10.1x across different devices,
while maintaining consistency and stability in
the distribution of generated texts.

1 Introduction

In recent years, with the continuous growth of
model parameter scales, large language models

Drafting Stage Verification Stage
Draft Tokens
Draft Model —> Target Model

o | o Control .
EEEEE [[|
EEEEE .
el |l Prompt/Verified

DRAM Tokens DRAM

& CPU and Small GPU =

Figure 1: The architecture of Dovetail, highlighting a
collaborative inference mode where the target model is
deployed on the CPU, and the draft model is deployed
on the GPU.

(LLMs) (Touvron et al., 2023; Achiam et al., 2023)
have achieved significant performance improve-
ments across multiple domains. However, their
substantial computational and memory demands
impose higher requirements on hardware, pos-
ing severe challenges for deployment on personal
or consumer-grade devices, including outdated
servers from the pre-large-model era.

We observe that these devices and small-scale
servers are typically equipped with GPUs with lim-
ited memory, making it difficult to fully load LLM:s.
For instance, a 7B model requires approximately
14GB of memory at 16-bit precision, far exceed-
ing the capacity of consumer-grade GPUs such as
the NVIDIA RTX 2080. Currently, the primary
strategies for conducting inference without com-
promising model performance are offloading and
partial offloading. The former temporarily stores a
portion of parameters in host memory and dynami-
cally loads them into the GPU, while the latter di-
rectly executes part of the computation on the CPU,
thereby alleviating memory pressure. As shown in
Figure 2, compared to pure CPU inference, offload-
ing! reduces inference speed to 0.45x the original
due to high communication latency between the

"https://github.com/yandex-research/specexec

https://github.com/yandex-research/specexec

10.14x
101 Offloading Bl EAGLE-2 on Heterogeneous Architecture
I CPU-only Ours (Dovetail on Heterogeneous Architecture)
8 Il Partial Offloading SpecExec on Offloading
EAGLE-2 on CPU Ours (Dovetail on Partial Offloading) 7.10x
S 61
kel
[
2
o, 4.07x 4.20x
3.08x
2.25x 2.36x
2 1.79x 1.68x 118 1.57x
1.00x 1.00x 10X 1.00x
L] il Il
0 Vanilla SD Vanilla Vanilla SD

Vicuna 13B-int8(GTX 1050)

SD
LLaMA2-Chat 7B(RTX 2080)

LLaMA2-Chat 13B(RTX 3090)

Figure 2: The speedup ratios of different models were tested on consumer-grade devices with temperature = 0.
"Vanilla" refers to the existing lossless inference method, while "SD" stands for speculative decoding, including the
effects when applying the SD algorithm on top of the Vanilla method.

CPU and GPU. Partial offloading improves this to
1.68x, but the acceleration effect is constrained by
GPU memory capacity, diminishing as available
memory decreases.

Speculative Decoding (Leviathan et al., 2023;
Chen et al., 2023) is an emerging method for ac-
celerating LLM inference. It leverages a smaller
model to generate multiple draft tokens, which are
then verified in parallel by the target model, en-
abling the generation of multiple tokens in a sin-
gle forward pass without losing performance. Al-
though SpecExec (Svirschevski et al., 2024) applies
this technique to offloading scenarios to acceler-
ate inference, it still suffers from high communi-
cation latency, inefficient utilization of hardware
resources, and requires at least 5.9 GB of GPU
memory in the current test environment, making
it difficult to deploy effectively on devices with
lower memory. To address these issues, we propose
Dovetail?, a heterogeneous CPU-GPU collabora-
tive speculative decoding mechanism, as illustrated
in Figure 1. In this setup, the draft model is de-
ployed on a consumer-grade GPU, while the target
model executes on the CPU. By reducing the gran-
ularity of data transfer from Transformer blocks to
tokens, Dovetail significantly reduces communica-
tion overhead. Additionally, thanks to the flexible
parameter scale of the draft model (ranging from
68M to 3B), Dovetail can operate efficiently on
most consumer-grade GPUs.

As shown in Figure 2, when directly applying
speculative decoding algorithms on heterogeneous
architectures, the acceleration effect is only im-
proved by 1.57 times. To further enhance inference

2https://anonymous.4open.science/status/
test-ED55

speed on such architectures, we explore the char-
acteristics of speculative decoding algorithms in
this context and optimize the existing approach as
follows: By reducing the number of candidate draft
tokens, we linearly decrease the latency of paral-
lel verification, effectively mitigating performance
bottlenecks on low-end hardware. Given the sig-
nificant increase in target model latency, adopting
a larger draft model becomes feasible. Based on
EAGLE-2 (Li et al., 2024a), we redesign the draft
model by introducing DGF to dynamically adjust
the fusion weights between hidden states and token
embeddings, avoiding information loss and imbal-
ance in feature representation fusio. Furthermore,
by expanding the draft model’s Transformer blocks
from single to multiple, we significantly narrow
the performance gap between the draft and target
models while improving prediction performance
and increasing the average acceptance length.
Our main contributions include:

1. We propose a novel heterogeneous speculative
decoding paradigm that fully leverages the
characteristics of heterogeneous architectures
and speculative decoding. By deploying the
target model’s verification phase on the CPU,
this paradigm significantly improves hardware
resource utilization efficiency.

2. We optimize the existing draft model for low-
end hardware in heterogeneous architectures,
achieving a better balance between latency
and performance.

3. We develop a system that requires only 3GB
of VRAM to achieve an inference speed of
4.62 to 5.86 tokens per second for models such
as LLaMA2-Chat 7B, demonstrating a 2.25x

https://anonymous.4open.science/status/test-ED55
https://anonymous.4open.science/status/test-ED55

performance improvement on MT-bench com-
pared to existing methods. When the VRAM
is increased to 7GB, the inference speed fur-
ther improves to 6.5 to 8 tokens per second,
resulting in a performance enhancement of
3.08x. On the GeForce RTX 3090, tests on
LLaMAZ2-Chat 13B indicate that our method
achieves a maximum speedup ratio of 10.14x.

2 Preliminaries

2.1 Effectiveness of Heterogeneous
Speculative Decoding

In resource-constrained environments, computa-
tional resources typically consist of a combina-
tion of CPUs and small-scale GPUs, such as CPUs
paired with discrete GPUs (dGPUs) or integrated
GPUs (iGPUs) in personal devices, as well as CPUs
paired with small-scale GPUs in servers. These
configurations are not specifically designed for Al,
and mainstream methods achieve large language
model (LLM) inference through parameter offload-
ing. Given the characteristics of computational
resource configurations and the properties of specu-
lative decoding, we propose a heterogeneous spec-
ulative decoding method to accelerate LLM infer-
ence. However, this method may not perform well
in all combinations of main processors and acceler-
ators. Therefore, we employ stochastic analysis to
reveal the correlation between hardware and com-
putational configurations. For a detailed analysis,
please refer to Appendix B.

