
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRIDAR: GLIMPSE-AND-GROW TEST-TIME SCALING
FOR AUTOREGRESSIVE IMAGE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent visual autoregressive (AR) models have shown promising capabilities in
text-to-image generation, operating in a manner similar to large language mod-
els. While test-time computation scaling has brought remarkable success in en-
abling reasoning-enhanced outputs for challenging natural language tasks, its
adaptation to visual AR models remains unexplored and poses unique challenges.
Naively applying test-time scaling strategies such as Best-of-N can be subop-
timal: they consume full-length computation on erroneous generation trajecto-
ries, while the raster-scan decoding scheme lacks a blueprint of the entire can-
vas, limiting scaling benefits as only a few prompt-aligned candidates are gen-
erated. To address these, we introduce GridAR, a test-time scaling framework
designed to elicit the best possible results from visual AR models. GridAR em-
ploys a grid-partitioned progressive generation scheme in which multiple partial
candidates for the same position are generated within a canvas, infeasible ones
are pruned early, and viable ones are fixed as anchors to guide subsequent de-
coding. Coupled with this, we present a layout-specified prompt reformulation
strategy that inspects partial views to infer a feasible layout for satisfying the
prompt. The reformulated prompt then guides subsequent image generation to
mitigate the blueprint deficiency. Together, GridAR achieves higher-quality re-
sults under limited test-time scaling: with N=4, it even outperforms Best-of-N
(N=8) by 17.8% on T2I-CompBench++ while reducing cost by 18.2%. It also
generalizes to autoregressive image editing, showing comparable edit quality and
a 13.9% gain in semantic preservation on PIE-Bench over larger-N baselines.
The code will be publicly released, and our anonymous project page is available
at https://grid-ar.github.io.

1 INTRODUCTION

Visual autoregressive (AR) models (Tian et al., 2024; Team, 2024; Sun et al., 2024; Chen et al., 2025)
are emerging as a compelling alternative to the long-dominant diffusion paradigm, demonstrating
competitive text-to-image generation against landmark models such as DALL·E 3 (Betker et al.,
2023) and Stable Diffusion 3 (Esser et al., 2024). By encoding images as sequences of discrete
tokens with the aid of VQ-VAE (Van Den Oord et al., 2017), such models operate in a manner akin
to large language models (LLMs). Recent work focuses on raster-scan decoding (i.e., line-by-line
decoding) and variants, including iterative masking and next-scale prediction (Wang et al., 2024b;
Sun et al., 2024; Chen et al., 2025; Liu et al., 2024), while exploring variants such as iterative masked
modeling (Xie et al.; Li et al., 2024) and next-scale prediction (Tian et al., 2024; Han et al., 2025).
These efforts continue to push the limits of visual fidelity in autoregressive image generation.

As LLM-style raster-scan decoding becomes feasible in text-to-image generation, a natural research
question arises: how can test-time computation scaling - shown to enable human-expert level rea-
soning in language tasks such as math (Wang et al., 2024a) and coding (Chen et al.) - be applied in
this setting? These strategies allocate additional computation at inference; for instance, they encour-
age longer, chain-of-thought (CoT) outputs (Kojima et al., 2022) or employ Best-of-N (Snell et al.,
2024) selection with outcome reward model (ORM) to boost the reasoning capabilities of LLMs on
cognitively demanding tasks. Despite these successes in language, tailored strategies for visual AR
remain underexplored, and it is still unclear how to effectively scale computation or decompose the
generation process into multi-steps during test time.

1

https://grid-ar.github.io

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Color

Shape

Texture
2D Spatial

3D Spatial

Non-Spatial

Numeracy

Complex

Counting
[GenEval]

Position
[GenEval]

Color Attri.
[GenEval]

GridAR (N=8) GridAR (N=4)
Best-of-N (N=8) Best-of-N (N=4) DALL-E 3

Figure 1: A grid-partitioned progressive generation framework (GridAR) for visual AR models. It
achieves 17.8% higher text-to-image quality via effective test-time scaling, surpassing Best-of-N .

In this paper, we primarily aim to devise a test-time scaling approach for visual AR models, in
pursuit of achieving accurate image renderings given complex prompts, including scenarios with
multiple objects, spatial relations, and attribute bindings. Prior work mostly ports LLM-style meth-
ods (reinforcement learning for token-wise CoT, CoT-augmented prompts) (Jiang et al., 2025) or
verifies intermediates in iterative masked AR (Zhang et al., 2025). These approaches suggest that
scaling computation at test time can benefit reasoning for image generation in visual AR models;
however, they do not fully reflect the unique characteristics that arise when images are generated by
AR models.

We highlight two key characteristics of raster-scan image generation for test-time scaling. First, due
to the next-token prediction scheme, the model lacks a global blueprint of the full image. For exam-
ple, when prompted with ‘a photo of eight bears,’ if the first bear is drawn large in the upper region,
the model often leaves the remaining bears undrawn in the lower region. Second, the autoregres-
sive nature makes early errors hard to fix. Consider a prompt requiring four bags: if five handles
are already drawn in the upper region, the sequential generation offers no correction. These issues
indicate that Best-of-N selection, a representative test-time scaling approach, is not well-suited for
visual AR models: once an erroneous trajectory is initiated, it still consumes full computation, and
without a global blueprint, wastes resources on misdrawn images.

Building upon this insight, we introduce the GridAR, a grid-structured test-time scaling framework
for autoregressive image generation. Our approach, inspired by tree-search reasoning in LLMs, fo-
cuses computation on regions where further exploration is meaningful and thereby effectively ex-
pands the search space. Specifically, the image canvas is partitioned into row-wise tiles and generates
multiple candidate images for the same canvas position - e.g., four distinct upper-quarter candi-
dates at the initial stage. Erroneous or infeasible candidates are then rejected, while valid ones are
propagated to fill the corresponding canvas positions and serve as anchors that guide the continued
generation. This glimpse-and-grow strategy guides visual AR models to generate more faithful and
sophisticated images that better follow instructions, without requiring any additional training.

One natural artifact of this grid-partitioned progressive generation is a set of partial images, where
only the upper portion of the canvas has been rendered. We take these as cues to address the blueprint
deficiency in autoregressive models. When a vision-language model serves as a verifier to evaluate
grid candidates, we simultaneously perform a layout-specified prompt reformulation, in which the
prompt is revised to explicitly encode a feasible layout grounded in the observed partial outputs.
With this reformulated prompt, we propose two options: (i) apply a three-way classifier-free guid-
ance term to steer the logits to align with the layout specified in reformulated prompts, or (2) directly
substitute the prompt in subsequent generation stages, which is cost-efficient. Both approaches guide
the model toward a plausible layout consistent with the intermediate results.

Our GridAR is thoroughly validated across two tasks: text-to-image generation and image editing,
using three models - Janus-Pro (Wu et al., 2025), LlamaGen (Sun et al., 2024), and EditAR (Mu
et al., 2025). Extensive experiments show that GridAR consistently improves text-to-image genera-
tion quality from 4.8% to 17.8% across diverse prompt categories, and even outperforms Best-of-N

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(N=8) using onlyN=4 candidates. In image editing, it achieves 17.8% higher semantic preservation
compared to a larger-N baseline, demonstrating a more favorable cost-performance trade-off.

