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Abstract

The Cooperative Action Task (CAT) is a platform for study-
ing the development of team coordination in complex dy-
namic task environments. Teams of four cooperate to play a
cooking video game across eight 1-hr sessions. Team mem-
bers communicate using gaze cursors that display the gaze
location of each player. Team coordination in the game is
achieved through a combination of planned and adaptive ac-
tions. Planned actions involve players acting according to pre-
assigned roles to reduce behavioral variability, while adaptive
actions are characterized by dynamic adaptations to changing
task demands. The results of the study reveal that strategic
reduction of behavioral variability was beneficial to game per-
formance for all teams. Additionally, team performance was
lower when teams switched between strategies across games
in the same kitchen.
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Introduction

There has been a rising interest in team research among cog-
nitive scientists due to its significance in virtually every form
of human coordination. However, analysis of team behavior
in complex tasks can be challenging due to the dynamic na-
ture of human interactions. Simulated virtual environments
are an excellent tool for such analyses because they offer the
complexity of naturalistic tasks while ensuring sufficient con-
trol over the task environment (Elliott et al., 2017; Cooke,
Rivera, Shope, & Caukwell, 1999).

Computer games are excellent simulations for studying
complex human behavior, especially expert behavior and task
learning (Gray, 2017). For example, Tetris based studies have
shed light on the various advanced strategies that experts use
in the game and their implications on human learning (Gray
& Banerjee, 2021; Sibert, Gray, & Lindstedt, 2020; Lindst-
edt & Gray, 2013). Others focused on differences in cogni-
tive abilities among novices and experts (Large et al., 2019;
Green & Bavelier, 2003).

For the current study, we developed a cooperative cook-
ing game called “The CAT”; that is, the Cooperative Action
Task. Here, the CAT was used to explore the development
of team coordination (in 4-player teams) across eight 1-hour
gameplay sessions. The experimental setup was further de-
signed to enforce restrictions on communications within the
team: players were prevented from verbally communicating

with other team members during gameplay. However, players
were allowed to communicate through a gaze-based commu-
nication system.

Current literature on cooperative behavior in humans re-
veals that coordinating humans rely on strategic reductions in
action variability to improve action predictability for partners
when communication is limited. One such study explored
behavior in coordinating dyads in an action synchronization
task, where access to information about partner’s actions was
limited (Vesper, Schmitz, Sebanz, & Knoblich, 2013). The
authors discovered that subjects reduced action variability
and improved coordination by speeding up their movements.

In the current study, teams reduced behavioral variability
of players by assigning roles to its members. The teams used
this strategy to compensate for the lack of a rich communi-
cation channel. To test for player persistence in sticking to
assigned roles and its effect on team performance: we define
‘Role Stability’ (RS)— a measure of a player’s tendency to
stick to a certain role for the duration of a game. Results show
that reduction of behavioral variability through adherence to
player roles did improve team performance.

Methodology
Experimental Setup

The setup for the experiment is illustrated in Figure 1. It in-
cludes 5 computers, 4 eye-trackers (each attached to a moni-
tor), 4 Xbox controllers, and 4 acoustic pods. Each pod had
one controller, one eye-tracker, and one monitor inside. All 5
computers were set up outside the pods.

One of the 5 computers was used to run the game (the cen-
tral node), and the video output for this computer was mir-
rored across all 4 monitors using an HDMI splitter. This
meant all four players simultaneously received the same
video stream for the game inside each pod. Since the game
ran on the central node, the telemetry data (player actions and
game state information) was also locally stored there at 60
frames per second (60Hz). The remaining 4 computers (edge
nodes) were each connected to one of the 4 eye-trackers and
placed outside the pods. Each edge node collected gaze data
from the connected eye-tracker, stored the data locally, and
sent it to the central node over the Local Area Network.
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Figure 1: Layout of the experimental setup for the CAT. The 4
translucent regions correspond to the 4 pods in the setup. All
entities enclosed within each one of the translucent regions
represent the content of the pods.

The Cooperative Action Task

We present the Cooperative Action Task (The CAT), a game-
based experimental paradigm (developed using the Unity
game engine) to study human coordination within small 4-
person teams in a controlled virtual environment. The goal
of each team is to work together inside a virtual kitchen to
prepare and deliver orders on time.