2.2 Factors Affecting Speculative Decoding
Speedup

The time for the target model to decode a single to-
ken is T, while the time for the speculative decod-
ing algorithm to decode a single token is Tgng. The
performance analysis formula (Sadhukhan et al.,
2025) can be expressed as:

ngv?g 1 <’>’ -Tp
Tr Q(’Yv Oé)

Ty (7)
T - TT) (1)

where « is the acceptance rate, +y is the number of
candidate draft tokens, (7, @) is the number of
accepted tokens in a single parallel verification, Tp
is the time for the draft model to decode a single
token, and Ty (7y) is the time for the target model
to verify ~ tokens in parallel.

1.5
Speedup ratio

r1.0

Parallel verification time (s)

r0.5
| 1.99x 1.95x
1.60x 185 1.78x 4 g5y
. ‘ ‘ ; w ‘ 0.0
6 16 26 36 46 56
Candidate draft tokens

Figure 3: Explore the interrelationship between the aver-
age acceptance length (v,), parallel validation time
Ty (), and speedup ratio of the target model under
different candidate draft tokens ~.

The key factors influencing the acceleration ef-
fectinclude: Tp /T, Ty (7v)/Tr, and (7, «). Ex-
periments show that in resource-constrained het-
erogeneous architectures, Tp /T approaches zero,
and (v, o) remains constant. However, due to
the low parallelism of CPUs (Yin et al., 2021),
Ty (v)/Tr increases significantly, leading to a de-
cline in overall acceleration performance.

The increase in 7T/ (7) shifts the primary bot-
tleneck of heterogeneous speculative decoding to
the parallel verification process of the target model.
Reducing the number of draft tokens can lower
Ty (), but it also shortens 2(+, «). Therefore, a
balance must be struck between the two. As shown
in Figure 3, reducing the number of draft tokens lin-
early decreases verification latency. Although the
average acceptance length is reduced, the overall
inference speed still improves.

As Ty (7y) decreases and stabilizes, the primary
bottleneck shifts to (7, «). Increasing « is typi-
cally accompanied by an increase in Tp. Research
by DSD (Yan et al., 2024) indicates that enlarg-
ing the parameter size of the draft model can en-
hance Q(~, o). However, the continuous rise in T
causes the overall inference speed to first increase
and then decrease. In heterogeneous architectures,
the increase in 77 is much greater than that in
Tp, resulting in a significant reduction in Tp /T7p.
This allows for the deployment of draft models
with larger parameter sizes, thereby increasing «,
extending (-,), and ultimately improving the
overall inference speed.

Based on this, the key to optimizing the per-
formance of heterogeneous speculative decoding
lies in: linearly reducing Ty () by decreasing ~,
while employing draft models with larger parame-
ter sizes to increase «, thereby enhancing (v, «)
and achieving overall performance optimization.

Token

o

g

| Hidden State | | MLP Block o« 9
. LM : @

LLM Head | G2

@

@

MLP Block Draft Token Tree

1|
)

Attention Block

1
<
Attention Block et

]

Input Prompt/Draft Tokens

HOST Target Model PCle DEVICE Draft Model

Figure 4: The pipeline of heterogeneous collaborative
speculative decoding depicts the computational proce-
dure. In this context, N and M denote the number of
layers in the target model and the draft model, respec-
tively.

3 Method

In this section, we provide a detailed description of
the implementation of Dovetail.

3.1 CPU/GPU Heterogeneous Architecture

Dovetail adopts a CPU/GPU heterogeneous archi-
tecture, deploying the draft model on the GPU and
the target model on the CPU to fully leverage the
advantages of heterogeneous computing. As shown
in Figure 4, the target model processes the input
prompt and generates the hidden states required by
the draft model, which are transmitted to the GPU
along with the tokens for draft token generation.
The draft model generates multiple tokens through
multi-round autoregressive decoding, dynamically
organizing them into a tree structure. Subsequently,
the top-v tokens with the highest probabilities are
selected as candidates and sent to the CPU-based
target model for parallel verification. The target
model computes the logits of the candidate tokens
in a single forward pass and applies a speculative
sampling algorithm to determine the accepted to-
kens. The accepted tokens are returned to the GPU-
based draft model for the next round of draft tree
generation.

3.2 Dynamic Gated Fusion

In EAGLE-2, the draft model requires the fusion of
hidden states and token embeddings to address the
uncertainty of hidden states before inference. The
current method simply concatenates the two and
maps them to the hidden state dimension through
a single linear transformation. However, this ap-
proach has limitations: (1) it may cause the model
to overly rely on linear transformations, neglect-
ing the deep interaction between hidden states and

> +
X < 1- —X
* o A
Linear

. - SiLu

|
Linear

|h2
Linear

Hidden State Token Embedding

Figure 5: Schematic diagram of the DGF. Hidden State
represents the second-to-top hidden state in the target

LLM, “II” denotes concatenation, “c” represents the

sigmoid function, and “x” denotes the multiplication
mechanism.

token embeddings; (2) the fixed linear layer lacks
flexibility when processing features from differ-
ent levels, unable to dynamically adjust the fusion
process based on context, which may lead to insuf-
ficient emphasis on critical information and affect
fusion performance. To address these issues, we
propose the Dynamic Gated Fusion (DGF) module,
inspired by multimodal feature fusion (Ovalle et al.,
2017). As shown in Figure 5, the DGF module
first applies linear transformations to the hidden
states and token embeddings, generating feature
representations i1 and ho, which are then concate-
nated into a joint feature vector. A linear layer
and sigmoid activation function generate gating
values to dynamically adjust the contribution ra-
tios of h; and hg, and a weighted sum produces
the fused feature representation, effectively captur-
ing their interaction. Compared to the method of
concatenation followed by linear transformation,
DGF adaptively regulates the interaction strength
between hidden states and token embeddings and
dynamically adjusts the fusion ratio based on in-
put scenarios, enhancing the model’s expressive
power in complex contexts while reducing the risk
of information loss or fusion imbalance caused by
global linear transformations.