In summary, our contribution is threefold:

• We introduce GridAR, a grid-structured progressive generation framework that directs
computation toward promising continuations at test time, effectively expanding the search
space effectively to elicit the best outputs achievable from visual AR models.

• We propose a layout-specified prompt reformulation that leverages partial views to infer
feasible layouts, tackling the blueprint deficiency in autoregressive generation and enrich-
ing the candidate pool with prompt-aligned images for more effective test-time scaling.

• Extensive experiments demonstrate that GridAR improves generation quality across both
text-to-image generation and image editing, drawing out the maximum potential of the
pretrained AR model and offering a superior cost-quality trade-off.

2 PRELIMINARY

2.1 AUTOREGRESSIVE MODELING FOR IMAGE GENERATION

Visual autoregressive (AR) models adapt the next-token prediction paradigm of language modeling
to image generation. To enable autoregressive prediction on images, they employ a vector-quantized
autoencoder, such as VQ-VAE (Van Den Oord et al., 2017) and VQ-GAN (Esser et al., 2021), which
discretizes an image into a finite sequence of codebook indices. Given a trained vector-quantized
autoencoder with down-sampling factor M and codebook Q = {ek}Kk=1, an image I ∈ RH×W×3

is encoded into a grid of h × w latent vectors, where h = H/M and w = W/M . These latent
vectors are then quantized by the codebook into a discrete sequence x = (x1, . . . , xN), where
xi ∈ {1, 2, . . . ,K} and N = h · w.

In text-to-image generation or image editing, the image token sequence x is generated conditioned
on context c, which may include a text embedding cT or an image embedding cI . Visual AR models
perform next-token prediction modeling on x, thereby defining the sequence likelihood as follows:

p
(
x | c

)
=

N∏
n=1

p
(
xn | x<n, c

)
.

For a visual AR model pϕ(x | c) conditioned on context c, training on a dataset updates the param-
eters ϕ so that pϕ(xn | x<n, c) is optimized for the distribution of the dataset. During inference, the
model generates the sequence by sampling one token at a time, after which a decoder reconstructs
the high-resolution image from the corresponding codebook embeddings.

2.2 CLASSIFIER-FREE GUIDANCE FOR AUTOREGRESSIVE MODELS

Classifier-free guidance (CFG) (Ho & Salimans, 2022) was first introduced for diffusion models
to eliminate the need for an external image classifier while providing a tunable trade-off between
fidelity and conditional adherence. At each sampling step, the score estimate is formed as a linear
combination of the conditional and unconditional scores. Early intuition suggested that CFG draws
samples from a reweighted distribution proportional to p(x | c)s+1p(x)−s (Ho & Salimans, 2022)
where s is the guidance scale; however, later analyses show this interpretation is generally incorrect
and is better viewed as a predictor-corrector procedure (Bradley & Nakkiran, 2024).

CFG has since been adapted to diverse AR models-such as text-to-image (Sun et al., 2024; Wang
et al., 2024b; Wu et al., 2025; Chen et al., 2025; Liu et al., 2024) and text-to-music (Copet et al.,
2023)-through logit-space guidance applied before next-token sampling. For an AR model pϕ(x |
c), to generate xi at step i ∈ {1, 2, . . . , N}, the guided logits l̂i are formed as follows:

lsample
i = (1 + s) · lcond

i − s · luncond
i = lcond

i + s ·
(
lcond
i − luncond

i

)
,

where lcond
i and luncond

i are the conditional and unconditional logits produced by the same model. The
next-token distribution can be represented as:

psample
ϕ

(
xi | x<i, c

)
= softmax(lsample

i) ∝ pϕ
(
xi | x<i, c

)(pϕ(xi | x<i, c)
pϕ
(
xi | x<i

))s .
3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

“A photo of
four handbags”

Already more than 4

Decoding Decoding

Output Candidates

Second row
contains five
bag holders

“A blue backpack
and a brown cow”

Decoding Decoding

All rows
appear

appropriate!

Not a brown cow

Accept Reject Copy

Figure 2: Visualization of Grid-based Progressive Generation process in two cases: (a) first-stage
rejection (top row), where all candidates are accepted in the second stage; (b) second-stage rejection
(bottom row), where all candidates are accepted in the first stage.

Using the autoregressive modeling on x, the induced sequence-level sampling distribution satisfies

psample
ϕ

(
x | c

)
∝ pϕ

(
x | c

)(pϕ(x | c
)

pϕ
(
x
))s

.

3 TEST-TIME SCALING FOR AUTOREGRESSIVE IMAGE GENERATION

Our main objective is to investigate how test-time computation can be scaled to elicit the best outputs
from visual autoregressive (AR) models with next-token prediction. We introduce GridAR, a test-
time scaling framework that progressively explores generation paths through grid-structured can-
vases, dynamically directing computation toward promising continuations. Multiple partial image
candidates for the same position are generated row-wise for the same canvas position; unlikely ones
are pruned early, and viable ones are fixed as anchors to guide subsequent generation (Section 3.1).
During this process, we incorporate a layout-aware prompt reformulation alongside candidate verifi-
cation (Section 3.2). By restructuring the prompt to reflect a feasible layout consistent with selected
intermediate results, this step addresses the blueprint deficiency of raster-scan decoding. The refor-
mulated prompt is then used in subsequent decoding - either with three-way classifier-free guidance
or simple prompt replacement - to align the remaining regions. These two intertwined components
strengthen the candidate pool, leading to more reliable text-to-image generation. An overview of the
framework is illustrated in Figure 2.

3.1 GRID-BASED PROGRESSIVE GENERATION

In this section, we describe our progressive image completion process through parallel candidate ex-
ploration, during which promising candidates are retained - a sophisticated version of Best-of-N for
visual AR models. We employ a row-partitioned generation strategy: the first stage uses an R1-row
grid to explore R1 initial partial candidates, followed by an R2-row grid for continued generation
from the selected anchor candidates. We instantiate (R1, R2) = (4, 2); while other configurations
are in principle possible, we adopt this setting in this paper.

Starting from this setup, the text-to-image autoregressive model pϕ(x | cT) begins by generating
four distinct candidates (R1 = 4), each corresponding to the upper quarter of the image given
the same prompt. Specifically, we represent the canvas x ∈ {1, 2, . . . ,K}h×w as four contiguous

horizontal row segments, x =

[
x(1)

...
x(4)

]
, where x(r) is the r-th row segment and each segment consists

of L tokens with L = h
4 · w. Under this partition, each candidate is autoregressively generated as:

pϕ
(
x(r) | cT

)
=

L∏
n=1

pϕ

(
x(r)n

∣∣∣x(r)<n, cT) , r = 1, . . . , 4,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where x(r)n is the n-th discrete latent token index. Different candidates x(r) are generated inde-
pendently (i.e., without conditioning on each other), while the key-value representations of the
prompt cT are cached once and reused across all rows for computation efficiency. Then the grid-
partitioned canvas Igrid containing four candidates is decoded from the vector-quantized embeddings
xq ∈ Rh×w×d (obtained by mapping x to its codebook vectors) through a single forward pass of
the decoder DVQ : Rh×w×d → Rh×w×3 as Igrid = DVQ

(
xq
)
.