Orders appear at the top of the game interface, along with
a timer indicating the time remaining to prepare the order.
The example in Figure 2 presents two outstanding orders, a
mushroom soup (expires in 35 seconds) and an onion soup
(expires in 65 seconds). Players execute a series of actions to
prepare each order as they come in. For example, to prepare
the mushroom soup (from Figure 2) players from the team
would have to chop three mushrooms and one onion (at the
chopping counters), cook them in a pot (on a stove), plate the
soup and carry it to the delivery zone. A dirty plate appears
on the plate holder 10 seconds after each delivery. Players
must then wash the dirty plate at the sink to prepare for the
next order. Progress bars are used to indicate the progress of
the cooking, chopping, and washing processes. Finally, if an
item burns from being left on the stove too long, players need
to dispose of it in the trash.

In the current version of the system, only gaze-based com-
munication within teams was allowed during gameplay. To
eliminate the possibility of any verbal communication, each
player was placed in individual acoustic pods. Point-of-gaze
was indicated using translucent disc-shaped gaze-cursors on
the game interface, one corresponding to each player (see °
Gaze cursor’ labels in Figure 2). Every player could see all
four gaze cursors on their screen, thus giving each team mem-
ber access to others’ gaze locations. Further, players could
also draw attention to their own gaze cursors by making their

cursors pulse rapidly for half a second; this could be achieved
by pressing a button on their controller.

Figure 2: A (labelled) screenshot of a game in the ‘Clover’
kitchen layout. In this layout, the player at the top is locked
out of the rest of the kitchen and is the only player with access
to raw ingredients and the delivery zone.

Each game is a combination of a kitchen layout and an or-
der list. Kitchen layouts are task environments that present
unique challenges to team coordination, while order lists are
used to tune the task’s difficulty by varying the amount of
time available to prepare orders. Teams are awarded a score
for each order they correctly deliver. The score for a specific
order is 10 times the number of ingredients in the order. The
theoretical maximum score possible for each order list is a
function of the number and types of orders in the list.

During each session, teams played eight 5S-minute games in
4 kitchen layouts (2 games per kitchen). Every pair of consec-
utive sessions shared the same set of 4 kitchen layouts. For
example, games in sessions 1 and 2 were played in kitchen
layouts 1 through 4, sessions 3 and 4 used layouts 5 through
8, and so on. So, each team played 4 games per kitchen.
16 kitchen layouts were used for the study; each layout pre-
sented a combination of various task constraints. Constraints
included lack of space (counter space/floor space), narrow
corridors, isolated players, and partitioned kitchens.

All 16 kitchen layouts were combined with 12 unique order
lists to generate 64 unique games. The number of orders in
any order list was kept high enough to ensure none of the
teams would be able to complete all orders in the list.

Participants

The participants were 24 university students (9 female and 14
male and one participant chose not to answer). Participant age
ranged from 19-27 years (mean=20.6, SD=1.84). All partici-
pants were between the ages of 19 and 22, except one 24- and
one 27-year-old. Only one of the 6 teams was a homogeneous
all-male team, the rest had both male and female members.
A campus-wide announcement was made for the study. 24
participants were selected from a pool of 40 students who
expressed interest in the study. The selection criterion was
based on the feasibility of all 4 participants being able to



come into the lab (together) at least 3 times a week. Groups
of 4 people with similar schedules were selected, it was done
to minimize the number of canceled sessions due to the un-
availability of one or more individuals. All experimental pro-
cedures were reviewed and approved by University IRB.

Procedure

Participants were first brought in for an introductory session,
during which: (1) The study requirements and the partici-
pants’ responsibilities were explained. (2) Subject IDs and
team numbers were assigned, which remained constant for
the entire duration of the study. (3) Three 1-hour timeslots
were allotted to each group based on the availability of all
4 members. Two of the three timeslots were selected for
the group’s usual weekly schedule, that is, when they would
come to the lab each week for the study. The third times-
lot was used as a fallback option for rescheduling sessions, if
necessary.

The study required participants to come to the lab for 11
one-hour sessions. The 11 sessions were executed in the fol-
lowing order: (1) In the first session, participants completed
a Cognitive Task Battery (CTB) of 7 tasks; (2) the next 4
sessions (sessions 2-5), participants played the game; (3) dur-
ing the sixth session, participants completed the Advanced
Raven’s Matrices test; (4) this was followed by 4 more game
sessions (sessions 7-10); (5) in the final session, the CTB
from session 1 was repeated.