3.3 Multiple Transformer Blocks

In high-performance hardware environments, the
latency of the draft model is the primary bottleneck
for the speedup ratio of speculative decoding al-
gorithms. Therefore, designing the draft model re-
quires balancing parameter scale and prediction ac-
curacy. Typically, the draft model adopts a smaller
parameter scale, such as a single Transformer block
of the target model, to achieve significant inference

Category Details

Server Intel Xeon Silver 4214R @ 2.40GHz (24 cores)
NVIDIA RTX 2080 SUPER (8GB VRAM)
PClIe Gen 3x16
Server Intel Xeon Silver 4310 @ 2.10GHz (24 cores)

NVIDIA RTX 3090 (24GB VRAM)
PClIe Gen 4x16
PC Intel Core i5-9300H @ 2.40GHz (4 cores)
NVIDIA GTX 1050 Mobile (4GB VRAM)
PCle Gen 3x8

Table 1: Hardware Configurations Employed in the
Experiment.

acceleration. However, in resource-constrained het-
erogeneous architectures, this design often leads
to insufficient performance. As discussed in Sec-
tion 2.2, the increased parallel verification time of
the target model provides opportunities for opti-
mizing the draft model. Although the Dynamic
Gated Fusion (DGF) module can effectively inte-
grate information from different layers to improve
performance, its single-Transformer-block architec-
ture limits its ability to learn deep abstract features
of the target model and align feature distributions,
constraining prediction accuracy.

Based on this, we propose extending the draft
model to a multi-block architecture with M Trans-
former blocks, as shown in Figure 4. This extension
significantly increases the parameter scale, enhanc-
ing the nonlinear representation capability of the
draft model, enabling it to more accurately approxi-
mate the complex representation space of the target
model and more effectively capture and align its
feature distributions, thereby improving prediction
accuracy, extending the average acceptance length,
and accelerating overall inference. However, in
heterogeneous architectures, when the number of
Transformer blocks in the draft model exceeds a
certain threshold, computational latency becomes
a bottleneck. Detailed analysis and justification are
provided in Section 4.2.2.

4 [Experiments

Hardware: To validate the versatility of Dovetail
in low-end hardware environments, tests were con-
ducted in two representative scenarios: a server
from the pre-large-model era and a personal com-
puter. Detailed configurations are presented in Ta-
ble 1.

Models: In the evaluation process, LLaMA2-
Chat 7B, 13B and Vicuna 13B were selected as
target models to cover the performance of models
at different scales.

Tasks: To comprehensively assess the perfor-
mance of the models across various tasks, multiple
datasets were utilized: MT-bench (Zheng et al.,
2023) for dialogue tasks, HumanEval (Chen et al.,
2021) for code generation, GSM8K (Cobbe et al.,
2021) for mathematical reasoning, and the Alpaca
dataset (Taori et al., 2023) for instruction-following
tasks.

Metrics: Given that speculative decoding inher-
ently achieves lossless acceleration, the average
acceptance length 7 and the speedup ratio were
chosen as the primary metrics to evaluate the accel-
eration performance of the target LLMs.

In the server configuration, the dynamic tree
width and depth were set to 10 and 7, respectively,
with 16 candidate draft tokens. In terms of model
precision, the target model on the CPU employed
32-bit weights, while the draft model on the GPU
used 16-bit weights. For the personal computer, the
dynamic tree width and depth were adjusted to 10
and 4, respectively, with 7 candidate draft tokens.
Due to the memory constraints of the personal com-
puter, the target model on the CPU utilized 8-bit
weights (obtained through PyTorch (Paszke et al.,
2017) dynamic quantization), while the draft model
on the GPU continued to use 16-bit weights.

4.1 Result

Table 2 presents the average acceptance lengths and
speedup ratios of various methods across different
models and temperatures. Our method achieves the
highest speedup ratio in all tasks presented in the
table. Specifically, the draft model optimized for
heterogeneous architectures outperforms Vanilla
EAGLE-2. Vanilla EAGLE-2 applies the EAGLE-
2 algorithm directly on heterogeneous architectures
with 60 draft tokens, whereas other methods utilize
16 draft tokens. Although reducing the number
of draft tokens decreases the average acceptance
length of EAGLE-2, its average speedup ratio im-
proves from 1.67x to 2.06x.

A straightforward approach to increasing the
parameter size of the draft model is to employ
smaller models from the same series as the draft
model. These smaller models exhibit behavioral
characteristics highly consistent with the target
model, significantly enhancing the average accep-
tance length. However, while TinyLlama-1.1B
(Zhang et al., 2024b) and ShearedLlama-1.3B (Xia
et al., 2024b) achieve average acceptance lengths
of 4.88 and 4.78, respectively, the higher draft la-
tency offsets the speedup gains from increased ac-

MT-bench HumanEval GSMS8K Alpaca Mean
Model Method Speedup 7 Speedup 7 Speedup 7 Speedup T Speedup T

Temperature=0

Vanilla EAGLE-2 1.62x 4.75 1.90x 5.61 1.63x 497 154x 465 1.67x 5.00

ShearedLlama-1.3B 1.80x 4.75 2.10x 548 1.69x 441 1.68x 447 1.82x 478

L2 7B TinyLlama-1.1B 1.89x 489 2.17x 570 1.69x 438 1.69x 457 1.86x 4.88

EAGLE-2 1.99x 395 232x 469 199x 4.0l 1.93x 383 2.06x 4.12

Ours 225x 473 277x 590 220x 471 217x 462 235x 499

EAGLE-2 2.19 4.25 2.60 491 201x 422 188 3.77 217x 429

V 13B Ours 250x 500 3.19x 625 257x 512 235x 451 2.65x 5.22
Temperature=1

Vanilla EAGLE-2 1.54x 449 1.77x 523 1.63x 490 150x 441 1.6lx 476

ShearedLlama-1.3B 1.69x 437 1.87x 4.83 1.71x 452 1.61x 421 1.72x 4.48

L2 7B TinyLlama-1.1B 1.78x 453 194x 500 1.66x 4.35 1.67x 433 1.76x 4.55

EAGLE-2 1.88x 3.67 2.14x 425 196x 398 181x 3.60 195x 3.89

Ours 2.12x 438 249x 534 216x 4.68 2.02x 424 220x 4.66

EAGLE-2 201x 362 227x 418 192x 3.73 1.71x ~ 3.43 1.98 3.74

V13B Ours 221x 417 2.62x 502 224x 443 2.07x 404 229 442

Table 2: A comparison of speedup ratios and average acceptance length 7 for different methods on heterogeneous
architectures with GeForce RTX 2080 SUPER, where L2 represents LLaMA2-Chat and V represents Vicuna.