Candidate verification After obtaining image Igrid, we assess the four candidate row-segment
images at once using a verifier Vψ . We here employ a vision-language model as a zero-shot verifier
to determine whether candidates are already unlikely to satisfy the given prompt - e.g., when attribute
bindings such as color are already incorrect, or when the number of objects exceeds what is required.
The verifier Vψ predicts row-wise judgments directly as:

y = Vψ
(
Igrid, cT

)
=
(
y(1), . . . , y(4)

)
, y(r) ∈ {possible, impossible}.

It is worth noting that we do not perform top-k selection as in beam search (Sutskever et al., 2014);
instead, we reject only those candidates deemed impossible to align with the prompt, while keeping
all others. In other words, the number of candidates retained is not fixed 1. The intuition behind
this is that we are evaluating only partial views, where a certain object may simply not appear yet
in the visible rows. As a result, top-k selection may prematurely discard many potentially valid
candidates for such reasons, thereby harming the sample diversity of the candidate pool. According
to the verified results, the set of tokens for four anchor partial images is determined, which will
serve as anchors to guide the continued generation. If some candidates are rejected, the rejected one
is randomly replaced with feasible one, for example, if x(2) rejected, the anchor set xanchor can be
determined as xanchor = [x(1),x(4),x(3),x(4)]⊤.

Image expansion from verified candidates The discrete token sequences of four verified par-
tial images {x(r)

anchor}4r=1 are propagated to the next stage, where two distinct grids with R2-rows
are constructed (R2 = 2). In each grid cell, the upper portion is fixed by anchor tokens, and the
lower portion is autoregressively continued. Under the (R1, R2) = (4, 2) setting, this yields two
half-image canvases, each guided by its anchor. Formally, the two half-image canvases are de-
fined as x̃1 = [(x

(1)
anchor, x

(1)
gen), (x

(2)
anchor, x

(2)
gen)]⊤ and x̃2 = [(x

(3)
anchor, x

(3)
gen), (x

(4)
anchor, x

(4)
gen)]⊤,

where each pair consists of a fixed anchor and its autoregressively generated continuation, with
pϕ(x

(i)
gen | x(i)

anchor, cT) =
∏L′

n=1 pϕ(x
(i)
gen,n | x(i)gen,<n,x

(i)
anchor, cT) with L′ denoting the number of

tokens in the half-image segment after subtracting anchors.

This process yields four half-image views arranged in a 2-by-2 layout. As in the previous stage,
the verifier Vψ prunes half-image candidates unlikely to satisfy the prompt, with rejected candidates
substituted by viable ones. Each verified half-image is then anchored on a new canvas, with the
remaining half autoregressively generated to form four complete images. The best image is selected
using an output reward model (ORM), analogous to Best-of-N selection. Apart from verification
overhead, the number of tokens generated matches that of N=4 in standard Best-of-N . While our
description focuses on N=4 for clarity, the framework naturally scales - e.g., using two starting
canvases results in N=8. Further analysis of rejection rates during progressive generation, along
with qualitative examples of rejected samples, is provided in Appendix B.

3.2 LAYOUT-SPECIFIED PROMPT REFORMULATION

As described in Section 3.1, our grid-based image generation framework effectively enlarges the
search space while circumventing wasted computation on erroneous trajectories. Nevertheless, this
pipeline alone is insufficient to ensure a strong candidate pool. Even with carefully selected an-
chors in the upper half, subsequent decoding may still repeat objects already drawn or omit others
required by the prompt. We posit that such failures arise from the absence of a global blueprint:
due to the next-token prediction nature of auto-regressive decoding, the model lacks an explicit plan
for how the prompt should be realized across the entire canvas. To probe this limitation, we con-
duct a pilot study that verifies blueprint deficiency as one of the bottlenecks in faithfully portraying

1In rare cases, all candidates may be rejected; the frequency of such events and our handling strategy are
detailed in Appendix B

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Motivation of Prompt Reformulation. Success rate increases significantly with the num-
ber of trials when prompt reformulation incorporates a plan for generating lower tokens, rather than
relying only on the tokens generated in the upper part.

prompts within visual AR models. This motivates our layout-specified prompt reformulation, which
dynamically revises the prompt using plausible layouts inferred from the intermediate canvases.

Pilot study We test whether raster-scan decoding, which generates tokens sequentially without
global layout, can construct a high-quality candidate pool under test-time scaling, and whether in-
jecting layout knowledge mid-generation can remedy this limitation. Using Janus-Pro 7B (Wu et al.,
2025), we focus on prompts where the single-sample setting (N=1) fails. As shown in Figure 3, we
analyze partially decoded images that remain correct up to the halfway point, conditioning on the
upper-half tokens and repeatedly decoding the lower half to measure how many samples eventually
satisfy the prompt as trials increase. Results show that many candidates remain incorrect - often
duplicating or omitting objects - even under test-time scaling with Best-of-N selection, despite the
prompt being achievable (blue curves). Instead of persisting with the original prompt, we reformu-
late it at the intermediate stage, replacing it with a revised version for subsequent decoding. We
revise the prompt by inspecting the intermediate output and specifying a feasible layout that can
satisfy the prompt. For instance, in Figure 3 (a), the prompt “a photo of eight bears” is reformulated
after the partial grid already depicts three bears in the upper region, yielding “three on top and five
on the bottom”. Interestingly, this simple modification leads to a clear improvement in candidate
quality, as shown by the consistently higher success rates as scaling increases (red curves). These
results indicate that prompt reformulation allows strong candidate pools to be obtained even with
lower levels of scaling.

Prompt reformulation Motivated by this study, we incorporate prompt reformulation into the
grid-based progressive generation process. When the verifier ψ evaluates grid candidates, we simul-
taneously conduct a layout-specified prompt reformulation, in which the original prompt is revised
to reflect a realizable layout consistent with the observed partial images. The reformulated prompt
provides explicit structural cues (e.g., object count or spatial arrangement) inferred from the verified
candidates. We consider two alternative strategies: (i) a three-way classifier-free guidance (CFG)
that steers logits toward the specified layout by orthogonalizing the reformulated prompt against the
original, and (ii) a cost-efficient approach that simply replaces the prompt in subsequent decoding.

(i) Three-way CFG Let Tu, To, and Tr denote the unconditional (null text), original, and re-
formulated prompts, respectively. At token step i, the autoregressive model fθ produces a hid-
den representation, which is projected by the generation head W into the logit space as: l(u)i =

Wfθ(x<i, i, Tu), l
(o)
i = Wfθ(x<i, i, To), l

(r)
i = Wfθ(x<i, i, Tr). We then derive the two direc-

tional offsets as do,i = l
(o)
i − l

(u)
i , dr,i = l

(r)
i − l

(u)
i . To disentangle the layout-specific direction

from the original one, we orthogonalize dr,i against do,i, ensuring no interference with the original
guidance scale while clearly conveying the layout-specific direction: d̃r,i = dr,i − ⟨dr,i,do,i⟩

∥do,i∥2 do,i.

Finally, the three-way CFG logits are defined as: lsample
i = l

(o)
i +so ·do,i+sr · d̃r,i, where so, sr ≥ 0

are guidance scales controlling the strengths of the original and reformulated signals. In this work,
we do not tune these parameters but simply set so = sr = s to a fixed constant (reusing the conven-
tional scale s for both scales). This formulation preserves the contribution of the original instruction
while providing a clear layout-specific signal from the reformulated prompt.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: T2I-CompBench++ results by dimensions, comparing Best-of-N with GridAR test-time
scaling on Janus-Pro and LlamaGen. Scores are reported using metrics proposed in the benchmark.

