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ABSTRACT

Existing continual learning benchmarks often assume each task’s training and test
data are from the same distribution, which may not hold in practice. Towards
making continual learning practical, in this paper, we introduce a novel setting of
online continual learning under conditional domain shift, in which domain shift
exists between training and test data of all tasks: P tr(X,Y ) 6= P te(X,Y ), and
the model is required to generalize to unseen domains at test time. To address
this problem, we propose Conditional Invariant Experience Replay (CIER) that
can simultaneously retain old knowledge, acquire new information, and general-
ize to unseen domains. CIER employs an adversarial training to correct the shift in
P (X,Y ) by matching P (X|Y ), which results in an invariant representation that
can generalize to unseen domains during inference. Our extensive experiments
show that CIER can bridge the domain gap in continual learning and significantly
outperforms state-of-the-art methods. We will release our benchmarks and imple-
mentation upon acceptance.

1 INTRODUCTION

Continual learning is a promising framework towards human-level intelligence by developing mod-
els that can continuously learn over time (Ring, 1997; Parisi et al., 2019). Unlike traditional learning
paradigms, continual learning methods observe a continuum of tasks and have to simultaneously per-
form well on all tasks with limited access to previous data. Therefore, they have to achieve a good
trade-off between retaining old knowledge (French, 1999) and acquiring new skills, which is referred
to as the stability-plasticity dilemma (Abraham & Robins, 2005). Continual learning is not only a
challenging research problem but also has tremendous impacts on many applications (Diethe et al.,
2019). In particular, the deployed model may encounter new problems over time, and re-training
every time new data arrive is infeasible, especially for large, complex neural networks.

Despite recent success, existing continual learning benchmarks assume the data of each class are
drawn from the same distribution during training and testing, i.e. P tr(X,Y ) = P te(X,Y ). This
restrictive assumption is unlikely to hold in practice and prohibits the use of continual learning
strategies in numerous real-world applications. For example, consider a continual learning agent
already trained to recognize certain objects in the indoor environment; then, it moves to a new
outdoor environment to acquire new skills. The agent may fail to recognize the learned objects
because they are placed in a completely different background. Such an environment change is
referred to as domain shift (Khosla et al., 2012; Long et al., 2015; Diethe et al., 2019), and is
very natural for continual learning in practice (Diethe et al., 2019). To formalize the continual
learning under domain shift problem, we need to consider the interaction between domain and the
observation. In many computer vision applications, the causal structure is usually Y → X , i.e., the
object class is the cause for image features (Lopez-Paz et al., 2017). This setting ignores the effect
of conditional domain shift (Zhang et al., 2013), where both the domain and the object class are the
causes for the image features. That is, images may come from different domains, but they have the
same label. Figure 1 shows the causal graph for continual learning under conditional domain shift
problem and an illustrative example of the domain shift between training and testing data.

Continual learning under conditional domain shift requires the model to perform previous tasks in
new domains, which poses a great challenge since we do not know in hindsight which domain will
be tested. Therefore, the model needs to learn the concepts presented in the data while ignoring the
domains. For example, placing an object in different background does not change the label of that
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Figure 1: (a) A causal model for the online continual learning under conditional domain shift. T
is the number of tasks and Nt is the number of training samples of task t. The causal interaction
between the domains and images are not considered in the traditional setting. (b) An example of the
domain shift, sampled images are extracted from the DomainNet dataset (Peng et al., 2019).
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Figure 2: Overview of Conditional Invariant Experience Replay (CIER). CIER employs a set of
domain critics (blue) to learn a conditional invariant representation via an adversarial training loss
in every experience replay round. Best viewed in colors.

object. As a result, the model needs to achieve an invariant representation using data from various
source domains observed during training, i.e. the joint distribution P (X,Y ) is the same for all
source domains. To this end, we develop Conditional Invariant Experience Replay (CIER) that can
simultaneously retain previous knowledge, learn new tasks, and generalize to new domains. CIER
employs an episodic memory to perform experience replay and an adversarial loss to achieve an
invariant representation. Particularly, CIER formulates a multiplayer minimax game such that the
conditional distribution P (X|Y ) is stable across each class’s observed source domains. Therefore, if
the prior distribution P (Y ) is stable in the target domains, i.e., no class imbalance, CIER can achieve
the invariant representation in the joint distribution P (X,Y ) and generalize to unseen domains.
Fig. 2 provides a high level overview of the proposed CIER method.

In summary, we formalize the continual learning under conditional domain shift problem and con-
struct three novel benchmarks using real data with different levels of domain shift and diversity in the
number of domains, tasks, and classes. Then, we develop CIER, a novel continual learning method
that learns a conditional invariant representation and generalizes to novel domains. Our extensive
experiments demonstrate the limitations of existing continual learning methods when being tested
on unseen domains and show that the proposed CIER can mitigate such domain gaps effectively.

2 RELATED WORK

2.1 CONTINUAL LEARNING

Continual learning aims at developing a model that can continuously learn different tasks over a data
continuum. In literature, there are different continual learning protocols with different properties of
the continuum. First, a setting can be either task-free (Rebuffi et al., 2017; Aljundi et al., 2019b) or
task-aware (Kirkpatrick et al., 2017; Lopez-Paz & Ranzato, 2017) based on whether a task-indicator

2



Under review as a conference paper at ICLR 2021

is presented to the model. Second, learning can follow the online (Lopez-Paz & Ranzato, 2017) or
batch (Kirkpatrick et al., 2017) setting. In online continual learning, the data within each task is also
online and the model is only allowed to learn each example once. Differently, in batch continual
learning, the model is allowed to learn a task over many epochs. Generally, the task-free and online
settings are more difficult because the model has to predict on all tasks, and optimizing deep neural
network online over one epoch is particularly challenging (Lopez-Paz & Ranzato, 2017; Sahoo et al.,
2018; Aljundi et al., 2019a). However, we argue that existing protocols do not consider the domain
shift between training and testing data of each task, which is important in real scenarios. This
limitation motivates us in developing the continual learning under conditional domain shift problem
as a practical and more challenging problem to evaluate continual learning methods.