Method MT-bench HumanEval
Speedup T PM Speedup T PM
L2 7B (GeForce RTX 2080 SUPER)
CPU-only 1x(2.14t/s) - - 1x(2.12t/s) - -
Offload 0.45x - 744 0.45x - 7.44
SpecExec 2.36x 743 7.14 2.98x 10.10 7.32
Dovetail 3.08x 4.61 740 3.78x 590 7.44
L2 7B (GeForce RTX 3090)
CPU-only 1x(2.35t/s) - - 1x(2.34t/s) - -
Offload 0.83x - 744 0.83x - 7.44
SpecExec 3.95x 7.38 7.14 4.92x 10.05 7.32
Dovetail 4.05x 4.60 7.40 4.99x 591 744
L2 13B (GeForce RTX 3090)
CPU-only 1x(1.20t/s) - - 1x(1.22t/s) - -
SpecExec 4.85x 8.23 225 7.10x 13.38 227
Dovetail 7.66x 453 219 10.14x 6.26 220

Table 3: Speedup ratios of different methods at temper-
ature = 0, with PM (peak memory) in GB and tokens
generated per second denoted as t/s, where L2 repre-
sents LLaMA2-Chat.

ceptance lengths in heterogeneous architectures,
resulting in overall speedup performance that is
only marginally better than Vanilla EAGLE-2. In
contrast, Dovetail achieves an average acceptance
length of 4.99 across four tasks, surpassing the
smaller models in the same series while maintain-
ing low draft latency, thus delivering the best per-
formance across all tasks.

In Table 2, the peak memory consumption for
Dovetail-related experiments is 2.95GB. When the

memory capacity of consumer-grade GPUs ex-
ceeds 3GB, certain layers of the target model can
be loaded onto the GPU for further acceleration.
As shown in Table 3, on the GeForce RTX 3090,
our method achieves a speedup ratio of 10.14x
for LLaMA2-Chat 13B on HumanEval, surpass-
ing SpecExec’s 7.10x. This is primarily because
SpecExec, based on offloading methods, still incurs
significant communication latency, which partially
offsets the speedup gains from increased average
acceptance lengths.

In configurations where GPU performance sig-
nificantly exceeds CPU performance, scenarios of
CPU-GPU performance imbalance can be simu-
lated. As illustrated in Table 3, with enhanced
GPU performance and improved PCle bandwidth,
the performance of offloading methods improves,
with the speedup ratio for LLaMA2-Chat 7B in-
creasing from 0.45x on the GeForce RTX 2080 SU-
PER to 0.83x on the GeForce RTX 3090. However,
this also results in a less pronounced speedup ratio
improvement for Dovetail compared to SpecExec
on the GeForce RTX 3090 than on the GeForce
RTX 2080 SUPER. Nevertheless, Dovetail still
maintains a superior speedup ratio over SpecExec,
demonstrating its robust adaptability.

In personal computing environments, LLM in-
ference is constrained by CPU memory and GPU
VRAM capacity, necessitating the use of quantiza-
tion techniques to reduce computational and stor-

Draft/Tragt Model Method Tokens/Sec Speedup 7
-/ L2 7B gtqp-4bit Offload 0.45 0.12x
-/ L2 7B-8bit -/ CPU-only 3.65 Ix -
EAGLE-2/L2 7B-8bit GPU/CPU 6.10 1.67x 3.51
Ours / L2 7B-8bit GPU/CPU 6.35 1.74x 3.78
-/ V 13B-8bit -/ CPU-only 1.88 1x -
EAGLE-2/V 13B-8bit GPU/CPU 3.19 1.69x 3.61
Ours / V 13B-8bit GPU/CPU 3.36 1.79x 3.85

Table 4: The speedup ratios of different methods
were evaluated on an NVIDIA GTX 1050 using the
HumanEval dataset, with the temperature set to O.
Here, L2 denotes LLaMA2-Chat, V represents Vicuna.
GPU/CPU represents the heterogeneous deployment
method.

age overhead. It is important to emphasize that
quantization algorithms directly affect model ac-
curacy, and our primary optimization goal is to
enhance the inference speed of quantized models
in resource-constrained environments rather than
their accuracy. As shown in Table 4, applying Py-
Torch dynamic quantization to convert the target
model to 8-bit allows it to be fully loaded into the
CPU memory of most personal computers. When
combined with heterogeneous speculative decoding
algorithms, the inference speeds of LLaMA2-Chat
7B and Vicuna 13B increase to 6.35 and 3.36 to-
kens per second, respectively. However, due to
the limited parallel computing capability of CPUs
in personal computing environments, the number
of candidate tokens during the verification phase
is constrained, leading to reduced average accep-
tance lengths and significantly lower speedup per-
formance compared to server environments. For
more details, please refer to Appendix C.3.

4.2 Ablation Study

In this section, we conducted an ablation study
to explore the impact of DGF and multiple Trans-
former blocks on model performance. For more
details on the tests, please refer to Appendix C.

4.2.1 Dynamic Gating Fusion

To validate the effectiveness of DGF, we conducted
a comparative analysis against a baseline method
from EAGLE-2, in which token embeddings are
linearly combined with hidden states. As shown in
Table 5, the results demonstrate that incorporating
DGEF significantly improves both the average ac-
ceptance length and speedup ratio on the MT-bench
and HumanEval datasets. These findings highlight
the ability of DGEF to effectively leverage input in-
formation from multiple sources and dynamically

Method Lparameters MT-bench HumanEval

Speedup 7 Speedup T
w/o both 0.22B 1.99x 395 232x 4.69
w/ DGF 0.25B 2.05x 406 242x 4.89
w/ DGF + 1 0.44B 2.13x 431 2.62x 5.38
w/ DGF + 2 0.63B 221x 453 272x 5.65
w/ DGF +3 0.81B 223x 462 274x 582
w/ DGF + 4 1.00B 225x 473 277x 590
w/ DGF + 5 1.19B 2.26x 483 275x 598

Table 5: Ablation experiment results on a heterogeneous
architecture using GeForce RTX 2080 SUPER, with the
temperature set to 0 for LLaMA2-Chat-7B. Lparameters
denotes the model’s learnable parameters. w/o both
indicates using only one layer, w/ DGF indicates using
one layer with DGF, w/ DGF + m indicates using w/
DGF with an additional m Transformer blocks.

adjust the contribution of each source, enabling
more efficient and adaptive feature fusion.

4.2.2 Multiple Transformer Blocks

To evaluate the impact of the draft model’s pa-
rameter scale on inference speed, we gradually in-
creased the number of Transformer blocks in the
draft model from 1 to 6. As shown in Table 5, in-
creasing the number of Transformer blocks from
1 to 5 led to a gradual improvement in prediction
accuracy, which in turn resulted in a correspond-
ing increase in average acceptance length and a
steady rise in the speedup ratio. This indicates
that increasing the number of Transformer blocks
enables the model to capture more complex fea-
tures, thereby aligning the draft model’s feature
distribution more closely with that of the target
model. However, when the number of Transformer
blocks reached 6, while both the average accep-
tance length and speedup ratio improved signifi-
cantly on the MT-bench dataset, the speedup ratio
on the HumanEval dataset slightly decreased de-
spite a marked improvement in average acceptance
length. This phenomenon can be attributed to the
fact that, at this stage, the inference time during
the draft phase becomes the primary bottleneck.
The additional parameters significantly increase
the draft computation time, which offsets the accel-
eration benefits gained from the improved average
acceptance length.