Method Attribute Binding Object Relationship Numeracy Complex
Color Shape Texture 2D Spatial 3D Spatial Non-Spatial

Diffusion Models
SDXL 0.5879 0.4687 0.5299 0.2133 0.3566 0.7673 0.4988 0.3237
Pixart-α 0.6690 0.4927 0.6477 0.2064 0.3901 0.7747 0.5032 0.3433
DALL·E 3 0.7785 0.6205 0.7036 0.2865 0.3744 0.7853 0.5926 0.3773
SD3 0.8132 0.5885 0.7334 0.3200 0.4084 0.7782 0.6174 0.3771
FLUX.1 0.7407 0.5718 0.6922 0.2863 0.3866 0.7809 0.6185 0.3703
Auto-Regressive Models
Lumina-mGPT 0.6371 0.4727 0.6034 - - - - -
Emu3 0.6107 0.4734 0.6178 - - - - -
LlamaGen 0.2927 0.3160 0.3828 0.1118 0.1510 0.7143 0.2727 0.2445
LlamaGen + BoN (N=8) 0.5143 0.4465 0.5850 0.1578 0.2016 0.7543 0.4197 0.3054
LlamaGen + GridAR (N=4) 0.4969 0.4540 0.5675 0.1466 0.1946 0.7470 0.4118 0.2993
LlamaGen + GridAR (N=8) 0.5774 0.4783 0.5984 0.1830 0.2019 0.7570 0.4407 0.3103
Janus-Pro 0.5388 0.3476 0.4357 0.1607 0.2806 0.7733 0.4467 0.3796
Janus-Pro + BoN (N=8) 0.7234 0.4178 0.5600 0.2430 0.3165 0.7853 0.5068 0.3926
Janus-Pro + GridAR (N=4) 0.8050 0.6014 0.7268 0.2833 0.3503 0.7887 0.5684 0.3905
Janus-Pro + GridAR (N=8) 0.8172 0.6174 0.7408 0.3214 0.3587 0.7930 0.5932 0.4041

(ii) Prompt replacement As a cost-efficient alternative, we directly substitute Tr for To in subse-
quent decoding steps without modifying the logit computation of classifier-free guidance. Although
this strategy does not match the fine-grained signal of a three-way CFG, it offers a lightweight op-
tion that still decently guides the model toward layouts consistent with the verified intermediate
results. The logit lsample

i under this strategy follows the standard classifier-free guidance formulation:
lsample
i = l

(r)
i +sr ·dr,i = l

(r)
i +sr ·(l(r)i −l(u)i). The same CFG scale sr used in the earlier image gen-

eration with the original prompt is reused here. We show that this strategy outperforms approaches
that employ a planner to specify layouts prior to generation in AR models (see Section 4.4).

4 EXPERIMENTS

We conduct a collection of experiments to validate GridAR on visual autoregressive (AR) mod-
els through two primary tasks: text-to-image generation and image editing. First, we show that our
framework can consistently elicit superior image generation results compared to existing test-time
scaling methods across diverse prompt categories (Section 4.2). We then demonstrate its versatil-
ity in image editing, where the model receives both an edit instruction and a source image, and
verify that GridAR likewise enhances the effectiveness of computation scaling for this task (Sec-
tion 4.3). Beyond these benchmark evaluations, we further conduct in-depth analyses addressing
research questions raised by our framework, including robustness to different verifiers and compar-
isons between design choices (Section 4.4). Lastly, we present an ablation study to analyze the con-
tribution of each component and compare two strategies for prompt reformulation (Appendix D.2).

4.1 EXPERIMENTAL SETUP

Implementation details We use Janus-Pro-7B (Wu et al., 2025) and LlamaGen (Sun et al., 2024)
as backbone models for autoregressive text-to-image generation, and EditAR (Mu et al., 2025) for
image editing tasks. Across all experiments, Qwen2.5-VL (Bai et al., 2025) is employed as the
outcome reward model for both our method and test-time scaling baselines. For the classifier-free-
guidance scale, we set so = 5 for Janus-Pro, and so = 6.5 for LlamaGen, following the original
paper setup. In GridAR, the guidance scale for the reformulated prompt is set equal to the original
scale (sr = so). To evaluate grid candidates and conduct prompt reformulations, we deploy GPT-4.1
as the verifier Vψ , while other verifier models are also tested in Section 4.4.

Datasets and evaluation metrics Text-to-image generation is evaluated on two benchmarks:
T2I-CompBench++ (Huang et al., 2025) and GenEval (Ghosh et al., 2023). T2I-CompBench++
comprises 8,000 compositional prompts across seven categories. Evaluation follows the metrics
proposed in the original paper: BLIP-VQA (Color, Shape, Texture), UniDet (2D/3D Spatial, Nu-
meracy), ShareGPT4V (Non-Spatial), and the 3-in-1 score (Complex). GenEval includes over 500
prompts from six categories, and performance is measured by binary correctness on compositional
properties, using models such as Mask2Former (Cheng et al., 2022) and CLIP ViT-L/14 (Radford
et al., 2021). For image editing, we evaluate on PIE-Bench (Ju et al., 2024), covering 9 editing
scenarios and 700 images with paired source images and edit instructions. Performance is assessed
along two axes: instruction following and semantic preservation. Instruction following is measured

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Qualitative Results comparing single-generation outputs, Best-of-N (N = 4) outputs,
and outputs obtained by applying GridAR (N = 4) on text-to-image generation and image editing.

by the CLIP similarity (Hessel et al., 2021), and source preservation is measured by structure dis-
tance with DINO-ViT (Caron et al., 2021) and various perceptual metrics - PSNR, LPIPS (Zhang
et al., 2018), MSE, and SSIM (Wang et al., 2004). We primarily compared our method against Best-
of-N scaling, and include AR and diffusion-based models as baselines. Evaluation protocols and
baseline details are provided in Appendix C.

4.2 TEXT-TO-IMAGE GENERATION

Table 2: GenEval results on three selected di-
mensions and overall.

Method Counting Position
Color

Attribution Overall

Diffusion Models
SDXL 0.39 0.15 0.23 0.55
Pixart-α 0.44 0.08 0.07 0.48
DALL·E 3 0.47 0.43 0.45 0.67
SD3 0.72 0.33 0.60 0.74
Auto-Regressive Models
Show-o 0.49 0.11 0.28 0.53
Show-o + PARM (N=20) 0.68 0.29 0.45 0.67
Emu3 0.34 0.17 0.21 0.54
Infinity - 0.49 0.57 0.73
LlamaGen 0.12 0.14 0.05 0.34
LlamaGen + BoN (N=8) 0.21 0.22 0.14 0.44
LlamaGen + GridAR (N=8) 0.24 0.25 0.13 0.46
Janus-Pro 0.59 0.77 0.65 0.79
Janus-Pro + BoN (N=8) 0.76 0.86 0.72 0.86
Janus-Pro + GridAR (N=8) 0.79 0.92 0.73 0.88

We test the effectiveness of GridAR in improving
image generation quality by scaling test-time com-
pute on text-to-image benchmarks. As shown in Ta-
ble 1, GridAR improves the average score by 17.8%
and 4.8% for Janus-Pro and LlamaGen, respectively,
under the same N across diverse prompt scenarios.
Notably, GridAR with N=4 even outperforms Best-
of-N=8 on Janus-Pro, achieving a gain of 14.4%
and demonstrating a better cost-performance trade-
off (see Section 4.4). These results suggest that our
framework is able to derive a higher-quality candi-
date pool. In particular, when paired with stronger visual AR models such as Janus-Pro, the synergy
appears more pronounced-likely due to their improved ability to follow layout specifications and to
generate more accurate initial candidates. For the GenEval benchmark, we report performance on
Counting, Position, and Color Attribution tasks in Table 2 (other dimensions are already saturated
at scores near 0.90-0.99; overall results are provided in the last column). Our method also enhances
text-to-image generation quality over Best-of-N across most dimensions. In addition to quantitative
results, we present a range of qualitative examples in Figure 4 (left) and Appendix E, illustrating
how GridAR leads to more accurate and instruction-aligned final selections.