Continual learning methods aim at achieving a good trade-off between alleviating catastrophic for-
getting and acquiring new knowledge. Existing methods can be broadly categorized into two main
groups: (i) dynamic architecture approaches that employ a separate subnetwork for each task, and
(ii) static architecture approaches that maintain a fixed network throughout learning. While dynamic
architecture methods (Rusu et al., 2016; Serra et al., 2018; von Oswald et al., 2020; Yoon et al.,
2018; Li et al., 2019; Xu & Zhu, 2018) usually do not suffer from catastrophic forgetting, they are
not practical because of the high computational cost. In the fixed architecture method family, experi-
ence replay (ER) (Lin, 1992) and its variants (Chaudhry et al., 2019b; Aljundi et al., 2019a; Riemer
et al., 2019; Rolnick et al., 2019) have recently gained much interest thanks to their strong per-
formance across different continual learning protocols, significantly outperforms other approachecs
such as regularization (Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi et al., 2018; Ritter et al.,
2018), representation learning (Rebuffi et al., 2017). However, existing continual learning methods
lack the ability to generalize to unseen domains beyond training, which motivates us to develop a
novel method of CIER that can achieve an invariant representation in continual learning.

2.2 DOMAIN GENERALIZATION AND DOMAIN ADAPTATION

Domain generalization aims at training a model that can generalize to a target domain given data
from the source domains (Khosla et al., 2012; Li et al., 2017; 2018; Carlucci et al., 2019). As a sim-
pler problem setting, domain adaptation assumes unsupervised data from the target domain is also
given during training (Long et al., 2015; Ganin & Lempitsky, 2015). A general approach for such
problems is learning an invariant representation by correcting the shift in P (X,Y ) across domains.
Particularly, (Long et al., 2015; Ganin & Lempitsky, 2015) assume that the conditional distribution
P (Y |X) is the same across domains; therefore, the domain shift can be addressed by matching only
P (X). However, invariant in P (Y |X) is a strong assumption and is unlikely to hold in many ap-
plications. A more robust approach is matching the conditional distribution P (X|Y ) (Zhang et al.,
2013; Li et al., 2018). In which case, if the class-prior distribution P (Y ) is stable, i.e., there is no
class-imbalance among domains, matching P (X|Y ) will result in the invariant in P (X,Y ) because
of the decomposition P (X,Y ) = P (Y )P (X|Y ). We emphasize that no imbalance data is a mild
assumption, especially when we do not know about the target domains. This result motivated us in
the development of CIER. However, different from such methods, CIER can accommodate novel
classes and domains over time while maintaining good performances over all classes.

3 PROBLEM FORMULATION

3.1 ONLINE CONTINUAL LEARNING UNDER CONDITIONAL DOMAIN SHIFT

Notations. Let X ⊂ RD and Y ⊂ N be the input and label space respectively. A domain is defined
as a joint distribution P (X,Y ) over X ×Y , and the k-th domain P k(X,Y ) is denoted as P k. Often,
we do not have access to the domain P k, instead, we can label each data point with a scalar d ∈ N
indicating that it comes from domain d. During training, a learner θ receives a continuum of data
{xi, di, yi}, where (xi, yi) is the i-th training sample and di is the domain indicator associated with
{xi, yi}. In the following, we use y(t) as the number of observed classes until time t; dy(t) denotes
the number of observed domains of class y until time t; and x ∼ Y kj denotes the samples of the j-th
class and has domain dk.

We consider the task-free, online continual learning setting where the continuum is locally iid, i.e.
each training sample (xi, yi) is drawn iid from an underlying task distribution Pti(X,Y ) with the
task identifier ti not revealed to the learner. Moreover, each task consists of a subset of labels sam-
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pled without replacement from the label space Y . To formalize the online continual learning under
conditional domain shift problem, we assume that each class y is associated with a set of source
domains Dsrcy = {dsrc1 , dsrc2 , . . . , dsrcs }, and a set of target domains Dtgty = {dtgt1 , dtgt2 , . . . , dtgtm }.
Additionally, the source and target domains are disjoint for all classes, i.e. Dsrcy ∩Dtgty = ∅,∀y. We
consider three scenarios with decreasing difficulties to evaluate the learner θ based on the degree of
shift between the training and testing domains.

• Scenario 1 (significant shift): Train on source domains, test on target domains, the most
challenging setting where all domains of the test data are unobserved during training.

• Scenario 2 (mild shift): Train on source domains, test on both source and target domains.
Here we assume that domains of test data can be draw from both source and target domains.

• Scenario 3 (no shift): Train on target domains, test on target domains. This is the traditional
continual learning setting where there is no discrepancy among domains of training and
testing data. We design this scenario so that it has the same test data as the first one.

In all scenarios, the model is required to perform well on the test data. We emphasize that the contin-
ual learning setting we considered is the most challenging in the literature: both task and data arrive
online, and the model has to predict all observed classes so far during evaluation. Moreover, we
provide the model with the domain identifiers during training; however, only the input x is provided
at test time. Finally, we aim at creating a model that can predict at any moment, therefore, we do
not make any assumption regarding the testing domains, including the availability of unlabeled data,
and the models are not allowed to train during inference.

3.2 EVALUATION PROTOCOL

We use three standard metrics to measure the model’s performance: Average Accuracy (Lopez-Paz
& Ranzato, 2017), Forgetting Measure (Chaudhry et al., 2019a), and Learning Accuracy (Riemer
et al., 2019). Let T be the total number of tasks, ai,j be the model’s accuracy evaluated on the test
set of task Tj after it finished learning the task Ti. The aforementioned metrics are defined as:

• Average Accuracy (higher is better): ACC = 1
T

∑T
i=1 aT,i.

• Forgetting Measure (lower is better): FM = 1
T−1

∑T−1
j=1 maxl∈{1,...T−1} al,j − aT,j .

• Learning Accuracy (higher is better): LA = 1
T

∑T
i=1 ai,i.

The Averaged Accuracy (ACC) measures the model’s overall performance across all tasks and is
a common metric to compare among different methods. Forgetting Measure (FM) measures the
model’s forgetting as the averaged performance degrades of old tasks. Finally, Learning Accuracy
(LA) measures the model’s ability to acquire new knowledge. Note that the task identifiers are not
given to the model at any time and are only used to measure the evaluation metrics.