5 Related work

5.1 Heterogeneous Architecture

Transformer (Vaswani, 2017) and its variants have
emerged as the dominant architecture for LLMs.

However, the increasing scale of these models has
led to inference speed being constrained by the
memory capacity of accelerators. To address this
challenge, researchers have proposed various com-
pression techniques, such as quantization (Hubara
et al., 2018; Xiao et al., 2023; Frantar et al., 2022;
Liu et al., 2024; Yuan et al., 2024), pruning (Gale
etal., 2019; Liu et al., 2023), and knowledge distil-
lation (Sanh et al., 2019; Tu et al., 2020; Wen et al.,
2023). However, these methods often come at the
cost of degraded generation quality. To achieve
lossless inference, offloading stores parameters ex-
ceeding GPU capacity in CPU memory and dy-
namically loads them to the GPU when needed.
However, 99.5% of the time in single-batch infer-
ence is spent on data transfer (Song et al., 2024),
significantly increasing latency. Partial offloading
(Gerganov, 2023) directly computes the excess pa-
rameters on the CPU and transfers intermediate
results to the GPU for further processing, but its
performance remains constrained by the computa-
tional capabilities of the CPU and the memory ca-
pacity of the GPU. Future research aims to combine
the characteristics of models with the specific ad-
vantages of heterogeneous architectures to achieve
more efficient inference acceleration. For further
details, please refer to Appendix D.

5.2 Speculative Decoding

Speculative decoding is an emerging lossless ac-
celeration method based on the draft-then-verify
paradigm (Xia et al., 2024a), which can be outlined
from the following three aspects.

5.2.1 Obtaining Draft Tokens

For certain target models (Touvron et al., 2023;
Yang et al., 2024), smaller models from the same se-
ries can be directly used as draft models (Leviathan
et al., 2023) without requiring additional training
or modification. When small models from the same
series are unavailable, the draft model must be
trained from scratch, or draft models or draft to-
kens can be derived from the target model. Draft
models can be obtained from target models using
knowledge distillation (Zhou et al., 2023) or quan-
tization (Miao et al., 2023), or by incorporating
early exit mechanisms (Zeng et al., 2024) and layer-
skipping techniques (Zhang et al., 2024a) to con-
clude the inference process earlier, thus generating
draft tokens.Additionally, non-autoregressive or au-
toregressive prediction heads (Cai et al., 2024; Li
et al., 2024b) can be incorporated into the target

model to generate draft tokens. A draft model can
also be composed of multiple smaller models, lever-
aging a staged (Spector and Re, 2023) or cascaded
approach(Chen et al., 2024) to generate draft to-
kens.

5.2.2 Organizing Draft Tokens

In early studies (Leviathan et al., 2023; Chen et al.,
2023), the draft model sampled only one draft to-
ken per step and used a chain structure. To increase
average acceptance length, later studies (Miao et al.,
2023; Cai et al., 2024) proposed sampling multi-
ple draft tokens per step and organizing them in a
predefined tree structure. However, static tree struc-
tures do not consider contextual information. Stud-
ies (Svirschevski et al., 2024; Li et al., 2024a)have
suggested dynamically constructing a draft tree
based on the cumulative confidence of tokens in
their context.

5.2.3 Verifying Draft Tokens

Early studies (Stern et al., 2019; Xia et al., 2023)
strictly required that draft tokens match the greedy
decoding output of the target model exactly. Later,
speculative sampling (Leviathan et al., 2023; Chen
et al., 2023) adopted nucleus sampling and theoret-
ically demonstrated that this criterion preserves the
same output distribution as the target LLM, also
achieving lossless acceleration. To further enhance
acceleration, some studies (Xia et al., 2023; Kim
et al., 2024) have proposed moderately relaxing the
verification criteria. Judge decoding (Bachmann
et al., 2025) can determine whether to accept a
draft token directly based on its token embedding,
without relying on logits.

6 Conclusion

This paper proposes a lossless acceleration method
named Dovetail, which employs speculative decod-
ing to optimize the inference efficiency of target
models under resource-constrained conditions. Tai-
lored for low-end hardware characteristics, Dove-
tail reduces the number of draft tokens, thereby
linearly decreasing the latency of parallel verifica-
tion, and utilizes DGF to efficiently integrate multi-
source information. Additionally, by increasing
the parameter size of the draft model, it enhances
prediction accuracy, achieving a higher speedup ra-
tio. Experimental results demonstrate that Dovetail
outperforms existing lossless acceleration methods
across multiple datasets and achieves the highest
speedup ratio in all benchmark tests.

Limitations

Although the proposed method has achieved rel-
atively superior performance, achieving optimal
inference speed in resource-constrained environ-
ments still needs more effect. Due to the limitations
of CPU parallelism, inference methods face chal-
lenges when dealing with long text scenarios be-
cause the delay in the pre-filling stage is relatively
large. This is a task that needs to be addressed in
the future.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Gregor Bachmann, Sotiris Anagnostidis, Albert
Pumarola, Markos Georgopoulos, Artsiom
Sanakoyeu, Yuming Du, Edgar Schonfeld, Ali K.
Thabet, and Jonas Kohler. 2025. Judge decoding:
Faster speculative sampling requires going beyond
model alignment. In The Thirteenth International
Conference on Learning Representations, ICLR 2025,
Singapore, April 24-28, 2025. OpenReview.net.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng,
Jason D. Lee, Deming Chen, and Tri Dao. 2024.
Medusa: Simple LLM inference acceleration frame-
work with multiple decoding heads. In Forty-first In-
ternational Conference on Machine Learning, ICML
2024, Vienna, Austria, July 21-27, 2024. OpenRe-
view.net.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving,
Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. 2023. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Ziyi Chen, Xiaocong Yang, Jiacheng Lin, Chenkai Sun,
Kevin Chen-Chuan Chang, and Jie Huang. 2024.
Cascade speculative drafting for even faster LLM
inference. In Advances in Neural Information Pro-
cessing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurlPS 2024,
Vancouver, BC, Canada, December 10 - 15, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, and 1 others. 2021. Training verifiers

to solve math word problems.
arXiv:2110.14168.

arXiv preprint

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The
state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574.