4.3 RESULTS ON IMAGE EDITING

38 39 40 41 42 43
Structure Distance (DINO) ()

24.8

24.9

25.0

25.1

25.2

25.3

25.4

25.5

25.6

CL
IP

 S
im

ila
rty

 (
)

N=1

N=2

N=4

N=8Ours (N=4)

Best-of-N
Ours

120 140 160 180 200
Background MSE ()

24.8

24.9

25.0

25.1

25.2

25.3

25.4

25.5

25.6

CL
IP

 S
im

ila
rty

 (
)

N=1

N=2

N=4

N=8

Ours
(N=4)

Best-of-N
Ours

Figure 5: Image editing results on PIE-Bench.

We also validate that our test-time scal-
ing framework can be extended naturally
to image editing and boost the quality of
edited images. To adapt GridAR to this set-
ting, we modify the prompt for the ver-
ifier to account for both source preser-
vation and adherence to edit instructions
(prompts are provided in Appendix F). Prompt reformulation is applied similarly to text-to-image
generation, where feasible layouts are inferred from intermediate results to satisfy the edit instruc-
tion. We compare our method against Best-of-N scaling using the same backbone (EditAR), as
well as test-time scaled diffusion-based editing models, across 7 metrics. As shown in Figure 5 and
Table 4, GridAR significantly improves background preservation over Best-of-N (N=4), reducing
structure-aware distance by 7.27% and MSE by 17.01%. Edit instruction fidelity, measured by CLIP
similarity, also shows improvement. Even when compared to Best-of-N (N=8), our method achieves
comparable CLIP similarity (25.542 vs. 25.628), while substantially outperforming in source preser-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Color

ShapeComplex

Numeracy Texture

Non-Spatial

3D Spatial

2D Spatial

Color

ShapeComplex

Numeracy Texture

Non-Spatial

3D Spatial

2D Spatial

Performance by Verifiers
Performance across

Prompt Reformulation Stages

Best-of-N (N=4)
GridAR (N=4) + Qwen2.5-VL-72B (quantized)
GridAR (N=4) + GPT-4.1
GridAR (N=4) + GPT-4o-mini

Best-of-N (N=4)
GridAR (N=4) + Initial Reformulation
GridAR (N=4) + Intermediate Reformulation

Best-of-N vs GridAR

Time (sec)

Av
er

ag
e

Sc
or

e

Figure 6: Left: Computation-performance trade-off; Center: Performance across dimensions by
different verifiers; Right: Performance across dimensions by different prompt reformulation timings.

vation - showing lower structure-aware distance (37.679 vs. 42.873) and lower MSE (116.637 vs.
135.404). Edited samples are provided in Figure 4 (right), and full quantitative results, including
comparisons with test-time scaled diffusion-based models, are reported in Table 4.

4.4 IN-DEPTH ANALYSIS

We analyze our framework from three perspectives: (i) the trade-off between computational cost and
performance, (ii) comparative performance of different verifier architectures, and (iii) the timing of
prompt reformulation. Experiments are conducted under eight dimensions in T2I-CompBench++.

Cost-performance Pareto analysis While GridAR shows notable improvements over Best-of-N,
it incurs additional computational cost due to the verification step - though this is substantially
reduced by verifying four candidates at once. To better understand the trade-off between perfor-
mance gains and computational overhead, we conduct the Pareto analysis, as shown in the left plot
of Figure 6. Using the Janus-Pro backbone, GridAR achieves a 14.4% performance improvement
while reducing computational cost by 18.2% compared to Best-of-N with N=8. Specifically, the
single-batch processing time (measured on 2× RTX 3090 GPUs) is 38.31s for GridAR, 24.15s for
Best-of-N (N=4), and 46.85s for Best-of-N (N=8). These results demonstrate that GridAR offers a
more favorable cost-performance trade-off.

Comparative evaluation of verifiers As our framework exploits a verifier to assess partial image
views and infer layouts in a zero-shot manner, it assumes a certain degree of image understanding
capability from the verifier. In our experiments, we use GPT-4.1 as the default verifier; however,
we also examine the performance of GridAR (N=4) with different verifier choices. As shown in
the centered plot of Figure 6, both GPT-4o-mini and the quantized Qwen2.5-VL-72B (8-bit) lead
to consistent improvements - by 18.6% and 8.3%, respectively - on text-to-image generation. These
results imply that our framework can further benefit from stronger vision-language models with
enhanced image understanding capabilities. As this area continues to advance, we expect the upper
bounds of our framework to rise with the emergence of more capable visual reasoning models.

Effect of prompt reformulation timing A natural research question is whether reformulating the
prompt before image generation using a planner model could offer advantages over our strategy.
While plausible, our approach instead performs prompt reformulation midway, using layouts in-
ferred from partial images. To compare, we generate images directly from our reformulated prompt
(Figure 6, right). While GridAR (N=4) with initial prompt reformulation achieves an average score
of 0.5018 in text-to-image generation - showing a clear improvement over no reformulation (av-
erage score 0.4753) - our layout-aware reformulation yields a substantially higher score of 56.43.
We attribute this to initial layout-guided prompts being susceptible to divergence from the intended
layout, as early-stage next-token predictions may deviate from the structure.

5 CONCLUSION

We have introduced GridAR, a test-time scaling framework that rethinks how computation should be
allocated in visual autoregressive (AR) models. Through progressive, grid-based generation and dy-
namic prompt reformulation, our approach selectively amplifies promising candidates while pruning
suboptimal ones early - addressing limitations of conventional Best-of-N strategies. Without requir-
ing training, GridAR draws out the full potential of AR models, achieving higher quality in both
text-to-image generation and image editing. We believe this work marks a milestone for generative
AR models, pushing the boundary of what test-time scaling can achieve in AR image generation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

Arwen Bradley and Preetum Nakkiran. Classifier-free guidance is a predictor-corrector. arXiv
preprint arXiv:2408.09000, 2024.

Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
editing instructions. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 18392–18402, 2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer
for photorealistic text-to-image synthesis, 2023.

Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
scaling. arXiv preprint arXiv:2501.17811, 2025.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations.

Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
attention mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 1290–1299, 2022.

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and Alexan-
dre Défossez. Simple and controllable music generation. Advances in Neural Information Pro-
cessing Systems, 36:47704–47720, 2023.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 12873–12883, 2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scar-
lett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 12606–12633. PMLR,
21–27 Jul 2024.

Tsu-Jui Fu, Wenze Hu, Xianzhi Du, William Yang Wang, Yinfei Yang, and Zhe Gan. Guiding
instruction-based image editing via multimodal large language models. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=S1RKWSyZ2Y.