4 PROPOSED METHOD

4.1 CONDITIONAL INVARIANT AS A MULTIPLAYER MINIMAX GAME

Learning an invariant representation is equivalent to correcting the shift in the joint distribution
P (X,Y ) = P (Y )P (X|Y ). However, it is often expensive to obtain the join distribution; there-
fore, we propose to learn a conditional invariant in the conditional distribution P (X|Y ). Then
if the class-prior distributions P (Y ) satisfy Pm(Y ) = P l(Y ),∀m ∈ Dsrcy ,∀l ∈ Dtgty , we
can expect the model to generalize to unseen target domains. Therefore, we propose to learn
a conditional invariant deep network Fθ(·) using only data from source domains by enforcing
P k(F (X)|Y ) = P l(F (X)|Y ),∀k, l ∈ Dsrcy .

To achieve this goal, we formulate learning a conditional invariant feature extractor as a multiplayer
minimax game. Particularly, each class yj is associated with a domain critic Kj predicting the
domain associated with each sample of yj . Therefore, we propose the following minimax problem:

min
F

max
θj
d,...,θ

y(t)
d

y(t)∑
j=1

Vcond(F,Kj), (1)
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where Vcond(F,Kj) is a domain discrepancy measure for class yj . At time t, Eq. 1 is a (y(t) +
1)–players minimax game with y(t) critics trained to distinguish the features generated from the
feature extractor F , while F is trained simultaneously maximize all critics’ losses. In this work,
we consider two versions of the domain discrepancy measure Vcond. First, we consider the Jensen-
Shannon divergence (JSD), in which case the domain discrepancy is calculated as Vcond(F,Kj) =∑mj

i=1 Ex∼Yj logKj(F (x)). When using JSD, the domain critics Kj are implemented as a softmax

layer, i.e.
∑dj(t)
i=1 Kj(z) = 1,∀j = 1, . . . , y(t). JSD is a natural choice as the domain divergence as

has been successfully applied in other applications, e.g. (Goodfellow et al., 2014; Li et al., 2018).

Another popular choice to measure domain divergence is the Wasserstein distance between two
distributions (Villani, 2008). Different from JSD, the Wasserstein metric has a much smoother value
range, which may provide more meaningful gradients to update the feature extractor. This motivates
us to use the Wasserstein distance as the domain divergence in the minimax game in Eq. 1. In
practice, estimating the Wasserstein-p distance for an arbitrary value of p is highly computationally
expensive. Fortunately, the Kantorovich-Rubinstein duality (Villani, 2008) provides an efficient way
to compute the Wasserstein-1 distance, which we refer to as the Wasserstein distance throughout the
rest of this paper. The duality of the Wasserstein-1 distance can be efficiently computed as:

W (µ, ν) = sup
||f ||L≤1

EX∼µf(X)− EX∼νf(X), (2)

where the supremum is taken over all Lipschitz continuous functions f : M → R with Lipschitz
constant less than or equal to one. The total domain divergence of class yj is calculated by summing
the Wasserstein distances of all possible source domain pairs:

Wcond(F,Kj) = sup
||Kj ||L≤1

∑
l 6=k

Ex∼Y k
j
Kj(F (x))− Ex∼Y l

j
Kj(F (x))

 (3)

Estimating the Wasserstein distance in Eq. 3 requires taking the supremum over all 1-Lipschitz func-
tions of the critics. Here we follow the strategy of Arjovsky et al. (2017) to enforce this constraint
by clipping the critics’ parameters to be in a pre-defined range.

4.2 CONDITIONAL INVARIANT EXPERIENCE REPLAY (CIER)

We now describe Conditional Invariant Experience Replay (CIER), which learns a conditional in-
variant feature representation of the data for continual learning. CIER utilizes an episodic memory
to store and replay past data during learning new samples by minimizing the classification error and
learning the conditional invariant features. To achieve the conditional invariant property, we propose
to optimize the minimax objective in Eq. 1 each time a new sample arrives. Moreover, because pre-
vious data might not be fully available when learning new tasks, we restrict Eq. 1 to consider only
data in the episodic memory. Therefore, CIER always learns conditional invariant features of all
classes and source domains observed so far. To formalize CIER, let {θid}

y(t)
i=1 be the parameters of

y(t) domain critics Ki, θf be the feature extractor, and θc be the classifier. Then, the classification
loss Lcls(θf ,θc) is the standard cross-entropy between the true and predicted labels. We propose
two variants of CIER: CIER-JSD using the JSD, and CIER-W using Wasserstein as the domain
divergence. The critics’ losses Ld can be empirically estimated as

JSD : Ld ≡LJSD(θf , {θjd}) =
∑
j

 1

Nk
j

∑
x∼Yj

logKθj
d
(Fθf (x))

 ;

dj(t)∑
i=1

Kθj
d
(z) = 1, (4)

W : Ld ≡LW (θf , {θjd}) =
∑
j

∑
l 6=k

1

Nk
j

∑
x∼Y k

j

Kθj
d
(Fθf (x))− 1

Nk
j

∑
x∼Y l

j

Kθj
d
(Fθf (x))

 ,

(5)

whereNk
j denotes the number of samples from class j that belong to domain k stored in the episodic

memory. Let Ltotal = αLcls(θf ,θc) + (1 − α)Ld(θf , {θjd}) be the total loss with the trade-off
parameter α. When an incoming data arrive, the whole network can be optimized by a two-stages
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Table 1: Summary of the benchmarks used in our experiments

#src domains #tgt domains #total domains #train imgs #test imgs #classes

iAnimal 23 10 33 4,500 1,500 10
iVehicle 28 11 39 4,000 1,290 9
iDomainNet 3 3 6 205,141 88,204 345

optimization process. First, the critics are trained to maximize the critic loss in Eq. 4, or Eq. 5. In
the second stage, the classifier and the feature extractor are trained to correctly classify the current
data as well as learning conditional invariant features. Importantly, the feature extractor θf is trained
to minimize the domain’s discrepancy measure while the critics are trained to maximize it, which
implements the minimax game to learn conditional invariant features described in Sec. 4.1. Notably,
calculating the critics loss Ld requires y(t) forward passes, however, only one backward pass is
required to update the critics’ parameters. We provide the pseudo-code of both CIER-JSD and
CIER-W in Appendix A.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