Georgi Gerganov. 2023. ggerganov/llama.cpp: Port of
facebook’s llama model in ¢/c++. https://github.
com/ggerganov/1lama.cpp.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. 2018. Quantized neu-
ral networks: Training neural networks with low pre-
cision weights and activations. Journal of Machine
Learning Research, 18(187):1-30.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Ji-
tendra Malik, Michael W Mahoney, Amir Gholami,
and Kurt Keutzer. 2024. Speculative decoding with
big little decoder. Advances in Neural Information
Processing Systems, 36.

KVCache.Al. 2024. kvcache-ai/ktransformers: A flex-
ible framework for experiencing cutting-edge 1lm
inference optimizations. https://github.com/
kvcache-ai/ktransformers.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 19274-19286.
PMLR.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024a. EAGLE-2: faster inference of lan-
guage models with dynamic draft trees. In Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2024, Miami,
FL, USA, November 12-16, 2024, pages 7421-7432.
Association for Computational Linguistics.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang
Zhang. 2024b. EAGLE: speculative sampling re-
quires rethinking feature uncertainty. In Forty-
first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, and 1 others. 2023.
Deja vu: Contextual sparsity for efficient llms at infer-
ence time. In International Conference on Machine

Learning, pages 22137-22176. PMLR.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. 2024. KIVI: A tuning-free asymmetric 2bit

https://openreview.net/forum?id=mtSSFiqW6y
https://openreview.net/forum?id=mtSSFiqW6y
https://openreview.net/forum?id=mtSSFiqW6y
https://openreview.net/forum?id=mtSSFiqW6y
https://openreview.net/forum?id=mtSSFiqW6y
https://openreview.net/forum?id=PEpbUobfJv
https://openreview.net/forum?id=PEpbUobfJv
https://openreview.net/forum?id=PEpbUobfJv
http://papers.nips.cc/paper_files/paper/2024/hash/9cb5b083ba4f5ca6bd05dd307a2fb354-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/9cb5b083ba4f5ca6bd05dd307a2fb354-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/9cb5b083ba4f5ca6bd05dd307a2fb354-Abstract-Conference.html
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://github.com/kvcache-ai/ktransformers
https://github.com/kvcache-ai/ktransformers
https://github.com/kvcache-ai/ktransformers
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
https://aclanthology.org/2024.emnlp-main.422
https://aclanthology.org/2024.emnlp-main.422
https://aclanthology.org/2024.emnlp-main.422
https://openreview.net/forum?id=1NdN7eXyb4
https://openreview.net/forum?id=1NdN7eXyb4
https://openreview.net/forum?id=1NdN7eXyb4
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=L057s2Rq8O

quantization for KV cache. In Forty-first Interna-
tional Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, and
1 others. 2023. Specinfer: Accelerating generative
large language model serving with tree-based spec-
ulative inference and verification. arXiv preprint
arXiv:2305.09781.

John Edison Arevalo Ovalle, Thamar Solorio, Manuel
Montes-y-Gémez, and Fabio A. Gonzilez. 2017.
Gated multimodal units for information fusion. In 5th
International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017,
Workshop Track Proceedings. OpenReview.net.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch.

Ranajoy Sadhukhan, Jian Chen, Zhuoming Chen,
Vashisth Tiwari, Ruihang Lai, Jinyuan Shi, Ian En-
Hsu Yen, Avner May, Tianqi Chen, and Beidi Chen.
2025. Magicdec: Breaking the latency-throughput
tradeoff for long context generation with speculative
decoding. In The Thirteenth International Confer-
ence on Learning Representations, ICLR 2025, Sin-
gapore, April 24-28, 2025. OpenReview.net.

Victor Sanh, L Debut, J] Chaumond, and T Wolf. 2019.
Distilbert, a distilled version of bert: Smaller, faster,
cheaper and lighter. arxiv 2019. arXiv preprint
arXiv:1910.01108.

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen.
2024. Powerinfer: Fast large language model serving
with a consumer-grade GPU. In Proceedings of the
ACM SIGOPS 30th Symposium on Operating Systems
Principles, SOSP 2024, Austin, TX, USA, November
4-6, 2024, pages 590-606. ACM.

Benjamin Spector and Chris Re. 2023. Accelerating llm
inference with staged speculative decoding. arXiv
preprint arXiv:2308.04623.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. In In-

ternational Conference on Machine Learning, pages
5976-5985. PMLR.

Ruslan Svirschevski, Avner May, Zhuoming Chen,
Beidi Chen, Zhihao Jia, and Max Ryabinin. 2024.
Specexec: Massively parallel speculative decoding
for interactive LLM inference on consumer devices.
In Advances in Neural Information Processing Sys-
tems 38: Annual Conference on Neural Information
Processing Systems 2024, NeurIPS 2024, Vancouver,
BC, Canada, December 10 - 15, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,

10

and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, and 1 others. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Lifu Tu, Richard Yuanzhe Pang, Sam Wiseman, and
Kevin Gimpel. 2020. ENGINE: energy-based infer-
ence networks for non-autoregressive machine trans-
lation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 2819-2826.
Association for Computational Linguistics.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

Yugiao Wen, Zichao Li, Wenyu Du, and Lili Mou. 2023.
f-divergence minimization for sequence-level knowl-
edge distillation. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 10817-10834. Asso-
ciation for Computational Linguistics.

Heming Xia, Tao Ge, Peiyi Wang, Si-Qing Chen, Furu
Wei, and Zhifang Sui. 2023. Speculative decod-
ing: Exploiting speculative execution for accelerating
seq2seq generation. In Findings of the Association
for Computational Linguistics: EMNLP 2023, Singa-
pore, December 6-10, 2023, pages 3909-3925. Asso-
ciation for Computational Linguistics.

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang,
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and Zhi-
fang Sui. 2024a. Unlocking efficiency in large lan-
guage model inference: A comprehensive survey of
speculative decoding. In Findings of the Association
for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024,
pages 7655-7671. Association for Computational
Linguistics.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Dangqi
Chen. 2024b. Sheared llama: Accelerating language
model pre-training via structured pruning. In The
Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. Smoothquant:
Accurate and efficient post-training quantization for
large language models. In International Conference
on Machine Learning, pages 38087-38099. PMLR.