Zigang Geng, Binxin Yang, Tiankai Hang, Chen Li, Shuyang Gu, Ting Zhang, Jianmin Bao, Zheng
Zhang, Houqiang Li, Han Hu, et al. Instructdiffusion: A generalist modeling interface for vision
tasks. In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition,
pp. 12709–12720, 2024.

10

https://openreview.net/forum?id=S1RKWSyZ2Y
https://openreview.net/forum?id=S1RKWSyZ2Y

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
for evaluating text-to-image alignment. Advances in Neural Information Processing Systems, 36:
52132–52152, 2023.

Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing Liu.
Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis. In Proceed-
ings of the Computer Vision and Pattern Recognition Conference, pp. 15733–15744, 2025.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
reference-free evaluation metric for image captioning. arXiv preprint arXiv:2104.08718, 2021.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Kaiyi Huang, Chengqi Duan, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench++:
An enhanced and comprehensive benchmark for compositional text-to-image generation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2025.

Dongzhi Jiang, Ziyu Guo, Renrui Zhang, Zhuofan Zong, Hao Li, Le Zhuo, Shilin Yan, Pheng-Ann
Heng, and Hongsheng Li. T2i-r1: Reinforcing image generation with collaborative semantic-level
and token-level cot. arXiv preprint arXiv:2505.00703, 2025.

Xuan Ju, Ailing Zeng, Yuxuan Bian, Shaoteng Liu, and Qiang Xu. Pnp inversion: Boosting
diffusion-based editing with 3 lines of code. International Conference on Learning Represen-
tations (ICLR), 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Max Ku, Dongfu Jiang, Cong Wei, Xiang Yue, and Wenhu Chen. Viescore: Towards explainable
metrics for conditional image synthesis evaluation. arXiv preprint arXiv:2312.14867, 2023.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. Advances in Neural Information Processing Systems, 37:
56424–56445, 2024.

Dongyang Liu, Shitian Zhao, Le Zhuo, Weifeng Lin, Yi Xin, Xinyue Li, Qi Qin, Yu Qiao, Hong-
sheng Li, and Peng Gao. Lumina-mgpt: Illuminate flexible photorealistic text-to-image generation
with multimodal generative pretraining. arXiv preprint arXiv:2408.02657, 2024.

Jiteng Mu, Nuno Vasconcelos, and Xiaolong Wang. Editar: Unified conditional generation with
autoregressive models. arXiv preprint arXiv:2501.04699, 2025.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
synthesis. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=di52zR8xgf.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

11

https://github.com/black-forest-labs/flux
https://openreview.net/forum?id=di52zR8xgf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
Advances in neural information processing systems, 27, 2014.

Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models. arXiv preprint
arXiv:2405.09818, 2024.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. Advances in neural information processing
systems, 37:84839–84865, 2024.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9426–9439, 2024a.

Xinlong Wang, Xiaosong Zhang, Zhengxiong Luo, Quan Sun, Yufeng Cui, Jinsheng Wang, Fan
Zhang, Yueze Wang, Zhen Li, Qiying Yu, et al. Emu3: Next-token prediction is all you need.
arXiv preprint arXiv:2409.18869, 2024b.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu,
Zhenda Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified
multimodal understanding and generation. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 12966–12977, 2025.

Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
to unify multimodal understanding and generation. In The Thirteenth International Conference
on Learning Representations.

Renrui Zhang, Chengzhuo Tong, Zhizheng Zhao, Ziyu Guo, Haoquan Zhang, Manyuan Zhang, Ji-
aming Liu, Peng Gao, and Hongsheng Li. Let’s verify and reinforce image generation step by step.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 28662–28672,
2025.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS (LLM)

We used Large Language Models (LLMs) only as a general-purpose assistive tool to improve the
clarity of our writing and to generate alternative phrasings. The LLMs did not contribute to the
research ideas, methodology, experiments, or analysis. All scientific content, results, and conclusions
are entirely our own work.

A RELATED WORKS

Visual autoregressive models Visual autoregressive (AR) models have recently advanced rapidly
as a natural extension of the language-modeling paradigm to vision (Tian et al., 2024; Team, 2024;
Sun et al., 2024; Chen et al., 2025). By adopting vector-quantized image representations, these meth-
ods discretize images into codebook indices, allowing the next-token prediction process to operate
over image tokens. In practice, their generative quality is now competitive with strong diffusion
baselines such as DALL·E 3 (Betker et al., 2023) and Stable Diffusion 3 (Esser et al., 2024).

Standard visual AR models decode in a raster-scan order (top-left to bottom-right), though several
notable variants have been proposed. Masked autoregressive models (MAR (Li et al., 2024)) of-
fer a unified formulation of standard AR models and masked generative models, while VAR (Tian
et al., 2024) applies next-scale prediction instead of next-token prediction. Nevertheless, the standard
raster-scan AR formulation remains a competitive and versatile baseline for both image understand-
ing and generation, and has also been adapted for image editing (Mu et al., 2025).

Test-time compute scaling While large language models (LLMs) have benefited significantly
from test-time scaling techniques, such strategies remain underexplored in the context of visual
autoregressive (AR) generation. In the language domain, increasing inference-time computation has
proven to substantially improve model performance on challenging reasoning tasks such as mathe-
matics (Wang et al., 2024a) and coding (Chen et al.), without any changes to model parameters. Two
representative strategies include (i) chain-of-thought (CoT) prompting (Kojima et al., 2022), which
extends generation length to encourage multi-step reasoning, and (ii) Best-of-N sampling with out-
come reward models (ORMs) (Snell et al., 2024), which samples multiple outputs and selects the
best one based on task-specific reward signals. These methods demonstrate how allocating addi-
tional compute at inference can serve as a powerful tool to elicit more accurate or coherent outputs
from pretrained models.

In contrast, such inference-time compute scaling remains largely unexplored in visual AR models,
which face additional challenges such as spatial consistency, layout fidelity, and the lack of struc-
tured intermediate outputs. Unlike LLMs - where decoding follows a left-to-right sequence and
allows for natural decomposition into steps - visual AR generation often proceeds in a fixed raster-
scan order, offering limited flexibility for structured control or mid-generation interventions. Con-
sequently, it remains unclear how to best allocate computation or incorporate structural feedback
during the generation process for images. Our work addresses this gap by proposing a structured
test-time scaling framework specifically tailored to visual AR generation, enabling dynamic pruning
and refinement across intermediate steps without retraining.

B REJECTION ANALYSIS AND EXAMPLES

We investigated the rejection ratio at each stage of GridAR’s grid-based progressive generation,
where a grid is marked as impossible if rejected. In the first stage, one grid corresponded to one-
quarter of the image (R1 = 4), while in the second stage, each grid covered half of the image
(R2 = 2). Table 3 reports the proportion of rejected grids relative to the total number of generated
grids at each stage, as well as the percentage of samples in which all grids were rejected. For Text-
to-Image Generation, we used Janus-Pro, and for Image Editing, we used EditAR.

Across both tasks, rejections were rare in the first stage but occurred more frequently in the second
stage. This pattern suggests that the verifier tended to pass grids when evidence for rejection was

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 7: Examples of Rejected Samples.

Table 3: Rejection statistics by stage.