Benchmark. We consider the task-free, online continual learning setting as described in Sec. 3: the
model observes a continuum of data consists of T tasks, where the input of each time step is a tuple
of an image, domain indicator, and label. At test time, the model only observes the images x, and it
has to predict on all observed classes so far. We consider two datasets: NICO (He et al., 2020) and
DomainNet (Peng et al., 2019), and create three continual learning benchmarks in our experiments.
The NICO dataset consists of two superclasses of Vehicle and Animal with 9 and 10 categories;
each has a total of approximately 10,000 images over 30 domains. We create a continual learning
benchmark for each superclass using its subclasses, resulting in the incremental Vehicle (iVehicle)
and incremental Animal (iAnimal) benchmarks. Similarly, we take DomainNet, a large scale dataset
of 345 classes with 569,010 images over six domains, and create the iDomainNet benchmark.

To ensure the domain shift between training and testing data, for each class, we randomly choose
50% of its domains as the source domains for training; the remaining domains are considered as
target domains. The source and target domains are used to construct three continual learning sce-
narios as described in Sec. 3: significant shift, mild shift, and no shift. All images are resized,
center-cropped to 3×84×84 and normalized to be in [0, 1]. No other data augmentation is used in
all experiments. Table 1 summaries the statistic of each benchmark. We can see that while the NICO
dataset consists of many domains, it only has a small number of classes and a moderate amount of
training data. On the other hand, the DomainNet dataset has a large number of classes and training
images but only contains six domains. Consequently, our continual learning benchmarks are diverse
in both number of training instances, domains, and tasks.

Baselines. Since there have not been any approaches in the literature that directly address the contin-
ual learning under domain shift problems, we consider three state-of-the-art online continual learn-
ing methods, namely ER (Chaudhry et al., 2019b), MER (Riemer et al., 2019), and MIR (Aljundi
et al., 2019a). Furthermore, we also propose a baseline called Adversarial Experience Replay (AER)
that augments ER with an adversarial domain classification loss to match the marginal distribution
P (X). AER is principally different from our proposed CIER since CIER matches the conditional
distributions P (X|Y ) across domains. Due to space constraints, we refer to our Appendix B for the
results of more baselines.

Implementation Details. We use a pre-trained ResNet18 (He et al., 2016) backbone in all bench-
mark. All methods use a Reservoir sampling buffer with sizes equal to 9,000; 10,000; and 34,500
samples in the iVehicle, iAnimal, and iDomainNet respectively. All methods are optimized online
(over one epoch) using SGD with mini-batches of size 10 on iVehicle, iAnimal, and 32 on iDo-
mainNet. We cross-validate the hyper-parameters of all methods on a small subset of data (5%)
using grid search. Different from (Aljundi et al., 2019a), we follow the standard implementation in
(Chaudhry et al., 2019b), which concatenates the current and previous data when calculating the ex-
perience replay loss. This results in the batch-normalization layer applied on both old and new data
in the forward pass instead of the old and new data are batch-normalized separately. We observe that
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Table 2: Evaluation metrics on the iVehicle and iAnimal benchmarks, respectively. All methods use
the same pre-trained Resnet18 backbone. Scenario 1 (significant shift): train on source domains,
test on target domains. Scenario 2 (mild shift): train on source domains, test on source and target
domains. Scenario 3 (no shift): train on target domains, test on target domains.

iVehicle - 3 tasks iAnimal - 5 tasks

Scenario 1 ACC FM LA ACC FM LA

MER 48.12±1.12 22.58±2.56 63.20±1.43 46.38±1.00 31.50±2.05 71.62±1.41
ER 48.70±0.90 23.22±3.15 64.26±1.31 45.76±0.88 34.12±1.46 73.08±1.64
MIR 45.88±2.00 30.00±2.28 65.88±1.54 44.02±0.91 41.96±1.55 77.56±1.22
AER 48.96±0.39 24.30±1.32 64.46±0.98 45.98±1.47 32.82±2.02 72.24±0.99
CIER-JSD 51.52±0.59 19.62±1.98 65.78±1.28 49.04±0.97 31.20±1.16 74.00±1.53
CIER-W 51.38±1.10 22.04±2.63 66.08±1.33 48.36±0.67 31.02±1.77 73.16±1.57

Scenario 2 ACC FM LA ACC FM LA

MER 56.90±1.05 18.90±1.40 69.22±1.21 52.66±1.53 28.28±1.26 75.30±1.25
ER 56.30±1.29 21.04±2.44 70.34±1.20 51.60±0.80 31.68±1.52 76.92±1.74
MIR 55.46±0.88 25.24±1.34 72.30±0.34 49.16±1.52 40.52±1.32 81.58±0.95
AER 55.14±1.04 22.78±1.60 70.32±1.32 49.98±0.89 33.10±1.18 76.44±0.60
CIER-JSD 59.44±0.82 18.82±2.80 71.98±1.81 53.86±0.72 31.30±1.46 78.90±1.05
CIER-W 58.20±1.21 20.56±2.26 71.92±1.31 54.66±2.51 29.08±3.73 77.92±0.75

Scenario 3 ACC FM LA ACC FM LA

MER 63.14±0.84 20.28±1.61 76.70±0.88 61.74±0.62 26.42±1.14 82.88±0.46
ER 61.80±0.94 24.40±1.94 78.10±1.07 59.32±0.91 30.20±0.80 83.48±0.74
MIR 59.08±0.25 30.98±2.33 79.76±2.33 58.32±1.31 35.68±1.26 86.88±0.94
AER 62.82±0.87 20.64±2.50 76.56±1.26 59.52±0.53 28.84±0.70 82.56±0.97
CIER-JSD 65.78±1.28 23.62±2.06 81.54±0.80 63.78±1.13 26.10±1.71 83.56±2.06
CIER-W 64.82±1.28 24.10±1.33 80.90±0.61 62.32±0.80 29.30±0.90 85.68±1.20

concatenating current and episodic memory during for experience replay yields better results for all
methods; therefore, we will use this implementation in the main paper. We provide the results of
the other implementation with batch-normalization in the Appendix B.2.