Minghao Yan, Saurabh Agarwal, and Shivaram
Venkataraman. 2024. Decoding speculative decod-
ing. arXiv preprint arXiv:2402.01528.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan

https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=S12_nquOe
https://openreview.net/forum?id=CS2JWaziYr
https://openreview.net/forum?id=CS2JWaziYr
https://openreview.net/forum?id=CS2JWaziYr
https://openreview.net/forum?id=CS2JWaziYr
https://openreview.net/forum?id=CS2JWaziYr
https://doi.org/10.1145/3694715.3695964
https://doi.org/10.1145/3694715.3695964
https://doi.org/10.1145/3694715.3695964
http://papers.nips.cc/paper_files/paper/2024/hash/1d91d5689e251d27993a3c2182dddcf7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/1d91d5689e251d27993a3c2182dddcf7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/1d91d5689e251d27993a3c2182dddcf7-Abstract-Conference.html
https://doi.org/10.18653/V1/2020.ACL-MAIN.251
https://doi.org/10.18653/V1/2020.ACL-MAIN.251
https://doi.org/10.18653/V1/2020.ACL-MAIN.251
https://doi.org/10.18653/V1/2020.ACL-MAIN.251
https://doi.org/10.18653/V1/2020.ACL-MAIN.251
https://doi.org/10.18653/V1/2023.ACL-LONG.605
https://doi.org/10.18653/V1/2023.ACL-LONG.605
https://doi.org/10.18653/V1/2023.ACL-LONG.605
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.257
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.257
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.257
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.257
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.257
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.456
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.456
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.456
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.456
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.456
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp

and 1 others.
arXiv preprint

Li, Dayiheng Liu, Fei Huang,
2024. Qwen2 technical report.
arXiv:2407.10671.

Lujia Yin, Yiming Zhang, Zhaoning Zhang, Yuxing
Peng, and Peng Zhao. 2021. Parax: Boosting deep
learning for big data analytics on many-core cpus.
Proceedings of the VLDB Endowment, 14(6):864—
8717.

Jiayi Yuan, Hongyi Liu, Shaochen Zhong, Yu-Neng
Chuang, Songchen Li, Guanchu Wang, Duy Le,
Hongye Jin, Vipin Chaudhary, Zhaozhuo Xu, Zirui
Liu, and Xia Ben Hu. 2024. KV cache compression,
but what must we give in return? A comprehen-
sive benchmark of long context capable approaches.
In Findings of the Association for Computational
Linguistics: EMNLP 2024, Miami, Florida, USA,
November 12-16, 2024, pages 4623-4648. Associa-
tion for Computational Linguistics.

Ziqgian Zeng, Yihuai Hong, Hongliang Dai, Huiping
Zhuang, and Cen Chen. 2024. Consistentee: A con-
sistent and hardness-guided early exiting method for
accelerating language models inference. In Thirty-
Eighth AAAI Conference on Artificial Intelligence,
AAAI 2024, Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2024,
Fourteenth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2014, February 20-
27, 2024, Vancouver, Canada, pages 19506—19514.
AAALI Press.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen,
Gang Chen, and Sharad Mehrotra. 2024a. Draft&
verify: Lossless large language model acceleration
via self-speculative decoding. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
11263-11282. Association for Computational Lin-
guistics.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024b. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385.

Tianyi Zhang, Yang Sui, Shaochen Zhong, Vipin Chaud-
hary, Xia Hu, and Anshumali Shrivastava. 2025.
70% size, 100% accuracy: Lossless 1lm compres-
sion for efficient gpu inference via dynamic-length
float. arXiv preprint arXiv:2504.11651.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
Ilm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Yongchao Zhou, Kaifeng Lyu, Ankit Singh Rawat,
Aditya Krishna Menon, Afshin Rostamizadeh, San-

11

Figure 6: A depiction of the Dovetail joint in Chinese
carpentry, which also inspired the name of our method.
It represents that the seamless integration of this hetero-
geneous architecture.

jiv Kumar, Jean-Frangois Kagy, and Rishabh Agar-
wal. 2023. Distillspec: Improving speculative de-
coding via knowledge distillation. arXiv preprint
arXiv:2310.08461.

A Dovetail

Figure 6 is an illustrative description of Dovetail.

B Analysis of Dovetail Effectiveness

Given the sequence length S, batch size B, a target
model consisting of m Transformer blocks, hidden
dimension H, and the number of candidate draft
tokens -y, the average decoding latency per token
based on the theoretical formula of MagicDec is
defined as:

pso _ 7 To+Tv()
=00 a)

where « is the acceptance rate, (7, «) is the num-
ber of accepted tokens in a single parallel verifica-
tion, Tp is the time for the draft model to decode
a single token, and Ty (+y) is the time for the target
model to verify «y tokens in parallel.

The offloading method employs a strategy of
overlapping computation and data loading to op-
timize efficiency, with the latency per token de-
noted as Togoaq- To ensure the advantage of the
heterogeneous speculative decoding method, the
following condition must be satisfied:

(@)

SD
TAvg

3)

i.e., the average latency per token of heterogeneous
speculative decoding must be lower than that of the
offloading method.

In a heterogeneous architecture, the parallel ver-
ification time Ty () of the target model on the
main processor can be decomposed into computa-
tion time 7, and memory access time 7),:

< Toff0ad

_F
~ P.-E,.’

P

T,=—,
By - Eny

T, D

“)

where F'is the computational cost of a single Trans-
former block, P is the parameter size, P. is the

https://aclanthology.org/2024.findings-emnlp.266
https://aclanthology.org/2024.findings-emnlp.266
https://aclanthology.org/2024.findings-emnlp.266
https://aclanthology.org/2024.findings-emnlp.266
https://aclanthology.org/2024.findings-emnlp.266
https://doi.org/10.1609/AAAI.V38I17.29922
https://doi.org/10.1609/AAAI.V38I17.29922
https://doi.org/10.1609/AAAI.V38I17.29922
https://doi.org/10.1609/AAAI.V38I17.29922
https://doi.org/10.1609/AAAI.V38I17.29922
https://doi.org/10.18653/V1/2024.ACL-LONG.607
https://doi.org/10.18653/V1/2024.ACL-LONG.607
https://doi.org/10.18653/V1/2024.ACL-LONG.607
https://doi.org/10.18653/V1/2024.ACL-LONG.607
https://doi.org/10.18653/V1/2024.ACL-LONG.607
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html

peak computational performance of the main pro-
cessor, E. is the computational efficiency, B,, is
the memory bandwidth, and FE,, is the memory
utilization efficiency.

Considering the partial overlap between compu-
tation time and memory access time, the total time
is expressed as:

TV(’Y) = maX(TC7 Tp) + /8 . min(Tw Tp) (5)

where 8 (0 < 8 < 1) is the overlap coefficient,
with 5 = 1 indicating no overlap and 5 = 0 indi-
cating complete overlap.