Each game session involved participants playing eight 5-
minute games (40 minutes total). Each player played the
game inside their assigned (by the experimenter) acoustic
pods. After playing the first 4 games, players were asked to
step out of their pods and take a short break before returning
to their pods to play the last 4 games of the session. Players
were encouraged to discuss game strategy during the session
breaks and at the end of each session. The experimenter on
duty manually logged these discussions.

Data

The data analyzed in this study was obtained from six univer-
sity student teams, each playing 64 games across the 8 game
sessions. Data from one game was lost due to technical prob-
lems (Game 2 for Team 2). So, we performed this analysis
using data from 383 games. Action, game state, and gaze in-
formation were recorded at 60Hz by the system. Game state
information included the position of every object and player
at every frame, score, active orders, time remaining per active
order, and time remaining for the game. Action data included
all button-press information for players and the resulting ac-
tion within the game environment.

Analysis and Results

We began our analysis by plotting the average performance
across all games played in each kitchen layout to test for the
effects of various kitchen constraints on task performance.
Figure 3 represents the average performance across all games
in each kitchen layout. Six teams participated in the study,

each playing 4 games per kitchen. This meant, we had data
from 24 games for each kitchen layout, with the exception of
the ‘BaseLevel’ kitchen, which had 23 data points because
data from one game was lost due to technical issues.
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Figure 3: The graph presents the mean and standard error of
scores across all games played in each kitchen. The kitchen
layouts are arranged in chronological order (the sequence in
which teams played games in the kitchens) from top to bot-
tom.

Figure 3 presents several interesting trends for changes in
performance across kitchens, which include increasing per-
formance for games played in the first 7 kitchens and the rel-
atively low performance in the final 4. However, in the cur-
rent study we focus on the ‘Divided’ kitchen layout because
of the consistent and considerably high scores associated with
the games played in this kitchen. This was confirmed using a
Tukey’s HSD test which showed that the game scores for the
Divided kitchen differed significantly (p < .05) from all other
kitchens.

The high scores in the Divided kitchen are particularly in-
triguing because it is the only kitchen design where each
of the four players was placed in separate sections of the
kitchen and forced to work in isolation (Figure 4). Addition-
ally, Teams played several games in 11 other kitchens before
playing in the Divided kitchen. All 11 kitchen layouts were
designed to allow (and, in some cases, force) players to col-
laborate with each other. Yet, none of the teams were able
to adopt a cooperative strategy which was more efficient than
working in isolation.

Interestingly, the Divided kitchen was not entirely devoid
of coordination among team members. For example, to en-
sure multiple players did not end up preparing the same or-
der, each individual had to keep track of the orders others
were working on. Given the fast-paced nature and the com-
plex structure of the game, in addition to the frequent overlap
of ingredients in many orders, it was challenging to keep track
of everything. However, based on experimenter observation,
apart from a small number of instances, players were able to
prepare orders without redundancy. Indeed, to reduce uncer-



tainty, some teams used gaze cursors to indicate the orders on
which they were working.

Figure 4: The ‘Divided’ kitchen layout. In this layout, every
player is isolated to their own small kitchen with all necessary
resources.

Teams also used designated player roles to reduce uncer-
tainty during coordination on multiple occasions (teams dis-
cussed these strategies during session breaks and at the end
of sessions). Pre-assigning player roles reduced each play-
ers’ action variability, improving the team’s predictability for
player behavior, which ultimately aided coordination. Re-
sponsibilities for different player roles included chopping,
cooking, and fetching (moving items around the kitchen for
various purposes) items. Washing roles were almost never
assigned because it is a relatively rare event and was always
handled on the fly. So, washing actions were excluded from
the analysis.

A correlation analysis of the different actions indicated that
players who performed more cooking actions were also more
likely to fetch items (0.31), while, chopping actions were
negatively correlated with both cooking (-0.12) and fetch-
ing (-0.13). All correlations were statistically significant
(p < 0.05). The correlations between different actions indi-
cate players’ tendency to organize their behavior around cer-
tain actions (roles) in the game.