5.2 RESULTS ON THE IVEHICLE AND IANIMAL BENCHMARKS

We create a sequence of three tasks for the iVehicle and five tasks for the iAnimal benchmarks and
report the results in Table 2. Because of the standard ER implementation with batch-normalization,
MIR performs slightly worse than ER across all settings. Under the significant domain shift, the
performance of existing methods drops significantly compared to the traditional setting with no
domain shift. Both ER, AER, CIER-JSD, and CIER-W has similar FM, indicating that they are
equally affected by catastrophic forgetting. Moreover, CIER-JSD and CIER-W achieve higher LA,
resulting in higher overall performance, indicated by the ACC metric. The results show that CIER
can achieve a good trade-off between preventing catastrophic forgetting and facilitating knowledge
transfer while being able to generalize to unseen domains.

5.3 RESULTS ON THE IDOMAINNET BENCHMARK

We construct a sequence of five and 15 tasks for the iDomainNet benchmark and report the results
in Table 3. We also observe a significant performance drop across all continual learning methods.
Moreover, since iDomainNet only has three source domains, it is much more challenging to learn
an invariant representation. Consequently, we observe a slightly small gap between CIER and ER
compared to the iVehicle and iAnimal benchmarks: 1% versus 2-4%. This result suggests that
invariant representation learning requires more source domains to obtain a powerful representation
that can generalize well at test time. Different from iAnimal and iVehicle, CIER-W consistently
achieves the best performance in iDomainNet, showing that the Wasserstein distance is a better
choice for the domain divergence when there are only a small number of source domains. When
there are many source domains, it is challenging to extend the Wasserstein distance to multiple
distributions while the JSD can be naturally extended to such cases.
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Table 3: Evaluation metrics on the iDomainNet benchmarks with five and 15 tasks, respectively. All
methods use the same pre-trained Resnet18 backbone. Scenario 1 (significant shift): train on source
domains, test on target domains. Scenario 2 (mild shift): train on source domains, test on source and
target domains. Scenario 3 (no shift): train on target domains, test on target domains

iDomainNet - 5 tasks iDomainNet - 15 tasks

Scenario 1 ACC FM LA ACC FM LA

MER 13.32±0.15 9.66±0.23 20.92±0.24 12.52±0.21 21.74±0.21 32.82±0.18
ER 15.06±0.18 9.88±0.52 22.96±0.27 12.60±0.22 22.56±0.23 34.62±0.24
MIR 15.18±0.30 10.26±0.29 23.40±0.16 12.28±0.27 23.14±0.13 34.88±0.30
AER 15.04±0.17 9.76±0.24 22.88±0.19 12.30±0.20 22.20±0.35 33.02±0.36
CIER-JSD 15.88±0.20 10.52±0.10 24.26±0.23 13.34±0.09 22.28±0.30 34.90±0.24
CIER-W 16.02±0.15 10.72±0.39 24.66±0.29 13.54±0.19 22.44±0.22 35.18±0.10
Scenario 2 ACC FM LA ACC FM LA

MER 23.96±0.09 13.06±0.13 34.42±0.19 23.28±0.15 25.98±0.21 47.24±0.12
ER 26.96±0.09 12.50±0.13 36.92±0.12 23.98±0.21 25.90±0.24 49.16±0.19
MIR 26.88±0.18 12.68±0.24 37.04±0.18 23.80±0.10 26.72±0.10 49.70±0.10
AER 26.62±0.90 12.08±0.90 36.28±0.13 22.68±0.10 26.52±0.13 47.44±0.04
CIER-JSD 27.96±0.17 13.14±0.27 38.48±0.07 24.74±0.04 26.12±0.09 49.82±0.07
CIER-W 28.16±0.18 13.24±0.36 38.74±0.19 24.92±0.22 26.04±0.29 49.92±0.09
Scenario 3 ACC FM LA ACC FM LA

MER 39.06±0.11 15.96±0.22 51.64±0.24 37.30±0.18 32.46±0.23 67.58±0.10
ER 41.12±0.07 17.06±0.12 54.80±0.14 38.42±0.23 33.14±0.30 70.34±0.09
MIR 40.88±0.14 17.66±0.20 55.00±0.10 37.84±0.41 34.10±0.48 70.64±0.09
AER 40.62±0.04 17.28±0.31 54.44±0.24 34.24±0.13 35.62±0.13 67.50±0.15
CIER-JSD 43.74±0.17 17.68±0.25 57.86±0.17 38.62±0.32 33.66±0.33 70.44±0.04
CIER-W 43.94±0.70 17.78±0.10 58.16±0.90 39.12±0.21 33.34±0.26 71.04±0.13

Finally, we note that all methods have lower ACC when moving from 5 to 15 tasks. Since both
cases have the same amount of training data; having more tasks means each task is easier to learn,
resulting in higher LA. However, learning on a long sequence of tasks also suffers significantly from
catastrophic forgetting indicated by higher FM, resulting in lower final performances.

5.4 MODEL AND COMPUTATIONAL COMPLEXITY

Table 4: Model and computational complexity of CIER compared to ER and MIR. Computational
complexity is the averaged training time per incoming batch, all methods have very small stddev,
i.e., smaller than 0.01s

ER MIR CIER-JSD CIER-W

# params Time # params Time # params Time # params Time

iVehicle 11,181,129 0.42s 11,181,129 0.53s 11,443,013 0.53s 11,380,562 0.48s
iAnimal 11,181,642 0.42s 11,181,642 0.54s 11,437,872 0.54s 11,381,332 0.48s
iDomainNet 11,353,497 0.57s 11,353,497 0.59s 11,816,612 0.87s 11,639,282 0.68s

We study the model and computational complexity of CIER, and report the number of parameters
and the averaged training time per incoming data on all benchmarks in Table 4. Among all methods,
we observe significant additional computational cost in the iDomainNet benchmark. The overhead
incurs because of the larger batch size and the larger number of classes: 345 classes compared to
nine in iVhehicle and 10 in iAnimal. In CIER-JSD, each class’s critic is a D-ways classification
model where D is the number of domains observed, which results in more expensive parameters and
computational complexity. On the other hand, CIER-W’s critics only predict domains scores, which
are scalars. Thefore, CIER-W enjoys much lower complexities compared to CIER-JSD. However,
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the complexity overhead in both methods are not significant compared to ER and especially MIR.
Particularly, CIER-W is only 15%-20% slower than ER, and has 1.7%-2.5% additional parameters.