Equation 3 can be further updated as:

P

‘B, E,
6
where 1. and T}, are the computation time and
memory access time of the target model on the
main processor, 8 (0 < 8 < 1) is the overlap co-
efficient, B, is the PCle bandwidth, and E), is the
PCle transmission efficiency.

In summary, heterogeneous speculative decod-
ing achieves higher efficiency when the perfor-
mance of the main processor and the accelerator
is relatively balanced. However, in scenarios with
severe hardware resource imbalance (e.g., signif-
icantly limited computational performance of the
main processor and high PCle bandwidth), het-
erogeneous speculative decoding may not be the
optimal choice.

max(T¢, T,)+8-min(Te, T,) < Q(v, @)

C Additional Implementation Details

C.1 Training Settings

We trained the draft model on the ShareGPT
dataset, where the configuration of the draft model
under the Dovetail framework involved varying the
number of blocks M from 1 to 6. The training pro-
cess utilized eight NVIDIA A800 80G GPUs with
a batch size of 16 and employed mixed-precision
training (bf16). The AdamW optimizer was used,
with momentum parameters set to 5; = 0.9 and
B2 = 0.95. The model was trained for 24 epochs,
and the entire training process took approximately
1 day when M = 6. To ensure a fair compari-
son, the EAGLE model was retrained under the
same conditions, providing a consistent experimen-
tal baseline.

C.2 Ablation experiments on RTX 2080

When running the Vicuna 13B on a GeForce RTX
2080, the parameter scale of the draft model also

12

Method Speedup T

w/o both 2.60x 491

w/ DGF 2.69x 4.99
w/DGF+1 297x 5.71
w/DGF+2 3.04x 5.96
w/DGF+3 3.08x 6.03
w/DGF+4 3.19x 6.25
w/DGF+5 3.13x 6.26

Table 6: The ablation experiment results of Vicuna 13B
on a heterogeneous architecture using GeForce RTX
2080 SUPER, with the temperature set to 0 and the test
dataset being HumanEval. “w/o both” denotes using
only a single layer; “w/ DGF” indicates using a single
layer with DGF; and “w/ DGF + m” represents adding
m additional Transformer blocks on the basis of “w/
DGF”.

Method Tokens/Sec Speedup 7
w/o both 3.19 1.69x 3.61
w/DGF 3.36 1.79x 3.85
w/DGF+1 2.85 1.52x 4.09

Table 7: The ablation study results of the Vicuna 13B on
HumanEval, conducted on a heterogeneous architecture
with NVIDIA GTX 1050, where the temperature is set
to 0.

significantly impacts the inference speed, as shown
in Table 6. As the number of Transformer blocks in
the draft model increases from 1 to 5, the prediction
accuracy progressively improves, driving a corre-
sponding increase in the average acceptance length,
while the speedup ratio steadily rises. However,
when the number of Transformer blocks increases
to 6, although the average acceptance length shows
a notable improvement, the speedup ratio experi-
ences a slight decline. This phenomenon aligns
with the observations made on the 7B model.

C.3 Ablation experiments on GTX 1050

We conducted ablation experiments on the Vicuna
13B on a platform equipped with an NVIDIA GTX
1050 to investigate the impact of the DGF module
and multiple Transformer blocks on model perfor-
mance. The experimental results are presented in
Table 7. Upon integrating the DGF module into
EAGLE-2, both the speedup ratio and the average
acceptance length of the model exhibited improve-
ments. However, when an additional Transformer
block was introduced beyond this configuration,

Draft Stage Verify Stage
Precision 16-bit 8-bit
Processors GTX 1050 15-9300H
Time 0.31 Sec 0.57 Sec

Table 8: On a personal laptop, statistics were gathered
for large-model inference using w/DGF, with a focus on
the average time taken for a single drafting phase and
the average time taken for a single parallel verification
phase.

while the average acceptance length continued to
increase, the speedup ratio experienced a decline.
The primary reason for this phenomenon, as shown
in Table 8, lies in the precision discrepancy be-
tween the CPU and GPU: the CPU employed int8
quantization, whereas the GPU utilized fp16 preci-
sion for computations. This precision mismatch re-
sulted in an insufficient time difference between the
drafting phase and the parallel verification phase
to accommodate the inclusion of an extra Trans-
former block. As shown in Table 7, further increas-
ing the number of Transformer blocks prolonged
the drafting time, thereby diminishing the overall
acceleration effect. Consequently, to achieve per-
formance akin to that of a RTX 2080 on a device
such as the GTX 1050—specifically, to further en-
hance the speedup ratio by incorporating additional
Transformer blocks—it is advisable to apply int8
quantization to the drafting model on the GPU.
This approach would amplify the time difference
between the drafting phase and the parallel verifi-
cation phase, thereby enabling the integration of
multiple additional blocks.

D Heterogeneous Architecture

In heterogeneous architectures, the presence of ac-
celerators allows for leveraging the advantages of
multiple computational resources for LLM infer-
ence. Model compression techniques (Zhang et al.,
2025) typically focus on fully utilizing accelerator
performance, often with limited consideration of
output quality. In contrast, offloading and partial
offloading strategies combine the performance of
accelerators with the memory and computational
capabilities of CPUs to achieve lossless output
quality, although their acceleration efficiency is
generally suboptimal. To address this issue, Pow-
erInfer (Song et al., 2024) leverages the locality
characteristics of LLM inference by predicting hot

13

neurons to be computed on the GPU, while delegat-
ing cold neurons to the CPU. This approach effec-
tively utilizes the advantages of heterogeneous ar-
chitectures to significantly improve inference speed.
Similarly, KTransformers (KVCache.Al, 2024) fo-
cuses on sparse Mixture of Experts (MoE) models,
employing a heterogeneous computing strategy:
non-shared components (sparse MoE matrices) are
placed on the CPU to conserve GPU memory, while
shared dense components are computed on the
GPU. This method maximizes hardware resource
utilization through heterogeneous computing, en-
abling efficient inference in resource-constrained
environments.

	Introduction
	Preliminaries
	Effectiveness of Heterogeneous Speculative Decoding
	Factors Affecting Speculative Decoding Speedup

	Method
	CPU/GPU Heterogeneous Architecture
	Dynamic Gated Fusion
	Multiple Transformer Blocks

	Experiments
	Result
	Ablation Study
	Dynamic Gating Fusion
	Multiple Transformer Blocks

	Related work
	Heterogeneous Architecture
	Speculative Decoding
	Obtaining Draft Tokens
	Organizing Draft Tokens
	Verifying Draft Tokens

	Conclusion
	Dovetail
	Analysis of Dovetail Effectiveness
	Additional Implementation Details
	Training Settings
	Ablation experiments on RTX 2080
	Ablation experiments on GTX 1050

	Heterogeneous Architecture