Task Model Stage Grid-level
rejection rate (%)

Fully rejected
sample rate (%)

Text-to-Image
Generation Janus-Pro First-stage (R1=4) 2.545 0.870

Second-stage (R2=2) 21.406 3.709

Text-to-Image
Generation LlamaGen First-stage (R1=4) 10.753 1.271

Second-stage (R2=2) 34.305 7.167

Image Editing EditAR First-stage (R1=4) 28.545 20.429
Second-stage (R2=2) 43.252 21.286

definitely uncertain. Figure 7 illustrates qualitative examples for partially rejected candidates, which
can also be seen in Figure 4 for Image Editing.

Cases where all grids within a sample were deemed impossible were infrequent (especially for text-
to-image generation, which was extremely rare). In these situations, we continued the generation
process rather than restarting from scratch, in order to maintain a fair comparison with Best-of-N
search, which would otherwise be disadvantaged by additional token generation costs. Nevertheless,
in practical deployments of GridAR, we recommend different strategies depending on application
requirements: for time-sensitive settings, selecting the top-k grids may be more suitable, whereas in
scenarios where performance is important, rolling back and regenerating from scratch may offer a
more effective alternative.

C DETAILED EXPERIMENTAL SETUP

Baselines We primarily compare against a simple Best-of-N (BoN) baseline driven by an out-
come reward model (ORM). To contextualize text-to-image performance, we report results along-
side state-of-the-art diffusion systems (SDXL (Podell et al., 2024), PixArt-α (Chen et al., 2023),
DALL·E 3 (Betker et al., 2023), Stable Diffusion 3 (Esser et al., 2024), and FLUX.1 (Labs, 2024))
and contemporary autoregressive generators (Lumin-mGPT (Liu et al., 2024), Emu3 (Wang et al.,
2024b), Show-o (Xie et al.), and Infinity (Han et al., 2025)). For instruction-guided image editing, we
benchmark diffusion-based editors—InstructPix2Pix (Brooks et al., 2023), InstructDiffusion (Geng

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

et al., 2024), MGIE (Fu et al., 2024)—and an autoregressive editor, EditAR (Mu et al., 2025), which
generates tokens sequentially.

Experimental Environment We conduct all experiments on 2x RTX 3090 GPUs. The batch size
is set to 2. For a fair comparison with the Best-of-N (BoN) baseline, we ensure that the first row is
generated identically across methods. Unless otherwise noted, the sampling temperature is fixed at
1.0.

Evaluation Protocols Image editing is evaluated on PIE-Bench (Ju et al., 2024), which comprises
700 images across nine editing scenarios. Each sample includes a source image and a natural-
language instruction, together with auxiliary annotations (source prompt, target prompt, and a
ground-truth edit mask). Instruction following is measured via CLIP similarity (Hessel et al., 2021)
between the edited image and the target prompt, computed over the full image and, separately, within
the annotated edit region. Source preservation is assessed using a structure-aware distance derived
from DINO-ViT (Caron et al., 2021) features (“structure distance”) and standard fidelity/perceptual
metrics—PSNR, SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018), and MSE.

D ADDITIONAL QUANTITATIVE RESULTS

D.1 IMAGE EDITING

Table 4: Image Editing Results on PIE-Bench.

Method Structure
Distance (↓)

Background Preservation CLIP Similarity
PSNR (↑) LPIPS (↓) MSE (↓) SSIM (↑) Whole (↑) Edited (↑)

Diffusion Models
InstructPix2Pix + BoN (N=4) 54.903 21.054 146.089 216.340 77.361 24.917 22.271
InstructDiffusion + BoN (N=4) 76.023 21.066 131.994 308.671 77.375 24.760 22.126
MGIE + BoN (N=4) 70.417 21.502 135.859 304.363 78.190 24.792 22.405
Auto-Regressive Models
EditAR (N=1) 41.580 20.721 125.214 205.538 74.079 24.813 22.092
EditAR + BoN (N=2) 40.890 21.065 118.810 166.652 74.648 25.103 22.247
EditAR + BoN (N=4) 40.948 21.368 113.829 140.533 75.043 25.386 22.436
EditAR + BoN (N=8) 42.837 21.464 111.252 135.404 74.979 25.628 22.626
EditAR + GridAR (N=4) 37.969 21.596 109.309 116.637 75.243 25.542 22.561

To adapt GridAR to the editing setting, candidate scoring is conditioned jointly on the source im-
age and the text instruction. A grid hypothesis is retained only when both the instruction-following
and source-preservation requirements are satisfied, in line with established image-editing evaluation
practice (Ku et al., 2023). We further apply a single prompt reformulation when generation reaches
the halfway point, after which selection proceeds under the same dual-criterion rule. Table 4 reports
the quantitative results on PIE-Bench for all baselines, where all models are evaluated in the manner
of Best-of-N search, and the output reward model is aligned with the GridAR setting. Under the
same N=4 configuration, GridAR emerges as the most effective test-time scaling method, achiev-
ing the best performance across all metrics. Moreover, for EditAR, GridAR delivers comparable
CLIP similarity even against the Best-of-N (N = 8) baseline, while providing consistently superior
performance in terms of semantic preservation.

D.2 ABLATION STUDY FOR TEXT-TO-IMAGE GENERATION

In Table 5, we present a stepwise evaluation to quantify the contribution of each component in Gri-
dAR, and to compare two prompt reformulation strategies: prompt replacement and our proposed
3-way CFG. Specifically, the Prompt Reformulation module refers to revising the prompt based on
intermediate results during generation; Grid Generation denotes our progressive, grid-based image
generation process; and 3-way CFG indicates our approach to guiding the model with orthogonal-
ized reformulated prompts, rather than simply replacing the original prompt. As shown in the table,
each component yields clear improvements, with the full combination achieving the best perfor-
mance. The comparison between the second and third rows highlights the effectiveness of prompt

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

replacement, suggesting it as a cost-efficient option for practitioners when 3-way CFG is unavail-
able.
Table 5: Ablation study: Component-wise evaluation of GridAR (N= 4) on the T2I-CompBench++
benchmark with Janus-Pro.

Prompt
Reformul.

Grid
Generation

3-way
CFG

Attribute Binding Object Relationship Numeracy Complex
Color Shape Texture 2D Spatial 3D Spatial Non-Spatial

0.6781 0.4026 0.5305 0.2218 0.3024 0.7830 0.4958 0.3840
✓ 0.7780 0.5620 0.6905 0.2470 0.3115 0.7690 0.5380 0.3752
✓ ✓ 0.7837 0.5683 0.6969 0.2672 0.3418 0.7790 0.5487 0.3906
✓ ✓ ✓ 0.8050 0.6014 0.7268 0.2833 0.3503 0.7887 0.5684 0.3905

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E EXTENSIVE QUALITATIVE RESULTS

E.1 TEXT-TO-IMAGE GENERATION

Figure 8: Additional Qualitative Results for Text-to-Image Generation

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 9: Additional Qualitative Results for Text-to-Image Generation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E.2 IMAGE EDITING

Figure 10: Additional Qualitative Results for Image Editing.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F PROMPT TEMPLATES

F.1 PROMPTS FOR TEXT-TO-IMAGE GENERATION

Prompt for Selection of First Rows (Quarters) in Text-to-Image Generation

You are given a single image consisting of 4 contiguous horizontal quarters (from top to bottom:
quarter 1, quarter 2, quarter 3, quarter 4).
Each quarter shows the top quarter (upper 1/4 crop) of a different full image generated from the
same text prompt. The lower three-quarters of each full image are not shown in this composite.
Since only the top part is visible, some quarters may show only the background without any
objects. In other cases, objects may appear only partially, with the rest continuing into the
unseen lower part of the image.