5.5 SUMMARY

From the experiments, we observe that all continual learning methods suffer when a domain shift
happens. Second, having many source domains is important in achieving an invariant representation,
as demonstrated by the gap of CIER compared to other methods from the considered benchmarks.
Moreover, the Wasserstein distance is powerful when learning with a small number of source do-
mains while the Jensen-Shannon divergence (JSD) is a better choice when more source domains
are available. Finally, while CIER-JSD and CIER-W achieved promising results, there is still a gap
compared to the ideal scenario of having no domain shift between training and testing domains.

6 CONCLUSION

We address the limitations of existing continual learning methods when testing on unseen domains
with domain shift. This motivates to develop a novel problem setting named Continual learning un-
der domain shift and three novel benchmarks, which support a diverse range of domains, classes, and
tasks. To address this challenge, we propose CIER that simultaneously performs experience replay
to maintain a good performance across all tasks and learns a conditional invariant representation
via an adversarial learning objective. As a result, CIER balances among all three aspects: prevent-
ing catastrophic forgetting, facilitating knowledge transfer, and generalization to unseen domains.
Through extensive experiments, we demonstrate that existing state-of-the-art methods are often too
optimistic and struggle to generalize to unseen domains. On the other hand, CIER can bridge the
gap in the domain shifts and offer significant improvements. We believe our study provides a more
realistic setting to evaluate continual learning methods and opens new future research directions.
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This Appendix is organized as follows. We describe the pseudo-code of the CIER algorithms in
Appendix A. Then, Appendix B provides the details of our implementation used in the main paper
and additional results of more baselines and model complexity. Finally, we include some illustrative
examples extracted from our benchmarks in Appendix C.

A THE CIER ALGORITHMS

Alg. 1 depicts the training procedure of the proposed CIER-JSD and CIER-W. All experiments
conducted in this work use the hyperpameter provided in Alg. 1. For a fair comparisons, we optimize
all methods, including CIER and other baselines, using two updates per samples.

Algorithm 1: Our proposed CIER algorithm. All experiments in this paper used the default
values ninner = ncritic = 2, α = 0.95, c = 0.01.
Require: α, the trade-off parameter. c, the clipping parameter. N , the replay batch size. niter:

number of iterations per incoming training data.
Init: θf , the deep network feature extractor parameters. θc, the classifier parameters. {θid}

|Y |
i=1,

the critics parameters of |Y | classes.M the episodic memory with reservoir sampling.
1 for t← 1 to T do
2 for j ← 1 to ntbatches do // Receive data of task T sequentially
3 Bj = (x, d, y), receive a mini batch of data from the current task
4 for m← 1 to ninner do // Inner update of the current sample
5 BM = (x′, d′, y′) random sampling from the episodic memoryM
6 BM,m ← Bj ∪ BM // Mixing data for experience replay
7 for n← 0 to ncritic do // Training critics loop
8 Calculate the critics’ loss LW on BM,m using Eq. 4 or Eq. 5
9 θid ← θid + γ ∂Ld

∂θi
d

,∀i = 1, . . . , |Y | // Domain critics SGD step

10 CIER-W: θid ← clip(θid,−c, c),∀i = 1, . . . , |Y | // Parameters clipping
11 Calculate the total loss Ltotal and the classification loss Lcls on BM,m.
12 θf ← θf − γ ∂Ltotal

∂θf
// Feature extractor SGD step

13 θc ← θc − γ ∂Lcls

∂θc
// Classifier SGD step

14 Add Bj toM using reservoir sampling

15 return θf , {θid}
|Y |
i=1,θc

B EXPERIMENTS DETAILS

In this section, we first details the baselines used in our experiments. Then, we prove the details of
experience replay implementations using batch normalization, and highlight the differences between
them. For a comparison, we also include the results of both implementation on the iVehicle and
iAnimal benchmarks. Finally, we provide the results of more continual learning methods on the
iVehicle and iAnimal benchmarks.

B.1 EXPERIENCE REPLAY IMPLEMENTATIONS WITH BATCH NORMALIZATION

We first describe two experience replay (ER) implementations considered in this work. Let Bt be
the current data observed from the continuum and BM be a random batch of data sampled from
the episodic memory. For convenience, we use θ to denote the total number of parameters in the
model, including the feature extractor and the classifier. Then, an experience replay update can be
implemented with or without concatenating Bt and BM as followings.
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Batch Normalization with concatenation. This is the standard implementation of ER used
in (Chaudhry et al., 2019b). The update step is described as:

B̄ ←Bt ∪ BM , (6)

Lcls ←L(θ, B̄), (7)
θ ←SGD(Lcls,θ). (8)

In this implementation, the batch normalization layer is applied on the merged batch B̄, which
results in one forward pass, and the mini-batch mean and mini-batch variance being estimated once
using the concatenation of the current dataBt and old dataBM in the memory.

Batch Normalization without concatenation. This is an alternative implementation of ER used
in (Aljundi et al., 2019a). The update step is described as:

Lcls ←L(θ,Bt) + L(θ,BM ), (9)
θ ←SGD(Lcls,θ). (10)

In this implementation, the loss is calculate on current and previous data separately. This results
in two forward passes, and the mini-batch mean and mini-batch variance being estimated twice per
gradient update: once on the current dataBt and once on the past dataBM .

Since ER is the base of many methods used in our work, including MIR (Aljundi et al., 2019a), our
CIER-JSD and CIER-W, this results in two alternative implementations of such methods.