To study the effects of player roles on team performance,
we use ‘Role Stability’ (RS) to measure a player’s tendency
to adhere to specific roles in a game. We must first define
‘Action Vectors’ (AV) before we define role stability. An ac-
tion vector is simply a 3-dimensional vector assigned to each
player representing their contributions to different actions in a
specific game. The 3 components of the vector represent the
percentage of cooking, chopping, and fetching actions per-
formed by each player. For example, the value of the cooking
component of a particular player for a specific game is ob-
tained using the following formula:

P
Ncaoking +100
NTotu]
cooking
P . . .
Where N, ;.. o 1 the number of cooking actions executed

by the player P in a game, and N7%% s the total number of

cooking

cooking actions executed by all players in that game.

RS of a player in a specific game is simply the standard
deviation of an AV. The value of RS is low when the values
of the components for the corresponding AV are relatively
similar (players engaging in all actions uniformly), while a
high RS indicates one or two components have relatively
higher values (players engaging more in specific activities).
So, higher RS values indicate greater adherence to player
roles, and lower RS values suggest more adaptation in players
(switching roles as necessary).

Washing actions were excluded from AVs and, conse-
quently, the measure of RS because the number of washing
events in a game was negligible compared to other actions,
and did not contribute sufficiently to the goals of the current
analysis.

To study the relationship between RS and team perfor-
mance, we first obtained a single measure of RS for each
game that reflects the overall strategy used in the game by
the team that played it; we refer to this as RSgume. RSgame 18
calculated by averaging the RS values of all 4 players in each
game. A high value indicates a greater affinity among players
to stick to existing roles, while a low value indicates a general
adaptive behavior in the team. Figure 5 presents the mean and
standard errors (grouped by teams) for RSy, values (5a) and
game score (5b) for all 383 games.

Comparison of the two plots in Figure 5 reveals that the two
highest scoring teams (Teams 4 and 5 in Figure 5b) had some
of the lowest RSgqme values (Figure 5a), while, the range of
RSgame values for the worst performing team (Team 3) was the
highest. Teams 2 and 6 demonstrated mediocre performance,
and their RSgume values also hovered somewhere in the mid-
ranges. Finally, the performance of Team 1 matched those
of Teams 2 and 6 but their RSgy,. values were very low. The
overall trend indicates an inverse relationship between RSgue
and team performance (with a correlation of -0.28).

To account for the hierarchical nature of the data, mixed
effects regression models were used to further test for the ef-
fect of role stability on team performance. However, in ad-
dition to RSgume, we define a second composite variable for
role stability to use in the model. RSgune conveys information
about the strategy used by a team in a specific game but fails
to capture team behavior across games in a task environment
(kitchen layout). The new variable was used in the model to
add information about the spread of RS values across games
played by a team in a kitchen. The values for the new vari-
able were obtained by calculating the standard deviation of
RSgame values for all 4 games played by each team in each
kitchen layout. A high value of the standard deviation indi-
cates greater variations in team strategy for games played in
a specific kitchen, while a low value suggests use of similar
strategies across games in a specific kitchen layout. Since the
new variable provided a measure of a team’s tendency to stick
to similar strategies in a specific kitchen layout, we call this
variable strategy consistency (SC).
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Figure 5: Mean and standard error plots for RSy, (left) and game score (right) across all games played by each team.

Random Effect

| Variable | Variance | Std. Dev. |
Team 1976 44.5
Kitchen Layout 7288 84.9

Fixed Effects

| Variable | Coeff. | Std. Err. | tvalue |
Intercept | 123.1 54.72 2.25
RSgume 4.24 1.19 3.55
SC -4.21 3.74 -1.26
Baseline | 0.34 0.12 2.79

Table 1: Results of model fit for a mixed effects model pre-
dicting team performance based on the value of RSggme, SC,
and baseline performance for each team. The model also has
random intercepts for each team and each kitchen.

The game score of each game was used as the dependent
variable to fit mixed effects models. Random intercepts were
used for Team IDs and kitchen layouts. RSgqm. and SC values
were used as the fixed effect predictor variables. In addition,
a baseline score for each team was also added as a fixed ef-
fect. The baseline score for a team was set to the score of
the first game of the second session. Games from session 1
were not used for this purpose because teams spent their first
sessions familiarizing themselves with the game mechanics.
So, by using a game from the first session we open ourselves
up to the possibility of selecting a game that might not be an
accurate measure of the team’s baseline performance.