The text prompt is: “{}”.

For each of the 4 quarters, answer strictly with either “possible” or “impossible” (lower-
case, no punctuation).
Output must contain exactly 4 words, separated by commas, in order: quarter 1, quarter 2,
quarter 3, and quarter 4.
Example format: possible, impossible, possible, impossible

Focus on the required attributes (e.g., color, shape, counts, spatial relations) of objects in
the prompt.

Say “impossible” for a quarter only if it is certain that the prompt cannot be satisfied:
- the visible part already makes it clear that the prompt cannot be satisfied (e.g., too many
objects are already drawn, or an object has the wrong color or an incorrect shape), OR
- even if the lower three-quarters of that full image (not shown) were completed naturally, the
final image would still not match the required attributes.

If there is any reasonable way the prompt could still be satisfied, say “possible”.

Prompt for Layout-Specified Prompt Reformulation in Text-to-Image Generation

Rewrite the prompt “{}” considering the given partially generated images, so that it fully
describes the final image layout with the correct total number of objects and accurately satisfies
the original prompt, helping the model complete the remaining half.

RULES
- Keep the object type and total count exactly the same as in the original prompt.
- Do NOT add, remove, or change objects. Never alter the number.
- Do NOT introduce new attributes (colors, styles, or layout details) not present in the original
prompt.
- Strictly preserve the original prompt at the beginning; only append a simple clause if it is
directly useful (e.g., “<X> on the top and <Y> on the bottom”).
- If the visible half already contains all required objects but only in incomplete form, leave the
prompt unchanged; however, if the empty lower area could make the model add extras, append a
minimal placement clause that locks the existing set (e.g., “centered in a single horizontal row”).

OUTPUT
- Output exactly one sentence: either the refined prompt or the unchanged original.
- Begin with the original text prompt; when refining, append the clause after a comma.

EXAMPLES
Original: “A photo of eight bears”; Visible: three bears on the top →

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Output: “A photo of eight bears, three on the top and five on the bottom.”

Original: “A photo of one chicken”; Visible: only the upper half of the same chicken
→
Output: “A photo of one chicken” (unchanged; continuation only)

...

F.2 PROMPTS FOR IMAGE EDITING

Prompt for Selection of First Rows (Quarters) in Image Editing

You are given two images:
(A) the source image to be edited, and
(B) a composite image consisting of 4 contiguous horizontal quarters (from top to bottom:
quarter 1, quarter 2, quarter 3, quarter 4).
Each quarter in (B) shows the top quarter (upper 1/4 crop) of a different full image produced
by applying the same editing instruction to the source image. The lower three-quarters of each
full image are not shown. Since only the top part is visible, some quarters may show only
the background without any objects, while others may show objects partially, with the rest
continuing into the unseen lower part of the image.

The editing instruction is: “{}”.

For each of the 4 quarters, make two independent judgments:
1) instruction following — does the visible part allow the edited image to plausibly satisfy the
instruction?
2) source preservation — do the visible regions unrelated to the instruction look reasonably
consistent with the source image?

OUTPUT FORMAT (STRICT):
Return a single-line JSON object with exactly two keys:
{{“instruction following”: “<q1,q2,q3,q4>”, ”source preservation”: “<q1,q2,q3,q4>”}}
- For each key, the value is a lowercase string of exactly four words, each either “pass” or “fail”,
separated by a comma and a single space, in order: quarter 1, quarter 2, quarter 3, quarter 4.
- Example: {{“instruction following”: “pass, fail, pass, fail”, “source preservation”: “pass,
pass, fail, pass”}}
- No extra keys, punctuation, notes, or explanations.

Focus on whether the editing instruction applied to the source image could plausibly be
satisfied given each quarter candidate, and separately whether areas not related to the instruc-
tion look reasonably consistent with the source image—keeping in mind that the limited quarter
view alone is not evidence of failed preservation.

Guidance for instruction following:
- Say “fail” only if the visible part clearly shows that the instruction cannot be satisfied (e.g.,
added/edited elements are missing or incorrect, or edits strongly contradict the instruction), OR
- even if the unseen lower part were completed naturally, the final image would still definitely
not satisfy the instruction. If there is any reasonable way the instruction could still be satisfied,
say “pass”.
- Cropping that hides the edit is not a failure by itself.

Guidance for source preservation:
- Say “fail” only if the visible part clearly breaks preservation of the source image in areas
not required by the instruction (e.g., obvious identity swap, major background replacement
unrelated to the instruction, severe artifacts/structural distortions that contradict the source).
- The limited quarter view alone is not evidence of failure. Do NOT mark “fail” merely because

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

the visible area looks unchanged; preservation often implies minimal change.

Prompt for Layout-Specified Prompt Reformulation in Image Editing

Rewrite the editing instruction “{}” considering the source image and the given partially
edited images, so that it guides completion of the edit while preserving the source content and
accurately satisfying the original instruction, helping the model complete the remaining half.

RULES
- Keep the core intent of the original editing instruction unchanged.
- If the instruction specifies object types, placements, or counts, keep them exactly the same; do
NOT alter numbers or required entities.
- Do NOT introduce new attributes (colors, styles, layouts) that are not implied by the original
instruction or the visible evidence.
- You may add minimal placement/scope phrasing only when directly supported by the visible
evidence (e.g., “near the top edge”, “lower area”).
- Preserve unedited regions of the source image; it is allowed to explicitly say that non-edited
areas must remain unchanged.
- UNCHANGED CASE: If the visible portion already satisfies the instruction (with only
incomplete crops of the same edits), return the original instruction verbatim.
- OTHERWISE: Rewrite the instruction from scratch as a single imperative sentence that
integrates the visible evidence; do NOT prepend, quote, or copy the original wording.

OUTPUT
- Output exactly one sentence.
- If unchanged, output the original instruction verbatim.
- Otherwise, output a single rewritten sentence (no quotes) that integrates visible cues and
preserves counts/scope.

EXAMPLES
Original: “Change the animal from a cat to a dog”; Visible: only the upper half of a dog already
replacing the cat →
Output: “Change the animal from a cat to a dog” (unchanged; continuation only)

Original: “Change the color of the horse from white to golden”; Visible: the horse’s
head and mane already appear golden while the body remains white →
Output: “Change the horse’s body, legs, and tail to gold.”

...

22

	Introduction
	Preliminary
	Autoregressive Modeling for Image Generation
	Classifier-Free Guidance for Autoregressive Models

	Test-Time Scaling for Autoregressive Image Generation
	Grid-Based Progressive Generation
	Layout-Specified Prompt Reformulation

	Experiments
	Experimental Setup
	Text-to-Image Generation
	Results on Image Editing
	In-depth Analysis

	Conclusion
	Related Works
	Rejection Analysis and Examples
	Detailed Experimental Setup
	Additional Quantitative Results
	Image Editing
	Ablation Study for Text-to-Image Generation

	Extensive Qualitative Results
	Text-to-Image Generation
	Image Editing

	Prompt Templates
	Prompts for Text-to-Image Generation
	Prompts for Image Editing