B.2 RESULTS OF THE TWO EXPERIENCE REPLAY IMPLEMENTATIONS

We report the results of both experience replay implementations on the iVehicle in Table 5. We
emphasize that in these implementations, beside the difference in concatenating the current and past
samples, other factors are exactly the same. Interestingly, a subtle change in the use batch normal-
ization can result in significant changes of the final results. One possible reason of this discrepancy
is the use of the pre-trained ResNet, which was pre-trained by concatenating all samples in each
mini-batch. In addition, when using BN without concatenation, we observe the same behaviour of
MIR as in (Aljundi et al., 2019a): MIR improves ER by lowering forgetting measure FM, resulting
in slightly better overall performance across benchmarks. Moreover, we still observe the same trend
in both implementations that CIER can improve over ER and MIR in terms of LA, which results
in better ACC. Nevertheless, implementing ER using BN with concatenation showed to to superior
than the alternative. Therefore, we decided to report the result of this strategy in the main paper.

B.3 RESULTS OF ADDITIONAL BASELINES

In this section, we provide a broader set of baselines than the ones included in the main paper. First,
we provide a short description of all baselines considered.

• Learning without Forgetting (LwF) (Li & Hoiem, 2017). LwF prevents catastrophic
forgetting by a variant of knowledge distillation.

• AGEM (Chaudhry et al., 2019a). AGEM prevents catastrophic forgetting and transferring
knowledge by preventing the old tasks’ losses from increasing via a quadratic constraint.
Since the original AGEM experimented with the online, task-aware setting, we extend
AGEM to the task-free setting by enforcing the constraint on a randomly selected memory
data of all observed classes.

• Meta Experience Replay (MER) (Riemer et al., 2019). MER balances both catastrophic
forgetting and facilitating knowledge transfer by penalizing the gradient direction of every
samples stored in the episodic memory. MER implements this objective via a variant of the
Reptile algorithm (Nichol et al., 2018).

• Experience Replay (ER) (Chaudhry et al., 2019b). ER is a simple, yet very effective
strategy for the online, task-free continual learning problem. ER works by simply mixing
current data and previous data in the memory and peforms a gradient update.

• Maximally Interfered Retrieval ER (MIR) (Aljundi et al., 2019a). MIR improves ER by
replacing the random memory sampling with a strategy to selects previous samples causing
the most classification loss increase.
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Table 5: Evaluation metrics of two experience replay implementations on the iVehicle benchmarks.
BN denotes Batch Normalization. Scenario 1: train on source domains, test on target domains.
Scenario 2: train on source domains, test on source and target domains. Scenario 3: train on target
domains, test on target domains

iVehicle BN with concatenation BN without concatenation

Scenario 1 ACC FM LA ACC FM LA

ER 48.70±0.90 23.22±3.15 64.26±1.31 41.70±1.10 20.12±4.10 55.04±2.95
MIR 45.88±2.00 30.00±2.28 65.88±1.54 41.96±1.25 20.04±2.01 55.30±1.48
CIER-JSD 51.52±0.59 19.62±1.98 65.78±1.28 43.26±1.81 20.66±3.29 57.02±2.34
CIER-W 51.38±1.10 22.04±2.63 66.08±1.33 42.69±2.45 20.54±4.65 55.70±0.83

Scenario 2 ACC FM LA ACC FM LA

ER 56.30±1.29 21.04±2.44 70.34±1.20 50.09±2.10 21.40±4.56 65.20±2.72
MIR 55.46±0.88 25.24±1.34 72.30±0.34 50.66±2.71 16.60±2.61 61.74±2.86
CIER-JSD 59.44±0.82 18.82±2.80 71.98±1.81 50.86±1.80 20.34±2.35 66.18±2.34
CIER-W 58.20±1.21 20.56±2.26 71.92±1.31 50.56±2.61 20.84±0.59 64.40±2.54

Scenario 3 ACC FM LA ACC FM LA

ER 61.80±0.94 24.40±1.94 78.10±1.07 58.48±1.04 16.92±2.94 69.78±2.39
MIR 59.08±0.25 30.98±2.33 79.76±2.33 59.34±0.50 13.70±2.36 68.48±1.22
CIER-JSD 65.78±1.28 23.62±2.06 81.54±0.80 60.16±0.76 15.58±1.54 70.52±1.58
CIER-W 64.82±1.28 24.10±1.33 80.90±0.61 59.84±1.23 16.90±3.61 71.48±2.54

Table 6: Evaluation metrics of two experience replay implementations on the iAnimal benchmarks.
BN denotes Batch Normalization. Scenario 1: train on source domains, test on target domains.
Scenario 2: train on source domains, test on source and target domains. Scenario 3: train on target
domains, test on target domains

iAnimal BN with concatenation BN without concatenation

Scenario 1 ACC FM LA ACC FM LA

ER 45.76±0.88 34.12±1.46 73.08±1.64 41.84±1.88 29.60±3.65 65.38±1.88
MIR 44.02±0.91 41.96±1.55 77.56±1.22 42.96±3.24 28.72±4.22 66.48±1.33
CIER-JSD 49.04±0.97 31.20±1.16 74.00±1.53 43.52±0.41 29.69±0.61 67.48±2.41
CIER-W 48.36±0.67 31.02±1.77 73.16±1.57 42.99±1.33 31.76±1.99 67.66±0.99

Scenario 2 ACC FM LA ACC FM LA

ER 51.60±0.80 31.68±1.52 76.92±1.74 43.90±3.37 32.72±3.99 70.06±1.20
MIR 49.16±1.52 40.52±1.32 81.58±0.95 44.38±2.95 30.03±4.44 68.98±1.14
CIER-JSD 53.86±0.72 31.30±1.46 78.90±1.05 44.48±2.81 33.52±3.00 70.68±2.34
CIER-W 54.66±2.51 29.08±3.73 77.92±0.75 45.14±4.19 33.90±2.63 72.24±1.21

Scenario 3 ACC FM LA ACC FM LA

ER 59.32±0.91 30.20±0.80 83.48±0.74 55.14±1.08 25.46±1.50 75.42±1.07
MIR 58.32±1.31 35.68±1.26 86.88±0.94 56.02±1.11 22.62±2.22 74.78±1.77
CIER-JSD 63.78±1.13 26.10±1.71 83.56±2.06 56.48±2.31 24.08±2.69 73.94±0.95
CIER-W 62.32±0.80 29.30±0.90 85.68±1.20 56.16±2.26 27.08±1.93 77.54±1.40