Three models were fit to the data to determine the useful-
ness of RSgume and SC in predicting game score. The first
model was a simple random effects model with random inter-
cepts for each team along with the baseline performance of
teams as a fixed effect (null model). For the second model,
RSgume was added as a fixed effect to the null model. For

the third and final model, SC was added as fixed effect to the
second model. Model fits were assessed using the Akaike
Information Criterion (AIC).

The model with no fixed effects was the worst of the three
models (AIC: 4510). The model with only RSgune as a fixed
effect was an improvement over the first model (AIC: 4498).
Finally, the model with both fixed effects was the best model
(AIC: 4493). Changes in AIC values between the 3 models
were statistically significant, which indicate that both mea-
sures added predictive power to the model. The results of the
final model fit are shown in Table 1. The positive coefficient
for RSgume suggests that teams scored higher in games where
they were more persistent about sticking to their roles com-
pared to games in which they showed more adaptive behavior,
while the negative coefficient for SC indicates that teams that
were more likely to stick to a strategy across games for a par-
ticular kitchen design, performed better in general.

Discussion

We used a cooperative cooking game (The CAT) to study hu-
man coordination in a complex dynamic task. Six 4-player
teams of university students each played the game across
eight 1-hour sessions. Team communication was limited to
a shared-gaze paradigm implemented in the system. How-
ever, teams were allowed to discuss gameplay outcomes and
strategies during session breaks and at the end of each ses-
sion.

Our data suggests that all 6 teams reached peak perfor-
mance when players were isolated in their own sub-kitchens
and forced to work alone (in the ‘Divided’ kitchen layout). In
this layout, each player had to perform all actions necessary to
prepare an order, including chopping, cooking, and fetching
items. In other kitchen designs, where the kitchen is shared
between players, teams would share responsibilities among
players. However, effectively dividing responsibilities during
gameplay was challenging in the absence of verbal communi-
cation channels. So, players often stuck to pre-assigned roles



(decided by the team) to reduce prediction uncertainty and
improve coordination within the team.

We use ‘Role Stability’ to measure players’ tendency to
stick to specific roles in a game. Due to the hierarchical struc-
ture of the data, we fit mixed effects models (with random in-
tercepts for teams and kitchens) to determine the relationship
between role stability and game performance. The results of
the analysis suggest a positive relationship between role sta-
bility and performance, that is, reduction in behavioral vari-
ability through adherence to assigned player roles was bene-
ficial to performance in general.

The results of the hierarchical model seemingly contra-
dict the patterns observed in figure 5, which indicates an
inverse relationship between role stability and game perfor-
mance. However, this is not the case, as the apparent dif-
ferences between the two results may be attributed to the
random effects of team behavior and kitchen designs. In-
deed, the plots in figure 5 indicate that teams which used
more adaptive strategies on average (lower values of mean
role stability) had higher game scores overall. Higher per-
formance among adaptive teams in dynamic tasks have been
suggested in the past. In one such study, teams that showed
higher adaptability to role structure changes performed bet-
ter when they were faced with unforeseen changes in the
task (LePine, 2003). Dynamic allocation of team roles have
also been shown to benefit team performance among artificial
agents playing video games (Kim, 2006). Future publications
may consider a deeper analysis of the inter- and intra-team
differences in coordination.

Finally, The results also show that teams that stuck to sim-
ilar strategies across games in each kitchen design were more
likely to score higher. Teams that frequently switched strate-
gies may have been experimenting with different strategies to
find one optimal for the team, which could have led to poor
performance.

Conclusion

We introduced — The CAT — a game-based experimental
paradigm for studying team coordination. Each team played a
cooperative cooking game across eight 1-hour sessions. Data
was collected from six 4-player teams.

Team coordination strategies in the CAT belong to a spec-
trum between fully adaptive and fully planned behavior. Par-
ticipating teams used a combination of strategies which in-
volve assignment of player roles (planned behavior) and dy-
namic adaptation to changing task demands (adaptive behav-
ior), for coordination. Assignment of player roles reduced
behavioral variability thus increasing action predictability
among team members, which in turn helped with team coor-
dination. Our results show that strategic reduction of behav-
ioral variability through adherence to player roles was bene-
ficial to team performance. Finally, the results also show that
teams performed worse when there was higher variation in
their gameplay strategies across games.
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