• Adversarial Experience Replay (AER) (this work). AER improves over ER by matching
the distribution P (X) across domains. Particularly, AER employs a domain classifier to
classify the domains from the backbone’s features. The domain classifier is trained to
maximize the domain classification loss while the feature extractor is trained to minimize
it, resulting in an invariant in P (X). As we discussed in Sec. 2, this method corresponds to
an invariant assumption in P (Y |X); however, when this assumption is violated, matching
P (X) may not provide additional benefits to the traditional ER.
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Table 7: Evaluation metrics on the iVehicle and iAnimal benchmarks. All methods use the same pre-
trained Resnet18 backbone. Scenario 1: train on source domains, test on target domains. Scenario
2: train on source domains, test on source and target domains. Scenario 3: train on target domains,
test on target domains. This is the full version of Table 2 in the main paper

iVehicle - 3 tasks iAnimal - 5 tasks

Scenario 1 ACC FM LA ACC FM LA

LwF 24.10±1.60 55.86±1.44 61.38±1.80 16.44±1.60 78.44±2.79 79.18±1.31
AGEM 23.76±0.43 69.68±1.32 70.18±1.19 15.34±1.01 85.96±2.05 84.14±1.25
MER 48.12±1.12 22.58±2.56 63.20±1.43 46.38±1.00 31.50±2.05 71.62±1.41
ER 48.70±0.90 23.22±3.15 64.26±1.31 45.76±0.88 34.12±1.46 73.08±1.64
MIR 45.88±2.00 30.00±2.28 65.88±1.54 44.02±0.91 41.96±1.55 77.56±1.22
AER 48.96±0.39 24.30±1.32 64.46±0.98 45.98±1.47 32.82±2.02 72.24±0.99
CIER-JSD 51.52±0.59 19.62±1.98 65.78±1.28 49.04±0.97 31.20±1.16 74.00±1.53
CIER-W 51.38±1.10 22.04±2.63 66.08±1.33 48.36±0.67 31.02±1.77 73.16±1.57

Scenario 2 ACC FM LA ACC FM LA

LwF 29.76±0.86 64.98±4.46 73.08±2.14 14.28±2.69 83.62±1.20 81.18±1.91
AGEM 25.86±0.65 77.18±0.99 77.34±1.20 15.16±0.90 88.34±1.01 85.80±1.10
MER 56.90±1.05 18.90±1.40 69.22±1.21 52.66±1.53 28.28±1.26 75.30±1.25
ER 56.30±1.29 21.04±2.44 70.34±1.20 51.60±0.80 31.68±1.52 76.92±1.74
MIR 55.46±0.88 25.24±1.34 72.30±0.34 49.16±1.52 40.52±1.32 81.58±0.95
AER 55.14±1.04 22.78±1.60 70.32±1.32 49.98±0.89 33.10±1.18 76.44±0.60
CIER-JSD 59.44±0.82 18.82±2.80 71.98±1.81 53.86±0.72 31.30±1.46 78.90±1.05
CIER-W 58.20±1.21 20.56±2.26 71.92±1.31 54.66±2.51 29.08±3.73 77.92±0.75

Scenario 3 ACC FM LA ACC FM LA

LwF 38.30±1.48 63.48±2.85 80.62±1.91 17.64±0.99 85.02±2.58 85.62±2.74
AGEM 27.88±1.70 81.52±1.59 82.24±0.95 16.60±0.57 91.88±0.38 90.10±0.86
MER 63.14±0.84 20.28±1.61 76.70±0.88 61.74±0.62 26.42±1.14 82.88±0.46
ER 61.80±0.94 24.40±1.94 78.10±1.07 59.32±0.91 30.20±0.80 83.48±0.74
MIR 59.08±0.25 30.98±2.33 79.76±2.33 58.32±1.31 35.68±1.26 86.88±0.94
AER 62.82±0.87 20.64±2.50 76.56±1.26 59.52±0.53 28.84±0.70 82.56±0.97
CIER-JSD 65.78±1.28 23.62±2.06 81.54±0.80 63.78±1.13 26.10±1.71 83.56±2.06
CIER-W 64.82±1.28 24.10±1.33 80.90±0.61 62.32±0.80 29.30±0.90 85.68±1.20

Due to the computational expensive of the iDomainNet benchmark, we only report the results of
all baselines in the iVehicle and iAnimal benchmarks in Table 7. The results show that, in gen-
eral, continual learning benchmarks cannot achieve a good balance among three important aspects:
preventing catastrophic forgetting, facilitating knowledge transfer, and generalization to unseen do-
mains. This is reflected by comparing the three evaluated metrics. While AGEM can facilitate
knowledge transfer (high LA), it suffers from catastrophic forgetting (high FM), resulting in poor
performances (low ACC). ON the other hand, experience replay and its variants can achieve a good
trade-off between preventing catastrophic forgetting and facilitating knowledge transfer; but they
struggle to generalize to unseen domain. Our result suggests that balancing among all three objec-
tives is important for continual learning and remains an open problem for future research.

C SAMPLE IMAGES

We provide sample images of the iAnimal, iVehicle, and iDOmainNet benchmarks in Fig. 3, Fig. 4,
and Fig. 5 respectively. For each benchmark, we show the sample images in the source and target
domains of three randomly chosen classes. Each class’s source and target domains are used to
construct the three evaluation scenarios described in Sec. 3.
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Cow

Dog

Cat

(a) Source domain images

Cow

Dog

Cat

(b) Target domain images

Figure 3: Sample images from the iANimal benchmark. Images are extracted from the Animal
superclass of the NICO dataset (He et al., 2020).

Boat

Air-
plane

Bus

(a) Source domain images

Boat

Air-
plane

Bus

(b) Target domain images

Figure 4: Sample images from the iVehicle benchmark. Images are extracted from the Vehicle
superclass of the NICO dataset (He et al., 2020).
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Saw

Dolphin

Guitar

(a) Source domain images

Saw

Dolphin

Guitar

(b) Target domain images

Figure 5: Sample images from the iDomainNet benchmark. Images are extracted from the Domain-
Net dataset (Peng et al., 2019).
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